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ABSTRACT 

Service robots for personal use in the home and the workplace 
require end-user development solutions for swiftly scripting robot 
tasks as the need arises. Many existing solutions preserve ease, ef-

ciency, and convenience through simple programming interfaces 
or by restricting task complexity. Others facilitate meticulous task 
design but often do so at the expense of simplicity and efciency. 
There is a need for robot programming solutions that reconcile the 
complexity of robotics with the on-the-fy goals of end-user devel-
opment. In response to this need, we present a novel, multimodal, 
and on-the-fy development system, Tabula. Inspired by a formative 
design study with a prototype, Tabula leverages a combination of 
spoken language for specifying the core of a robot task and sketch-
ing for contextualizing the core. The result is that developers can 
script partial, sloppy versions of robot programs to be completed 
and refned by a program synthesizer. Lastly, we demonstrate our 
anticipated use cases of Tabula via a set of application scenarios. 
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1 INTRODUCTION 

End-user development (EUD) solutions for robotics must allow end 
users to easily and efciently create robot applications to satisfy 
immediate needs. Consider an example in which the manager of a 
grocery store must direct trafc away from a spill in the beverage 
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Say, ‘please be careful of 
of the spill in this aisle.’

task: moveTo()

task: alert()

structure: loop

Figure 1: Tabula lets end-user developers of robots contextu-
alize their speech by sketching out program structure. 

aisleÐa perfect task for a robot to perform and a seemingly simple 
task to specify. The manager must direct the robot to the location 
of the spill while ensuring that the robot avoids the spill; the robot 
must issue a cautionary statement to anyone approaching the aisle; 
and the robot must return to its charging station when the spill has 
been cleaned up (Figure 1). 

Although simple in concept, designating the robot’s task at a 
moment’s notice may prove challenging. While learning techniques 
promise assistance due to their efectiveness in robotic task training, 
ofine training forgoes critical social and environmental context, 
while online training takes time. End users, by contrast, already 
possess the contextualized knowledge required to specify a task. 
Therefore, we posit that programming tools for end users ofer a 
better approach for on-the-fy task specifcation. Existing tools for 
robotics, however, are impracticably instrumented for addressing 
immediate needs (e.g., desktop interfaces), or demand basic pro-
gramming knowledge that is tangential to the expertise and skills 
of domain experts (e.g., automata or block-based programming in 
[21, 36]). Other programming paradigms, in contrast, compensate 
by restricting expressiveness, such as those that ofer simple pro-
gram representations (e.g., trigger-action programming in [26]), or 
those that limit developers to programming only one aspect of a 
robot’s behaviors (e.g., movement but not task goals in [53]). 

To address the on-the-fy programming needs of end-user devel-
opers, we created a novel, on-the-fy, EUD solution, Tabula, designed 
to reconcile simplicity and expressiveness. The guiding principle 
of Tabula is to capture and automatically refne rapid, incomplete 
developer input from as minimally instrumented of an interface as 
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possible. Achieving this goal is founded on two design choices. First, 
a formative design study conducted by the authors and described in 
this paper suggests that a multimodal interface with partial reliance 
on speech will enable end users to easily and efciently express 
simple tasks for a robot to perform. Second, at present day, touch 
screen and voice interfaces such as mobile phones, tablets, and 
smart watches, are ubiquitous. End-user developers can therefore 
conveniently access touch interaction to contextualize spoken lan-
guage statements and fll in logic gaps. 

Guided by these ideas, Tabula enables end users to program 
robots through multimodal speech and sketching input. In a record-
ing session, developers utter one or two spoken language state-
ments that correspond to the primary goals, or core, of a task. 
To contextualize the core, developers sketch program logic on a 
two-dimensional representation of the robot’s target environment. 
When the recording session ends, Tabula’s program synthesizer 
leverages automated planning techniques to assemble a task by (1) 
embedding the robot’s goals within the path drawn by the devel-
oper and (2) inserting any additional steps required to achieve these 
goals. If multiple recordings have been provided, the synthesizer 
combines all the resulting task plans into an executable automaton. 

Our primary contribution is therefore a programming system, 
Tabula, and the EUD paradigm that it afords. In this paper, we frst 
describe a formative design study with a speech-only prototype, 
which ultimately served as a catalyst for the ideation of Tabula. We 
then describe Tabula itself, focusing on the integration of sketching 
to contextualize speech and specify program logic. 

Our contributions are summarized as follows: 
• System Ð a full-fedged development tool, Tabula, and a set 
of application scenarios to demonstrate its use. 

• Design Ð a design study that results in design principles for 
creating on-the-fy EUD tools for robots. 

• Technical Ð a program synthesis approach for contextualiz-
ing spoken language with program sketches. 

2 RELATED WORK 

Our work draws on the literature from end-user development, nat-
ural language programming, program synthesis, and planning in 
artifcial intelligence (AI planning). In the following, we briefy 
discuss relevant key concepts and related work. 

2.1 End-User Development 

End-user development (EUD) aims to democratize programming 
for novices. Lieberman et al. [27] characterizes EUD as surpassing 
application parameterization and customization and allowing users 
to modify or create programs from scratch. An EUD paradigm of 
note, trigger-action programming (TAP), has been widely successful 
in its adoption by end users [48]. However, despite its simplicity, 
TAP developers are still susceptible to inserting undesirable or 
unpredictable behaviors into their programs [56]. In a diferent 
approach to EUD, sloppy programming has explored the automatic 
mapping of coarse text entry to the capabilities of an API [28]. 
Under the umbrella of the no-code movement, a recently popularized 
term for EUD, many commercial products allow users to create 
complex applications, including Webfow for intricate webpages 
[50], AirTable for databases [1], and Zapier for automation [54]. 

Various approaches to EUD have been explored in robotics, but 
are typically limited in expressive power. These limitations have 
arisen from restrictive programming paradigms like TAP [26, 41] 
and input methods like natural language [15], or from making only 
a small subset of robot actions available to be programmed (e.g., 
only motion trajectories as in [53]). More expressive EUD interfaces, 
however, may increase developer mistakes and compromise the 
robot’s dependability. Prior work in end-user software engineering 
(EUSE) has sought to preserve dependability by providing end users 
with standard software engineering practices (e.g., fault localization) 
[7], and thus may prove useful for robotics. 

Sketching is a familiar concept in robot EUD and control. An 
especially natural use of sketching involves specifying the navi-
gation path of a robot and the surrounding environment [5] or 
other navigation-related commands such as a drawn łXž indicating 
łgo herež [43] or a drawn lasso indicating łvacuum this areaž [40]. 
Tabula draws heavily from Roboshop, an interface for annotating 
a top-down view of a robot’s environment with tasks to perform 
[29], and V.Ra, a task-authoring interface that integrates navigation 
paths with both robot actions and program logic [8]. Additionally 
similar to Tabula is the work of Shah [42] that integrates speech 
with sketching for specifying navigation commands and the work 
of Correa et al. [12] and Teller et al. [45] on a real-time robot control 
interface that also integrates speech with sketching. Among these 
works, Tabula derives novelty from its ability to synthesize branch-
ing and looping programs from coarse, on-the-fy multimodal input. 

2.2 Natural Language Programming 

Motivated by the widespread use of language in human interactions, 
researchers have explored several diferent approaches to allow 
natural language interactions with robots. Semantic parsing, in 
which natural language is transformed to a logical representation 
[13, 51, 55], has often been used to enable language specifcation 
of commands, goals, or simple programs [9, 32, 47, 49]. Alternative 
approaches based on syntactic features have also been shown to be 
efective when matched with appropriate domain knowledge [46]. 
In certain applications, the direct mapping of a controlled subset of 
English to the target formalism has proven sufcient [24]. 

Natural language dialogue systems use multi-turn language in-
teractions to better accommodate the communication of complex 
instructions. In robotics, these systems have enabled end users to 
specify reusable programs for tasks such as navigation [25, 47], as-
sembly [15, 44], and social interaction [18]. Some have envisioned 
human-robot dialogue as a way for future domestic robots to ac-
quire necessary environment-specifc knowledge, from the actions 
needed to complete some task to the rules that underlie the world 
[11]. In this vein, Mohan and Laird [34] developed an explanation-
based task learning approach, using situated instructions to teach 
novel hierarchical tasks to a robot, and later work showed how 
these task representations could generalize across situations [23]. 

2.3 Planning & Synthesis 

Program synthesis is used to automatically construct fully exe-
cutable programs from partial developer specifcations [19]. In 
human-robot interaction, program synthesis has been applied in 
both robot manipulation [16, 20] and social domains [10]. Similar 
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to Tabula, the programming tool Figaro synthesizes robot programs 
from multimodal speech and touch demonstrations [38]. Figaro, 
however, requires developers to recite their speech and touch in 
the exact order that they must occur in the resulting program. 

To synthesize programs, Tabula uses techniques from AI plan-
ning, which is broadly defned by Alterovitz et al. [3] as łcomputing 
actions and motions for a robot to achieve a specifed objective.ž In 
accordance with Ghallab et al. [17], we classify our approach as op-
erating at the descriptive level, in which plans contain information 
about what actions for the robot to perform and when to perform 
them, rather than the operational level that describes precisely how 
the robot should perform these actions. Tabula draws inspiration 
from notable successes of planning in human-robot interaction, 
including the Human-Aware Task Planner that plans a robot’s ac-
tions in accordance with social rules [2] and work from Petrick and 
Foster [35] that plans the actions of a social bartender robot for 
multi-party human-robot interactions. 

3 SPEECH PROTOTYPE: ONE MODE OF INPUT 

In this section, we describe our prototypical speech interface that 
ultimately served as a catalyst for the development of Tabula.1 In 
the vein of afording end users as much control with as minimal 
input as possible, the prototype explores the feasibility of end-user 
development with a single input modalityÐspeechÐfor two reasons. 
First, speech is an intuitive form of communication inherent to 
everyday interaction. Second, sensing speech requires minimal 
instrumentation (i.e., only a microphone) beyond the robot itself. 

In what follows, we describe the prototypical speech interface, 
its evaluation, and key lessons that inform Tabula. 

3.1 Prototypical Speech Interface 

The prototype consists of an early version of Tabula’s verbal input 
interface consisting of a wakeword recognizer, a speech-to-text 
engine, and a speech classifer. In the prototype, the verbal interface 
is accompanied by a simple visual feedback interface. 

To use the verbal interface, end users begin designing a task 
by saying the wakeword łlisten to me.ž Then, users can verbally 
enter utterances into the interface, each of which is assigned to 
individual commands from an available setÐeither (1) action com-

mands, which specify that the robot must do something, or (2) 
event commands, which specify that the robot should listen for a 
particular trigger to which the robot can respond, such as someone 
approaching or speaking. Instantiating event commands is thus 
the primary means for end users to encode human behavior in a 
program. For the prototype, we developed a small and exploratory 
set of commands. A sample subset of action (top fve) and event 
(bottom two) commands is listed below: 

moveTo: place −→ move to place 
put: item, place −→ put the specifed item in place 
say: speech −→ say the contents of speech 
ask: speech −→ ask the contents of speech 
tell: narrative −→ recite the contents of narrative 
eventApproach −→ person approaches the robot 
eventSpeech: speech −→ person says speech to the robot 

1Portions of ğ3 were presented in Chapter 7 of the frst author’s Ph.D. dissertation 
[37]. ğ3 focuses on aspects of this work that led to the development of Tabula. 

For the remainder of the paper, we refer to a command as a 
fully instantiated action or event in which all parameters in the 
command are resolved. A command type refers to an uninstantiated 
command. For example, the type of say: ‘hello’ is say, while the 
parameter of the instantiated command is ‘hello.’ 

To infer a command from an utterance, the prototype uses a 
non-learned, keyword-based approach that scores commands based 
on how well verbs and nouns in the utterance match a command’s 
type and parameters, respectively. Scores are derived by querying 
keywordsÐverbs, nouns, command types, and parametersÐwithin 
WordNet [14, 33] and extracting the real-value distances between 
synonyms of these keywords. For example, within the utterance, 
łPut the groceries in the kitchen,ž the action command put: gro-
ceries, kitchen scores highly because the words łput,ž łgroceries,ž 
and łkitchenž match the command type and parameters. 

Event commands score higher than action commands if the ut-
terance contains keywords like łifž or łwhen.ž For example, in 
the utterance łWhen someone says ‘hello,’ ž the event command 
eventSpeech: ‘Hello’ (someone greets the robot) scores higher 
than its corresponding action command say: ‘Hello’ (the robot 
says łhellož) because the utterance begins with the word łwhen.ž 

For speech commands, we require that the user provide the exact 
speech that the robot should utter or the exact speech that the robot 
can recognize. For example, if the end user wishes to specify that the 
robot emits a greeting, the user can say something like łThe robot 
should now say ‘Hello, it’s nice to see you!’ ž in order to produce the 
corresponding action command say: ‘Hello, it’s nice to see you!’ 

As end-user developers produce a sequence of utterances, the 
prototype produces a program that consists of the corresponding 
sequence of commands. The sequence of commands is displayed 
on the visual feedback interface for the user to check. For editing 
in-progress command sequences, the prototype contains three sim-

ple directives: łundož for undoing commands, łredož for redoing 
commands, and łresetž for deleting all commands and starting over. 

3.2 Formative Evaluation 

To evaluate our design decisions within the prototype, we con-
ducted a remote user study over separate video calls with fve 
participants (three males, two females) aged 18 to 43 years (� = 24, 
�� = 10.7). Participants had little to no experience with robots and 
mixed levels of programming experience. The study was approved 
by an institutional review board (IRB). 

In the study, participants were trained to use the prototype and 
presented with three tasks within a simulated home environment 
(e.g., welcoming someone home). For each of the three selected 
tasks, participants were allotted three minutes to program the ro-
bot and test the robot in a low-fdelity simulator within which 
participants could execute their programs over the video call. In 
the test environment, an icon of a robot moved around the home 
and interacted with participants via microphone and speaker. 

At the end of the study, we asked participants to respond to the 
System Usability Scale SUS (10 items on a fve-point rating scale) [6] 
and the USE questionnaire [30], which measures usefulness, ease 
of use, ease of learning, and satisfaction (30 items on a seven-point 
rating scale). The prototype’s average SUS score was 77 (�� = 
17.9). Within USE, on a scale of one to seven, participants rated the 
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prototype’s usefulness 4.7 (�� = 1.85), ease of use 4.45 (�� = 1.82), 
ease of learning 4.85 (�� = 2.22), and satisfaction 4.31 (�� = 2.15). 

Additionally, we conducted brief (5-10 minute) semi-structured 
interviews with participants to obtain a richer understanding of 
their experience. To analyze the interviews, we performed open 
coding and extracted key themes from the interview data, which 
we summarize below. Participants are referred to as P1-5. 

• Theme 1, on-the-fy task specifcation: Despite issues with 
speech recognition and classifcation (see below), the inter-
face was viewed as intuitive and easy by some participants 
(P2, P4, P5). P1 even described its potential to be "on the 
fy." In line with the guidelines proposed by [4], however, P1 
highlighted the need to modify programs after their creation. 

• Theme 2, shortcomings of spoken language: Participants ex-
pressed difculty with spoken language, stating that it was 
łclunky and inefcientž (P2) and required them to adjust their 
speech style (P5). P3 additionally highlighted the ambiguities 
inherent in speech, such as being unclear who is referring 
to whom when involving other people in a task. 

• Theme 3, preferences on specifcation paradigm: While linear 
task specifcation was viewed favorably (P4), P3 expressed 
that the interface was łtoo simple,ž and P1 and P4 highlighted 
potential insufciencies in the interface in handling com-

plex programs. Other participants preferred alternative input 
methods such as through łtypingž (P2, P4), a łScratchž-like 
interface [39] (P1), or customizable łblockž commands (P2). 

In addition to our questionnaire and interview data, we observed 
various usage patterns that help characterize how participants used 
the prototype. Participants required an average of 67.4 seconds 
(�� = 29.6 seconds) to specify each task. One participant did not 
fnish one task, so we excluded this task from the average specifca-
tion time. We observed participants experience difculty with the 
speech interface due to a combination of incorrect speech transcrip-
tion, speech not being heard altogether, the wakeword not being 
recognized, and speech being misclassifed even if heard correctly. 
Possibly due to these difculties, participants used the łundož or 
łresetž directives an average of 1.47 (�� = 1.30) times per task. 

3.3 Implications of Prototype 

We now discuss the implications of the prototype that emerged 
from our study as they pertain to the current version of Tabula. 

Speech. While the prototype was viewed favorably as an on-
the-fy tool (Theme 1), participants expressed difculties with the 
speech interface (Theme 2), as further evidenced by our objective 
observations of these difculties and the number of times that 
participants used the łundož and łresetž directives (usage patterns). 
We thereby determined that Tabula should reduce its reliance on 
speech and provide support for underspecifying verbal commands. 

Additional modes of interaction. In response to participant 
feedback (Theme 3) and to compensate for the reduction in speech, 
we determined that Tabula should aford users with a second input 
channel that (1) helps infer task details without requiring the user to 
specify these details verbally and (2) allows end users to more efec-
tively understand and manage potential program complexity. This 
input channel should avoid the need for additional instrumentation 
(e.g., requiring a keyboard and mouse). 

c

sketch

control
panel

region

object

System Components

Interface Work�ow

speech

touch

user
interface

synthesizer

recording

program

receive mapa record tasks

color regionsb

Figure 2: (Top) Tabula consists of an interface that passes 
recordings to a synthesizer, which returns a program. (Bot-
tom) The interface enables users to (a) receive a map from a 
robot, (b) color important map regions, and (c) record tasks. 

4 TABULA: TWO MODES OF INPUT 

The design study with the prototype illuminates various challenges 
that end-user developers face with speech as their sole input modal-

ity. Due to the implications of the study, in addition to prior work 
that highlights various benefts of multimodal interfaces (e.g., inclu-
siveness and accessibility [52]), we supplemented speech with an 
additional modality, sketching, to create Tabula. We chose sketching 
in order to deemphasize speech by enabling end users to tactilely 
contextualize a small set of core, possibly underspecifed commands. 
Sketching further allows end-user developers to craft program logic 
(e.g., loops) that are difcult to express verbally and maintains our 
goals of requiring minimal instrumentation for developers to com-

plete a development task. 
The Tabula system is implemented within two components com-

municating over ROS Noetic2Ða handheld touch or stylus-based in-
terface implemented in Unity version 2020.3.21f13 and a synthesizer 
implemented in Python 3 (Figure 2, top). Given a two-dimensional 
map of the robot’s environment (Figure 2 bottom, a) with labelled 
regions (Figure 2 bottom, b), users verbalize a set of core commands 
and sketch the intended path of the robot on the map (Figure 2 bot-
tom, c). Subsequently, the interface sends the recording consisting 

2http://wiki.ros.org/noetic 
3https://unity.com/ 
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of the user’s speech and sketch to the synthesizer, which returns a 
program to the interface.4 

In what follows, we describe (1) how Tabula is confgured for 
use, (2) how users then create recordings from speech and sketches, 
and fnally (3) how programs are synthesized from recordings. 

4.1 Getting Ready to Use Tabula 

Consider the following motivating example: a user wishes to pro-
gram a robot to meet them every time they return from grocery 
shopping to help with unloading. In order to use Tabula, technical 
requirements must be satisfed, i.e., provide underlying assumptions 
of the robot’s capabilities and populate a map to use with Tabula. 

Robot Assumptions. The developer must have access to a 
robot that is capable of creating a two-dimensional map of its en-
vironment, within which it should be able to accurately localize 
itself and recognize objects. In addition, the robot must be equipped 
with state-of-the-art path, motion, and task plannersÐit should 
be able to navigate to diferent areas in the environment, interact 
with objects that it recognizes, and handle edge cases in its task 
within reason (e.g., if the robot has a goal to grab groceries but the 
groceries are inside of the user’s car, the robot will know to open 
the car door and search for the groceries before grabbing them). 

Knowledge Handling. Prior to use, Tabula must possess con-
textual knowledge. Knowledge handling within Tabula draws heav-
ily from prior work in AI planning, particularly Petrick and Foster 
[35], in that Tabula contains a fxed domain that describes the uni-
verse of known possible entities that the robot is assumed to be able 
to recognize and interact with (e.g., types of objects and humans), 
the semantics of each entity (e.g., łcabinetž is a łcontainerž), a set of 
available commands that consist of actions for the robot to perform 
or events that it should wait for, and preconditions that must be met 
to perform or post-conditions that hold true as a result of some com-

mands. Also in accordance with common practice, Tabula stores 
current world state within a dynamic, modifable world database. 

Map Setup. Prior to specifying a task within the robot’s en-
vironment, end users may use Tabula to request the robot’s most 
up-to-date two-dimensional map (Figure 2 bottom, a). Then, Tabula 
is used to color regions of interest, or areas on the map that the 
robot is expected to visit (Figure 2 bottom, b). Finally, the user can 
use the interface to add objects to the map that may also be of 
interest to the robot. For instance, the user may place a łgroceriesž 
icon in the garage region, thus adding it to the world database and 
indicating to the robot that it can fnd groceries in the garage. The 
latter step of placing objects in regions is not a strict requirement. 

4.2 Recording a Task 

When an end user is ready to program their robot, they create a 
recording, shown in Figure 3a. A recording consists of one utterance 
� and one sketch � . The utterance is intended to describe the core 
of the task for the robot to perform, while the sketch is intended to 
ground the utterance within the robot’s surrounding environment. 

Using our motivating example for illustration, when the end-user 
developer is ready to embark on their shopping trip, they pull out 

4Implementation of Tabula took place at the University of WisconsinśMadison. Code 
and test cases for Tabula are available at https://github.com/Wisc-HCI/Tabula. Addi-
tional auxiliary material is available at https://osf.io/jktph/. 
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Figure 3: The technical approach for program synthesis from 
a lone recording, where e refers to event and a refers to action. 

their phone, activate the Tabula app, and press the łRecordž button. 
While recording, the end user’s frst action is to verbalize the task 
core: “when I arrive, bring in the groceries.” Tabula uses the Stanford 
CoreNLP library [31] to detect “when I arrive” as a subordinate 
clause and splits the user’s speech accordingly into two separate 
parts. Then, Tabula parses each clause into individual commands, 
shown in Figure 3a-b, using a similar approach to ğ3.1 with a few 
notable diferences. First, Tabula foregoes a scoring-based approach 
in favor of pure keyword matching to map nouns in � to command 
parameters and VerbNet [22] (rather than WordNet) to map verbs 
in � to synonyms of command types. Tabula also supports partially 
specifed commands, such as commands that contain unflled pa-
rameters. Given these modifcations, Tabula parses “when I arrive” 
to a candidate event command eventApproach and “bring in the 
groceries” to a candidate action command put: groceries, ____, in 
which the blank line represents an unspecifed argument. 

Occurring either before, during, or after verbalizing the task core, 
the end user sketches the sequence of regions that the robot should 
visit. Beginning in the living room region, the developer slides their 
fnger to the garage region, then to the kitchen region, and then 
back to the garage. Tabula parses the sketch � into the sequence 
of regions garage → kitchen → garage, omitting the frst location 
(living room) so as not to restrict the robot to begin its task in any 
one region on the map. Figure 3a-b depicts the step of parsing � to 
a region sequence. 

4.3 Program Synthesis and Output 

Given one or multiple recordings provided by the end user, the goal 
of the synthesizer is to (1) create traces from each recording and (2) 
assemble a fnite automaton, or program, that accepts each trace. 

Creating a Trace from a Recording. Given a recording R 
containing a parsed utterance � and parsed sketch � , the synthesizer 
must create a trace t that satisfes the constraints set by parsing 

e0 e1
� and � . A trace is a sequence of robot actions a0 −→ a1 −→ 

e�−1 
. . . −−−→ a� where a� is the �th robot action and e� is the �th event. 
Figure 3c illustrates the task of formulating a trace t from individual 
components � and � . 

To illustrate, recall our example with the utterance “when I arrive, 
bring in the groceries” and the sketch from the living room to the 
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garage, to the kitchen, and then back to the garage. For clarity in 
describing how Tabula creates a trace for this recording, let us begin 
by considering a simpler example in which the garage is visited only 
once (we will return to our full motivating example in ğ4.3, Loops). 
The utterance is still parsed to the commands eventApproach and 
put: groceries, ____, but the sketch is parsed to the shortened 
sequence of regions garage → kitchen. With our shortened sketch, 
the task of the synthesizer is to create trace t as follows, where 
unlabeled transitions refer to the empty event in which the robot 
needs no prompting to perform one action after another: 

eventApproach
idle −−−−−−−−−−−−→ moveTo: garage →− grab: groceries →− 

moveTo: kitchen cabinets →− put: groceries, kitchen cabinets 

In its search for trace t, the synthesizer must make multiple deci-
sions autonomously: (1) within which regions the core commands 
from � should be inserted, (2) how to resolve unflled arguments 
from these core commands, (3) whether and where additional robot 
actions need to be inserted such that the preconditions of each 
command in the trace are satisfed, and (4) whether and how the 
world database needs to be modifed such that the robot can com-

plete the trace successfully. In order to make these decisions, the 
synthesizer employs A* search to plan for the most optimal trace in 
terms of discrete actions and locations. The planning space includes 
the following penalties: 

(1) Traces incur penalties equal to their length. Longer traces 
are thus more costly than shorter traces. 

(2) Each region or entity that the robot visits incurs an additional 
penalty if the robot does no action at that location. 

(3) Any entity that exists in the trace but has not yet been in-
serted in the world incurs an additional penalty. 

The planning space includes the following additional constraints: 
the synthesizer will only accept traces that (1) include moveTo com-

mands for each region present in the original sketch, and (2) include 
the core commands specifed by the end user’s utterances. If an 
object exists in an accepted trace that does not yet exist within 
Tabula’s most up-to-date snapshot of the robot’s environment (the 
world database), the object will be added to the world database. 

To illustrate the planning space within our shortened example, 
the synthesizer makes the following decisions. The eventApproach 
core command is inserted before the robot moves to the garage and 
the core put: groceries, ____ command is inserted when the robot 
is in the kitchen. In deciding how to resolve the put: groceries, ____ 
command with the unflled argument for where the robot should 
place the groceries, the synthesizer searches for an entity in the 
domain labelled as łcontainerž and existing in the kitchen region, 
and completes the command with the argument kitchen cabinets. 
In determining whether and where additional robot actions are 
needed in t, the synthesizer knows from the planning domain that 
a precondition of put is that the robot must frst be holding an entity 
before it is able to put it somewhere. Therefore, the synthesizer 
decides to insert a grab: groceries command for when the robot is 
in the garage. Lastly, if the world database does not already indicate 
that groceries can be found in the garage, the synthesizer will modify 
world accordingly and incur a penalty. 

Assembling a Program. Given a single trace, there may be 
nothing left for the synthesizer to do ś the trace itself becomes 

a step-by-step program for the robot to execute. If the developer 
inserts loops into a recording or provides multiple recordings, then 
the synthesizer will have additional work. 

Loops. Within a single recording, end users may introduce loops. 
To do this, end users need only visit a region multiple times in 
the course of a sketch. To illustrate, let us return to our original 
motivating example in which the recording still consists of � “when 
I arrive, bring in the groceries” and � once again consists of the robot 
moving from the living room to the garage, from the garage to the 
kitchen, and then back from the kitchen to the garage. As before, � 
is parsed to the sequence of regions garage → kitchen → garage. 

The synthesizer detects a loop within the sketch (garage is re-
peated) and then extends the loop such that there are two itera-
tions total and each loop iteration is identical. Taking into account 
garage → kitchen as a single loop iteration, the sketch will be ex-
tended so that this iteration completes twice, producing the follow-
ing modifed sketch � ′ : garage → kitchen → garage → kitchen. 

′For producing a trace from � and � , an additional synthesis 
constraint is necessaryÐfor any location (i.e., a region or entity) 
visited multiple times in a trace, the sequence of actions and events 
occuring at that location must always be the same. The resulting 
trace is therefore as follows: 

eventApproach
idle −−−−−−−−−−−−→ moveTo: garage →− grab: groceries →− 

moveTo: kitchen cabinets →− put: groceries, kitchen cabinets →− 

moveTo: garage →− grab: groceries →− 

moveTo: kitchen cabinets →− put: groceries, kitchen cabinets 

To assemble the fnal program, the synthesizer combines re-
peated sequences of actions and conditionals to form a loop, shown 
in Figure 3d. 

Multiple Recordings. After an initial recording has been provided, 
additional recordings can be attached to any existing recording. 
Attached recordings cannot start from any arbitrary location in the 
world; rather, they must branch from a location within an existing 
sketch. The synthesizer assembles traces from each recording no 
diferently than if only one recording was provided. 

Assembling an executable program from an initial trace and one 
or more attached traces is straightforward. If the end user begins an 
attached recording at a location � with a core event command (i.e., 
łwhen I say ‘stop helping me with the groceries’ ž), the resulting 
program will contain a branch at � in which the trace resulting 
from the attached recording will execute immediately when the 
event occurs. It is possible for nondeterminism to arise from the 
attachment of traces to each other, such as if the end user begins 
an attached recording without providing a core event command. 

5 TABULA CAPABILITIES AND LIMITATIONS 

We demonstrate Tabula’s capabilities by describing a set of applica-
tion scenarios. Next, we utilize a suite of 33 total synthesizer test 
cases that cover, but are not limited to, diferent variations of these 
scenarios in order to provide an analysis of Tabula’s reliability. 

5.1 Application Scenarios 

In addition to the Grocery scenario introduced in ğ4, we demonstrate 
Tabula’s capabilities with three additional application scenarios. 
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Figure 4: Our application scenarios include alerting people to 
a spill (top), guiding people to the visitor center in a hospital 
(middle), and tidying up after a playdate (bottom). Drawn 
sketches are graphically enhanced for clarity. 

Alerting People to a Spill. This scenario is identical to the one 
introduced in ğ1 where the manager of a grocery store needs to 
direct trafc away from a spill in the beverage aisle. Recall the task 
requirements that the robot must move to the location of the spill 
while avoiding the spill, issue a cautionary statement to anyone 
approaching the aisle, and return to its starting point after the spill 
is cleaned up. This application scenario demonstrates on-the-fy 
task contextualization and using Tabula’s branching and looping 
functionality to create trigger-action programs. 

Figure 4 (top) depicts the steps taken by the manager to program 
the robot. First, the manager contextualizes the task by drawing a 
new region to indicate where the spill occurred. Next, the manager 
creates a recording to direct the robot from its starting point to 
the beverages, purposefully circumventing the spill so that the 
robot avoids driving through it (Figure 4a). To ensure that anyone 
who enters the robot’s vicinity is alerted to the spill, the manager 
then sketches a self-loop in the beverages aisle and utters łWhen 
someone approaches the aisle, say, ‘Please avoid the spill in this area. 
It will be cleaned shortlyž’ (Figure 4b). The efect of this recording 
is to create a trigger-action program that remains in efect while 
the robot is in the beverages aisleÐwhenever someone gets near 
the robot, the robot will alert them to the spill. Finally, the manager 
directs the robot back to its starting point by sketching a trajectory 
from the beverages aisle back to the cashiers and uttering łWhen I 
say ‘go homež’ (Figure 4c). Figure 4d presents a decontextualized, 
high-level illustration of the resulting program. 

Guiding Visitors in a Hospital. Consider an employee at a 
busy hospital wing who wants to streamline the check-in process for 
visitors. The robot should ofer to escort visitors from the hospital 
entrance to the visitor center. This application scenario is intended 
to highlight how human behavior can be encoded into a program. 

Figure 4 (middle) depicts the steps taken by the employee. First, 
the employee inserts a person entity in the entrance to the hospital, 
indicating to the robot that it will encounter people in this area. 
The employee then sketches a path from the entrance to the visitor 
center and utters, łTell people the directions to the visitor center. 
Say, ‘would you like me to escort you there?’ ž (Figure 4e). Next, 
the employee utters, łIf they say ‘yes,’ ž and in response to the 
robot hearing łyes,ž sketches a path from the entrance to the visitor 
center and back to the entrance (Figure 4f). The resulting program, 
depicted in a decontextualized and high-level form in Figure 4g, 
will thereby loop forever in which the robot approaches people 
in the hospital entrance, asks them if they are interested in being 
escorted, and if so, escorts them to the desk. 

Tidying Up. Consider a parent with toys scattered around their 
home after a playdate. The parent wants to program the robot to 
remove toys from three specifc rooms in their home and place 
the toys in a chest in the living room. This application scenario is 
intended to demonstrate looping tasks and the synthesizer’s ability 
to place new objects in a scene. 

Figure 4 (bottom) depicts the steps taken by the parent. The 
parent begins by uttering, łPut the toys in the chest,ž and sketching 
a loop from the robot’s starting point to the bedroom, the living 
room, and then back to the bedroom. Based on this input, Tabula 
inserts a toy object into the bedroom and a toy chest object into the 
living room (Figure 4h). The user then provides the same utterance 
and sketches a path from the chest, to the kitchen, and back to the 
chest (Figure 4i). Finally, the parent provides the same utterance a 
last time while directing the robot to the hallway (Figure 4j). In the 
resulting program, depicted in a decontextualized, high-level form 
in Figure 4k, the robot loops on picking up toys from the bedroom, 
hallway, and kitchen until no toys remain. 

5.2 Synthesizer Reliability 

Our suite of 33 synthesizer test cases (referred to as T1-33) allows for 
a high-level analysis of Tabula’s reliability. Each test case provides 
the following input to the synthesizer: (1) the end-user’s speech, (2) 
the end user’s sketch, and (3) a custom world database tailored to 
the test case. Given this input, the synthesizer produces a program 
as output, taking an average of 3.04 (�� = 0.70) seconds per test 
case on an Intel Core i7-1065G7 CPU (1.30 GHz). Based on our 
experiences from constructing our test suite, we have observed 
three categories of reasons for which the synthesizer might fail to 
produce the intended output, which we detail below. 

Insufcient Information from Speech. While Tabula is ro-
bust to omissions from end-user speech, failure to synthesize the 
intended program may occur if supporting information is also 
missing from the world database. Consider the Groceries scenario 
presented in ğ4.1, encapsulated in test case T8. Had the end user 
been vague in their speech (e.g., łbring them in,ž rather than łbring 
in the groceriesž), T8 will still produce the correct output if the 
groceries entity is present in the world database. However, if the 
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groceries entity is missing both from user speech and the world 
database, the synthesizer will nondeterministically choose an item 
from the domain to insert into the world for the robot to grab, which 
may not be groceries. 

Insufcient Information from Sketching. Although much 
information about the robot’s core task is provided through speech, 
sketching provides contextualization of the task within the robot’s 
environment and information about program structure (i.e., branch-
ing and looping). Consider the Hospital scenario presented in ğ5 
(T16). The scenario contains a loop in which the robot proceeds 
back to the entrance after escorting a visitor to check in. If the 
developer does not explicitly sketch the path back to the entrance, 
this loop will not be inserted in the program. 

Insufcient Domain Knowledge. This category of failure 
pertains to the synthesizer not possessing enough prior domain 
knowledge for contextualization. For example, consider the Tidy-
ing application scenario presented in ğ5 (T26). Instead of cycling 
between picking up a toy and dropping it in the chest, perhaps the 
end user wants the robot to frst collect all toys, and then drop them 
into the chest at once. The end user may correctly sketch a path 
through the kitchen, bedroom, and living room and say łpick up 
the toys.ž In this case, however, the synthesizer does not possess 
enough prior knowledge about the diferent ways in which tidying 
can be performed and without this information directs the robot to 
pick up toys from a single room rather than each room. 

6 DISCUSSION 

6.1 On-the-Fly End-User Robot Development 

There is a need for tools that enable end-user developers to rapidly 
and conveniently script robot programs for situations that arise 
spontaneously. Although robots are well-suited to handle these 
situations, development solutions that aford meticulously crafting 
highly contextualized applications may be difcult and slow to use. 
In contrast, hands-of techniques stemming from machine learning 
are highly efective at generating and refning robot applications, 
but the ofine application of these techniques results in decontex-
tualized task specifcations, while the online application of these 
techniques in the intended interaction context requires arduous 
data collection. With Tabula, we posit that the best way to rapidly 
obtain contextualized information about a task at hand is through 
simple forms of input from end users themselves, who represent 
domain experts within the robot’s target context. 

We believe that Tabula represents a signifcant step in this direc-
tion. First, Tabula is quick to use. As demonstrated by our applica-
tion scenarios and test cases, a full application can be developed 
using, at minimum, a single speech utterance paired with a sin-
gle sketch. Furthering its versatility, Tabula requires very little 
instrumentation other than a robot and a personal mobile device. 
Furthermore, Tabula enables task contextualization, owing to the 
ability to customize the robot’s environment and ground spoken 
language commands within this environment. Users can therefore 
apply Tabula to create a robot program in any situation in which 
the robot is able to localize within its environment. Lastly, Tab-
ula handles complexity without requiring users to pore over task 
details. With a few simple spoken language commands and the 

high-level program logic derived from the user’s sketch, Tabula 
synthesizes a fnite state automaton. 

6.2 Limitations & Future Work 

A key limitation of Tabula is its lack of evaluation with potential 
robot end users. As such, we cannot conclude whether Tabula is 
more efective than existing state-of-the art solutions for scripting 
contextualized robot applications on the fy, and we cannot ofer 
conclusive design implications for how Tabula may be improved. 
Plans for additional data collection are therefore underway. 

Second, although Tabula is intended for non-programmers and 
technical non-experts, we still believe that end users must be trained 
on how to use Tabula to its full potential. In particular, we expect 
that forming a loop within a single recording or creating a branch-
ing program from multiple recordings will require practice. Fur-
thermore, minimal training may be required for end users to learn 
how to optimally specify goals via natural language. Conducting 
a qualitative, exploratory evaluation of Tabula will enable us to 
understand precisely where training is required. 

Third, Tabula lacks in ofering feedback to end users and the 
ability to refne and correct programs, both of which are critical to 
successful human-AI systems [4]. Future work must frst provide 
end users with information about potential faults or unexpected 
program behavior, such as branches with underspecifed trigger-
ing events, and then provide end users with the means to correct 
these issues. Correcting issues will necessitate expanding Tabula’s 
refnement capabilities, such as by allowing end users to target and 
fne-tune specifc aspects of a recording. 

Fourth, as described in ğ4.1, Tabula requires domain knowl-
edge, including a map of the environment, prior to task specifca-
tion. While Tabula already somewhat challenges this requirementÐ 
environment mapping may be achieved during, rather than prior, to 
task specifcation if the end user sketches paths to unmapped areasÐ 
interacting with entities not already in the domain is not yet sup-
ported. Future work on Tabula should integrate auto-classifcation 
of novel entities within Tabula or modify Tabula’s user interface to 
prompt the end user to classify these entities for the robot. 

7 CONCLUSION 

We present Tabula, a system for on-the-fy end-user development 
of robot programs. Tabula is motivated by the need for simple pro-
gramming interfaces that maintain the expressiveness required for 
robot development. We thereby approached the design of Tabula 
from the ground up, beginning with an initial speech-only proto-
type. Based on the results of a design study, we created Tabula to 
supplement speech with an additional mode of input, sketching. In 
a series of application scenarios, we demonstrate how Tabula can 
create meaningful robot programs through speech and sketching. 
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