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ABSTRACT

Demonstration is an effective end-user development paradigm for
teaching robots how to perform new tasks. In this paper, we posit
that demonstration is useful not only as a teaching tool, but also as a
way to understand and assist end-user developers in thinking about
a task at hand. As a first step toward gaining this understanding,
we constructed a lightweight web interface to crowdsource step-
by-step instructions of common household tasks, leveraging the
imaginations and past experiences of potential end-user developers.
As evidence of the utility of our interface, we deployed the interface
on Amazon Mechanical Turk and collected 207 task traces that span
18 different task categories. We describe our vision for how these
task traces can be operationalized as task models within end-user
development tools and provide a roadmap for future work.

CCS CONCEPTS

« Information systems — Crowdsourcing; - Computer sys-
tems organization — Robotics; - Human-centered computing
— User interface design.
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1 INTRODUCTION

End-user developers who script personalized service robot applica-
tions face numerous challenges related to the unrestricted environ-
ments these robots often traverse, the social nuances that many of
these robots must navigate, and a lack of technical expertise or ap-
propriate development systems and tools required to address these
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by task prompt
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Figure 1: Our crowdsourcing interface collects individual
task traces, which are organized by task category.

complexities. To address these challenges, we envision end-user
developer tools (such as [4, 8, 9]) using built-in task models that
capture the high-level flow of common household tasks to transfer
task knowledge to end-user developers. To illustrate our vision,
consider an end-user developer who wishes to create a reusable,
personalized task script to retrieve mail from the mailbox. Using a
spoken-language interface as an example, if the end user specifies
“Get the mail,” the interface should leverage a fetch model to propose
a plausible next step in the task—bring the mail to a convenient
location for the end user to access later.

As a first step toward realizing our vision of transferring task
knowledge to end-user developers, we (1) constructed a web inter-
face for crowdsourcing demonstrations, or traces, of the step-by-
step flow of common service tasks and (2) crowdsourced a prelim-
inary dataset of 207 traces grouped within 18 separate task cate-
gories. In designing our crowdsourcing approach, our requirements
were threefold. First, traces should not be tied to any particular
context. As such, our trace collection interface, shown in Figure 2,
presents crowdworkers with task prompts that contain minimal
contextual details and encourages crowdworkers to rely heavily on
their own imaginations and past experiences. Second, the collection
of traces should be efficient and scalable to any imaginable service
task in the home or workplace. Therefore, crowdworkers using our
collection interface need only to designate what critical steps in
a task are performed rather than how they are performed. Finally,
traces should capture the different ways that end-user developers
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might personalize tasks rather than the ground truth for how a
robot should perform these tasks.

Our contributions are shown in Figure 1 and include (1) the
design of an interface to collect discrete, decontextualized, and per-
sonalized task traces and (2) a dataset that we collected by deploying
this interface on Amazon Mechanical Turk (MTurk).!

2 RELATED WORK

Our work draws from existing interfaces for simulating and demon-
strating robot tasks and prior work with datasets and models that
capture human activity and human-robot interaction.

2.1 Robot Simulation & Demonstration Tools

Many existing data collection and simulation interfaces for robotics
have realistic environments and physics engines, such as Habitat 2.0
[25] and iGibson 2.0 [12]. iGibson 2.0 additionally maps simulations
to discretized, logical states that can be useful for programming or
planning tasks. The SEAN 2.0 simulator represents a further step in
simulation in its ability to model the behavior of pedestrians in a
scene [26]. Social behaviors are similarly present within the online
game interface proposed by Chernova et al. [5], in which similar to
our collection interface, interaction data is crowdsourced. An addi-
tional close match to our own needs is the VirtualHome simulator in
its ability to crowdsource discretized, step-by-step demonstrations
of tasks and social activities [17]. However, we require crowdwork-
ers to rely on their own past experiences or imaginations rather
than being provided with a realistic simulated context, thus ruling
out many modern simulators such as VirtualHome.

2.2 Task Datasets & Models

Prior work has produced datasets and models that capture demon-
strations of common household and workplace tasks, in addition to
human-human and human-robot interactions. While much previous
work has focused on collecting data to characterize rich multimodal
sensing and behaviors [e.g., 2, 10, 13], we focus instead on data that
captures the discrete ordering of events in a task or interaction.
Often, such data arises from studying human behavior in the lab-
oratory. From observing eight interaction dyads participate in five
different scenarios—conversation, collaboration, instruction, inter-
viewing, and storytelling—Sauppé and Mutlu [18] extracted models
of interaction patterns in a vein similar to Kahn et al. [11]. Using
the same observations, Sauppé [19] describes larger-scale models
that capture the overall flow of each scenario. These laboratory-
generated datasets encompass a small set of interaction scenarios,
however, while we require data spanning a wider range of tasks.
Datasets also arise from outside of the laboratory, such as the
Loqui dataset of transcribed human-human conversational interac-
tions [15]. Also obtained in the wild, the ARAS [1] and Orange4Home
datasets [6] characterize daily human activity using passive sensor
data. While there is immense potential for human task and activity
models to arise from this prior work, these datasets are limited in
scope or capture human activity at too low of detail for character-
izing individual tasks. Recent advances in large-scale in-the-wild
datasets, in contrast, have proven effective in training robots to
perform novel tasks [3]. However, our goal is not to transfer task

Ihttps://www.mturk.com/
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skills directly to a robot; rather, we wish to capture how end-user
developers imagine themselves specifying a task.

Various datasets have also been collected through simulation,
such as the ALFRED dataset that consists of automatically-generated
task demonstrations [20]. VirtualHome has also been used to collect
demonstrations of a wide range of household tasks and social inter-
actions [17], which in contrast to ALFRED, are human-generated.
Existing datasets generated in simulation, however, suffer from
the same drawbacks discussed in §2.1, namely being influenced by
contextual characteristics enforced by the simulator.

3 TRACE COLLECTION

In this section, we describe our crowdsourcing interface, our proce-
dure for collecting task traces, and the results of data collection.?:3

3.1 Collection Interface

Figure 2 depicts the crowdsourcing interface that we deployed on
MTurk to collect task traces. Within the interface, the components
“Prompt” (Figure 2, top right) and “Layout of Home” (Figure 2, top
center) describe a category of household tasks or social scenarios
that crowdworkers should imagine themselves completing. The
prompt provides a textual description of the scenario, while the
layout is intended to assist crowdworkers in understanding and
situating themselves within the prompt. The layout is minimally
interactive, allowing crowdworkers to hover over it and receive
information about potentially relevant rooms or entities within the
home. The prompt and layout are purposefully low in detail in order
to stimulate imagination and the recollection of past experiences
to fill in missing task details. §3.2 provides a list of the 18 prompt
categories we used within our trace collection procedure.

Crowdworkers respond to a prompt by dragging task steps from
the “Toolbox” component and dropping them into the “Task Time-
line” to create a task trace. Table 1 defines the 17 parameterizable
steps available in the interface (Figure 2, left), which are intended
to map to robot skills. The interface provides descriptions of each
step as tooltips.

To instantiate a step, crowdworkers click on it or drag it from
the toolbox to the timeline, after which it becomes available to be
parameterized. Figure 2 (bottom) displays an instantiated approach
step, in which the person parameter is parameterized with the Guest
1argument. Therefore, the first step in the trace is approach: Guest
1. To facilitate open-endedness in addressing the prompts, parame-
terization is free response. We provided an additional free response
text box at the bottom of each instantiated step to allow crowd-
workers to provide additional detail or justify a particular step.

3.2 Collection Procedure

We conducted an IRB-approved study in which 105 MTurk crowd-
workers (Turkers) used our collection interface. To participate, Turk-
ers needed IP addresses geographically within the United States
and a >95% task approval rate. In providing consent to participate,
Turkers were informed that their data would be publicly shared and
that their responses were subject to approval by the research team.

ZPortions of §3 were presented in Chapter 7 of the first author’s Ph.D. thesis [16].
30ur study materials, code for the web interface, and resulting dataset can be found at
https://osf.io/jtohr
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Figure 2: The web interface that we created to collect task traces. The Layout of Home pane uses graphics from LimeZu.*

Turkers whose work we approved were paid $2.67 for an expected
completion time of 20 minutes.

After giving their consent to participate, Turkers were directed
to a tutorial web page that described via text and a three-minute
YouTube video tutorial how to use the interface and the criteria for
their responses to be approved. Our approval criteria were such
that (1) Turkers could not provide traces with only one step, and
(2) traces must address the provided task prompts. We encouraged
Turkers to use the optional free response description text boxes
under each step in the timeline to justify their work (i.e., if a re-
sponse outwardly seemed irrelevant to the prompt). Generally, we

move to:target
find: target

grab: item

open: container
close: container
deliver:item, target
receive:item
place: item, container
approach: person
say: exact-speech
tell:story

ask: exact-speech
activate: device
deactivate: device
vacuum: room

wipe: surface

wait

move to a target

search for a target

grab an item

open a container

close a container

bring an item to a target
receive an item from someone
place an item in a container
approach a person

say the exact speech as specified
tell a story

ask a question using exact speech
turn a device on

turn a device off

clean a room by vacuuming it
clean a surface by wiping it
wait for something to happen

Table 1: The parameterizable steps available within our
crowdsourcing interface.
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did not discard traces from Turkers who provided justifications.
If fewer than two traces provided by a Turker failed to meet the
acceptance criteria outlined on the tutorial page, we discarded all
of the Turker’s traces.

We used the YouTube [Frame Player API® to ensure that Turkers
watched the video before proceeding to the collection interface.
Once allowed to proceed, each was asked to respond to three sepa-
rate task prompts. An example Mail prompt is as follows:

Imagine that you live in the home shown to the left, and the mail
has just arrived through a slot in the front door. Before opening
any of the letters or packages and starting from anywhere in
the home, what steps would you take to fetch the mail?

Each prompt then ends with the statement “This task is very open-
ended, so please use your imagination based on your past experiences
and the steps that YOU would perform in this situation!”

In addition to the Mail prompt, an additional 17 prompts captured
tasks within the following categories: Greeting, Farewell, Groceries,
Storytelling, Alarm, Announcement, Vacuum, Answer Door, Turn on
Lights, Delivery, Ask About Day, Phone Call, Patrol, Find, Dust, De-
clutter, and Answer Question. In designing each prompt, we aimed
to include a spectrum of both social and non-social tasks and in-
tended for the prompts to be general enough to allow crowdworkers
immense freedom in how they chose to respond.

3.3 Collection Results

Of the first 69 Turkers, we rejected 12 (82.6% approval rate). Of
the remaining 36, who participated at later dates than the initial
69, we noticed a substantial increase in spam responses and only
approved 13 (36.1% approval rate). We observed no difference in
the quality of approved responses after the increase in spam. Of

*https://limezu.itch.io/
Shttps://developers.google.com/youtube/iframe_api_reference
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the Turkers whose work we include in the dataset, three provided a
single trace that did not meet our approval criteria, so we discarded
these individual traces and kept the remainder of their work.

The final dataset includes 207 traces sourced from 70 Turkers.
On average, the number of traces collected per task category is 11.5
(min = 10 traces, max = 16 traces). On average, traces contained
6.23 steps (min = 2 steps, max = 23 steps). Turkers appeared
attentive and thoughtful when using the interface—62 Turkers
used the free response boxes on their instantiated steps to provide
additional detail, with the total number of descriptions being 706 (a
rate of 0.55 descriptions per step, with 1289 total steps provided).

Participants were additionally asked for feedback on the inter-
face after they finished responding to all three prompts, and their
positive feedback further indicates high engagement. Examples of
feedback include the following:

This was one of the more unique tasks I've done on mturk. It
was very interesting.

I would love to do more of these! It reminds me of solving prob-
lems using pseudocode!

I enjoyed it, it felt like a roleplaying game.

The feedback also indicates that some Turkers were uncertain
as to whether they completed the task correctly:

I believe I did well on this task but would appreciate any feed-
back.

I would have liked to receive feedback during the exercise to
know if I was hitting the mark and accomplishing the goal of
the study. I tried my best.

Other interesting phenomena occurred during the collection of
traces. 61.4% of Turkers used the wait step, which was often accom-
panied by free response descriptions of external events that must
occur in order for the task to proceed (e.g., waiting for a verbal re-
sponse). Additionally, many traces explicitly resolve preconditions
that an autonomous robot could likely resolve by itself. In the step
wipe: table, for example, a robot is likely aware of the necessary
precondition of being in possession of a duster or cloth, and if it
does not have one, of the need to fetch one. Turkers were not aware
that their traces were intended to be used for service robots and
often explicitly included these preconditions in their traces.

4 DISCUSSION

In this work, we provide a lightweight approach for crowdsourc-
ing task traces with the goal of transferring knowledge from the
traces to end-user developers who script tasks for service robots.
As developers specify the high-level steps for a robot to perform
(e.g., a command to put a bag of groceries in the kitchen) a model
of the task at hand can suggest ways that the task specification
can be further personalized, such as by inferring edits to the task
flow or by prompting clarification on unstated task structure. For
example, a developer tool may suggest a foreach loop to an end
user specifying a Groceries task.

In transferring task knowledge to end-user developers, we are
inspired by previous work in which program hints provided by a
developer serve as input to an automated program synthesizer for
completion [e.g., 21-24]. In our case, we envision a human-in-the-
loop pipeline in which end-user developers provide a set of task
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steps as hints, and a developer tool uses a task model constructed
from task traces to suggest where additional steps, loops, or branch
points might be needed. This vision is closely aligned with prior
work in human-robot interaction, in which templates have been
used as pre-existing generic, reusable program specifications to be
selected and instantiated by end users [7].

To achieve our vision, we aim to create task models from individ-
ual traces (such as in [14]) or multiple task traces. A naive approach
could treat individual traces as models themselves and compute a
“diff” between the hint and the trace to find missing steps omitted
by the end user. In a more sophisticated approach, multiple traces
under the same category could be combined into a probabilistic
model, such as a Markov chain, that could be used to compute the
probability of a particular step, loop, or branch point being present
in the task. If there is uncertainty in the task hint, such as if the end
user provides an ambiguous or incomplete step (e.g., the spoken
language utterance “that goes over there”), combined traces may
also serve as hidden Markov models, in which the current step of
the task being specified by the end user must be inferred.

Our dataset currently limits our ability to pursue the more sophis-
ticated, probabilistic approach, as we would likely need to collect
many more traces and rigorously post-process these traces to re-
move noise. Our dataset is further limited in the number of task
categories, currently 18, within which we sourced traces. Future
work must therefore involve (1) collecting more task traces per task
category in order to sufficiently build models that represent the
different ways that the same type of task can be performed, and (2)
modifying our interface to streamline the collection of more traces.

Although our interface is lightweight and can scale to new task
categories, it too has limitations that hinder data collection. First, in
order to introduce a new task category, a researcher must manually
construct a new prompt, potentially injecting their own biases.
Future work should enable task categories to naturally emerge
from the collection of crowdworkers’ daily routines. Additionally,
at present time, individual traces provided by crowdworkers must
be manually screened by a researcher. Although we believe that
our trace acceptance criteria are highly objective, future work must
strive toward more systematic criteria, preferably automated so as
to remove any possible researcher bias or error.

5 CONCLUSION

We present a web interface for collecting traces of service robot
tasks and a small dataset collected from the deployment of this
interface on Amazon Mechanical Turk. We describe our vision of
aggregating task traces to create task models that developer tools
can use to assist end users in scripting personalized service robot
tasks. Our dataset demonstrates that the interface is scalable to a
large number of tasks and is easy for demonstrators to use.
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