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ABSTRACT 

Demonstration is an efective end-user development paradigm for 
teaching robots how to perform new tasks. In this paper, we posit 
that demonstration is useful not only as a teaching tool, but also as a 
way to understand and assist end-user developers in thinking about 
a task at hand. As a frst step toward gaining this understanding, 
we constructed a lightweight web interface to crowdsource step-
by-step instructions of common household tasks, leveraging the 
imaginations and past experiences of potential end-user developers. 
As evidence of the utility of our interface, we deployed the interface 
on Amazon Mechanical Turk and collected 207 task traces that span 
18 diferent task categories. We describe our vision for how these 
task traces can be operationalized as task models within end-user 
development tools and provide a roadmap for future work. 

CCS CONCEPTS 

• Information systems → Crowdsourcing; • Computer sys-
tems organization → Robotics; • Human-centered computing 
→ User interface design. 
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1 INTRODUCTION 

End-user developers who script personalized service robot applica-
tions face numerous challenges related to the unrestricted environ-
ments these robots often traverse, the social nuances that many of 
these robots must navigate, and a lack of technical expertise or ap-
propriate development systems and tools required to address these 
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Figure 1: Our crowdsourcing interface collects individual 
task traces, which are organized by task category. 

complexities. To address these challenges, we envision end-user 
developer tools (such as [4, 8, 9]) using built-in task models that 
capture the high-level fow of common household tasks to transfer 
task knowledge to end-user developers. To illustrate our vision, 
consider an end-user developer who wishes to create a reusable, 
personalized task script to retrieve mail from the mailbox. Using a 
spoken-language interface as an example, if the end user specifes 
łGet the mail,” the interface should leverage a fetch model to propose 
a plausible next step in the taskÐbring the mail to a convenient 
location for the end user to access later. 

As a frst step toward realizing our vision of transferring task 
knowledge to end-user developers, we (1) constructed a web inter-
face for crowdsourcing demonstrations, or traces, of the step-by-
step fow of common service tasks and (2) crowdsourced a prelim-

inary dataset of 207 traces grouped within 18 separate task cate-
gories. In designing our crowdsourcing approach, our requirements 
were threefold. First, traces should not be tied to any particular 
context. As such, our trace collection interface, shown in Figure 2, 
presents crowdworkers with task prompts that contain minimal 
contextual details and encourages crowdworkers to rely heavily on 
their own imaginations and past experiences. Second, the collection 
of traces should be efcient and scalable to any imaginable service 
task in the home or workplace. Therefore, crowdworkers using our 
collection interface need only to designate what critical steps in 
a task are performed rather than how they are performed. Finally, 
traces should capture the diferent ways that end-user developers 
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might personalize tasks rather than the ground truth for how a 
robot should perform these tasks. 

Our contributions are shown in Figure 1 and include (1) the 
design of an interface to collect discrete, decontextualized, and per-
sonalized task traces and (2) a dataset that we collected by deploying 
this interface on Amazon Mechanical Turk (MTurk).1 

2 RELATED WORK 

Our work draws from existing interfaces for simulating and demon-

strating robot tasks and prior work with datasets and models that 
capture human activity and human-robot interaction. 

2.1 Robot Simulation & Demonstration Tools 

Many existing data collection and simulation interfaces for robotics 
have realistic environments and physics engines, such as Habitat 2.0 
[25] and iGibson 2.0 [12]. iGibson 2.0 additionally maps simulations 
to discretized, logical states that can be useful for programming or 
planning tasks. The SEAN 2.0 simulator represents a further step in 
simulation in its ability to model the behavior of pedestrians in a 
scene [26]. Social behaviors are similarly present within the online 
game interface proposed by Chernova et al. [5], in which similar to 
our collection interface, interaction data is crowdsourced. An addi-
tional close match to our own needs is the VirtualHome simulator in 
its ability to crowdsource discretized, step-by-step demonstrations 
of tasks and social activities [17]. However, we require crowdwork-
ers to rely on their own past experiences or imaginations rather 
than being provided with a realistic simulated context, thus ruling 
out many modern simulators such as VirtualHome. 

2.2 Task Datasets & Models 

Prior work has produced datasets and models that capture demon-

strations of common household and workplace tasks, in addition to 
human-human and human-robot interactions. While much previous 
work has focused on collecting data to characterize rich multimodal 
sensing and behaviors [e.g., 2, 10, 13], we focus instead on data that 
captures the discrete ordering of events in a task or interaction. 

Often, such data arises from studying human behavior in the lab-
oratory. From observing eight interaction dyads participate in fve 
diferent scenariosÐconversation, collaboration, instruction, inter-
viewing, and storytellingÐSauppé and Mutlu [18] extracted models 
of interaction patterns in a vein similar to Kahn et al. [11]. Using 
the same observations, Sauppé [19] describes larger-scale models 
that capture the overall fow of each scenario. These laboratory-
generated datasets encompass a small set of interaction scenarios, 
however, while we require data spanning a wider range of tasks. 

Datasets also arise from outside of the laboratory, such as the 
Loqui dataset of transcribed human-human conversational interac-
tions [15]. Also obtained in the wild, the ARAS [1] and Orange4Home 
datasets [6] characterize daily human activity using passive sensor 
data. While there is immense potential for human task and activity 
models to arise from this prior work, these datasets are limited in 
scope or capture human activity at too low of detail for character-
izing individual tasks. Recent advances in large-scale in-the-wild 
datasets, in contrast, have proven efective in training robots to 
perform novel tasks [3]. However, our goal is not to transfer task 

1https://www.mturk.com/ 

skills directly to a robot; rather, we wish to capture how end-user 
developers imagine themselves specifying a task. 

Various datasets have also been collected through simulation, 
such as the ALFRED dataset that consists of automatically-generated 
task demonstrations [20]. VirtualHome has also been used to collect 
demonstrations of a wide range of household tasks and social inter-
actions [17], which in contrast to ALFRED, are human-generated. 
Existing datasets generated in simulation, however, sufer from 
the same drawbacks discussed in ğ2.1, namely being infuenced by 
contextual characteristics enforced by the simulator. 

3 TRACE COLLECTION 

In this section, we describe our crowdsourcing interface, our proce-
dure for collecting task traces, and the results of data collection.2,3 

3.1 Collection Interface 

Figure 2 depicts the crowdsourcing interface that we deployed on 
MTurk to collect task traces. Within the interface, the components 
łPrompt” (Figure 2, top right) and łLayout of Home” (Figure 2, top 
center) describe a category of household tasks or social scenarios 
that crowdworkers should imagine themselves completing. The 
prompt provides a textual description of the scenario, while the 
layout is intended to assist crowdworkers in understanding and 
situating themselves within the prompt. The layout is minimally 
interactive, allowing crowdworkers to hover over it and receive 
information about potentially relevant rooms or entities within the 
home. The prompt and layout are purposefully low in detail in order 
to stimulate imagination and the recollection of past experiences 
to fll in missing task details. ğ3.2 provides a list of the 18 prompt 
categories we used within our trace collection procedure. 

Crowdworkers respond to a prompt by dragging task steps from 
the łToolbox” component and dropping them into the łTask Time-

line” to create a task trace. Table 1 defnes the 17 parameterizable 
steps available in the interface (Figure 2, left), which are intended 
to map to robot skills. The interface provides descriptions of each 
step as tooltips. 

To instantiate a step, crowdworkers click on it or drag it from 
the toolbox to the timeline, after which it becomes available to be 
parameterized. Figure 2 (bottom) displays an instantiated approach 
step, in which the person parameter is parameterized with the Guest 
1 argument. Therefore, the frst step in the trace is approach:Guest 
1. To facilitate open-endedness in addressing the prompts, parame-

terization is free response. We provided an additional free response 
text box at the bottom of each instantiated step to allow crowd-
workers to provide additional detail or justify a particular step. 

3.2 Collection Procedure 

We conducted an IRB-approved study in which 105 MTurk crowd-
workers (Turkers) used our collection interface. To participate, Turk-
ers needed IP addresses geographically within the United States 
and a >95% task approval rate. In providing consent to participate, 
Turkers were informed that their data would be publicly shared and 
that their responses were subject to approval by the research team. 

2Portions of ğ3 were presented in Chapter 7 of the frst author’s Ph.D. thesis [16]. 
3Our study materials, code for the web interface, and resulting dataset can be found at 
https://osf.io/jt9hr 
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Figure 2: The web interface that we created to collect task traces. The Layout of Home pane uses graphics from LimeZu.4 

Turkers whose work we approved were paid $2.67 for an expected 
completion time of 20 minutes. 

After giving their consent to participate, Turkers were directed 
to a tutorial web page that described via text and a three-minute 
YouTube video tutorial how to use the interface and the criteria for 
their responses to be approved. Our approval criteria were such 
that (1) Turkers could not provide traces with only one step, and 
(2) traces must address the provided task prompts. We encouraged 
Turkers to use the optional free response description text boxes 
under each step in the timeline to justify their work (i.e., if a re-
sponse outwardly seemed irrelevant to the prompt). Generally, we 

move to:target Ð move to a target 
find:target Ð search for a target 
grab:item Ð grab an item 
open:container Ð open a container 
close:container Ð close a container 
deliver:item, target Ð bring an item to a target 
receive:item Ð receive an item from someone 
place:item, container Ð place an item in a container 
approach:person Ð approach a person 
say:exact-speech Ð say the exact speech as specifed 
tell:story Ð tell a story 
ask:exact-speech Ð ask a question using exact speech 
activate:device Ð turn a device on 
deactivate:device Ð turn a device of 
vacuum:room Ð clean a room by vacuuming it 
wipe:surface Ð clean a surface by wiping it 
wait Ð wait for something to happen 

Table 1: The parameterizable steps available within our 
crowdsourcing interface. 

did not discard traces from Turkers who provided justifcations. 
If fewer than two traces provided by a Turker failed to meet the 
acceptance criteria outlined on the tutorial page, we discarded all 
of the Turker’s traces. 

We used the YouTube IFrame Player API5 to ensure that Turkers 
watched the video before proceeding to the collection interface. 
Once allowed to proceed, each was asked to respond to three sepa-
rate task prompts. An example Mail prompt is as follows: 

Imagine that you live in the home shown to the left, and the mail 
has just arrived through a slot in the front door. Before opening 
any of the letters or packages and starting from anywhere in 
the home, what steps would you take to fetch the mail? 

Each prompt then ends with the statement “This task is very open-
ended, so please use your imagination based on your past experiences 
and the steps that YOU would perform in this situation!” 

In addition to the Mail prompt, an additional 17 prompts captured 
tasks within the following categories: Greeting, Farewell, Groceries, 
Storytelling, Alarm, Announcement, Vacuum, Answer Door, Turn on 
Lights, Delivery, Ask About Day, Phone Call, Patrol, Find, Dust, De-
clutter, and Answer Question. In designing each prompt, we aimed 
to include a spectrum of both social and non-social tasks and in-
tended for the prompts to be general enough to allow crowdworkers 
immense freedom in how they chose to respond. 

3.3 Collection Results 

Of the frst 69 Turkers, we rejected 12 (82.6% approval rate). Of 
the remaining 36, who participated at later dates than the initial 
69, we noticed a substantial increase in spam responses and only 
approved 13 (36.1% approval rate). We observed no diference in 
the quality of approved responses after the increase in spam. Of 

4https://limezu.itch.io/
5https://developers.google.com/youtube/iframe_api_reference 
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the Turkers whose work we include in the dataset, three provided a 
single trace that did not meet our approval criteria, so we discarded 
these individual traces and kept the remainder of their work. 

The fnal dataset includes 207 traces sourced from 70 Turkers. 
On average, the number of traces collected per task category is 11.5 
(min = 10 traces, max = 16 traces). On average, traces contained 
6.23 steps (min = 2 steps, max = 23 steps). Turkers appeared 
attentive and thoughtful when using the interfaceÐ62 Turkers 
used the free response boxes on their instantiated steps to provide 
additional detail, with the total number of descriptions being 706 (a 
rate of 0.55 descriptions per step, with 1289 total steps provided). 

Participants were additionally asked for feedback on the inter-
face after they fnished responding to all three prompts, and their 
positive feedback further indicates high engagement. Examples of 
feedback include the following: 

This was one of the more unique tasks I’ve done on mturk. It 
was very interesting. 

I would love to do more of these! It reminds me of solving prob-
lems using pseudocode! 

I enjoyed it, it felt like a roleplaying game. 

The feedback also indicates that some Turkers were uncertain 
as to whether they completed the task correctly: 

I believe I did well on this task but would appreciate any feed-
back. 

I would have liked to receive feedback during the exercise to 
know if I was hitting the mark and accomplishing the goal of 
the study. I tried my best. 

Other interesting phenomena occurred during the collection of 
traces. 61.4% of Turkers used the wait step, which was often accom-

panied by free response descriptions of external events that must 
occur in order for the task to proceed (e.g., waiting for a verbal re-
sponse). Additionally, many traces explicitly resolve preconditions 
that an autonomous robot could likely resolve by itself. In the step 
wipe: table, for example, a robot is likely aware of the necessary 
precondition of being in possession of a duster or cloth, and if it 
does not have one, of the need to fetch one. Turkers were not aware 
that their traces were intended to be used for service robots and 
often explicitly included these preconditions in their traces. 

4 DISCUSSION 

In this work, we provide a lightweight approach for crowdsourc-
ing task traces with the goal of transferring knowledge from the 
traces to end-user developers who script tasks for service robots. 
As developers specify the high-level steps for a robot to perform 
(e.g., a command to put a bag of groceries in the kitchen) a model 
of the task at hand can suggest ways that the task specifcation 
can be further personalized, such as by inferring edits to the task 
fow or by prompting clarifcation on unstated task structure. For 
example, a developer tool may suggest a foreach loop to an end 
user specifying a Groceries task. 

In transferring task knowledge to end-user developers, we are 
inspired by previous work in which program hints provided by a 
developer serve as input to an automated program synthesizer for 
completion [e.g., 21ś24]. In our case, we envision a human-in-the-

loop pipeline in which end-user developers provide a set of task 

steps as hints, and a developer tool uses a task model constructed 
from task traces to suggest where additional steps, loops, or branch 
points might be needed. This vision is closely aligned with prior 
work in human-robot interaction, in which templates have been 
used as pre-existing generic, reusable program specifcations to be 
selected and instantiated by end users [7]. 

To achieve our vision, we aim to create task models from individ-
ual traces (such as in [14]) or multiple task traces. A naïve approach 
could treat individual traces as models themselves and compute a 
łdif” between the hint and the trace to fnd missing steps omitted 
by the end user. In a more sophisticated approach, multiple traces 
under the same category could be combined into a probabilistic 
model, such as a Markov chain, that could be used to compute the 
probability of a particular step, loop, or branch point being present 
in the task. If there is uncertainty in the task hint, such as if the end 
user provides an ambiguous or incomplete step (e.g., the spoken 
language utterance łthat goes over there”), combined traces may 
also serve as hidden Markov models, in which the current step of 
the task being specifed by the end user must be inferred. 

Our dataset currently limits our ability to pursue the more sophis-
ticated, probabilistic approach, as we would likely need to collect 
many more traces and rigorously post-process these traces to re-
move noise. Our dataset is further limited in the number of task 
categories, currently 18, within which we sourced traces. Future 
work must therefore involve (1) collecting more task traces per task 
category in order to sufciently build models that represent the 
diferent ways that the same type of task can be performed, and (2) 
modifying our interface to streamline the collection of more traces. 

Although our interface is lightweight and can scale to new task 
categories, it too has limitations that hinder data collection. First, in 
order to introduce a new task category, a researcher must manually 
construct a new prompt, potentially injecting their own biases. 
Future work should enable task categories to naturally emerge 
from the collection of crowdworkers’ daily routines. Additionally, 
at present time, individual traces provided by crowdworkers must 
be manually screened by a researcher. Although we believe that 
our trace acceptance criteria are highly objective, future work must 
strive toward more systematic criteria, preferably automated so as 
to remove any possible researcher bias or error. 

5 CONCLUSION 

We present a web interface for collecting traces of service robot 
tasks and a small dataset collected from the deployment of this 
interface on Amazon Mechanical Turk. We describe our vision of 
aggregating task traces to create task models that developer tools 
can use to assist end users in scripting personalized service robot 
tasks. Our dataset demonstrates that the interface is scalable to a 
large number of tasks and is easy for demonstrators to use. 
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