L)

Check for
updates

Lively: Enabling Multimodal, Lifelike, and Extensible Real-time
Robot Motion

Andrew Schoen
University of Wisconsin-Madison
Madison, Wisconsin, USA
schoen@cs.wisc.edu

Daniel Rakita
Yale University
New Haven, Connecticut, USA
daniel.rakita@yale.edu

ABSTRACT

Robots designed to interact with people in collaborative or social
scenarios must move in ways that are consistent with the robot’s
task and communication goals. However, combining these goals in a
naive manner can result in mutually exclusive solutions, or infeasi-
ble or problematic states and actions. In this paper, we present Lively,
a framework which supports configurable, real-time, task-based
and communicative or socially-expressive motion for collaborative
and social robotics across multiple levels of programmatic accessi-
bility. Lively supports a wide range of control methods (i.e., position,
orientation, and joint-space goals), and balances them with complex
procedural behaviors for natural, lifelike motion that are effective
in collaborative and social contexts. We discuss the design of three
levels of programmatic accessibility of Lively, including a graph-
ical user interface for visual design called LivelyStudio, the core
library Lively for full access to its capabilities for developers, and an
extensible architecture for greater customizability and capability.

CCS CONCEPTS

« Human-centered computing — Open source software.

KEYWORDS
Robot motion; robot control; Perlin noise; lifelikeness

ACM Reference Format:

Andrew Schoen, Dakota Sullivan, Ze Dong Zhang, Daniel Rakita, and Bilge
Mutlu. 2023. Lively: Enabling Multimodal, Lifelike, and Extensible Real-time
Robot Motion. In Proceedings of the 2023 ACM/IEEE International Conference
on Human-Robot Interaction (HRI °23), March 13-16, 2023, Stockholm, Sweden.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3568162.3576982

1 INTRODUCTION

As robots increasingly work in human environments, they will need
to execute a wide range of highly configurable behaviors while

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HRI °23, March 13-16, 2023, Stockholm, Sweden.

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9964-7/23/03...$15.00
https://doi.org/10.1145/3568162.3576982

Dakota Sullivan

University of Wisconsin-Madison
Madison, Wisconsin, USA
dsullivan8@wisc.edu

594

Ze Dong Zhang
University of Wisconsin-Madison
Madison, Wisconsin, USA
zzhang978@wisc.edu

Bilge Mutlu

University of Wisconsin-Madison
Madison, Wisconsin, USA
bilge@cs.wisc.edu

Extend Level

Figure 1: We present Lively for real-time motion generation
that balances task and communicative goals while maintain-
ing feasibility. We provide three levels of interfaces to address
varying use cases. The Design Level enables programming
robots using a state-based approach. The Develop Level is
configurable and portable, usable in applications such as
ROS-based control and web-based simulation. The Extend
Level supports the addition of new characteristics and goal
specifications for greater customizability and extendability.

communicating effectively with their users. A worker collaborating
with a robotic arm may have preferences for how the robot positions
itself when they are nearby [25]. A collaborative robot assisting a
person unloading the dishwasher might use slight movements of
its gripper to communicate that it is ready to pick up or receive

HRI ’23, March 13-16, 2023, Stockholm, Sweden.

items [47]. A social robot may display idle motion with its body
to indicate that it is active and lifelike [29]. When conversing, a
robot may look away to signal that it is thinking [1]. Prior research
in human-robot interaction has found such “lifelike” motions to
improve perceptions of the robot [43, 48]. Thus, lifelike motion or
configuration of a robot’s links and joints are key design elements
for robots utilized in human environments. Successful execution of
combined tasks and social actions requires balancing these types
of goals with practical concerns, such as avoiding collisions and
maintaining smooth motion. In this paper, we explore how Lively
can support the generation of lifelike but feasible task motions for
collaborative and social robots.

Since physical task-based activities are frequently spatially rooted
in the workspace, robot control requires converting these Cartesian
goals into joint-space instructions. For example, the ability of a
robot’s arm to deliver an object to a collaborator depends on its
ability to first reach the position of the object, and then travel to
the person’s outstretched hand. Similarly, a social robot may point
in a certain direction using referential gestures by changing the
position and orientation of its hand or gaze. This conversion is
commonly achieved with an approach known as Inverse Kinematics
(IK). Conventional IK approaches structure this conversion as a
search in joint-space constrained by the position and orientation of
the robot’s gripper. This approach encourages solutions exhibiting
desired position and orientation goals on the gripper, but cannot
guarantee finding a solution in all cases.

To communicate certain attitudes or states with physical motion,
such as the human-robot interaction scenarios discussed above, the
entire kinematic chain may be required, so simply considering the
position and orientation of the gripper is insufficient.

Combining these social and task-based goals into functional
robot motion requires not only knowledge of how motion is inter-
preted but also the technical ability to translate those qualities onto
robot platforms. While robotics application developers may possess
skills in both areas, domain experts may not have the same level of
technical ability to bring their vision to fruition. An interface that
is intuitive to both roboticists and other experts, such as anima-
tors, artists, or designers, can bridge this divide. Additionally, novel
approaches to designing and implementing robot motion may be
needed as robot capabilities evolve. Therefore, a design system with
the flexibility to grow with these new approaches is required.

We present a new motion specification and generation frame-
work, called Lively, that combines task-based and social goals while
maintaining kinematic stability in real time (Figure 1). The frame-
work leverages Perlin noise [30, 32] and integrates an existing
per-instant pose optimization tool called RelaxedIK [37] to achieve
both primary and secondary motion goals in real-time. To support
robot-application designers and developers, we developed three
levels that expose the capabilities of Lively to users with different
needs and levels of expertise. At the first level, LivelyStudio provides
nonexpert users with an accessible, interactive, visual interface to
design primary and secondary motions and control modalities used
with the robot. At the second level, we present a development- and
execution-focused framework, and at the final level, we provide an
architecture that supports extendability and customizability.

The contributions of our work are summarized as follows:

595

Andrew Schoen, Dakota Sullivan, Ze Dong Zhang, Daniel Rakita, & Bilge Mutlu

o A visual interface called LivelyStudio that allows designers
to interactively construct state-based robot programs !;

e An open-source robot-agnostic library that can be used by
developers to specify real-time robot behavior that combines
goal-oriented joint-space or Cartesian control with motion
quality attributes in a feasible manner?;

e A modular software architecture that supports straightfor-
ward augmentation and contribution for custom control.

In the remainder of the paper, we review previous approaches
to this problem, contrasting them with Lively. We discuss the im-
plementation of Lively and outline its cases for use along three
different levels of programmatic accessibility, including the design
of a tool called LivelyStudio, iteratively designed with a formative

evaluation with roboticists and animators.

2 BACKGROUND

In this section, we review related work on expressive and func-
tional motion including lifelike motion, inverse kinematics, and the
operationalization of each.

2.1 Lifelike Motion

Whereas primary motion is an intentionally performed behavior,
such as the process of handing a letter to a friend, standing in place,
or looking to the right, secondary motion is defined as activity
resulting from that primary motion [23]. Secondary motion covers
a wide range, such as the rippling or creasing of one’s shirt as the
arm is outstretched, the idle shifting of posture while standing, or
slight movements of the pupils.

Secondary motion is known to be highly important to how hu-
mans interpret animated or robotic characters. In their paper, Heider
and Simmel animated a set of shapes to perform choreographed mo-
tions, such as following one another and moving into boxes while
exhibiting additional subtle affine and rotational movements [20].
Most participants viewing the animation described the behavior of
the simple shapes in human or anthropomorphic terms. Similarly,
work with puppets has informed our understanding of how small
motions and characteristics can influence viewers [12, 14]. The
effectiveness of secondary motion motivated its inclusion in the
principles of 3D animation by Lasseter [26].

Animation utilizes many principles for secondary motion and
lifelike behavior, initially requiring hand-drawn or hand-animated
specification of behaviors. However, a growing number of methods
make this process less demanding. Witkin et al. proposed a method
to warp a keyframe animation to match new spatio-temporal con-
straints by systematically mapping underlying motion curves [51].
This allows an animator to adjust a character’s posture from happy
to sad throughout an animation using only a sparse set of inputs in-
stead of enumerating keyframes. Gleicher presented a method that
maps motion from one articulated figure to another, even if they
have vastly different scales or geometries [17]. The method uses
non-linear constrained optimization to minimally displace an input
motion (e.g., motion capture data) to match the specifications of the
new articulated figure. Additionally, motion has been added to com-
puter generated characters using Principal Components Analysis

1Code available at https://github.com/Wisc-HCI/LivelyStudio
2Code/Documentation available at https://github.com/Wisc-HCI/lively

Lively: Enabling Multimodal, Lifelike, and Extensible Real-time Robot Motion

[15], and traditionally animated characters have been augmented
with secondary motion through a 3D intermediate process [22].
However, these solutions all represent post-hoc methods of adjust-
ing input motions, and are allowed certain freedoms given their
virtual, non-rigid context.

Considerable work has also focused on effective ways of aug-
menting agents and characters with secondary motion in a gener-
ative manner. The most common method to do this was created
by Ken Perlin [30, 32]. Originally designed for texture generation,
Perlin noise was quickly adopted for motion as a way of creating per-
sonality in animated characters [6, 31]. Perlin noise is particularly
well-suited for this domain, being a non-repeating, but smoothly
changing generative method. Furthermore, by modifying the speed
at which the input value (usually a function of time) changes, anima-
tors can predictably control the characteristics of the noise function.
By using smooth noise, such as Perlin noise, as a function of time,
offsets from static or dynamic configurations (i.e., character joints)
can be calculated, thus augmenting these characters with subtle
motion. This process was extended by Improv, which featured a
method for incorporating smooth noise into animated characters’
behaviors [33]. Studies in robotics have shown smooth noise to
improve a variety of outcomes in robotics, including likeability
and presence [8, 48]. Many commercially-available collaborative
and social robots do not have fully articulated faces with which to
communicate social-emotional states, so it is particularly important
that there be alternative ways for modeling them.

Specific characteristics of motion, such as “jerkiness” or “veloc-
ity,” have been outlined as important for the recognition of certain
emotional states in humanoid robots [3, 4]. When viewed by indi-
viduals, faster speed in robots was interpreted as greater excitement
or arousal [44]. Originating in dance theory, Laban Movement Anal-
ysis (LMA) [50] and the component of motion shape have since
been validated as informative for affect detection in humans and
used in animation [7, 10, 28, 49]. While not motivated by LMA,
the directionality of a simple robot was shown to have a strong
emotional impact [19], and has been used to generate profiles of
expression movement in mobile robots [24].

Smooth, lifelike motion can also function as a signalling mecha-
nism for system states [5, 21]. For example, if the robot is on but not
moving, secondary motion may serve as an indicator to users that
the robot is merely idle, while also preventing surprise when the
robot moves. Idle behaviors have also been extracted from human
ethnographic work [46], and have been shown to improve aspects
of child-robot interactions [2].

While smooth joint noise can improve the liveliness of agents,
it does not capture the full range of expressivity. According to
LMA, many features of movement, such as shape directionality,
are not relevant in the joint-space of the robot, but rather the pose
(e.g., Cartesian space) of the robot, making applying these types
of features difficult if operating in joint space. Other informative
features, such as speed or jerkiness, may be obscured if joint-based
noise causes varying speed or jerkiness in Cartesian space.

Similarly, the addition of smooth noise for secondary motion in
joint-space can result in problematic configurations or collisions,
even if joint limits are respected. For humanoid or bipedal robots,
simply adding offsets to individual joints on the lower limbs quickly
results in unstable posture, and even falls.

596

HRI °23, March 13-16, 2023, Stockholm, Sweden.

2.2 Solutions to Lifelike Motion in Robotics

One solution to these challenges is to simply pre-record or de-
fine keyframes for specific motions and interpolate between them
as needed. This approach has been employed in prior research
[48] and in proprietary software (e.g., Softbank Robotics’ NaoQi
Autonomous Life [41]). As an alternative to manually generating
activities, Geppetto utilized a user interface to enumerate and visu-
alize possibilities for expressive gestures with the goal of allowing
more productive exploration of the potential behavior set [11]. For
bipedal robots, motion on limbs presents an additional challenge
due to instability caused by uncoordinated joint movements. As
a result, motion is typically either disabled from the waist down,
entirely pre-defined, or the issue is avoided by adopting a sitting
position and focusing activity on the upper body [3, 4]. While suffi-
cient for short interactions, pre-scripting these behaviors can have
a number of issues. First, without enough keyframes, the behavior
can quickly become repetitive, which breaks the illusion of auton-
omy [13]. Second, when combining activities, conflicts between
joints and kinematics might arise. This makes interleaving existing
motion with novel, real-time instructions difficult. For example, an
early approach attempted to resolve these conflicts between activi-
ties and motions through a hierarchical model [45]. While effective
at interleaving the behaviors with motion, the system was not fast
enough to run in real-time. These cases illustrate the limitations of
previous efforts to balance lifelike motion with task-goals.

2.3 Inverse Kinematics

In contrast to specifying the gripper pose indirectly through the
setting of joint angles, Inverse Kinematics (IK) solvers attempt to di-
rectly specify the gripper pose, and solve for the joint configuration
that satisfies that pose. IK solvers, while more easily interpretable
in Cartesian space than joint-space methods, can encounter issues
such as kinematic singularities. These joint-space issues occur when
the robot loses the ability to instantaneously move its gripper in
some translational or rotational dimension, because (1) not all poses
in the robot’s area can be reached through a combination of joint
states, and (2) a movement in Cartesian space may not be possible
as a smooth interpolation of joint-space values.

A method that utilizes an IK solver is ERIK, which uses a pass-
based approach to integrate joint movements with end-effector
goals [40]. RelaxedIK is another IK solver with a different approach.
Using an optimization-based method, RelaxedIK places importance
on both accuracy of the motion (e.g., matching the pose of the
gripper), as well as the feasibility of motion (e.g., avoiding self-
collisions or kinematic singularities) [37]. It is generalizable such
that additional objectives can be added, e.g., handling dual-robot
systems where one arm controls a camera, optimizing the location
and orientation of the camera such that a remote user has a clear
view of the task being performed by the other robot arm [38].

3 IMPLEMENTATION

Lively inherits its philosophy from RelaxedIK [37] by framing the
goal of the joint-space calculation as an objective, but generalizing
its implementation across a greater set of objective types and at-
tributes of the robot’s state. Furthermore, while RelaxedIK assumed
a position and rotation goal on the gripper of each robot arm, and a

HRI ’23, March 13-16, 2023, Stockholm, Sweden.

Specity - de Gaze [

Figure 2: An early version of LivelyStudio that received feed-
back from animators and roboticists, which led to a re-
designed 3D environment, more explicit state-based design
process (states as graph nodes), and bundling of behavior
attributes with specific goals and weights.

set of joint smoothness objectives, Lively makes fewer assumptions
with its a la carte approach, giving the programmer greater ability
to compose these goals in creative ways for behavior generation.

To explore the capabilities of the system, we will consider three
main levels of possible interaction with the system: the Design Level,
the Development Level, and the Extension Level.

3.1 Design Level

The outermost interaction level is the Designer Level, and is the
least technical way to explore and utilize the system. We designed
LivelyStudio as a method inspired by conversations with a set of
experts across the fields of animation and robotics. It is meant to
support and illustrate many of the capabilities of the Lively frame-
work, while maintaining its accessibility. This is done by using a
state-based approach, wherein users can compose combinations of
social, task-based, or functional behaviors, called Behavior Proper-
ties, and specify how transitions may occur between these states.

3.1.1 Design lteration. Our current version of LivelyStudio builds
upon previous iterations through a small formative evaluation with
four professional roboticists and animators involving a mixture
of system overview, think aloud, and semi-structured interview,
lasting 60 to 90 minutes. The initial design, shown in Figure 2, fea-
tured a simulator and configuration window, where users could
independently curate a set of Behavior Properties, a set of states
(called modes), and goals (task-based instructions). While states
were supported through modes, there was no clear relationship
between them, and animators in particular had difficulty translat-
ing their keyframe-focused experience to this design: “It’s hard to
see how poses would be created so separate from the animation
(P3)” More generally, how specific goals could be combined with
the Behavior Properties was unclear. Additionally, certain interface
elements, such as the standard 3D viewer did not have the affor-
dances desired by animators, or had minor usability issues. This
feedback was used to create a more effective and intuitive version
of LivelyStudio for users of varied backgrounds and levels of expe-
rience through a more explicitly state-based configuration process,
and use of a new custom 3D viewer and updated components.

3.1.2 LivelyStudio Interface. The results of our formative evalua-
tion suggested that a state-based visual programming environment
that allows users to develop series of states similar to keyframing

597

Andrew Schoen, Dakota Sullivan, Ze Dong Zhang, Daniel Rakita, & Bilge Mutlu

would be the most intuitive approach to the design. The state-based
approach shares similarities with many other programming envi-
ronments [9, 16, 34, 35], which may be familiar to roboticists, but
also enables an intuitive design approach for users who are less
familiar with typical programming environments like animators,
digital artists, or other types of designers. LivelyStudio’s program-
ming environment contains three primary parts: (1) a selection of
state and behavior property nodes, (2) a state-based programming
window, and (3) a robot scene. By defining states, and adding Be-
havior Properties, designers can define how a robot will move, or
the position it should take in each (Figure 3). Improving on the
early version of LivelyStudio, specific goals and Behavior Properties
are merged for clarity, and weights are inferred from their rela-
tive ordering within states and through usage of priority groups.
Designers can specify arbitrary Universal Robot Description Files
(URDFs), but visualization of meshes is limited to a discrete set that
could be expanded in the future.

3.1.3 Behavior Properties. LivelyStudio allows for a wide range of
robot Behavior Properties with which users program robot motion.
These 24 properties, which serve as building blocks for defining
the behavior and motion of the robot, fit into six categories:

o Basic behavior properties revolve around the fluidity of robot
motion by limiting rapid changes and considering possible
collisions between the links of the robot.

e Bounding behavior properties limit the space within which
joints can assume angles and links can move or be oriented.

o Matching behavior properties specify exact positions and ori-
entations of links or angles of joints.

o Mirroring behavior properties allow users to mirror the cur-
rent state of a link’s position or orientation in a different
link, or the current angle of one joint in another.

o Liveliness behavior properties allow the addition of smooth,
coordinated motion to joint angles or link poses.

e Force behavior properties simulate the effects of physical
forces acting upon the robot.

The function of each Behavior Property is visualized in Figure 4.

3.1.4 States and Transitions. The state-based programming win-
dow starts with a power-on (i.e., initial) state, and a power-off (i.e.,
final) state. Users can add additional state nodes to their program
and populate them with Behavior Properties. For example, one state
may contain a property that sets the gripper of a robot arm in a
pick-up area, while another state sets the gripper position to be near
a drop-off area. Once a series of states is created, the user can define
how the power-on, power-off, and custom states are connected by
dragging transitions from one state to another. These connections
can also be given timers, which act as triggers to automatically
begin a transition from one node to the next. In this way, a state
can function both conventionally, defining a set of characteristics
the robot will exhibit for an unspecified amount of time, but also as
a single keyframe in a timed series. States can have any number of
both timed and nominal transitions (simulating event triggers, e.g.,
a person approaches), and the program will transition states given
the first simulated event triggered or timer that expires, whichever
occurs first. Of note, while this does simulate how the robot could

Lively: Enabling Multimodal, Lifelike, and Extensible Real-time Robot Motion HRI *23, March 13-16, 2023, Stockholm, Sweden.

Editor

Transitions in 10s lo_
Bounding Behavior

it o Y
Properties

Transition
Widget

B

@ Joint Boundi

Block
Picker

Figure 3: The layout of the LivelyStudio interface. From left to right, a Simulator window shows the robot in the currently
selected state; the Block Picker allows dragging structural blocks like States or Behavior Properties like Position Bounding; the
State Editor canvas that allows for states to be dragged around and modified. At the top-right, a menu that reveals a Transition
Widget, which lists transitions from the current state, and a settings button that reveals a full URDF editor.

respond to events, LivelyStudio does not currently interface with the framework level. Thus, the previously mentioned position goal
physical robots, or listen to external events. can be determined in real time through external means, such as

sensing, and passed as an update within each iteration of the solver.
3.2 Develop Level Similarly, the developer in real time can adjust other goals, such as

a position bounding ellipsoid (Position Bounding), joint values (Joint
Match), or size (for Position Liveliness), and weights, allowing for
prioritization of certain goals or the deactivation of others, based on
the current development needs. Because objectives are organized
by key, and atomic updates are possible for goals and weights, only
the needed changes must to be included each round.

For robot programmers desiring greater control over the robot than
that afforded by the previously described LivelyStudio interface,
or looking to control a robot in a more conventional ROS-based
approach by creating a control node that publishes joint values, the
Development Level allows for direct control using Lively.

3.2.1 Design & Usage. Lively is written in Rust [27], and accessible

as a crate, with bindings in both JavaScript through WebAssembly 3.2.3 Objective Configuration. The complete set of objectives fea-
[18] and Python [42]. To use Lively, a Solver is imported and con- ture a wide range of configurable attributes, beyond simply their
structed with any valid URDF, persistent scene objects, objectives, goals and weights. The simplest objectives focus on safe and smooth
and other solver settings. Execution of the solve method, which motion, corresponding to the set of Basic Behavior Properties, and do
accepts the current goals, weights, time, and real-time collision data, not accept additional parameters. Those corresponding to Match-
returns a robot state that best satisfies those goals given the cur- ing, Bounding, and Gravity Behavior Properties are configured with
rent weightings and previous robot state. This approach allows for the joint or link with which they are paired. Mirroring Behavior
Lively to be used in a variety of contexts, including ROS [36], web Properties, defining relationships between pairs of links and joints,
or simulation, and directly on hardware. Solve times with randomly accept a pair of each. Finally, Liveliness Behavior Properties feature
arranged colliders are shown in Figure 5. an additional field, frequency. This value functions as a temporal
scaling value that increases or decreases the rate of change in the
3.2.2 Objectives, Goals, & Weights. To achieve a high degree of Perlin noise generator functions for that objective. Combined with
customization and dynamic control, we introduce the concepts of the goal values passed into liveliness objectives, developers can
objectives, goals, and weights. Whereas LivelyStudio abstracted access a wide range of motion profiles. Importantly, because the
away these features as Behavior Properties for the purpose of ac- formulation of the liveliness objectives is not dependent on having
cessibility, the core framework allows for more direct control. The a concrete goal attached to the same link or joint, it is possible to
identities of the individual objectives match with the set of Behav- add movement to otherwise uncontrolled parts of the robot.
ior Properties enumerated in Figure 4, and goals are summarized
in 1. Importantly, while Behavior Properties encoded the discrete 3.24 Collision Avoidance. Lively implements the PROXIMA colli-
goals (e.g., the position for Position Match, or the scalar for Joint sion detection algorithm, which allows for time-efficient collision
Match) associated with each Behavior Property, and the weights are and proximity detection for robots [39]. The Collision Avoidance
inferred by the ordered ranking within states, these are separated at objective serves to utilize the data generated from this collision

598

HRI ’23, March 13-16, 2023, Stockholm, Sweden.

Motion Smoothness Collision Avoidance

&

Position Match ~ Orientation Match

Distance Match

Joint Match

Orientation Liveliness Joint Liveliness
Basic
Matching
Bounding
Mirroring

Liveliness

Relative Motion
Liveliness

Forces

Figure 4: LivelyStudio’s set of Behavior Properties that match
Objective Functions within Lively. Note, Velocity Minimiza-
tion, Acceleration, and Jerk Minimization come in both joint-
based and robot root variants, and while usable separately,
are included within the Smoothness macro property.

detection algorithm to prevent collisions. Lively employs a three-
fold approach to handling modeling collision objects. The first is
input from the URDF during the initialization of the solver, which
supports default shapes like boxes and cylinders as parts of the
collision model when parsed. For cross-platform and web-based
reasons, mesh-based colliders are ignored during URDF import.
Additional colliders can be specified during solver initialization,
including basic shapes and convex hulls, and can be attached to

599

Andrew Schoen, Dakota Sullivan, Ze Dong Zhang, Daniel Rakita, & Bilge Mutlu

Solve Time by Robot and Environment Complexity

10
8 -
E 6
z
£ 47 UR3e
2 Panda
Pepper
0 T T T T T T T
0 10 20 30 40 50 60

Number of Environmental Shapes

Figure 5: Solve times for the UR3e, Panda, and Pepper robots,
with randomized locations of environmental colliders. Of
note, speed is largely unaffected by shape count.

the world or any link in the robot. Finally, as an optional input to
the solve method, developers can provide real-time updates to the
collision model, adding, deleting, and moving colliders.

3.3 Extend Level

For robotics developers seeking to modify the behavior of the ex-
isting Lively objectives, or wanting to increase functionality by
creating completely new objectives, Lively has a modular and con-
figurable approach to supporting the Extension Level.

3.3.1 State Model. As discussed, RelaxedIK utilizes an optimiza-
tion approach, with the robot state Sg being represented as a vector
in the joint space Sy of the robot internally. Lively takes a similar
approach, but an additional six dimensions representing the trans-
form of the root link are added to create the optimized vector x.
However, this vector representation is not always the most natural
way to evaluate the state, and to ease the computation each objec-
tive performs, this vector is converted into a more comprehensive
state representation containing joint states, link transforms, and
proximity information, described in Table 2. This state, as well as
previous states, are provided in each call to objectives.

This formulation of the state allows for straightforward creation
of additional objectives. It is also possible that additional features
of state may be needed for the creation of certain new objectives.
The Robot Model handles the generation of new robot states from
the vector x. For example, if a force-based objective was desired,
the robot model would have to be extended to output a state that
provides the data the objective would have to operate on.

Table 1: Goal Types

Entry ‘ Description

Translation A 3-vector representing coordinates

Rotation A Quaternion representing rotation

Scalar A float value

Size A 3-vector representing scale of a 3D shape

Ellipse A structure designating a rotated ellipsoid, with
Translation, Rotation, and Size components

RotationRange | A structure including a center Rotation, as well as a
float value indicating allowed delta in radians from
that rotation.

ScalarRange A structure including a center float value, and float
value representing allowed delta from that value.

Lively: Enabling Multimodal, Lifelike, and Extensible Real-time Robot Motion

Table 2: State Properties

Entry ‘ Description

Frames A lookup table of each link’s position in both world
and local coordinates

Joints A lookup table of each joint’s value

Origin The transform of the root link. This data is also in-
cluded in frames

Proximity A vector of data representing pairwise proximity be-

tween the robot’s links and other robot parts and the
environment. Each entry contains distance, as well
as the closest points between the pair of colliders

A 3-vector representing the center of mass of the
robot in the world frame

Center of Mass

Table 3: Objective Description

Entry ‘ Description

update Function, accepts the current timestep and performs
any updates to its internals that are necessary, as in
the case of Perlin noise-based objectives

Function, accepts the goal value supplied by the user.
Each objective accepts a specific goal type
Function, accepts a new weight value, if updated by
the user

Float, indicates the scaling value for the objective
cost value

Function, accepts a State and Variable data object,
returning a numerical cost value. The Variable ob-
ject contains a record of previous states and informa-
tion about the robot

set goal
set weight
weight

call

3.3.2 Objective Formulation. Similar to robot state, each objective
adheres to a well-defined convention that can be used to extend the
capabilities of Lively, as shown in Table 3. As previously discussed,
each objective is paired with a specific goal type (e.g., Position
Bounding with Ellipse, and Position Liveliness with Size), and the
goals are enumerated in Table 1. Additional goal types can also be
added to support new objectives and functionality, as long as they
have a predictable structure (e.g., a pointcloud goal could be an
array of any length with structure [{x : 64,y : f64,z : f64},...]).

4 CASE STUDIES
4.1 Design Level

Users of a wide range of experience levels can engage with our sys-
tem using LivelyStudio. Artists, character designers, and animators,
who may not be familiar with traditional programming tools, may
particularly benefit from LivelyStudio’s accessible user interface.

4.1.1 Kiosk Robot. Suppose a user is creating a program for a
social robot providing general assistance in a public area. Here,
the robot may have states such as idle, greeting, or thinking. The
user can begin by creating state nodes within the state editor. One
such state could be labeled “Idle” to represent the idle status of the
robot within the overall program. From here the user can begin
adding Behavior Properties to the state. First, the user may apply
the Position Liveliness property to the torso of Pepper as a visual
indication that it is powered-on and functioning. Next, the user may

600

HRI °23, March 13-16, 2023, Stockholm, Sweden.

add the Joint Liveliness property, and configure it to “Head Yaw” to
make the robot’s head sway from left to right and signify that it
is looking around for people to assist. Finally, the user can select
the Smoothness Macro property to ensure that the robot’s motion
remains smooth and natural, and the Collision Avoidance property
to prevent collisions. The user may also create a "Greeting" state,
which directs the robot’s gaze toward a nearby person. Once these
states are generated, the user can create a connection between
them and add a label to identify a triggering condition. The user
may want Pepper to transition from the "Idle" state to a "Greeting"
state when a person approaches. During this transition, Pepper can
reduce head sway from the "Idle" state, direct gaze toward the user
in the "Greeting" state, and maintain the liveliness motion included
in both states. This process can be repeated with any number of
states and complex transition patterns.

4.1.2 Cobot Keyframing. In another example, a user may want
to create a program for a robotic arm such as the Panda robot
that functions as a series of states, similar to keyframing. The user
can create an initial state, add the Position Match property, and
configure a specific position for the gripper. The user can complete
this process to define all waypoints for the gripper of the Panda
robot as separate states. Given space constraints in the deployment
environment, the user may also want to design their program to
limit the space in which certain links will move. Thus, the user may
apply the Position Bounding property to specific links so that the
robot limits its spatial footprint while moving. Finally, the user may
need the robot to interact with an object from a specific grasp point.
Therefore, adding the Orientation Match property to the gripper
enables it to manipulate an object from a reasonable angle. Once
all the states are created, the user can create timed connections
between states, such that transitions will occur automatically.

4.2 Develop Level

While all users may find use in LivelyStudio, those with substantive
experience programming and planning robot motion will be able to
leverage the capabilities of Lively directly. We consider two example
use cases to explore how Lively may be used.

4.2.1 Real-Time Robot Control. Using a UR3-e series robotic arm,
a developer seeks to devise a system that, on button-press, scans
the area using a camera attached to the last robot link, and finds
any of a set of items. Any item it finds is picked up and placed in
a nearby box. The developer creates a ROS-based setup with two
nodes. One node receives a camera feed and transform data from
the robot, while publishing all valid items and their transforms that
it detects. A second, Lively-focused control node listens to this set
of items, and publishes transforms of the robot to be consumed by
the first node. The control node defines a Lively solver, configured
with the robot description, and an additional camera collider that is
attached to the last link. The solver is configured with Position Match
and Orientation Match objectives on the final link, and a Position
Liveliness objective on the forearm link. Finally, the set of objectives
is completed with Smoothness, Joint Limits, and Collision Avoidance
objectives. On button press, a preset collection of positions and
orientations are sequentially passed to the corresponding objectives
in the solve method, along with instructions to turn the liveliness

HRI ’23, March 13-16, 2023, Stockholm, Sweden.

weight to zero. The resulting state is parsed and converted into TF
messages, which are passed via a topic to the data parsing node.
Upon calculation and communication of scene items to the control
node, the node selects the first item to move, passing the position
and orientation to the solver, followed by the goal position of the
items, then repeating until no items remain. Once complete, the
position and orientation goals are moved to a neutral pose, and the
weights relaxed, while the liveliness objective weight is increased.

4.2.2 Browser-Based WOZ. A developer wants to create a ROS-
based wizard-of-oz GUI interface that allows actions to be selected
and executed on a robot in real time, but also want the robot to re-
spond to potential collision objects in the environment and exhibit
certain lifelike motions. The robot, Pepper, has two arms, wheels,
and a head, and the developer already has an existing library of
joint-based trajectories. However, they want to include additional
liveliness in orientation space around the head and position liveli-
ness (a swaying motion) on the torso. Objectives for each controlled
joint are created, as well as some basic objectives. The developer’s
GUI initializes a web-based version of the solver. A web-based ROS
connection is formed to the robot, starting a subscription to sensor
data, and a publisher that sends real-time joint instructions to the
robot. Selecting an action updates the goals for each joint, and the
set of all potential colliders that the robot gets from the sensors
are updated each invocation of the solve method. Joint instructions
from the result are passed to the robot after each solution is found.
To accommodate all goals simultaneously, the system will attempt
to reach the specified joint values, while adding in liveliness and
avoiding collisions.

4.3 Extend Level

The current functionality of Lively and LivelyStudio address most
user needs when programming robot motion. However, if additional
functionality is desired, a developer could easily extend our system’s
capabilities by defining new objectives and goals. We outline two
examples of extensions that would be feasible within Lively.

4.3.1 Center of Mass Objective. Lively can be greatly extended
through the development of additional objectives. Because the ro-
bot state already includes a vector representing the center-of-mass
of the robot, it is straightforward to create a new objective, im-
plementing the methods defined in Table 3, that operates on it,
which could be useful in cases where the robot’s balance must
be maintained, or as a way to center the robot near its base. The
specified objective would accept a Translation goal, and use the
default implementation of update. The call method would be im-
plemented by calculating the distance between the goal value and
the center-of-mass vector in the robot state, returning a cost that
grows with distance. Finally, the objective is added to the set of
Objectives. The resulting objective would attempt to produce poses
that are centered as much as possible on the goal vector provided.

4.3.2 Perspective Noise. While the Position Match and Orientation
Match objectives together are capable of creating a lifelike appear-
ance, a developer may desire to create a lifelike behavior that ex-
hibits positional and rotational motion around an offset focal point,
as if inspecting the properties of an object located there. Doing so
requires the addition of an new goal type, which would encode the

601

Andrew Schoen, Dakota Sullivan, Ze Dong Zhang, Daniel Rakita, & Bilge Mutlu

focal length to maintain the position of the focus, and the amount
of rotational/translational movement allowed. The objective’s call
method would use these goals and a Perlin noise generator function
to project the needed position and orientation in space to achieve
the specified rotation around the focus at a given time and compute
the radial and translational distance from those values, returning a
cost value. The resulting objective would attempt to produce poses
that adhered to this dynamic pattern as a function of time.

5 DISCUSSION

Simultaneous coordination of functional and expressive robot mo-
tions is necessary but challenging. While a naive approach may
combine these types of motion, it may produce incompatible or
undesirable results. In this paper, we presented a system that gen-
erates real-time, lifelike motion for collaborative and social robots,
addressing key limitations of prior approaches at three levels of pro-
grammatic accessibility. At the most accessible level is LivelyStudio,
a state-based visual programming and configuration environment
that allows for exploration and design. Developers can utilize Lively
directly in multiple programming and execution environments, in
applications ranging from traditional keyframing-based to real-time
control. Finally, we present an architecture for Lively that supports
customizability and extendability.

5.1 Limitations & Future Work

The limitations of the work presented point toward future research
and implementation opportunities. First, Lively currently takes a
purely kinematic approach, but future extensions of Lively might
apply dynamics to accommodate external or inertial effects on the
robot’s motion as well as higher-level behavioral objectives for
avoiding non-stationary objects and obstacles with base movement.
Additionally, while supporting a high degree of configurability for
liveliness-focused Behavior Properties, LivelyStudio could be made
more effective through the use of programming by demonstration,
in which designers could demonstrate an example of liveliness that
they would like to see articulated with a physical robot connected to
the system, which could be converted into corresponding Behavior
Properties automatically. The growing field of soft robotics presents
interesting and relevant challenges for effective control that should
be explored with respect to Lively. Finally, we plan to holistically
evaluate LivelyStudio and Lively with (1) a usability evaluation of
LivelyStudio that focuses on usability, learnability, and effectiveness
of the system in supporting motion design, and (2) a long-term
community-based, qualitative evaluation of the develop and ex-
tend levels to better understand their usage in a rigorous but also
ecologically-valid manner, considering community engagement
and usage on public-facing hosting locations.

Taken together, Lively and LivelyStudio aim to assist and moti-
vate future work in systems exhibiting both social and task-based
motion as a platform for design, development, and extension.

6 ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation (NSF)
award IIS-1925043. We would like to thank Curt Henrichs and
Yeping Wang for feedback and assistance, and the volunteer roboti-
cists and animators for their feedback during development.

Lively: Enabling Multimodal, Lifelike, and Extensible Real-time Robot Motion

REFERENCES

(1]

=
=

[10

(1]

[12

[13

[14

(15

[16

[17

[18

[19

[20

[21]

[22

[23

[24

Sean Andrist, Xiang Zhi Tan, Michael Gleicher, and Bilge Mutlu. 2014. Conversa-
tional gaze aversion for humanlike robots. In 2014 9th ACM/IEEE International
Conf. on Human-Robot Interaction (HRI). IEEE, 25-32.

T. Asselborn, W. Johal, and P. Dillenbourg. 2017. Keep on moving! Exploring
anthropomorphic effects of motion during idle moments. In 2017 26th IEEE
International Symp. on Robot and Human Interactive Communication (RO-MAN).
897-902.

Aryel Beck, Lola Cafiamero, Antoine Hiolle, Luisa Damiano, Piero Cosi, Fabio
Tesser, and Giacomo Sommavilla. 2013. Interpretation of emotional body language
displayed by a humanoid robot: A case study with children. International Journal
of Social Robotics 5, 3 (2013), 325-334.

Aryel Beck, Antoine Hiolle, and Lola Cafiamero. 2013. Using Perlin Noise to
Generate Emotional Expressions in a Robot. CogSci (2013).

Tony Belpaeme, Paul E Baxter, Robin Read, Rachel Wood, Heriberto Cuayahuitl,
Bernd Kiefer, Stefania Racioppa, Ivana Kruijff-Korbayova, Georgios Athanasopou-
los, Valentin Enescu, Rosemarijn Looije, Mark Neerincx, Yiannis Demiris, Raquel
Ros-Espinoza, Aryel Beck, Lola Caftamero, Antione Hiolle, Matthew Lewis, Ilaria
Baroni, Marco Nalin, Piero Cosi, Giulio Paci, Fabio Tesser, Giacomo Sommavilla,
and Remi Humbert. 2013. Multimodal Child-Robot Interaction: Building Social
Bonds. Journal of Human-Robot Interaction 1, 2 (Jan. 2013), 1-21.

Bobby Bodenheimer, Anna V Shleyfman, and Jessica K Hodgins. 1999. The effects
of noise on the perception of animated human running. In Computer Animation
and Simulation’99. Springer, 53-63.

Diane Chi, Monica Costa, Liwei Zhao, and Norman Badler. 2000. The EMOTE
model for effort and shape. In Proceedings of the 27th annual Conf. on Computer
graphics and interactive techniques. 173-182.

Raymond H. Cuijpers and Marco A. M. H. Knops. 2015. Motions of Robots Matter!
The Social Effects of Idle and Meaningful Motions. In Social Robotics, Adriana
Tapus, Elisabeth André, Jean-Claude Martin, Frangois Ferland, and Mehdi Ammi
(Eds.). Springer International Publishing, Cham, 174-183.

Chandan Datta, Chandimal Jayawardena, I Han Kuo, and Bruce A MacDonald.
2012. RoboStudio: A visual programming environment for rapid authoring and
customization of complex services on a personal service robot. In 2012 IEEE/RS}
International Conf. on Intelligent Robots and Systems. IEEE, 2352-2357.

Marco De Meijer. 1989. The contribution of general features of body movement to
the attribution of emotions. Journal of Nonverbal behavior 13, 4 (1989), 247-268.
Ruta Desai, Fraser Anderson, Justin Matejka, Stelian Coros, James McCann,
George Fitzmaurice, and Tovi Grossman. 2019. Geppetto: Enabling Semantic
Design of Expressive Robot Behaviors. In Proceedings of the 2019 CHI Conf.
on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19).
Association for Computing Machinery, New York, NY, USA, 1-14. https:
//doi.org/10.1145/3290605.3300599

Brian R Duffy. 2003. Anthropomorphism and the social robot. Robotics and
Autonomous Systems 42, 3-4 (March 2003), 177-190.

Brian R Duffy. 2008. Fundamental Issues in Affective Intelligent Social Machiness.
The Open Artificial Intelligence Journal 2, 1 (2008).

Brian R Duffy and Karolina Zawieska. 2012. Suspension of disbelief in social
robotics. In 2012 RO-MAN: The 21st IEEE International Symp. on Robot and Human
Interactive Communication. IEEE, 484-489.

A. Egges, T. Molet, and N. Magnenat-Thalmann. 2004. Personalised real-time idle
motion synthesis. In 12th Pacific Conf. on Computer Graphics and Applications,
2004. PG 2004. Proceedings. 121-130.

Dylan F Glas, Takayuki Kanda, and Hiroshi Ishiguro. 2016. Human-robot in-
teraction design using interaction composer eight years of lessons learned. In
2016 11th ACM/IEEE International Conf. on Human-Robot Interaction (HRI). IEEE,
303-310.

Michael Gleicher. 1998. Retargetting motion to new characters. In Proceedings of
the 25th Annual Conf. on Computer Graphics and Interactive Techniques. 33-42.
Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the web
up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conf.
on Programming Language Design and Implementation. 185-200.

J. Harris and E. Sharlin. 2011. Exploring the affect of abstract motion in social
human-robot interaction. In 2011 RO-MAN. 441-448.

Fritz Heider and Marianne Simmel. 1944. An experimental study of apparent
behavior. The American journal of psychology 57, 2 (1944), 243-259.

Hiroshi Ishiguro and T Minato. 2005. Development of androids for studying on
human-robot interaction. In International Symp. on Robotics, Vol. 36. 5.

Eakta Jain, Yaser Sheikh, Moshe Mahler, and Jessica Hodgins. 2010. Augmenting
Hand Animation with Three-Dimensional Secondary Motion. In Proceedings of
the 2010 ACM SIGGRAPH/Eurographics Symp. on Computer Animation (Madrid,
Spain) (SCA ’10). Eurographics Association, Goslar, DEU, 93-102.

Ollie Johnston and Frank Thomas. 1981. The illusion of life: Disney animation.
Disney Editions New York.

Heather Knight and Reid Simmons. 2014. Expressive motion with x, y and theta:
Laban effort features for mobile robots. In The 23rd IEEE linternational Symp. on

602

[25]

[26]
[27]

[28

&
2

[36

[37

(38]

@
0,

[40

[41

[42

[43

[44

[45

[46

[47

[50

[51

HRI °23, March 13-16, 2023, Stockholm, Sweden.

Robot and Human Interactive Communication. IEEE, 267-273.

Przemyslaw A Lasota and Julie A Shah. 2015. Analyzing the effects of human-
aware motion planning on close-proximity human-robot collaboration. Human
factors 57, 1 (2015), 21-33.

John Lasseter. 1987. Principles of traditional animation applied to 3D computer
animation. In ACM Siggraph Computer Graphics, Vol. 21. ACM, 35-44.

Nicholas D Matsakis and Felix S Klock. 2014. The rust language. ACM SIGAda
Ada Letters 34, 3 (2014), 103-104.

Ayelet Melzer, Tal Shafir, and Rachelle Palnick Tsachor. 2019. How Do We
Recognize Emotion From Movement? Specific Motor Components Contribute
to the Recognition of Each Emotion. Frontiers in Psychology 10 (2019), 1389.
https://doi.org/10.3389/fpsyg.2019.01389

Marek P Michalowski, Selma Sabanovic, and Reid Simmons. 2006. A spatial
model of engagement for a social robot. In 9th IEEE International Workshop on
Advanced Motion Control, 2006. IEEE, 762-767.

Ken Perlin. 1985. An image synthesizer. Vol. 19. ACM.

Ken Perlin. 1995. Real time responsive animation with personality. IEEE transac-
tions on visualization and Computer Graphics 1, 1 (1995), 5-15.

Ken Perlin. 2002. Improving noise. In ACM Transactions on Graphics (TOG),
Vol. 21. ACM, 681-682.

Ken Perlin and Athomas Goldberg. 1996. Improv: A system for scripting interac-
tive actors in virtual worlds. In Proceedings of the 23rd annual Conf. on Computer
graphics and interactive techniques. 205-216.

David Porfirio, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2018. Au-
thoring and verifying human-robot interactions. In Proceedings of the 31st Annual
ACM Symp. on User Interface Software and Technology. 75-86.

Emmanuel Pot, Jérome Monceaux, Rodolphe Gelin, and Bruno Maisonnier. 2009.
Choregraphe: a graphical tool for humanoid robot programming. In RO-MAN
2009-The 18th IEEE International Symp. on Robot and Human Interactive Commu-
nication. IEEE, 46-51.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.
Daniel Rakita, Bilge Mutlu, and Michael Gleicher. 2017. A motion retargeting
method for effective mimicry-based teleoperation of robot arms. In Proceedings
of the 2017 ACM/IEEE International Conf. on Human-Robot Interaction. ACM,
361-370.

Daniel Rakita, Bilge Mutlu, and Michael Gleicher. 2018. An Autonomous Dynamic
Camera Method for Effective Remote Teleoperation. In Proceedings of the 2018
ACM/IEEE International Conf. on Human-Robot Interaction. ACM, 325-333.
Daniel Rakita, Bilge Mutlu, and Michael Gleicher. 2022. PROXIMA: An Approach
for Time or Accuracy Budgeted Collision Proximity Queries. In Proceedings of
Robotics: Science and Systems (RSS).

Tiago Ribeiro and Ana Paiva. 2017. Animating the Adelino Robot with ERIK:
The Expressive Robotics Inverse Kinematics. In Proceedings of the 19th ACM
International Conf. on Multimodal Interaction (Glasgow, UK) (ICMI ’17). As-
sociation for Computing Machinery, New York, NY, USA, 388-396. https:
//doi.org/10.1145/3136755.3136791

Softbank Robotics. 2022. Autonomous Life. http://doc.aldebaran.com/2-8/family/
nao_user_guide/nao_life html.

Michel F Sanner et al. 1999. Python: a programming language for software
integration and development. J Mol Graph Model 17, 1 (1999), 57-61.

Vanessa Sauer, Axel Sauer, and Alexander Mertens. 2021. Zoomorphic gestures
for communicating cobot states. IEEE Robotics and Automation Letters 6, 2 (2021),
2179-2185.

Sara Baber Sial, Muhammad Baber Sial, Yasar Ayaz, Syed Irtiza Ali Shah, and
Aleksandar Zivanovic. 2016. Interaction of robot with humans by communicating
simulated emotional states through expressive movements. Intelligent Service
Robotics 9, 3 (2016), 231-255.

S Snibbe, M Scheeff, and K Rahardja. 1999. A layered architecture for lifelike
robotic motion. Proceedings of the International Conf. on Advanced Robotics (1999).
H. Song, M. J. Kim, S. Jeong, H. Suk, and D. Kwon. 2009. Design of idle motions for
service robot via video ethnography. In RO-MAN 2009 - The 18th IEEE International
Symp. on Robot and Human Interactive Communication. 195-199.

Kyle Strabala, Min Kyung Lee, Anca Dragan, Jodi Forlizzi, Siddhartha S Srinivasa,
Maya Cakmak, and Vincenzo Micelli. 2013. Toward seamless human-robot
handovers. Journal of Human-Robot Interaction 2, 1 (2013), 112-132.

Yunus Terzioglu, Bilge Mutlu, and Erol Sahin. 2020. Designing Social Cues
for Collaborative Robots: The Role of Gaze and Breathing in Human-Robot
Collaboration. In Proceedings of the 2020 ACM/IEEE International Conf. on Human-
Robot Interaction. 343-357.

Arthur Truong, Hugo Boujut, and Titus Zaharia. 2016. Laban descriptors for
gesture recognition and emotional analysis. The visual computer 32, 1 (2016),
83-98.

Rudolf Von Laban and Roderyk Lange. 1975. Laban’s principles of dance and
movement notation. Princeton Book Co Pub.

Andrew Witkin and Zoran Popovic. 1995. Motion warping. In Proceedings of the
22nd annual Conf. on Computer graphics and interactive techniques. 105-108.

	Abstract
	1 Introduction
	2 Background
	2.1 Lifelike Motion
	2.2 Solutions to Lifelike Motion in Robotics
	2.3 Inverse Kinematics

	3 Implementation
	3.1 Design Level
	3.2 Develop Level
	3.3 Extend Level

	4 Case Studies
	4.1 Design Level
	4.2 Develop Level
	4.3 Extend Level

	5 Discussion
	5.1 Limitations & Future Work

	6 Acknowledgements
	References

