
Sketching Robot Programs On the Fly

David Porfrio
Naval Research Laboratory

Washington, DC, United States
david.porfrio.ctr@nrl.navy.mil

Allison Sauppé
University of WisconsinśLa Crosse
La Crosse, Wisconsin, United States

asauppe@uwlax.edu

Laura Stegner
University of WisconsinśMadison
Madison, Wisconsin, United States

stegner@wisc.edu

Aws Albarghouthi
University of WisconsinśMadison
Madison, Wisconsin, United States

aws@cs.wisc.edu

Maya Cakmak
University of Washington

Seattle, Washington, United States
mcakmak@cs.washington.edu

Bilge Mutlu
University of WisconsinśMadison
Madison, Wisconsin, United States

bilge@cs.wisc.edu

ABSTRACT

Service robots for personal use in the home and the workplace
require end-user development solutions for swiftly scripting robot
tasks as the need arises. Many existing solutions preserve ease, ef-

ciency, and convenience through simple programming interfaces
or by restricting task complexity. Others facilitate meticulous task
design but often do so at the expense of simplicity and efciency.
There is a need for robot programming solutions that reconcile the
complexity of robotics with the on-the-fy goals of end-user devel-
opment. In response to this need, we present a novel, multimodal,
and on-the-fy development system, Tabula. Inspired by a formative
design study with a prototype, Tabula leverages a combination of
spoken language for specifying the core of a robot task and sketch-
ing for contextualizing the core. The result is that developers can
script partial, sloppy versions of robot programs to be completed
and refned by a program synthesizer. Lastly, we demonstrate our
anticipated use cases of Tabula via a set of application scenarios.

CCS CONCEPTS

• Human-centered computing → Systems and tools for inter-
action design; • Software and its engineering;

KEYWORDS

human-robot interaction, end-user development, sketching

ACM Reference Format:

David Porfrio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albargh-
outhi, and Bilge Mutlu. 2023. Sketching Robot Programs On the Fly. In
Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot

Interaction (HRI ’23), March 13–16, 2023, Stockholm, Sweden. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3568162.3576991

1 INTRODUCTION

End-user development (EUD) solutions for robotics must allow end
users to easily and efciently create robot applications to satisfy
immediate needs. Consider an example in which the manager of a
grocery store must direct trafc away from a spill in the beverage

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HRI ’23, March 13–16, 2023, Stockholm, Sweden

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9964-7/23/03.
https://doi.org/10.1145/3568162.3576991

Say, ‘please be careful of
of the spill in this aisle.’

task: moveTo()

task: alert()

structure: loop

Figure 1: Tabula lets end-user developers of robots contextu-
alize their speech by sketching out program structure.

aisleÐa perfect task for a robot to perform and a seemingly simple
task to specify. The manager must direct the robot to the location
of the spill while ensuring that the robot avoids the spill; the robot
must issue a cautionary statement to anyone approaching the aisle;
and the robot must return to its charging station when the spill has
been cleaned up (Figure 1).

Although simple in concept, designating the robot’s task at a
moment’s notice may prove challenging. While learning techniques
promise assistance due to their efectiveness in robotic task training,
ofine training forgoes critical social and environmental context,
while online training takes time. End users, by contrast, already
possess the contextualized knowledge required to specify a task.
Therefore, we posit that programming tools for end users ofer a
better approach for on-the-fy task specifcation. Existing tools for
robotics, however, are impracticably instrumented for addressing
immediate needs (e.g., desktop interfaces), or demand basic pro-
gramming knowledge that is tangential to the expertise and skills
of domain experts (e.g., automata or block-based programming in
[21, 36]). Other programming paradigms, in contrast, compensate
by restricting expressiveness, such as those that ofer simple pro-
gram representations (e.g., trigger-action programming in [26]), or
those that limit developers to programming only one aspect of a
robot’s behaviors (e.g., movement but not task goals in [53]).

To address the on-the-fy programming needs of end-user devel-
opers, we created a novel, on-the-fy, EUD solution, Tabula, designed
to reconcile simplicity and expressiveness. The guiding principle
of Tabula is to capture and automatically refne rapid, incomplete
developer input from as minimally instrumented of an interface as

584

HRI ’23, March 13–16, 2023, Stockholm, Sweden David Porfirio et al.

possible. Achieving this goal is founded on two design choices. First,
a formative design study conducted by the authors and described in
this paper suggests that a multimodal interface with partial reliance
on speech will enable end users to easily and efciently express
simple tasks for a robot to perform. Second, at present day, touch
screen and voice interfaces such as mobile phones, tablets, and
smart watches, are ubiquitous. End-user developers can therefore
conveniently access touch interaction to contextualize spoken lan-
guage statements and fll in logic gaps.

Guided by these ideas, Tabula enables end users to program
robots through multimodal speech and sketching input. In a record-
ing session, developers utter one or two spoken language state-
ments that correspond to the primary goals, or core, of a task.
To contextualize the core, developers sketch program logic on a
two-dimensional representation of the robot’s target environment.
When the recording session ends, Tabula’s program synthesizer
leverages automated planning techniques to assemble a task by (1)
embedding the robot’s goals within the path drawn by the devel-
oper and (2) inserting any additional steps required to achieve these
goals. If multiple recordings have been provided, the synthesizer
combines all the resulting task plans into an executable automaton.

Our primary contribution is therefore a programming system,
Tabula, and the EUD paradigm that it afords. In this paper, we frst
describe a formative design study with a speech-only prototype,
which ultimately served as a catalyst for the ideation of Tabula. We
then describe Tabula itself, focusing on the integration of sketching
to contextualize speech and specify program logic.

Our contributions are summarized as follows:
• System Ð a full-fedged development tool, Tabula, and a set
of application scenarios to demonstrate its use.

• Design Ð a design study that results in design principles for
creating on-the-fy EUD tools for robots.

• Technical Ð a program synthesis approach for contextualiz-
ing spoken language with program sketches.

2 RELATED WORK

Our work draws on the literature from end-user development, nat-
ural language programming, program synthesis, and planning in
artifcial intelligence (AI planning). In the following, we briefy
discuss relevant key concepts and related work.

2.1 End-User Development

End-user development (EUD) aims to democratize programming
for novices. Lieberman et al. [27] characterizes EUD as surpassing
application parameterization and customization and allowing users
to modify or create programs from scratch. An EUD paradigm of
note, trigger-action programming (TAP), has been widely successful
in its adoption by end users [48]. However, despite its simplicity,
TAP developers are still susceptible to inserting undesirable or
unpredictable behaviors into their programs [56]. In a diferent
approach to EUD, sloppy programming has explored the automatic
mapping of coarse text entry to the capabilities of an API [28].
Under the umbrella of the no-code movement, a recently popularized
term for EUD, many commercial products allow users to create
complex applications, including Webfow for intricate webpages
[50], AirTable for databases [1], and Zapier for automation [54].

Various approaches to EUD have been explored in robotics, but
are typically limited in expressive power. These limitations have
arisen from restrictive programming paradigms like TAP [26, 41]
and input methods like natural language [15], or from making only
a small subset of robot actions available to be programmed (e.g.,
only motion trajectories as in [53]). More expressive EUD interfaces,
however, may increase developer mistakes and compromise the
robot’s dependability. Prior work in end-user software engineering
(EUSE) has sought to preserve dependability by providing end users
with standard software engineering practices (e.g., fault localization)
[7], and thus may prove useful for robotics.

Sketching is a familiar concept in robot EUD and control. An
especially natural use of sketching involves specifying the navi-
gation path of a robot and the surrounding environment [5] or
other navigation-related commands such as a drawn łXž indicating
łgo herež [43] or a drawn lasso indicating łvacuum this areaž [40].
Tabula draws heavily from Roboshop, an interface for annotating
a top-down view of a robot’s environment with tasks to perform
[29], and V.Ra, a task-authoring interface that integrates navigation
paths with both robot actions and program logic [8]. Additionally
similar to Tabula is the work of Shah [42] that integrates speech
with sketching for specifying navigation commands and the work
of Correa et al. [12] and Teller et al. [45] on a real-time robot control
interface that also integrates speech with sketching. Among these
works, Tabula derives novelty from its ability to synthesize branch-
ing and looping programs from coarse, on-the-fy multimodal input.

2.2 Natural Language Programming

Motivated by the widespread use of language in human interactions,
researchers have explored several diferent approaches to allow
natural language interactions with robots. Semantic parsing, in
which natural language is transformed to a logical representation
[13, 51, 55], has often been used to enable language specifcation
of commands, goals, or simple programs [9, 32, 47, 49]. Alternative
approaches based on syntactic features have also been shown to be
efective when matched with appropriate domain knowledge [46].
In certain applications, the direct mapping of a controlled subset of
English to the target formalism has proven sufcient [24].

Natural language dialogue systems use multi-turn language in-
teractions to better accommodate the communication of complex
instructions. In robotics, these systems have enabled end users to
specify reusable programs for tasks such as navigation [25, 47], as-
sembly [15, 44], and social interaction [18]. Some have envisioned
human-robot dialogue as a way for future domestic robots to ac-
quire necessary environment-specifc knowledge, from the actions
needed to complete some task to the rules that underlie the world
[11]. In this vein, Mohan and Laird [34] developed an explanation-
based task learning approach, using situated instructions to teach
novel hierarchical tasks to a robot, and later work showed how
these task representations could generalize across situations [23].

2.3 Planning & Synthesis

Program synthesis is used to automatically construct fully exe-
cutable programs from partial developer specifcations [19]. In
human-robot interaction, program synthesis has been applied in
both robot manipulation [16, 20] and social domains [10]. Similar

585

Sketching Robot Programs On the Fly HRI ’23, March 13–16, 2023, Stockholm, Sweden

to Tabula, the programming tool Figaro synthesizes robot programs
from multimodal speech and touch demonstrations [38]. Figaro,
however, requires developers to recite their speech and touch in
the exact order that they must occur in the resulting program.

To synthesize programs, Tabula uses techniques from AI plan-
ning, which is broadly defned by Alterovitz et al. [3] as łcomputing
actions and motions for a robot to achieve a specifed objective.ž In
accordance with Ghallab et al. [17], we classify our approach as op-
erating at the descriptive level, in which plans contain information
about what actions for the robot to perform and when to perform
them, rather than the operational level that describes precisely how
the robot should perform these actions. Tabula draws inspiration
from notable successes of planning in human-robot interaction,
including the Human-Aware Task Planner that plans a robot’s ac-
tions in accordance with social rules [2] and work from Petrick and
Foster [35] that plans the actions of a social bartender robot for
multi-party human-robot interactions.

3 SPEECH PROTOTYPE: ONE MODE OF INPUT

In this section, we describe our prototypical speech interface that
ultimately served as a catalyst for the development of Tabula.1 In
the vein of afording end users as much control with as minimal
input as possible, the prototype explores the feasibility of end-user
development with a single input modalityÐspeechÐfor two reasons.
First, speech is an intuitive form of communication inherent to
everyday interaction. Second, sensing speech requires minimal
instrumentation (i.e., only a microphone) beyond the robot itself.

In what follows, we describe the prototypical speech interface,
its evaluation, and key lessons that inform Tabula.

3.1 Prototypical Speech Interface

The prototype consists of an early version of Tabula’s verbal input
interface consisting of a wakeword recognizer, a speech-to-text
engine, and a speech classifer. In the prototype, the verbal interface
is accompanied by a simple visual feedback interface.

To use the verbal interface, end users begin designing a task
by saying the wakeword łlisten to me.ž Then, users can verbally
enter utterances into the interface, each of which is assigned to
individual commands from an available setÐeither (1) action com-

mands, which specify that the robot must do something, or (2)
event commands, which specify that the robot should listen for a
particular trigger to which the robot can respond, such as someone
approaching or speaking. Instantiating event commands is thus
the primary means for end users to encode human behavior in a
program. For the prototype, we developed a small and exploratory
set of commands. A sample subset of action (top fve) and event
(bottom two) commands is listed below:

moveTo: place −→ move to place
put: item, place −→ put the specifed item in place
say: speech −→ say the contents of speech
ask: speech −→ ask the contents of speech
tell: narrative −→ recite the contents of narrative
eventApproach −→ person approaches the robot
eventSpeech: speech −→ person says speech to the robot

1Portions of ğ3 were presented in Chapter 7 of the frst author’s Ph.D. dissertation
[37]. ğ3 focuses on aspects of this work that led to the development of Tabula.

For the remainder of the paper, we refer to a command as a
fully instantiated action or event in which all parameters in the
command are resolved. A command type refers to an uninstantiated
command. For example, the type of say: ‘hello’ is say, while the
parameter of the instantiated command is ‘hello.’

To infer a command from an utterance, the prototype uses a
non-learned, keyword-based approach that scores commands based
on how well verbs and nouns in the utterance match a command’s
type and parameters, respectively. Scores are derived by querying
keywordsÐverbs, nouns, command types, and parametersÐwithin
WordNet [14, 33] and extracting the real-value distances between
synonyms of these keywords. For example, within the utterance,
łPut the groceries in the kitchen,ž the action command put: gro-
ceries, kitchen scores highly because the words łput,ž łgroceries,ž
and łkitchenž match the command type and parameters.

Event commands score higher than action commands if the ut-
terance contains keywords like łifž or łwhen.ž For example, in
the utterance łWhen someone says ‘hello,’ ž the event command
eventSpeech: ‘Hello’ (someone greets the robot) scores higher
than its corresponding action command say: ‘Hello’ (the robot
says łhellož) because the utterance begins with the word łwhen.ž

For speech commands, we require that the user provide the exact
speech that the robot should utter or the exact speech that the robot
can recognize. For example, if the end user wishes to specify that the
robot emits a greeting, the user can say something like łThe robot
should now say ‘Hello, it’s nice to see you!’ ž in order to produce the
corresponding action command say: ‘Hello, it’s nice to see you!’

As end-user developers produce a sequence of utterances, the
prototype produces a program that consists of the corresponding
sequence of commands. The sequence of commands is displayed
on the visual feedback interface for the user to check. For editing
in-progress command sequences, the prototype contains three sim-

ple directives: łundož for undoing commands, łredož for redoing
commands, and łresetž for deleting all commands and starting over.

3.2 Formative Evaluation

To evaluate our design decisions within the prototype, we con-
ducted a remote user study over separate video calls with fve
participants (three males, two females) aged 18 to 43 years (� = 24,
�� = 10.7). Participants had little to no experience with robots and
mixed levels of programming experience. The study was approved
by an institutional review board (IRB).

In the study, participants were trained to use the prototype and
presented with three tasks within a simulated home environment
(e.g., welcoming someone home). For each of the three selected
tasks, participants were allotted three minutes to program the ro-
bot and test the robot in a low-fdelity simulator within which
participants could execute their programs over the video call. In
the test environment, an icon of a robot moved around the home
and interacted with participants via microphone and speaker.

At the end of the study, we asked participants to respond to the
System Usability Scale SUS (10 items on a fve-point rating scale) [6]
and the USE questionnaire [30], which measures usefulness, ease
of use, ease of learning, and satisfaction (30 items on a seven-point
rating scale). The prototype’s average SUS score was 77 (�� =
17.9). Within USE, on a scale of one to seven, participants rated the

586

HRI ’23, March 13–16, 2023, Stockholm, Sweden David Porfirio et al.

prototype’s usefulness 4.7 (�� = 1.85), ease of use 4.45 (�� = 1.82),
ease of learning 4.85 (�� = 2.22), and satisfaction 4.31 (�� = 2.15).

Additionally, we conducted brief (5-10 minute) semi-structured
interviews with participants to obtain a richer understanding of
their experience. To analyze the interviews, we performed open
coding and extracted key themes from the interview data, which
we summarize below. Participants are referred to as P1-5.

• Theme 1, on-the-fy task specifcation: Despite issues with
speech recognition and classifcation (see below), the inter-
face was viewed as intuitive and easy by some participants
(P2, P4, P5). P1 even described its potential to be "on the
fy." In line with the guidelines proposed by [4], however, P1
highlighted the need to modify programs after their creation.

• Theme 2, shortcomings of spoken language: Participants ex-
pressed difculty with spoken language, stating that it was
łclunky and inefcientž (P2) and required them to adjust their
speech style (P5). P3 additionally highlighted the ambiguities
inherent in speech, such as being unclear who is referring
to whom when involving other people in a task.

• Theme 3, preferences on specifcation paradigm: While linear
task specifcation was viewed favorably (P4), P3 expressed
that the interface was łtoo simple,ž and P1 and P4 highlighted
potential insufciencies in the interface in handling com-

plex programs. Other participants preferred alternative input
methods such as through łtypingž (P2, P4), a łScratchž-like
interface [39] (P1), or customizable łblockž commands (P2).

In addition to our questionnaire and interview data, we observed
various usage patterns that help characterize how participants used
the prototype. Participants required an average of 67.4 seconds
(�� = 29.6 seconds) to specify each task. One participant did not
fnish one task, so we excluded this task from the average specifca-
tion time. We observed participants experience difculty with the
speech interface due to a combination of incorrect speech transcrip-
tion, speech not being heard altogether, the wakeword not being
recognized, and speech being misclassifed even if heard correctly.
Possibly due to these difculties, participants used the łundož or
łresetž directives an average of 1.47 (�� = 1.30) times per task.

3.3 Implications of Prototype

We now discuss the implications of the prototype that emerged
from our study as they pertain to the current version of Tabula.

Speech. While the prototype was viewed favorably as an on-
the-fy tool (Theme 1), participants expressed difculties with the
speech interface (Theme 2), as further evidenced by our objective
observations of these difculties and the number of times that
participants used the łundož and łresetž directives (usage patterns).
We thereby determined that Tabula should reduce its reliance on
speech and provide support for underspecifying verbal commands.

Additional modes of interaction. In response to participant
feedback (Theme 3) and to compensate for the reduction in speech,
we determined that Tabula should aford users with a second input
channel that (1) helps infer task details without requiring the user to
specify these details verbally and (2) allows end users to more efec-
tively understand and manage potential program complexity. This
input channel should avoid the need for additional instrumentation
(e.g., requiring a keyboard and mouse).

c

sketch

control
panel

region

object

System Components

Interface Work�ow

speech

touch

user
interface

synthesizer

recording

program

receive mapa record tasks

color regionsb

Figure 2: (Top) Tabula consists of an interface that passes
recordings to a synthesizer, which returns a program. (Bot-
tom) The interface enables users to (a) receive a map from a
robot, (b) color important map regions, and (c) record tasks.

4 TABULA: TWO MODES OF INPUT

The design study with the prototype illuminates various challenges
that end-user developers face with speech as their sole input modal-

ity. Due to the implications of the study, in addition to prior work
that highlights various benefts of multimodal interfaces (e.g., inclu-
siveness and accessibility [52]), we supplemented speech with an
additional modality, sketching, to create Tabula. We chose sketching
in order to deemphasize speech by enabling end users to tactilely
contextualize a small set of core, possibly underspecifed commands.
Sketching further allows end-user developers to craft program logic
(e.g., loops) that are difcult to express verbally and maintains our
goals of requiring minimal instrumentation for developers to com-

plete a development task.
The Tabula system is implemented within two components com-

municating over ROS Noetic2Ða handheld touch or stylus-based in-
terface implemented in Unity version 2020.3.21f13 and a synthesizer
implemented in Python 3 (Figure 2, top). Given a two-dimensional
map of the robot’s environment (Figure 2 bottom, a) with labelled
regions (Figure 2 bottom, b), users verbalize a set of core commands
and sketch the intended path of the robot on the map (Figure 2 bot-
tom, c). Subsequently, the interface sends the recording consisting

2http://wiki.ros.org/noetic
3https://unity.com/

587

−

Sketching Robot Programs On the Fly HRI ’23, March 13–16, 2023, Stockholm, Sweden

of the user’s speech and sketch to the synthesizer, which returns a
program to the interface.4

In what follows, we describe (1) how Tabula is confgured for
use, (2) how users then create recordings from speech and sketches,
and fnally (3) how programs are synthesized from recordings.

4.1 Getting Ready to Use Tabula

Consider the following motivating example: a user wishes to pro-
gram a robot to meet them every time they return from grocery
shopping to help with unloading. In order to use Tabula, technical
requirements must be satisfed, i.e., provide underlying assumptions
of the robot’s capabilities and populate a map to use with Tabula.

Robot Assumptions. The developer must have access to a
robot that is capable of creating a two-dimensional map of its en-
vironment, within which it should be able to accurately localize
itself and recognize objects. In addition, the robot must be equipped
with state-of-the-art path, motion, and task plannersÐit should
be able to navigate to diferent areas in the environment, interact
with objects that it recognizes, and handle edge cases in its task
within reason (e.g., if the robot has a goal to grab groceries but the
groceries are inside of the user’s car, the robot will know to open
the car door and search for the groceries before grabbing them).

Knowledge Handling. Prior to use, Tabula must possess con-
textual knowledge. Knowledge handling within Tabula draws heav-
ily from prior work in AI planning, particularly Petrick and Foster
[35], in that Tabula contains a fxed domain that describes the uni-
verse of known possible entities that the robot is assumed to be able
to recognize and interact with (e.g., types of objects and humans),
the semantics of each entity (e.g., łcabinetž is a łcontainerž), a set of
available commands that consist of actions for the robot to perform
or events that it should wait for, and preconditions that must be met
to perform or post-conditions that hold true as a result of some com-

mands. Also in accordance with common practice, Tabula stores
current world state within a dynamic, modifable world database.

Map Setup. Prior to specifying a task within the robot’s en-
vironment, end users may use Tabula to request the robot’s most
up-to-date two-dimensional map (Figure 2 bottom, a). Then, Tabula
is used to color regions of interest, or areas on the map that the
robot is expected to visit (Figure 2 bottom, b). Finally, the user can
use the interface to add objects to the map that may also be of
interest to the robot. For instance, the user may place a łgroceriesž
icon in the garage region, thus adding it to the world database and
indicating to the robot that it can fnd groceries in the garage. The
latter step of placing objects in regions is not a strict requirement.

4.2 Recording a Task

When an end user is ready to program their robot, they create a
recording, shown in Figure 3a. A recording consists of one utterance
� and one sketch � . The utterance is intended to describe the core
of the task for the robot to perform, while the sketch is intended to
ground the utterance within the robot’s surrounding environment.

Using our motivating example for illustration, when the end-user
developer is ready to embark on their shopping trip, they pull out

4Implementation of Tabula took place at the University of WisconsinśMadison. Code
and test cases for Tabula are available at https://github.com/Wisc-HCI/Tabula. Addi-
tional auxiliary material is available at https://osf.io/jktph/.

g

a - grab: groceries

e - eventApproach

“When I arrive,

 bring in the groceries.”

a collect recording b process recording

c create trace

nce

k

g gk

e
a

d assemble program

a - put: groceries, ____

σ

μ
commands

region
sequence

g ke
a

new

a new

g k ...

Figure 3: The technical approach for program synthesis from
a lone recording, where e refers to event and a refers to action.

their phone, activate the Tabula app, and press the łRecordž button.
While recording, the end user’s frst action is to verbalize the task
core: “when I arrive, bring in the groceries.” Tabula uses the Stanford
CoreNLP library [31] to detect “when I arrive” as a subordinate
clause and splits the user’s speech accordingly into two separate
parts. Then, Tabula parses each clause into individual commands,
shown in Figure 3a-b, using a similar approach to ğ3.1 with a few
notable diferences. First, Tabula foregoes a scoring-based approach
in favor of pure keyword matching to map nouns in � to command
parameters and VerbNet [22] (rather than WordNet) to map verbs
in � to synonyms of command types. Tabula also supports partially
specifed commands, such as commands that contain unflled pa-
rameters. Given these modifcations, Tabula parses “when I arrive”
to a candidate event command eventApproach and “bring in the
groceries” to a candidate action command put: groceries, ____, in
which the blank line represents an unspecifed argument.

Occurring either before, during, or after verbalizing the task core,
the end user sketches the sequence of regions that the robot should
visit. Beginning in the living room region, the developer slides their
fnger to the garage region, then to the kitchen region, and then
back to the garage. Tabula parses the sketch � into the sequence
of regions garage → kitchen → garage, omitting the frst location
(living room) so as not to restrict the robot to begin its task in any
one region on the map. Figure 3a-b depicts the step of parsing � to
a region sequence.

4.3 Program Synthesis and Output

Given one or multiple recordings provided by the end user, the goal
of the synthesizer is to (1) create traces from each recording and (2)
assemble a fnite automaton, or program, that accepts each trace.

Creating a Trace from a Recording. Given a recording R
containing a parsed utterance � and parsed sketch � , the synthesizer
must create a trace t that satisfes the constraints set by parsing

e0 e1
� and � . A trace is a sequence of robot actions a0 −→ a1 −→

e�−1
. . . −−−→ a� where a� is the �th robot action and e� is the �th event.
Figure 3c illustrates the task of formulating a trace t from individual
components � and � .

To illustrate, recall our example with the utterance “when I arrive,
bring in the groceries” and the sketch from the living room to the

588

−

−

HRI ’23, March 13–16, 2023, Stockholm, Sweden David Porfirio et al.

garage, to the kitchen, and then back to the garage. For clarity in
describing how Tabula creates a trace for this recording, let us begin
by considering a simpler example in which the garage is visited only
once (we will return to our full motivating example in ğ4.3, Loops).
The utterance is still parsed to the commands eventApproach and
put: groceries, ____, but the sketch is parsed to the shortened
sequence of regions garage → kitchen. With our shortened sketch,
the task of the synthesizer is to create trace t as follows, where
unlabeled transitions refer to the empty event in which the robot
needs no prompting to perform one action after another:

eventApproach
idle −−−−−−−−−−−−→ moveTo: garage →− grab: groceries →−

moveTo: kitchen cabinets →− put: groceries, kitchen cabinets

In its search for trace t, the synthesizer must make multiple deci-
sions autonomously: (1) within which regions the core commands
from � should be inserted, (2) how to resolve unflled arguments
from these core commands, (3) whether and where additional robot
actions need to be inserted such that the preconditions of each
command in the trace are satisfed, and (4) whether and how the
world database needs to be modifed such that the robot can com-

plete the trace successfully. In order to make these decisions, the
synthesizer employs A* search to plan for the most optimal trace in
terms of discrete actions and locations. The planning space includes
the following penalties:

(1) Traces incur penalties equal to their length. Longer traces
are thus more costly than shorter traces.

(2) Each region or entity that the robot visits incurs an additional
penalty if the robot does no action at that location.

(3) Any entity that exists in the trace but has not yet been in-
serted in the world incurs an additional penalty.

The planning space includes the following additional constraints:
the synthesizer will only accept traces that (1) include moveTo com-

mands for each region present in the original sketch, and (2) include
the core commands specifed by the end user’s utterances. If an
object exists in an accepted trace that does not yet exist within
Tabula’s most up-to-date snapshot of the robot’s environment (the
world database), the object will be added to the world database.

To illustrate the planning space within our shortened example,
the synthesizer makes the following decisions. The eventApproach
core command is inserted before the robot moves to the garage and
the core put: groceries, ____ command is inserted when the robot
is in the kitchen. In deciding how to resolve the put: groceries, ____
command with the unflled argument for where the robot should
place the groceries, the synthesizer searches for an entity in the
domain labelled as łcontainerž and existing in the kitchen region,
and completes the command with the argument kitchen cabinets.
In determining whether and where additional robot actions are
needed in t, the synthesizer knows from the planning domain that
a precondition of put is that the robot must frst be holding an entity
before it is able to put it somewhere. Therefore, the synthesizer
decides to insert a grab: groceries command for when the robot is
in the garage. Lastly, if the world database does not already indicate
that groceries can be found in the garage, the synthesizer will modify
world accordingly and incur a penalty.

Assembling a Program. Given a single trace, there may be
nothing left for the synthesizer to do ś the trace itself becomes

a step-by-step program for the robot to execute. If the developer
inserts loops into a recording or provides multiple recordings, then
the synthesizer will have additional work.

Loops. Within a single recording, end users may introduce loops.
To do this, end users need only visit a region multiple times in
the course of a sketch. To illustrate, let us return to our original
motivating example in which the recording still consists of � “when
I arrive, bring in the groceries” and � once again consists of the robot
moving from the living room to the garage, from the garage to the
kitchen, and then back from the kitchen to the garage. As before, �
is parsed to the sequence of regions garage → kitchen → garage.

The synthesizer detects a loop within the sketch (garage is re-
peated) and then extends the loop such that there are two itera-
tions total and each loop iteration is identical. Taking into account
garage → kitchen as a single loop iteration, the sketch will be ex-
tended so that this iteration completes twice, producing the follow-
ing modifed sketch � ′ : garage → kitchen → garage → kitchen.

′For producing a trace from � and � , an additional synthesis
constraint is necessaryÐfor any location (i.e., a region or entity)
visited multiple times in a trace, the sequence of actions and events
occuring at that location must always be the same. The resulting
trace is therefore as follows:

eventApproach
idle −−−−−−−−−−−−→ moveTo: garage →− grab: groceries →−

moveTo: kitchen cabinets →− put: groceries, kitchen cabinets →−

moveTo: garage →− grab: groceries →−

moveTo: kitchen cabinets →− put: groceries, kitchen cabinets

To assemble the fnal program, the synthesizer combines re-
peated sequences of actions and conditionals to form a loop, shown
in Figure 3d.

Multiple Recordings. After an initial recording has been provided,
additional recordings can be attached to any existing recording.
Attached recordings cannot start from any arbitrary location in the
world; rather, they must branch from a location within an existing
sketch. The synthesizer assembles traces from each recording no
diferently than if only one recording was provided.

Assembling an executable program from an initial trace and one
or more attached traces is straightforward. If the end user begins an
attached recording at a location � with a core event command (i.e.,
łwhen I say ‘stop helping me with the groceries’ ž), the resulting
program will contain a branch at � in which the trace resulting
from the attached recording will execute immediately when the
event occurs. It is possible for nondeterminism to arise from the
attachment of traces to each other, such as if the end user begins
an attached recording without providing a core event command.

5 TABULA CAPABILITIES AND LIMITATIONS

We demonstrate Tabula’s capabilities by describing a set of applica-
tion scenarios. Next, we utilize a suite of 33 total synthesizer test
cases that cover, but are not limited to, diferent variations of these
scenarios in order to provide an analysis of Tabula’s reliability.

5.1 Application Scenarios

In addition to the Grocery scenario introduced in ğ4, we demonstrate
Tabula’s capabilities with three additional application scenarios.

589

Sketching Robot Programs On the Fly HRI ’23, March 13–16, 2023, Stockholm, Sweden

move to spill

alert to spill

move to
cashiers

b c d

put toys
in chest

pick up
toysk

e f
go to visitor center

ask if would like to
be guided

g

sp
il

l
h

o
sp

it
al

 v
is

it
o

rs
ti

d
yi

n
g

u
p

a

h i j

Figure 4: Our application scenarios include alerting people to
a spill (top), guiding people to the visitor center in a hospital
(middle), and tidying up after a playdate (bottom). Drawn
sketches are graphically enhanced for clarity.

Alerting People to a Spill. This scenario is identical to the one
introduced in ğ1 where the manager of a grocery store needs to
direct trafc away from a spill in the beverage aisle. Recall the task
requirements that the robot must move to the location of the spill
while avoiding the spill, issue a cautionary statement to anyone
approaching the aisle, and return to its starting point after the spill
is cleaned up. This application scenario demonstrates on-the-fy
task contextualization and using Tabula’s branching and looping
functionality to create trigger-action programs.

Figure 4 (top) depicts the steps taken by the manager to program
the robot. First, the manager contextualizes the task by drawing a
new region to indicate where the spill occurred. Next, the manager
creates a recording to direct the robot from its starting point to
the beverages, purposefully circumventing the spill so that the
robot avoids driving through it (Figure 4a). To ensure that anyone
who enters the robot’s vicinity is alerted to the spill, the manager
then sketches a self-loop in the beverages aisle and utters łWhen
someone approaches the aisle, say, ‘Please avoid the spill in this area.
It will be cleaned shortlyž’ (Figure 4b). The efect of this recording
is to create a trigger-action program that remains in efect while
the robot is in the beverages aisleÐwhenever someone gets near
the robot, the robot will alert them to the spill. Finally, the manager
directs the robot back to its starting point by sketching a trajectory
from the beverages aisle back to the cashiers and uttering łWhen I
say ‘go homež’ (Figure 4c). Figure 4d presents a decontextualized,
high-level illustration of the resulting program.

Guiding Visitors in a Hospital. Consider an employee at a
busy hospital wing who wants to streamline the check-in process for
visitors. The robot should ofer to escort visitors from the hospital
entrance to the visitor center. This application scenario is intended
to highlight how human behavior can be encoded into a program.

Figure 4 (middle) depicts the steps taken by the employee. First,
the employee inserts a person entity in the entrance to the hospital,
indicating to the robot that it will encounter people in this area.
The employee then sketches a path from the entrance to the visitor
center and utters, łTell people the directions to the visitor center.
Say, ‘would you like me to escort you there?’ ž (Figure 4e). Next,
the employee utters, łIf they say ‘yes,’ ž and in response to the
robot hearing łyes,ž sketches a path from the entrance to the visitor
center and back to the entrance (Figure 4f). The resulting program,
depicted in a decontextualized and high-level form in Figure 4g,
will thereby loop forever in which the robot approaches people
in the hospital entrance, asks them if they are interested in being
escorted, and if so, escorts them to the desk.

Tidying Up. Consider a parent with toys scattered around their
home after a playdate. The parent wants to program the robot to
remove toys from three specifc rooms in their home and place
the toys in a chest in the living room. This application scenario is
intended to demonstrate looping tasks and the synthesizer’s ability
to place new objects in a scene.

Figure 4 (bottom) depicts the steps taken by the parent. The
parent begins by uttering, łPut the toys in the chest,ž and sketching
a loop from the robot’s starting point to the bedroom, the living
room, and then back to the bedroom. Based on this input, Tabula
inserts a toy object into the bedroom and a toy chest object into the
living room (Figure 4h). The user then provides the same utterance
and sketches a path from the chest, to the kitchen, and back to the
chest (Figure 4i). Finally, the parent provides the same utterance a
last time while directing the robot to the hallway (Figure 4j). In the
resulting program, depicted in a decontextualized, high-level form
in Figure 4k, the robot loops on picking up toys from the bedroom,
hallway, and kitchen until no toys remain.

5.2 Synthesizer Reliability

Our suite of 33 synthesizer test cases (referred to as T1-33) allows for
a high-level analysis of Tabula’s reliability. Each test case provides
the following input to the synthesizer: (1) the end-user’s speech, (2)
the end user’s sketch, and (3) a custom world database tailored to
the test case. Given this input, the synthesizer produces a program
as output, taking an average of 3.04 (�� = 0.70) seconds per test
case on an Intel Core i7-1065G7 CPU (1.30 GHz). Based on our
experiences from constructing our test suite, we have observed
three categories of reasons for which the synthesizer might fail to
produce the intended output, which we detail below.

Insufcient Information from Speech. While Tabula is ro-
bust to omissions from end-user speech, failure to synthesize the
intended program may occur if supporting information is also
missing from the world database. Consider the Groceries scenario
presented in ğ4.1, encapsulated in test case T8. Had the end user
been vague in their speech (e.g., łbring them in,ž rather than łbring
in the groceriesž), T8 will still produce the correct output if the
groceries entity is present in the world database. However, if the

590

HRI ’23, March 13–16, 2023, Stockholm, Sweden David Porfirio et al.

groceries entity is missing both from user speech and the world
database, the synthesizer will nondeterministically choose an item
from the domain to insert into the world for the robot to grab, which
may not be groceries.

Insufcient Information from Sketching. Although much
information about the robot’s core task is provided through speech,
sketching provides contextualization of the task within the robot’s
environment and information about program structure (i.e., branch-
ing and looping). Consider the Hospital scenario presented in ğ5
(T16). The scenario contains a loop in which the robot proceeds
back to the entrance after escorting a visitor to check in. If the
developer does not explicitly sketch the path back to the entrance,
this loop will not be inserted in the program.

Insufcient Domain Knowledge. This category of failure
pertains to the synthesizer not possessing enough prior domain
knowledge for contextualization. For example, consider the Tidy-
ing application scenario presented in ğ5 (T26). Instead of cycling
between picking up a toy and dropping it in the chest, perhaps the
end user wants the robot to frst collect all toys, and then drop them
into the chest at once. The end user may correctly sketch a path
through the kitchen, bedroom, and living room and say łpick up
the toys.ž In this case, however, the synthesizer does not possess
enough prior knowledge about the diferent ways in which tidying
can be performed and without this information directs the robot to
pick up toys from a single room rather than each room.

6 DISCUSSION

6.1 On-the-Fly End-User Robot Development

There is a need for tools that enable end-user developers to rapidly
and conveniently script robot programs for situations that arise
spontaneously. Although robots are well-suited to handle these
situations, development solutions that aford meticulously crafting
highly contextualized applications may be difcult and slow to use.
In contrast, hands-of techniques stemming from machine learning
are highly efective at generating and refning robot applications,
but the ofine application of these techniques results in decontex-
tualized task specifcations, while the online application of these
techniques in the intended interaction context requires arduous
data collection. With Tabula, we posit that the best way to rapidly
obtain contextualized information about a task at hand is through
simple forms of input from end users themselves, who represent
domain experts within the robot’s target context.

We believe that Tabula represents a signifcant step in this direc-
tion. First, Tabula is quick to use. As demonstrated by our applica-
tion scenarios and test cases, a full application can be developed
using, at minimum, a single speech utterance paired with a sin-
gle sketch. Furthering its versatility, Tabula requires very little
instrumentation other than a robot and a personal mobile device.
Furthermore, Tabula enables task contextualization, owing to the
ability to customize the robot’s environment and ground spoken
language commands within this environment. Users can therefore
apply Tabula to create a robot program in any situation in which
the robot is able to localize within its environment. Lastly, Tab-
ula handles complexity without requiring users to pore over task
details. With a few simple spoken language commands and the

high-level program logic derived from the user’s sketch, Tabula
synthesizes a fnite state automaton.

6.2 Limitations & Future Work

A key limitation of Tabula is its lack of evaluation with potential
robot end users. As such, we cannot conclude whether Tabula is
more efective than existing state-of-the art solutions for scripting
contextualized robot applications on the fy, and we cannot ofer
conclusive design implications for how Tabula may be improved.
Plans for additional data collection are therefore underway.

Second, although Tabula is intended for non-programmers and
technical non-experts, we still believe that end users must be trained
on how to use Tabula to its full potential. In particular, we expect
that forming a loop within a single recording or creating a branch-
ing program from multiple recordings will require practice. Fur-
thermore, minimal training may be required for end users to learn
how to optimally specify goals via natural language. Conducting
a qualitative, exploratory evaluation of Tabula will enable us to
understand precisely where training is required.

Third, Tabula lacks in ofering feedback to end users and the
ability to refne and correct programs, both of which are critical to
successful human-AI systems [4]. Future work must frst provide
end users with information about potential faults or unexpected
program behavior, such as branches with underspecifed trigger-
ing events, and then provide end users with the means to correct
these issues. Correcting issues will necessitate expanding Tabula’s
refnement capabilities, such as by allowing end users to target and
fne-tune specifc aspects of a recording.

Fourth, as described in ğ4.1, Tabula requires domain knowl-
edge, including a map of the environment, prior to task specifca-
tion. While Tabula already somewhat challenges this requirementÐ
environment mapping may be achieved during, rather than prior, to
task specifcation if the end user sketches paths to unmapped areasÐ
interacting with entities not already in the domain is not yet sup-
ported. Future work on Tabula should integrate auto-classifcation
of novel entities within Tabula or modify Tabula’s user interface to
prompt the end user to classify these entities for the robot.

7 CONCLUSION

We present Tabula, a system for on-the-fy end-user development
of robot programs. Tabula is motivated by the need for simple pro-
gramming interfaces that maintain the expressiveness required for
robot development. We thereby approached the design of Tabula
from the ground up, beginning with an initial speech-only proto-
type. Based on the results of a design study, we created Tabula to
supplement speech with an additional mode of input, sketching. In
a series of application scenarios, we demonstrate how Tabula can
create meaningful robot programs through speech and sketching.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (NSF)
award 1925043, NSF Graduate Research Fellowship Program award
DGE-1747503, and a Cisco Wisconsin Distinguished Graduate Fel-
lowship. This work was carried out while DP was afliated with the
University of WisconsinśMadison and completed while an NRC
Postdoctoral Research Associate at the Naval Research Laboratory.

591

Sketching Robot Programs On the Fly HRI ’23, March 13–16, 2023, Stockholm, Sweden

REFERENCES
[1] AirTable. 2022. Airtable | Everyone’s app platform. https://airtable.com/.
[2] Samir Alili, Rachid Alami, and Vincent Montreuil. 2009. A Task Planner for an

Autonomous Social Robot. In Distributed Autonomous Robotic Systems 8, Hajime
Asama, Haruhisa Kurokawa, Jun Ota, and Kosuke Sekiyama (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 335ś344. https://doi.org/10.1007/978-3-
642-00644-9_30

[3] Ron Alterovitz, Sven Koenig, and Maxim Likhachev. 2016. Robot Planning in
the Real World: Research Challenges and Opportunities. AI Magazine 37, 2 (Jul.
2016), 76ś84. https://doi.org/10.1609/aimag.v37i2.2651

[4] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-
AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1ś13. https://doi.org/10.1145/3290605.3300233

[5] Federico Boniardi, Abhinav Valada, Wolfram Burgard, and Gian Diego Tipaldi.
2016. Autonomous indoor robot navigation using a sketch interface for drawing
maps and routes. In 2016 IEEE International Conference on Robotics and Automation
(ICRA). 2896ś2901. https://doi.org/10.1109/ICRA.2016.7487453

[6] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4ś7.

[7] Margaret Burnett, Curtis Cook, and Gregg Rothermel. 2004. End-User Software
Engineering. Commun. ACM 47, 9 (sep 2004), 53ś58. https://doi.org/10.1145/
1015864.1015889

[8] Yuanzhi Cao, Zhuangying Xu, Fan Li, Wentao Zhong, Ke Huo, and Karthik
Ramani. 2019. V.Ra: An In-Situ Visual Authoring System for Robot-IoT Task Plan-
ning with Augmented Reality. In Proceedings of the 2019 on Designing Interactive
Systems Conference (San Diego, CA, USA) (DIS ’19). Association for Computing
Machinery, New York, NY, USA, 1059ś1070. https://doi.org/10.1145/3322276.
3322278

[9] David Chen and Raymond Mooney. 2011. Learning to Interpret Natural Language
Navigation Instructions from Observations. Proceedings of the AAAI Conference
on Artifcial Intelligence 25, 1 (Aug. 2011), 859ś865. https://doi.org/10.1609/aaai.
v25i1.7974

[10] Michael Jae-Yoon Chung and Maya Cakmak. 2022. Authoring Human Simulators
via Probabilistic Functional Reactive Program Synthesis. In 2022 17th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). 727ś730. https:
//doi.org/10.1109/HRI53351.2022.9889630

[11] Jonathan Connell. 2019. Verbal Programming of Robot Behavior. arXiv preprint
arXiv:1911.09782 (2019).

[12] Andrew Correa, Matthew R. Walter, Luke Fletcher, Jim Glass, Seth Teller, and
Randall Davis. 2010. Multimodal interaction with an autonomous forklift. In
2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
243ś250. https://doi.org/10.1109/HRI.2010.5453188

[13] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural Atten-
tion. In 54th Annual Meeting of the Association for Computational Linguistics, ACL
2016 - Long Papers, Vol. 1. Association for Computational Linguistics (ACL), 33ś43.
https://doi.org/10.18653/v1/P16-1004 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016 ; Conference date: 07-08-2016 Through
12-08-2016.

[14] Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. The MIT
Press. https://doi.org/10.7551/mitpress/7287.001.0001

[15] Maxwell Forbes, Rajesh P. N. Rao, Luke Zettlemoyer, and Maya Cakmak. 2015.
Robot Programming by Demonstration with situated spatial language under-
standing. In 2015 IEEE International Conference on Robotics and Automation (ICRA).
2014ś2020. https://doi.org/10.1109/ICRA.2015.7139462

[16] Yuxiang Gao and Chien-Ming Huang. 2019. PATI: A Projection-Based Aug-
mented Table-Top Interface for Robot Programming. In Proceedings of the 24th
International Conference on Intelligent User Interfaces (Marina del Ray, California)
(IUI ’19). Association for Computing Machinery, New York, NY, USA, 345ś355.
https://doi.org/10.1145/3301275.3302326

[17] Malik Ghallab, Dana Nau, and Paolo Traverso. 2016. Automated Planning and
Acting. Cambridge University Press. https://doi.org/10.1017/CBO9781139583923

[18] Javi F. Gorostiza and Miguel A. Salichs. 2011. End-User Programming of a
Social Robot by Dialog. Robot. Auton. Syst. 59, 12 (dec 2011), 1102ś1114. https:
//doi.org/10.1016/j.robot.2011.07.009

[19] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1ś119. https:
//doi.org/10.1561/2500000010

[20] Justin Huang, Dieter Fox, and Maya Cakmak. 2019. Synthesizing Robot Manipu-
lation Programs from a Single Observed Human Demonstration. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 4585ś4592.
https://doi.org/10.1109/IROS40897.2019.8968543

[21] Justin Huang, Tessa Lau, and Maya Cakmak. 2016. Design and evaluation of a
rapid programming system for service robots. In 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). 295ś302. https://doi.org/10.1109/
HRI.2016.7451765

[22] Karin Kipper, Hoa Trang Dang, Martha Palmer, et al. 2000. Class-based construc-
tion of a verb lexicon. AAAI/IAAI 691 (2000), 696.

[23] James R. Kirk and John E. Laird. 2019. Learning Hierarchical Symbolic Repre-
sentations to Support Interactive Task Learning and Knowledge Transfer. In
Proceedings of the Twenty-Eighth International Joint Conference on Artifcial In-
telligence, IJCAI-19. International Joint Conferences on Artifcial Intelligence
Organization, 6095ś6102. https://doi.org/10.24963/ijcai.2019/844

[24] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. 2008.
Translating Structured English to Robot Controllers. Advanced Robot-
ics 22, 12 (2008), 1343ś1359. https://doi.org/10.1163/156855308X344864
arXiv:https://doi.org/10.1163/156855308X344864

[25] Stanislao Lauria, Guido Bugmann, Theocharis Kyriacou, and Ewan Klein. 2002.
Mobile robot programming using natural language. Robotics and Autonomous
Systems 38, 3 (2002), 171ś181. https://doi.org/10.1016/S0921-8890(02)00166-5
Advances in Robot Skill Learning.

[26] Nicola Leonardi, Marco Manca, Fabio Paternò, and Carmen Santoro. 2019. Trigger-
Action Programming for Personalising Humanoid Robot Behaviour. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY,
USA, 1ś13. https://doi.org/10.1145/3290605.3300675

[27] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-User
Development: An Emerging Paradigm. Springer Netherlands, Dordrecht, 1ś8.
https://doi.org/10.1007/1-4020-5386-X_1

[28] Greg Little, Robert C. Miller, Victoria H. Chou, Michael Bernstein, Tessa Lau, and
Allen Cypher. 2010. Sloppy Programming. In No Code Required, Allen Cypher,
Mira Dontcheva, Tessa Lau, and Jefrey Nichols (Eds.). Morgan Kaufmann, Boston,
289ś307. https://doi.org/10.1016/B978-0-12-381541-5.00015-8

[29] Kexi Liu, Daisuke Sakamoto, Masahiko Inami, and Takeo Igarashi. 2011. Ro-
boshop: Multi-Layered Sketching Interface for Robot Housework Assignment and
Management. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (Vancouver, BC, Canada) (CHI ’11). Association for Computing Ma-
chinery, New York, NY, USA, 647ś656. https://doi.org/10.1145/1978942.1979035

[30] Arnold M Lund. 2001. Measuring Usability with the USE Questionnaire. Usability
and User Experience Newsletter of the STC Usability SIG 8, 2 (01 2001), 3ś6.

[31] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. 55ś60. http://www.aclweb.org/anthology/P/P14/P14-5010

[32] Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. 2013. Learn-
ing to Parse Natural Language Commands to a Robot Control System. Springer
International Publishing, Heidelberg, 403ś415. https://doi.org/10.1007/978-3-
319-00065-7_28

[33] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (nov 1995), 39ś41. https://doi.org/10.1145/219717.219748

[34] Shiwali Mohan and John Laird. 2014. Learning Goal-Oriented Hierarchical Tasks
from Situated Interactive Instruction. Proceedings of the AAAI Conference on
Artifcial Intelligence 28, 1 (Jun. 2014). https://doi.org/10.1609/aaai.v28i1.8756

[35] Ronald Petrick and Mary Ellen Foster. 2013. Planning for Social Interaction
in a Robot Bartender Domain. Proceedings of the International Conference on
Automated Planning and Scheduling 23, 1 (Jun. 2013), 389ś397. https://doi.org/
10.1609/icaps.v23i1.13589

[36] David Porfrio, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2018. Author-
ing and Verifying Human-Robot Interactions. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology (Berlin, Germany)
(UIST ’18). Association for Computing Machinery, New York, NY, USA, 75ś86.
https://doi.org/10.1145/3242587.3242634

[37] David J Porfrio. 2022. Authoring Social Interactions Between Humans and Robots.
Ph. D. Dissertation. UWśMadison.

[38] David J. Porfrio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albargh-
outhi, and Bilge Mutlu. 2021. Figaro: A Tabletop Authoring Environment
for Human-Robot Interaction. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Associa-
tion for Computing Machinery, New York, NY, USA, Article 414, 15 pages.
https://doi.org/10.1145/3411764.3446864

[39] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (nov 2009), 60ś67. https://doi.org/10.1145/1592761.1592779

[40] Daisuke Sakamoto, Koichiro Honda, Masahiko Inami, and Takeo Igarashi. 2009.
Sketch and Run: A Stroke-Based Interface for Home Robots. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA)
(CHI ’09). Association for Computing Machinery, New York, NY, USA, 197ś200.
https://doi.org/10.1145/1518701.1518733

[41] Emmanuel Senft, Michael Hagenow, Robert Radwin, Michael Zinn, Michael
Gleicher, and Bilge Mutlu. 2021. Situated Live Programming for Human-Robot
Collaboration. In The 34th Annual ACM Symposium on User Interface Software and
Technology (Virtual Event, USA) (UIST ’21). Association for Computing Machinery,
New York, NY, USA, 613ś625. https://doi.org/10.1145/3472749.3474773

592

HRI ’23, March 13–16, 2023, Stockholm, Sweden

[42] Danelle Shah. 2012. Towards Natural And Robust Human-Robot Interaction Using
Sketch And Speech. Ph. D. Dissertation. Cornell.

[43] Danelle Shah, Joseph Schneider, and Mark Campbell. 2010. A robust sketch
interface for natural robot control. In 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 4458ś4463. https://doi.org/10.1109/IROS.2010.
5649345

[44] Maj Stenmark and Pierre Nugues. 2013. Natural language programming of
industrial robots. In IEEE ISR 2013. 1ś5. https://doi.org/10.1109/ISR.2013.6695630

[45] Seth Teller, Matthew R. Walter, Matthew Antone, Andrew Correa, Randall Davis,
Luke Fletcher, Emilio Frazzoli, Jim Glass, Jonathan P. How, Albert S. Huang,
Jeong hwan Jeon, Sertac Karaman, Brandon Luders, Nicholas Roy, and Tara
Sainath. 2010. A voice-commandable robotic forklift working alongside humans
in minimally-prepared outdoor environments. In 2010 IEEE International Confer-
ence on Robotics and Automation. 526ś533. https://doi.org/10.1109/ROBOT.2010.
5509238

[46] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter, Ashis Baner-
jee, Seth Teller, and Nicholas Roy. 2011. Understanding Natural Language
Commands for Robotic Navigation and Mobile Manipulation. Proceedings
of the AAAI Conference on Artifcial Intelligence 25, 1 (Aug. 2011), 1507ś1514.
https://doi.org/10.1609/aaai.v25i1.7979

[47] Jesse Thomason, Aishwarya Padmakumar, Jivko Sinapov, Nick Walker, Yuqian
Jiang, Harel Yedidsion, Justin Hart, Peter Stone, and Raymond J. Mooney. 2019.
Improving Grounded Natural Language Understanding through Human-Robot
Dialog. In 2019 International Conference on Robotics and Automation (ICRA). 6934ś
6941. https://doi.org/10.1109/ICRA.2019.8794287

[48] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze, and Michael L. Littman. 2016. Trigger-Action Pro-
gramming in the Wild: An Analysis of 200,000 IFTTT Recipes. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI ’16). Association for Computing Machinery, New York, NY,
USA, 3227ś3231. https://doi.org/10.1145/2858036.2858556

[49] Nick Walker, Yu-Tang Peng, and Maya Cakmak. 2019. Neural Semantic Parsing
with Anonymization for Command Understanding in General-Purpose Service

David Porfirio et al.

Robots. In RoboCup 2019: Robot World Cup XXIII, Stephan Chalup, Tim Niemueller,
Jackrit Suthakorn, and Mary-Anne Williams (Eds.). Springer International Pub-
lishing, Cham, 337ś350. https://doi.org/10.1007/978-3-030-35699-6_26

[50] Webfow. 2022. Create a custom website: No-code website builder. https:
//webfow.com/.

[51] W. A. Woods. 1973. Progress in Natural Language Understanding: An Applica-
tion to Lunar Geology. In Proceedings of the June 4-8, 1973, National Computer
Conference and Exposition (New York, New York) (AFIPS ’73). Association for
Computing Machinery, New York, NY, USA, 441ś450. https://doi.org/10.1145/
1499586.1499695

[52] Marcelo Worsley, David Barel, Lydia Davison, Thomas Large, and Timothy Mwiti.
2018. Multimodal Interfaces for Inclusive Learning. In Artifcial Intelligence in
Education, Carolyn Penstein Rosé, Roberto Martínez-Maldonado, H. Ulrich Hoppe,
Rose Luckin, Manolis Mavrikis, Kaska Porayska-Pomsta, Bruce McLaren, and
Benedict du Boulay (Eds.). Springer International Publishing, Cham, 389ś393.
https://doi.org/10.1007/978-3-319-93846-2_73

[53] James Young, Kentaro Ishii, Takeo Igarashi, and Ehud Sharlin. 2012. Style by
Demonstration: Teaching Interactive Movement Style to Robots. In Proceedings
of the 2012 ACM International Conference on Intelligent User Interfaces (Lisbon,
Portugal) (IUI ’12). Association for Computing Machinery, New York, NY, USA,
41ś50. https://doi.org/10.1145/2166966.2166976

[54] Zapier. 2022. Automation that moves you forward. https://zapier.com/.
[55] Luke S. Zettlemoyer and Michael Collins. 2005. Learning to Map Sentences to

Logical Form: Structured Classifcation with Probabilistic Categorial Grammars.
In Proceedings of the Twenty-First Conference on Uncertainty in Artifcial Intel-
ligence (Edinburgh, Scotland) (UAI’05). AUAI Press, Arlington, Virginia, USA,
658ś666.

[56] Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and Blase
Ur. 2019. AutoTap: Synthesizing and Repairing Trigger-Action Programs Using
LTL Properties. In Proceedings of the 41st International Conference on Software
Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 281ś291. https:
//doi.org/10.1109/ICSE.2019.00043

593

	Abstract
	1 Introduction
	2 Related Work
	2.1 End-User Development
	2.2 Natural Language Programming
	2.3 Planning & Synthesis

	3 Speech Prototype: One Mode of Input
	3.1 Prototypical Speech Interface
	3.2 Formative Evaluation
	3.3 Implications of Prototype

	4 Tabula: Two Modes of Input
	4.1 Getting Ready to Use Tabula
	4.2 Recording a Task
	4.3 Program Synthesis and Output

	5 Tabula Capabilities and Limitations
	5.1 Application Scenarios
	5.2 Synthesizer Reliability

	6 Discussion
	6.1 On-the-Fly End-User Robot Development
	6.2 Limitations & Future Work

	7 Conclusion
	Acknowledgments
	References

