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ABSTRACT 

Robots designed to interact with people in collaborative or social 
scenarios must move in ways that are consistent with the robot’s 
task and communication goals. However, combining these goals in a 
naïve manner can result in mutually exclusive solutions, or infeasi-
ble or problematic states and actions. In this paper, we present Lively, 
a framework which supports confgurable, real-time, task-based 
and communicative or socially-expressive motion for collaborative 
and social robotics across multiple levels of programmatic accessi-
bility. Lively supports a wide range of control methods (i.e., position, 
orientation, and joint-space goals), and balances them with complex 
procedural behaviors for natural, lifelike motion that are efective 
in collaborative and social contexts. We discuss the design of three 
levels of programmatic accessibility of Lively, including a graph-
ical user interface for visual design called LivelyStudio, the core 
library Lively for full access to its capabilities for developers, and an 
extensible architecture for greater customizability and capability. 
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1 INTRODUCTION 

As robots increasingly work in human environments, they will need 
to execute a wide range of highly confgurable behaviors while 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specifc permission and/or a 
fee. Request permissions from permissions@acm.org. 

HRI ’23, March 13ś16, 2023, Stockholm, Sweden. 

© 2023 Association for Computing Machinery. 
ACM ISBN 978-1-4503-9964-7/23/03. . . $15.00 
https://doi.org/10.1145/3568162.3576982 

Bilge Mutlu 
University of WisconsinśMadison 

Madison, Wisconsin, USA 
bilge@cs.wisc.edu 

Lively

Develop Level

Extend Level

Design Level

Figure 1: We present Lively for real-time motion generation 
that balances task and communicative goals while maintain-

ing feasibility. We provide three levels of interfaces to address 
varying use cases. The Design Level enables programming 
robots using a state-based approach. The Develop Level is 
confgurable and portable, usable in applications such as 
ROS-based control and web-based simulation. The Extend 
Level supports the addition of new characteristics and goal 
specifcations for greater customizability and extendability. 

communicating efectively with their users. A worker collaborating 
with a robotic arm may have preferences for how the robot positions 
itself when they are nearby [25]. A collaborative robot assisting a 
person unloading the dishwasher might use slight movements of 
its gripper to communicate that it is ready to pick up or receive 
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items [47]. A social robot may display idle motion with its body 
to indicate that it is active and lifelike [29]. When conversing, a 
robot may look away to signal that it is thinking [1]. Prior research 
in human-robot interaction has found such łlifelikež motions to 
improve perceptions of the robot [43, 48]. Thus, lifelike motion or 
confguration of a robot’s links and joints are key design elements 
for robots utilized in human environments. Successful execution of 
combined tasks and social actions requires balancing these types 
of goals with practical concerns, such as avoiding collisions and 
maintaining smooth motion. In this paper, we explore how Lively 
can support the generation of lifelike but feasible task motions for 
collaborative and social robots. 

Since physical task-based activities are frequently spatially rooted 
in the workspace, robot control requires converting these Cartesian 
goals into joint-space instructions. For example, the ability of a 
robot’s arm to deliver an object to a collaborator depends on its 
ability to frst reach the position of the object, and then travel to 
the person’s outstretched hand. Similarly, a social robot may point 
in a certain direction using referential gestures by changing the 
position and orientation of its hand or gaze. This conversion is 
commonly achieved with an approach known as Inverse Kinematics 
(IK). Conventional IK approaches structure this conversion as a 
search in joint-space constrained by the position and orientation of 
the robot’s gripper. This approach encourages solutions exhibiting 
desired position and orientation goals on the gripper, but cannot 
guarantee fnding a solution in all cases. 

To communicate certain attitudes or states with physical motion, 
such as the human-robot interaction scenarios discussed above, the 
entire kinematic chain may be required, so simply considering the 
position and orientation of the gripper is insufcient. 

Combining these social and task-based goals into functional 
robot motion requires not only knowledge of how motion is inter-
preted but also the technical ability to translate those qualities onto 
robot platforms. While robotics application developers may possess 
skills in both areas, domain experts may not have the same level of 
technical ability to bring their vision to fruition. An interface that 
is intuitive to both roboticists and other experts, such as anima-

tors, artists, or designers, can bridge this divide. Additionally, novel 
approaches to designing and implementing robot motion may be 
needed as robot capabilities evolve. Therefore, a design system with 
the fexibility to grow with these new approaches is required. 

We present a new motion specifcation and generation frame-

work, called Lively, that combines task-based and social goals while 
maintaining kinematic stability in real time (Figure 1). The frame-

work leverages Perlin noise [30, 32] and integrates an existing 
per-instant pose optimization tool called RelaxedIK [37] to achieve 
both primary and secondary motion goals in real-time. To support 
robot-application designers and developers, we developed three 
levels that expose the capabilities of Lively to users with diferent 
needs and levels of expertise. At the frst level, LivelyStudio provides 
nonexpert users with an accessible, interactive, visual interface to 
design primary and secondary motions and control modalities used 
with the robot. At the second level, we present a development- and 
execution-focused framework, and at the fnal level, we provide an 
architecture that supports extendability and customizability. 

The contributions of our work are summarized as follows: 

• A visual interface called LivelyStudio that allows designers 
to interactively construct state-based robot programs 1; 

• An open-source robot-agnostic library that can be used by 
developers to specify real-time robot behavior that combines 
goal-oriented joint-space or Cartesian control with motion 
quality attributes in a feasible manner2; 

• A modular software architecture that supports straightfor-
ward augmentation and contribution for custom control. 

In the remainder of the paper, we review previous approaches 
to this problem, contrasting them with Lively. We discuss the im-

plementation of Lively and outline its cases for use along three 
diferent levels of programmatic accessibility, including the design 
of a tool called LivelyStudio, iteratively designed with a formative 
evaluation with roboticists and animators. 

2 BACKGROUND 

In this section, we review related work on expressive and func-
tional motion including lifelike motion, inverse kinematics, and the 
operationalization of each. 

2.1 Lifelike Motion 

Whereas primary motion is an intentionally performed behavior, 
such as the process of handing a letter to a friend, standing in place, 
or looking to the right, secondary motion is defned as activity 
resulting from that primary motion [23]. Secondary motion covers 
a wide range, such as the rippling or creasing of one’s shirt as the 
arm is outstretched, the idle shifting of posture while standing, or 
slight movements of the pupils. 

Secondary motion is known to be highly important to how hu-
mans interpret animated or robotic characters. In their paper, Heider 
and Simmel animated a set of shapes to perform choreographed mo-

tions, such as following one another and moving into boxes while 
exhibiting additional subtle afne and rotational movements [20]. 
Most participants viewing the animation described the behavior of 
the simple shapes in human or anthropomorphic terms. Similarly, 
work with puppets has informed our understanding of how small 
motions and characteristics can infuence viewers [12, 14]. The 
efectiveness of secondary motion motivated its inclusion in the 
principles of 3D animation by Lasseter [26]. 

Animation utilizes many principles for secondary motion and 
lifelike behavior, initially requiring hand-drawn or hand-animated 
specifcation of behaviors. However, a growing number of methods 
make this process less demanding. Witkin et al. proposed a method 
to warp a keyframe animation to match new spatio-temporal con-
straints by systematically mapping underlying motion curves [51]. 
This allows an animator to adjust a character’s posture from happy 
to sad throughout an animation using only a sparse set of inputs in-
stead of enumerating keyframes. Gleicher presented a method that 
maps motion from one articulated fgure to another, even if they 
have vastly diferent scales or geometries [17]. The method uses 
non-linear constrained optimization to minimally displace an input 
motion (e.g., motion capture data) to match the specifcations of the 
new articulated fgure. Additionally, motion has been added to com-

puter generated characters using Principal Components Analysis 

1Code available at https://github.com/Wisc-HCI/LivelyStudio 
2Code/Documentation available at https://github.com/Wisc-HCI/lively 
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[15], and traditionally animated characters have been augmented 
with secondary motion through a 3D intermediate process [22]. 
However, these solutions all represent post-hoc methods of adjust-
ing input motions, and are allowed certain freedoms given their 
virtual, non-rigid context. 

Considerable work has also focused on efective ways of aug-
menting agents and characters with secondary motion in a gener-
ative manner. The most common method to do this was created 
by Ken Perlin [30, 32]. Originally designed for texture generation, 
Perlin noise was quickly adopted for motion as a way of creating per-
sonality in animated characters [6, 31]. Perlin noise is particularly 
well-suited for this domain, being a non-repeating, but smoothly 
changing generative method. Furthermore, by modifying the speed 
at which the input value (usually a function of time) changes, anima-

tors can predictably control the characteristics of the noise function. 
By using smooth noise, such as Perlin noise, as a function of time, 
ofsets from static or dynamic confgurations (i.e., character joints) 
can be calculated, thus augmenting these characters with subtle 
motion. This process was extended by Improv, which featured a 
method for incorporating smooth noise into animated characters’ 
behaviors [33]. Studies in robotics have shown smooth noise to 
improve a variety of outcomes in robotics, including likeability 
and presence [8, 48]. Many commercially-available collaborative 
and social robots do not have fully articulated faces with which to 
communicate social-emotional states, so it is particularly important 
that there be alternative ways for modeling them. 

Specifc characteristics of motion, such as łjerkinessž or łveloc-
ity,ž have been outlined as important for the recognition of certain 
emotional states in humanoid robots [3, 4]. When viewed by indi-
viduals, faster speed in robots was interpreted as greater excitement 
or arousal [44]. Originating in dance theory, Laban Movement Anal-
ysis (LMA) [50] and the component of motion shape have since 
been validated as informative for afect detection in humans and 
used in animation [7, 10, 28, 49]. While not motivated by LMA, 
the directionality of a simple robot was shown to have a strong 
emotional impact [19], and has been used to generate profles of 
expression movement in mobile robots [24]. 

Smooth, lifelike motion can also function as a signalling mecha-

nism for system states [5, 21]. For example, if the robot is on but not 
moving, secondary motion may serve as an indicator to users that 
the robot is merely idle, while also preventing surprise when the 
robot moves. Idle behaviors have also been extracted from human 
ethnographic work [46], and have been shown to improve aspects 
of child-robot interactions [2]. 

While smooth joint noise can improve the liveliness of agents, 
it does not capture the full range of expressivity. According to 
LMA, many features of movement, such as shape directionality, 
are not relevant in the joint-space of the robot, but rather the pose 
(e.g., Cartesian space) of the robot, making applying these types 
of features difcult if operating in joint space. Other informative 
features, such as speed or jerkiness, may be obscured if joint-based 
noise causes varying speed or jerkiness in Cartesian space. 

Similarly, the addition of smooth noise for secondary motion in 
joint-space can result in problematic confgurations or collisions, 
even if joint limits are respected. For humanoid or bipedal robots, 
simply adding ofsets to individual joints on the lower limbs quickly 
results in unstable posture, and even falls. 

2.2 Solutions to Lifelike Motion in Robotics 

One solution to these challenges is to simply pre-record or de-
fne keyframes for specifc motions and interpolate between them 
as needed. This approach has been employed in prior research 
[48] and in proprietary software (e.g., Softbank Robotics’ NaoQi 
Autonomous Life [41]). As an alternative to manually generating 
activities, Geppetto utilized a user interface to enumerate and visu-
alize possibilities for expressive gestures with the goal of allowing 
more productive exploration of the potential behavior set [11]. For 
bipedal robots, motion on limbs presents an additional challenge 
due to instability caused by uncoordinated joint movements. As 
a result, motion is typically either disabled from the waist down, 
entirely pre-defned, or the issue is avoided by adopting a sitting 
position and focusing activity on the upper body [3, 4]. While suf-

cient for short interactions, pre-scripting these behaviors can have 
a number of issues. First, without enough keyframes, the behavior 
can quickly become repetitive, which breaks the illusion of auton-
omy [13]. Second, when combining activities, conficts between 
joints and kinematics might arise. This makes interleaving existing 
motion with novel, real-time instructions difcult. For example, an 
early approach attempted to resolve these conficts between activi-
ties and motions through a hierarchical model [45]. While efective 
at interleaving the behaviors with motion, the system was not fast 
enough to run in real-time. These cases illustrate the limitations of 
previous eforts to balance lifelike motion with task-goals. 

2.3 Inverse Kinematics 

In contrast to specifying the gripper pose indirectly through the 
setting of joint angles, Inverse Kinematics (IK) solvers attempt to di-
rectly specify the gripper pose, and solve for the joint confguration 
that satisfes that pose. IK solvers, while more easily interpretable 
in Cartesian space than joint-space methods, can encounter issues 
such as kinematic singularities. These joint-space issues occur when 
the robot loses the ability to instantaneously move its gripper in 
some translational or rotational dimension, because (1) not all poses 
in the robot’s area can be reached through a combination of joint 
states, and (2) a movement in Cartesian space may not be possible 
as a smooth interpolation of joint-space values. 

A method that utilizes an IK solver is ERIK, which uses a pass-
based approach to integrate joint movements with end-efector 
goals [40]. RelaxedIK is another IK solver with a diferent approach. 
Using an optimization-based method, RelaxedIK places importance 
on both accuracy of the motion (e.g., matching the pose of the 
gripper), as well as the feasibility of motion (e.g., avoiding self-
collisions or kinematic singularities) [37]. It is generalizable such 
that additional objectives can be added, e.g., handling dual-robot 
systems where one arm controls a camera, optimizing the location 
and orientation of the camera such that a remote user has a clear 
view of the task being performed by the other robot arm [38]. 

3 IMPLEMENTATION 

Lively inherits its philosophy from RelaxedIK [37] by framing the 
goal of the joint-space calculation as an objective, but generalizing 
its implementation across a greater set of objective types and at-
tributes of the robot’s state. Furthermore, while RelaxedIK assumed 
a position and rotation goal on the gripper of each robot arm, and a 
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Figure 2: An early version of LivelyStudio that received feed-
back from animators and roboticists, which led to a re-
designed 3D environment, more explicit state-based design 
process (states as graph nodes), and bundling of behavior 
attributes with specifc goals and weights. 

set of joint smoothness objectives, Lively makes fewer assumptions 
with its à la carte approach, giving the programmer greater ability 
to compose these goals in creative ways for behavior generation. 

To explore the capabilities of the system, we will consider three 
main levels of possible interaction with the system: the Design Level, 
the Development Level, and the Extension Level. 

3.1 Design Level 

The outermost interaction level is the Designer Level, and is the 
least technical way to explore and utilize the system. We designed 
LivelyStudio as a method inspired by conversations with a set of 
experts across the felds of animation and robotics. It is meant to 
support and illustrate many of the capabilities of the Lively frame-

work, while maintaining its accessibility. This is done by using a 
state-based approach, wherein users can compose combinations of 
social, task-based, or functional behaviors, called Behavior Proper-
ties, and specify how transitions may occur between these states. 

3.1.1 Design Iteration. Our current version of LivelyStudio builds 
upon previous iterations through a small formative evaluation with 
four professional roboticists and animators involving a mixture 
of system overview, think aloud, and semi-structured interview, 
lasting 60 to 90 minutes. The initial design, shown in Figure 2, fea-
tured a simulator and confguration window, where users could 
independently curate a set of Behavior Properties, a set of states 
(called modes), and goals (task-based instructions). While states 
were supported through modes, there was no clear relationship 
between them, and animators in particular had difculty translat-
ing their keyframe-focused experience to this design: łIt’s hard to 
see how poses would be created so separate from the animation 
(P3).ž More generally, how specifc goals could be combined with 
the Behavior Properties was unclear. Additionally, certain interface 
elements, such as the standard 3D viewer did not have the afor-
dances desired by animators, or had minor usability issues. This 
feedback was used to create a more efective and intuitive version 
of LivelyStudio for users of varied backgrounds and levels of expe-
rience through a more explicitly state-based confguration process, 
and use of a new custom 3D viewer and updated components. 

3.1.2 LivelyStudio Interface. The results of our formative evalua-
tion suggested that a state-based visual programming environment 
that allows users to develop series of states similar to keyframing 

would be the most intuitive approach to the design. The state-based 
approach shares similarities with many other programming envi-
ronments [9, 16, 34, 35], which may be familiar to roboticists, but 
also enables an intuitive design approach for users who are less 
familiar with typical programming environments like animators, 
digital artists, or other types of designers. LivelyStudio’s program-

ming environment contains three primary parts: (1) a selection of 
state and behavior property nodes, (2) a state-based programming 
window, and (3) a robot scene. By defning states, and adding Be-
havior Properties, designers can defne how a robot will move, or 
the position it should take in each (Figure 3). Improving on the 
early version of LivelyStudio, specifc goals and Behavior Properties 
are merged for clarity, and weights are inferred from their rela-
tive ordering within states and through usage of priority groups. 
Designers can specify arbitrary Universal Robot Description Files 
(URDFs), but visualization of meshes is limited to a discrete set that 
could be expanded in the future. 

3.1.3 Behavior Properties. LivelyStudio allows for a wide range of 
robot Behavior Properties with which users program robot motion. 
These 24 properties, which serve as building blocks for defning 
the behavior and motion of the robot, ft into six categories: 

• Basic behavior properties revolve around the fuidity of robot 
motion by limiting rapid changes and considering possible 
collisions between the links of the robot. 

• Bounding behavior properties limit the space within which 
joints can assume angles and links can move or be oriented. 

• Matching behavior properties specify exact positions and ori-
entations of links or angles of joints. 

• Mirroring behavior properties allow users to mirror the cur-
rent state of a link’s position or orientation in a diferent 
link, or the current angle of one joint in another. 

• Liveliness behavior properties allow the addition of smooth, 
coordinated motion to joint angles or link poses. 

• Force behavior properties simulate the efects of physical 
forces acting upon the robot. 

The function of each Behavior Property is visualized in Figure 4. 

3.1.4 States and Transitions. The state-based programming win-
dow starts with a power-on (i.e., initial) state, and a power-of (i.e., 
fnal) state. Users can add additional state nodes to their program 
and populate them with Behavior Properties. For example, one state 
may contain a property that sets the gripper of a robot arm in a 
pick-up area, while another state sets the gripper position to be near 
a drop-of area. Once a series of states is created, the user can defne 
how the power-on, power-of, and custom states are connected by 
dragging transitions from one state to another. These connections 
can also be given timers, which act as triggers to automatically 
begin a transition from one node to the next. In this way, a state 
can function both conventionally, defning a set of characteristics 
the robot will exhibit for an unspecifed amount of time, but also as 
a single keyframe in a timed series. States can have any number of 
both timed and nominal transitions (simulating event triggers, e.g., 
a person approaches), and the program will transition states given 
the frst simulated event triggered or timer that expires, whichever 
occurs frst. Of note, while this does simulate how the robot could 
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Block
Picker

State
Editor

URDF
Editor

Transition
Widget

Figure 3: The layout of the LivelyStudio interface. From left to right, a Simulator window shows the robot in the currently 
selected state; the Block Picker allows dragging structural blocks like States or Behavior Properties like Position Bounding; the 
State Editor canvas that allows for states to be dragged around and modifed. At the top-right, a menu that reveals a Transition 
Widget, which lists transitions from the current state, and a settings button that reveals a full URDF editor. 

respond to events, LivelyStudio does not currently interface with 
physical robots, or listen to external events. 

3.2 Develop Level 

For robot programmers desiring greater control over the robot than 
that aforded by the previously described LivelyStudio interface, 
or looking to control a robot in a more conventional ROS-based 
approach by creating a control node that publishes joint values, the 
Development Level allows for direct control using Lively. 

3.2.1 Design & Usage. Lively is written in Rust [27], and accessible 
as a crate, with bindings in both JavaScript through WebAssembly 
[18] and Python [42]. To use Lively, a ������ is imported and con-
structed with any valid URDF, persistent scene objects, objectives, 
and other solver settings. Execution of the ����� method, which 
accepts the current goals, weights, time, and real-time collision data, 
returns a robot state that best satisfes those goals given the cur-
rent weightings and previous robot state. This approach allows for 
Lively to be used in a variety of contexts, including ROS [36], web 
or simulation, and directly on hardware. Solve times with randomly 
arranged colliders are shown in Figure 5. 

3.2.2 Objectives, Goals, & Weights. To achieve a high degree of 
customization and dynamic control, we introduce the concepts of 
objectives, goals, and weights. Whereas LivelyStudio abstracted 
away these features as Behavior Properties for the purpose of ac-
cessibility, the core framework allows for more direct control. The 
identities of the individual objectives match with the set of Behav-
ior Properties enumerated in Figure 4, and goals are summarized 
in 1. Importantly, while Behavior Properties encoded the discrete 
goals (e.g., the position for Position Match, or the scalar for Joint 
Match) associated with each Behavior Property, and the weights are 
inferred by the ordered ranking within states, these are separated at 

the framework level. Thus, the previously mentioned position goal 
can be determined in real time through external means, such as 
sensing, and passed as an update within each iteration of the ������ . 
Similarly, the developer in real time can adjust other goals, such as 
a position bounding ellipsoid (Position Bounding), joint values (Joint 
Match), or size (for Position Liveliness), and weights, allowing for 
prioritization of certain goals or the deactivation of others, based on 
the current development needs. Because objectives are organized 
by key, and atomic updates are possible for goals and weights, only 
the needed changes must to be included each round. 

3.2.3 Objective Configuration. The complete set of objectives fea-
ture a wide range of confgurable attributes, beyond simply their 
goals and weights. The simplest objectives focus on safe and smooth 
motion, corresponding to the set of Basic Behavior Properties, and do 
not accept additional parameters. Those corresponding to Match-

ing, Bounding, and Gravity Behavior Properties are confgured with 
the joint or link with which they are paired. Mirroring Behavior 
Properties, defning relationships between pairs of links and joints, 
accept a pair of each. Finally, Liveliness Behavior Properties feature 
an additional feld, frequency. This value functions as a temporal 
scaling value that increases or decreases the rate of change in the 
Perlin noise generator functions for that objective. Combined with 
the goal values passed into liveliness objectives, developers can 
access a wide range of motion profles. Importantly, because the 
formulation of the liveliness objectives is not dependent on having 
a concrete goal attached to the same link or joint, it is possible to 
add movement to otherwise uncontrolled parts of the robot. 

3.2.4 Collision Avoidance. Lively implements the PROXIMA colli-
sion detection algorithm, which allows for time-efcient collision 
and proximity detection for robots [39]. The Collision Avoidance 
objective serves to utilize the data generated from this collision 

598



HRI ’23, March 13–16, 2023, Stockholm, Sweden. Andrew Schoen, Dakota Sullivan, Ze Dong Zhang, Daniel Rakita, & Bilge Mutlu 

Joint Limits Collision AvoidanceMotion Smoothness

Position Match Orientation Match Joint Match Distance Match

Position Bounding Orientation Bounding Joint Bounding

Position Mirroring Orientation Mirroring Joint Mirroring

Relative Motion
Liveliness

Gravity

Position Liveliness Orientation Liveliness Joint Liveliness

Basic

Matching

Bounding

Mirroring

Liveliness

Forces

Figure 4: LivelyStudio’s set of Behavior Properties that match 
Objective Functions within Lively. Note, Velocity Minimiza-

tion, Acceleration, and Jerk Minimization come in both joint-
based and robot root variants, and while usable separately, 
are included within the Smoothness macro property. 

detection algorithm to prevent collisions. Lively employs a three-
fold approach to handling modeling collision objects. The frst is 
input from the URDF during the initialization of the solver, which 
supports default shapes like boxes and cylinders as parts of the 
collision model when parsed. For cross-platform and web-based 
reasons, mesh-based colliders are ignored during URDF import. 
Additional colliders can be specifed during ������ initialization, 
including basic shapes and convex hulls, and can be attached to 
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T
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Solve Time by Robot and Environment Complexity

Figure 5: Solve times for the UR3e, Panda, and Pepper robots, 
with randomized locations of environmental colliders. Of 
note, speed is largely unafected by shape count. 

the world or any link in the robot. Finally, as an optional input to 
the ����� method, developers can provide real-time updates to the 
collision model, adding, deleting, and moving colliders. 

3.3 Extend Level 

For robotics developers seeking to modify the behavior of the ex-
isting Lively objectives, or wanting to increase functionality by 
creating completely new objectives, Lively has a modular and con-
fgurable approach to supporting the Extension Level. 

3.3.1 State Model. As discussed, RelaxedIK utilizes an optimiza-

tion approach, with the robot state �� being represented as a vector 
in the joint space � � of the robot internally. Lively takes a similar 
approach, but an additional six dimensions representing the trans-
form of the root link are added to create the optimized vector � . 
However, this vector representation is not always the most natural 
way to evaluate the state, and to ease the computation each objec-
tive performs, this vector is converted into a more comprehensive 
state representation containing joint states, link transforms, and 
proximity information, described in Table 2. This state, as well as 
previous states, are provided in each call to objectives. 

This formulation of the state allows for straightforward creation 
of additional objectives. It is also possible that additional features 
of state may be needed for the creation of certain new objectives. 
The Robot Model handles the generation of new robot states from 
the vector � . For example, if a force-based objective was desired, 
the robot model would have to be extended to output a state that 
provides the data the objective would have to operate on. 

Table 1: Goal Types 

Entry Description 

Translation A 3-vector representing coordinates 
Rotation A Quaternion representing rotation 
Scalar A foat value 
Size A 3-vector representing scale of a 3D shape 
Ellipse A structure designating a rotated ellipsoid, with 

Translation, Rotation, and Size components 
RotationRange A structure including a center Rotation, as well as a 

foat value indicating allowed delta in radians from 
that rotation. 

ScalarRange A structure including a center foat value, and foat 
value representing allowed delta from that value. 
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Entry 

Frames 

Joints 
Origin 

Proximity 

Center of Mass 

Entry 

������ 

��� ���� 

��� ����ℎ� 

����ℎ� 

���� 

Table 2: State Properties 

Description 

A lookup table of each link’s position in both world 

and local coordinates 
A lookup table of each joint’s value 
The transform of the root link. This data is also in-
cluded in frames 

A vector of data representing pairwise proximity be-

tween the robot’s links and other robot parts and the 
environment. Each entry contains distance, as well 

as the closest points between the pair of colliders 

A 3-vector representing the center of mass of the 
robot in the world frame 

Table 3: Objective Description 

Description 

Function, accepts the current timestep and performs 
any updates to its internals that are necessary, as in 
the case of Perlin noise-based objectives 

Function, accepts the goal value supplied by the user. 
Each objective accepts a specifc goal type 
Function, accepts a new weight value, if updated by 

the user 
Float, indicates the scaling value for the objective 
cost value 

Function, accepts a ����� and � ������� data object, 
returning a numerical cost value. The � ������� ob-
ject contains a record of previous states and informa-

tion about the robot 

3.3.2 Objective Formulation. Similar to robot state, each objective 
adheres to a well-defned convention that can be used to extend the 
capabilities of Lively, as shown in Table 3. As previously discussed, 
each objective is paired with a specifc goal type (e.g., Position 
Bounding with Ellipse, and Position Liveliness with Size), and the 
goals are enumerated in Table 1. Additional goal types can also be 
added to support new objectives and functionality, as long as they 
have a predictable structure (e.g., a ���������� goal could be an 
array of any length with structure [{� : � 64, � : � 64, � : � 64}, ...]). 

4 CASE STUDIES 

4.1 Design Level 

Users of a wide range of experience levels can engage with our sys-
tem using LivelyStudio. Artists, character designers, and animators, 
who may not be familiar with traditional programming tools, may 
particularly beneft from LivelyStudio’s accessible user interface. 

4.1.1 Kiosk Robot. Suppose a user is creating a program for a 
social robot providing general assistance in a public area. Here, 
the robot may have states such as idle, greeting, or thinking. The 
user can begin by creating state nodes within the state editor. One 
such state could be labeled łIdlež to represent the idle status of the 
robot within the overall program. From here the user can begin 
adding Behavior Properties to the state. First, the user may apply 
the Position Liveliness property to the torso of Pepper as a visual 
indication that it is powered-on and functioning. Next, the user may 
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add the Joint Liveliness property, and confgure it to łHead Yawž to 
make the robot’s head sway from left to right and signify that it 
is looking around for people to assist. Finally, the user can select 
the Smoothness Macro property to ensure that the robot’s motion 
remains smooth and natural, and the Collision Avoidance property 
to prevent collisions. The user may also create a "Greeting" state, 
which directs the robot’s gaze toward a nearby person. Once these 
states are generated, the user can create a connection between 
them and add a label to identify a triggering condition. The user 
may want Pepper to transition from the "Idle" state to a "Greeting" 
state when a person approaches. During this transition, Pepper can 
reduce head sway from the "Idle" state, direct gaze toward the user 
in the "Greeting" state, and maintain the liveliness motion included 
in both states. This process can be repeated with any number of 
states and complex transition patterns. 

4.1.2 Cobot Keyframing. In another example, a user may want 
to create a program for a robotic arm such as the Panda robot 
that functions as a series of states, similar to keyframing. The user 
can create an initial state, add the Position Match property, and 
confgure a specifc position for the gripper. The user can complete 
this process to defne all waypoints for the gripper of the Panda 
robot as separate states. Given space constraints in the deployment 
environment, the user may also want to design their program to 
limit the space in which certain links will move. Thus, the user may 
apply the Position Bounding property to specifc links so that the 
robot limits its spatial footprint while moving. Finally, the user may 
need the robot to interact with an object from a specifc grasp point. 
Therefore, adding the Orientation Match property to the gripper 
enables it to manipulate an object from a reasonable angle. Once 
all the states are created, the user can create timed connections 
between states, such that transitions will occur automatically. 

4.2 Develop Level 

While all users may fnd use in LivelyStudio, those with substantive 
experience programming and planning robot motion will be able to 
leverage the capabilities of Lively directly. We consider two example 
use cases to explore how Lively may be used. 

4.2.1 Real-Time Robot Control. Using a UR3-e series robotic arm, 
a developer seeks to devise a system that, on button-press, scans 
the area using a camera attached to the last robot link, and fnds 
any of a set of items. Any item it fnds is picked up and placed in 
a nearby box. The developer creates a ROS-based setup with two 
nodes. One node receives a camera feed and transform data from 
the robot, while publishing all valid items and their transforms that 
it detects. A second, Lively-focused control node listens to this set 
of items, and publishes transforms of the robot to be consumed by 
the frst node. The control node defnes a Lively ������ , confgured 
with the robot description, and an additional camera collider that is 
attached to the last link. The solver is confgured with Position Match 
and Orientation Match objectives on the fnal link, and a Position 
Liveliness objective on the forearm link. Finally, the set of objectives 
is completed with Smoothness, Joint Limits, and Collision Avoidance 
objectives. On button press, a preset collection of positions and 
orientations are sequentially passed to the corresponding objectives 
in the ����� method, along with instructions to turn the liveliness 
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weight to zero. The resulting state is parsed and converted into TF 
messages, which are passed via a topic to the data parsing node. 
Upon calculation and communication of scene items to the control 
node, the node selects the frst item to move, passing the position 
and orientation to the solver, followed by the goal position of the 
items, then repeating until no items remain. Once complete, the 
position and orientation goals are moved to a neutral pose, and the 
weights relaxed, while the liveliness objective weight is increased. 

4.2.2 Browser-Based WOZ. A developer wants to create a ROS-
based wizard-of-oz GUI interface that allows actions to be selected 
and executed on a robot in real time, but also want the robot to re-
spond to potential collision objects in the environment and exhibit 
certain lifelike motions. The robot, Pepper, has two arms, wheels, 
and a head, and the developer already has an existing library of 
joint-based trajectories. However, they want to include additional 
liveliness in orientation space around the head and position liveli-
ness (a swaying motion) on the torso. Objectives for each controlled 
joint are created, as well as some basic objectives. The developer’s 
GUI initializes a web-based version of the solver. A web-based ROS 
connection is formed to the robot, starting a subscription to sensor 
data, and a publisher that sends real-time joint instructions to the 
robot. Selecting an action updates the goals for each joint, and the 
set of all potential colliders that the robot gets from the sensors 
are updated each invocation of the ����� method. Joint instructions 
from the result are passed to the robot after each solution is found. 
To accommodate all goals simultaneously, the system will attempt 
to reach the specifed joint values, while adding in liveliness and 
avoiding collisions. 

4.3 Extend Level 

The current functionality of Lively and LivelyStudio address most 
user needs when programming robot motion. However, if additional 
functionality is desired, a developer could easily extend our system’s 
capabilities by defning new objectives and goals. We outline two 
examples of extensions that would be feasible within Lively. 

4.3.1 Center of Mass Objective. Lively can be greatly extended 
through the development of additional objectives. Because the ro-
bot state already includes a vector representing the center-of-mass 
of the robot, it is straightforward to create a new objective, im-

plementing the methods defned in Table 3, that operates on it, 
which could be useful in cases where the robot’s balance must 
be maintained, or as a way to center the robot near its base. The 
specifed objective would accept a Translation goal, and use the 
default implementation of ������ . The ���� method would be im-

plemented by calculating the distance between the goal value and 
the center-of-mass vector in the robot state, returning a cost that 
grows with distance. Finally, the objective is added to the set of 
Objectives. The resulting objective would attempt to produce poses 
that are centered as much as possible on the goal vector provided. 

4.3.2 Perspective Noise. While the Position Match and Orientation 
Match objectives together are capable of creating a lifelike appear-
ance, a developer may desire to create a lifelike behavior that ex-
hibits positional and rotational motion around an ofset focal point, 
as if inspecting the properties of an object located there. Doing so 
requires the addition of an new goal type, which would encode the 

focal length to maintain the position of the focus, and the amount 
of rotational/translational movement allowed. The objective’s ���� 
method would use these goals and a Perlin noise generator function 
to project the needed position and orientation in space to achieve 
the specifed rotation around the focus at a given time and compute 
the radial and translational distance from those values, returning a 
cost value. The resulting objective would attempt to produce poses 
that adhered to this dynamic pattern as a function of time. 

5 DISCUSSION 

Simultaneous coordination of functional and expressive robot mo-

tions is necessary but challenging. While a naïve approach may 
combine these types of motion, it may produce incompatible or 
undesirable results. In this paper, we presented a system that gen-
erates real-time, lifelike motion for collaborative and social robots, 
addressing key limitations of prior approaches at three levels of pro-
grammatic accessibility. At the most accessible level is LivelyStudio, 
a state-based visual programming and confguration environment 
that allows for exploration and design. Developers can utilize Lively 
directly in multiple programming and execution environments, in 
applications ranging from traditional keyframing-based to real-time 
control. Finally, we present an architecture for Lively that supports 
customizability and extendability. 

5.1 Limitations & Future Work 

The limitations of the work presented point toward future research 
and implementation opportunities. First, Lively currently takes a 
purely kinematic approach, but future extensions of Lively might 
apply dynamics to accommodate external or inertial efects on the 
robot’s motion as well as higher-level behavioral objectives for 
avoiding non-stationary objects and obstacles with base movement. 
Additionally, while supporting a high degree of confgurability for 
liveliness-focused Behavior Properties, LivelyStudio could be made 
more efective through the use of programming by demonstration, 
in which designers could demonstrate an example of liveliness that 
they would like to see articulated with a physical robot connected to 
the system, which could be converted into corresponding Behavior 
Properties automatically. The growing feld of soft robotics presents 
interesting and relevant challenges for efective control that should 
be explored with respect to Lively. Finally, we plan to holistically 
evaluate LivelyStudio and Lively with (1) a usability evaluation of 
LivelyStudio that focuses on usability, learnability, and efectiveness 
of the system in supporting motion design, and (2) a long-term 
community-based, qualitative evaluation of the develop and ex-
tend levels to better understand their usage in a rigorous but also 
ecologically-valid manner, considering community engagement 
and usage on public-facing hosting locations. 

Taken together, Lively and LivelyStudio aim to assist and moti-

vate future work in systems exhibiting both social and task-based 
motion as a platform for design, development, and extension. 
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