
This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING 1

DFPS: A Distributed Mobile System for Free
Parking Assignment

Abeer Hakeem, Reza Curtmola, Xiaoning Ding, Cristian Borcea

Abstract—Cruising for vacant curbside parking spaces causes waste of time, frustration, waste of fuel, and pollution. This problem has
been addressed by centralized solutions that perform parking assignments and communicate them to drivers’ smart phones. These
solutions suffer, however, from two intrinsic problems: scalability, as the server has to perform intensive computation and
communication with the drivers; and privacy, as the drivers have to disclose their destinations to the server. This article proposes
DFPS, a distributed mobile system for free parking assignment. D F P S solves the scalability problem by using the drivers’ smart phones
to cooperatively compute the parking assignments, and a centralized dispatcher to receive and distribute parking requests to the
network of smart phones. The phones of the parked drivers in D F P S are structured in a K-D tree to serve parking requests in a
distributed fashion. D F P S removes the computation from the dispatcher and substantially reduces its communication load. D F P S
solves the privacy problem through an entropy-based cloaking technique that runs on drivers’ smart phones and conceals drivers’
destinations from the dispatcher. The evaluation demonstrates that D F P S is scalable and obtains better travel time than a centralized
system, while protecting the privacy of drivers’ destinations.

Index Terms—Parking assignment, cooperative system, mobile app, destination privacy.

F

1 INT RODUC T ION

Finding vacant curbside parking spaces in congested areas
of big cities (i.e., downtown) leads to traffic congestion,
waste of time, driver frustration, waste of fuel, and pol-
lution. This situation is particularly serious in developing
countries where the increase in the number of vehicles
outpaces the investments in parking facilities. Some gov-
ernments try to mitigate this problem by deploying road-
side sensors and parking guidance systems [2], [3], [4].
Unfortunately, the high initial and maintenance costs inhibit
a widespread deployment of such solutions. Furthermore,
because they are not designed to provide individual guid-
ance to a specific parking space for each driver and can only
show the same map of parking availability to all drivers,
these solutions may lead to parking space contention and
traffic congestion.

Targeting these problems, our prior work proposed a
centralized parking assignment system [5] that relies on
drivers to cooperatively maintain parking availability infor-
mation and a centralized server to assign parking spaces.
The system is cost-effective, as it does not rely on any
sensing infrastructure. It reduces parking space contention
and traffic congestion, because it uses a novel parking
assignment algorithm to assign each driver to an available
parking space close to her destination in a way that reduces

A preliminary version of this paper appeared in IEEE V N C 2017 [1].

 A. Hakeem is with the Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah, Saudi Arabia; and also with the
Department of Computer Science, New Jersey Institute of Technology,
Newark, NJ 07102-1982 USA.
E-mail: ahakim@kau.edu.sa

 R. Curtmola, X . Ding, and C. Borcea are with the Department of
Computer Science, New Jersey Institute of Technology, Newark, NJ 07102-
1982 USA.
E-mail: {reza.curtmola, xiaoning.ding, borcea}@njit.edu

the total travel time (i.e., the sum of the driving time to the
parking space and the walking time from the parking space
to the destination).

However, the system suffers from several limitations.
First, the centralized server requires substantial compu-
tation (to manage and assign free parking spaces) and
communication with the vehicles (to receive requests and
send responses) in real-time. Thus, the sever can become
a bottleneck for urban areas with many parking requests.
Second, the parking assignment procedure is under risk of
privacy violation. Specifically, the system requires drivers
to disclose their destinations to the central server to ensure
that parking spaces close to the destinations are allocated
to them. Such information may be utilized to infer private
information, such as the type and the frequency of visited
places for each driver.

A few recent works [6], [7] have been presented solutions
for privacy-preserving parking. The work in [6] mainly pre-
serves the drivers’ privacy by using anonymous credentials.
However, hiding the drivers’ real identities is not enough
because the drivers still reveal sensitive information, such as
current locations, destinations, and arrival times to the cloud
server. Thus, the cloud server can identify the drivers based
on their locations and destinations. PrivAV [7] extends
anonymous authentication to support two-factor authenti-
cation to reduce the risks of vehicle theft while protecting
the privacy. While location privacy is protected by the
parking assistant, the driver ’s identity and destination may
still be exposed.

To address the limitations of both these works and our
prior centralized system, this article proposes DFPS, a dis-
tributed mobile system for free parking assignment. DFPS
has two components: a mobile app running on drivers’
smart phones and a dispatcher running at a server that
enables cooperation among phones. The mobile apps on the

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

phones form a distributed system that manages and assigns
free curbside parking spaces. This substantially reduces the
communication and computation overhead on the central
server. The parked drivers in DFPS are structured in a K - D
tree [8] based on their locations. This structure allows high
efficiency in serving new parking requests through
parallel processing. The K - D tree also provides for localized
distributed computation and communication, which makes
DFPS scalable.

To conceal drivers’ destinations from the central dis-
patcher, DFPS uses a novel entropy-based spatial cloak-
ing technique, where each driver can entertain parking
assignment services without revealing her real destination
and without seeking help from any centralized third party.
In addition to spatial cloaking [9], [10], techniques such
as location perturbation and obfuscation [11] and dummy
location [12] can also solve the problem of location privacy
protection. However, they cannot be used in our settings
because they may lead to parking assignments far from
destinations [13], [14]. The basic idea of our entropy-based
cloaking technique is that each driver submits her parking
request with a cloaked region as her destination, instead
of her real destination. Specifically, for each real desti-
nation, the entropy-based cloaking technique selects the
nearest neighbouring destinations to construct a cloaked
region, which contains both the real destination and the
selected new destinations. The cloaked region must satisfy
a k anonymity privacy requirement: in addition to the
real destination, the region must have at least another k 1
possible destinations that are not distinguishable from the
real destination. When constructing a region, an entropy of
distance method [15] is employed to avoid the clustering
problem (i.e., multiple destinations clustered in a small
area, making it easier for an attacker to exploit the driver ’s
destination). The method selects k 1 destinations that are
evenly distributed to form the cloaked region. The technique
also requires that the cloaked region contains at least a
minimum number of available parking spaces to ensure that
a parking space close to the real destination is likely to be
available when the driver approaches it.

DFPS does not assume that all drivers use our system.
It relies on subscribed drivers to submit observation reports
regarding the parking spaces occupied by drivers that are
not part of our system. DFPS avoids allocating the reported
spaces for a period of time proportional with the age of the
observation reports; then, it reconsiders these spaces.

We have evaluated DFPS through extensive simulations
using SUMO [16] and PeerSim [17], a real map of a part of
New York City with 1024 parking spaces, and as many as
768 drivers looking for parking. The results show that DFPS
scales well. In particular, it eliminates all computation from
the centralized dispatcher and reduces its communication
load by a factor of two. DFPS can decrease the average travel
time by 26% when compared with the centralized system,
in addition to not disclosing the drivers’ destinations to the
dispatcher.

The rest of this article is organized as follows. Section 2
presents the system model of DFPS together with its scal-
ability and privacy goals. Section 3 describes the entropy-
based cloaking technique to conceal drivers’ destinations
in the parking requests. Subsequently, we explain the K-

2

Fig. 1: DFPS System Architecture.

D tree structure of the cooperative drivers in Section 4.
Section 5 presents the parking assignment algorithm. The
privacy analysis and performance evaluation are shown in
Sections 6 and 7, respectively. Section 8 reviews related
work, and Section 9 concludes the article.

2 S Y S T E M OV E RV I E W

This section presents an overview of DFPS, with emphasis
on its design goals and system/threat models.

2.1 Design Goal

Our design goal is to propose a solution that solves two
intrinsic problems in a centralized system for parking as-
signment: scalability and privacy. In a centralized system,
the server responsible for communication with drivers and
parking request processing could be a bottleneck. Also,
processing parking requests requires drivers to disclose
their desired destinations to the server. This could lead to
major privacy concerns for the drivers and may prevent this
solution from being adopted. Thus, the following system
objectives should be considered to achieve the design goal:
Scalability: The parking assignment process should be
distributed and performed efficiently on the drivers’ smart
phones rather than at the central server to reduce the com-
putation and communication burden on the server and to
achieve better scalability.
 Privacy: The drivers’ destinations should be protected.
When a driver submits her parking requests through the
central server, the server cannot identify her desired destina-
tions and cannot link different parking requests submitted
by the same driver at different times.

2.2 System Model

Under the aforementioned system objectives, we propose
the following system model to implement DFPS (Figure 1).
The system consists of the following two entities: a parking
app running on the drivers’ smart phones and a parking
assignment dispatcher running on a server.
 Drivers in the system are divided into three categories,
based on their status: (1) drivers who are looking for parking
spaces, (2) parked drivers, and (3) departing drivers. The
drivers in the first category determine their cloaked regions,
submit their requests along with the regions, and then wait

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

to receive parking spaces while heading to their destina-
tions. Once parking assignments are made, they drive to
the parking spaces. When a driver has parked (second cate-
gory), she cooperates with other parked drivers to provide
on-demand parking service for the drivers looking for park-
ing spaces. Departing drivers report when they leave the
system such that DFPS can update the status of the parking
spaces. Drivers use their smart phones to communicate with
the system and with other drivers through the Internet (e.g.,
over 5G).
 Dispatcher is a cloud server that receives parking requests
from the drivers looking for parking spaces, and forwards
them to parked drivers who perform parking assignments.
The dispatcher also serves as a bootstrapping unit to initial-
ize the whole system. During the system’s adoption period,
when a few number of parked drivers provide the parking
service, the dispatcher could share with the drivers park-
ing availability information derived from historical parking
statistics or real-time sources (e.g., street images from video
cameras).

The high-level workflow of the DFPS architecture in
Figure 1 illustrates the life-cycle of a parking request in
the system, from generation to completion. When a request
is generated, an entropy-based cloaking technique is used
to protect privacy. Specifically, each driver has its own
privacy profile that specifies the desired level of privacy. A
privacy profile includes two parameters, a pseudonym and
an integer k. The pseudonym ensures the pseudonymity of
the parking request by concealing the driver ’s identity and
k indicates that a driver wants her destination to be k
anonymous, i.e., indistinguishable among k 1 neigh-bour
destinations. In other words, the driver wants to find a
cloaked region that includes at least k 1 neighbour destina-
tions to conceal her desired destination from the dispatcher.
The larger the value of k, the more strict the privacy require-
ment is. The entropy-based cloaking technique generates
cloaked regions (detailed in Section 3), which are sent along
with parking requests.

After a parking request with a cloaked region is gener-
ated at the app on the smart phone, a question that arises is
when the request should be sent and parking spaces are
assigned. Assigning parking spaces when drivers are far
away from their destinations increases the likelihood that
the assigned spaces are taken by drivers who are not
subscribed to DFPS (i.e., unsubscribed drivers) and reduces
the utilization of parking spaces. Assigning parking spaces
too late may result in an increase in driving time and bad
user experience, especially when the system may not be able
to find a parking space close enough to the destination.
Therefore, the cloaked regions serve a dual-purpose. As
discussed, they provide privacy protection for drivers’ des-
tinations. In addition, DFPS uses them to determine when a
driver ’s parking request has to be sent to the dispatcher: a
parking request is sent to the dispatcher when the driver is
about to reach the cloaked region.

In DFPS, the sizes of cloaked regions are determined
by the following few factors: 1) the need to preserve pri-
vacy: larger regions tend to contain more destinations and
preserve privacy better; 2) the need for finding optimal
parking spaces for drivers: with more available parking
spaces, larger regions tend to provide more opportunities

3

for DFPS algorithms to perform parking assignment op-
timizations; and 3) the need to avoid interference from
unsubscribed drivers: with smaller regions, the contention
of unsubscribed drivers for assigned parking spaces is less
intense.

A l l the requests are sent to the dispatcher first. Then,
the dispatcher forwards them to parked drivers. The work
required to serve requests is divided among parked drivers.
This protects a driver ’s destination at the dispatcher side,
minimizes the workload on the dispatcher, and maximizes
the system scalability. We partition the whole area of a
city into regions, and assign a parked driver to manage a
region and allocate parking spaces in that region. We use a
structured overlay network to organize parked drivers and
the regions that they are in charge of. Once a driver parks
in her assigned space, she is assigned to a region, joins the
overlay network, and starts to serve parking requests from
the drivers who are looking for parking spaces in her region.

When creating an overlay network based on the phones
of the drivers that act as parking managers, we borrow
ideas from peer-to-peer (P2P) networks. There are many
successful real-life examples of such networks, but we list
here just two: Skype, in its original version, and more
recently blockchain on smart phones [18]. L ike in traditional
P2P networks, the parking managers share their resources in
exchange for access to the service. If the service is valuable,
people are willing to participate (e.g., Skype). Of course, a
parking solution can be implemented in a centralized way,
but this paper demonstrates how a decentralized solution
achieves better scalability and privacy.

Similar to P2P networks, DFPS needs to avoid free riders
(i.e., drivers who submit requests, but never participate in
the overlay network). The drivers must participate in the
overlay network as parking managers in order to benefit
from the free parking assignment service. After installing
the app on their phones, the drivers are allowed a few “free”
requests. After that, they need to prove that they worked as
parking managers. The DFPS app on the phone records how
many assignments it performed. The policy could be that a
new request can be submitted after performing N
assignments. If the driver turns off the app after each time
it parks and does not participate in the overlay network, the
app will not allow new requests after a while.

The software for DFPS and the server for its dispatcher
can be provided and maintained by city municipalities,
as part of smart city initiatives. DFPS can reduce traffic
congestion and pollution in the cities by reducing the time
wasted by drivers looking for free parking spaces. A number
of cities have already deployed sensors to help drivers find
parking [2], but these solutions are costly. DFPS does not
require such an investment; its hardware cost is just main-
taining the server for the dispatcher. As shown in the paper,
the dispatcher performs just simple coordination tasks, and
thus it does not require substantial resources. Therefore,
many cities may prefer a cheaper, scalable, and privacy-
preserving solution that is easy to deploy on drivers’ smart
phones.

2.3 Threat Model and Privacy Goals
Threat Model. We assume that the dispatcher is honest-but-
curious, i.e., it follows the protocol correctly, but may try to

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

analyze the information available in the system in order to
find private information about the drivers. For example, the
dispatcher could be interested in learning personally iden-
tifiable information about the drivers such as their identity
and their destinations. The dispatcher may also be interested
in linking different parking requests made by the same
driver, which could reveal over time private information
about the drivers. The dispatcher could learn the type and
the frequency of visited places for each driver, which most
drivers would prefer to keep private. For example, if a
driver sends frequently a request for a parking space close to
a hospital building, the dispatcher may infer that this driver
may have certain health conditions. In another example, the
sexual orientation of a person could be inferred if they park
often close to an LGBTQ bar. Similar inferences can be made
regarding many other personal aspects that people may
want to keep private. We also assume that parked drivers
do not collude with the dispatcher (i.e., share information)
or act maliciously in any other ways in order to break the
privacy of other system users.

A determined attacker could potentially be willing to
expend resources and have a physical presence at a location
in the real world in order to determine a driver ’s destina-
tion. We assume that the attacker’s ability to execute such an
attack is limited because it is expensive; whereas the attacker
may be able to cover a small number of locations, it is not
feasible nor cost effective to execute such an attack at scale.

The role of the dispatcher could be played by a telecom-
munication company which can also act as a service
provider (e.g., AT&T). This gives an unscrupulous dis-
patcher the chance to identify drivers’ real identities as well
as their destinations by tracking their location. In this work,
we do not consider such a strong adversary.

Finally, we assume that the communication between
entities in the system is protected using standard security
mechanism against interference from external adversaries.

Privacy Goals. To mitigate the aforementioned privacy
threats, DFPS needs to achieve the following privacy goals:
Driver identity privacy: Drivers should not have to reveal
personally identifying information (such as their real iden-
tity). This helps preserve the privacy of the drivers as related
to their real-world persona, which may otherwise act as a
deterrent against using the system.
 Unlinkability of parking requests: Given two parking re-
quests, the system should not be able to tell if they are
made by the same driver or by different drivers. This
prevents building a profile of a driver over time, which may
eventually lead to revealing a driver ’s real-world identity
and their parking request history.
 Parking destination privacy: Given a parking request, the
system should not learn the real destination of the parking
request. This also prevents the system from learning infor-
mation about a driver ’s real identity by correlation with the
destination of parking requests.

There are well-known techniques to address the first
two privacy goals, for example drivers can use a randomly
chosen pseudonym for each parking request. Also, to pre-
vent the dispatcher from linking multiple requests from a
driver ’s IP address, drivers send requests through a net-
work anonymizer [19]. Our primary focus in this article is

4

to achieve the third goal, that of parking destination privacy.

3 P R I VA C Y - AWA R E PA R K I N G R E Q U E S T

Protecting driver ’s destination privacy against the attacks
at the dispatcher side is one of DFPS’s goals. Knowing
the driver ’s destination could disclose sensitive information
(e.g., interests, the most visited places, etc.), which can cause
privacy breaches, even if the driver uses a new pseudonym
with every parking request [20], [21]. Privacy concerns in
location-based services exist on two fronts: location pri-
vacy and query privacy [22], [23]. Spatial cloaking is a
privacy protection mechanism used to protect both location
and query privacy [24], [25]. The main idea is to blur a
piece of location information by replacing the exact location
with a cloaked region that contains the location and some
other similar locations so as to satisfy the user’s privacy
requirement, e.g., k anonymity [20] (i.e., the cloaked region
contains at least k users). This mechanism is widely used
because of its high efficiency. However, it must be improved
to be usable in DFPS due to two drawbacks in our problem
settings. First, it fails to consider the distribution of desti-
nations, and a cloaked region with many destinations clus-
tered together could be very small. Thus, the user privacy
may be negatively affected. Second, it requires additional
system resources from trusted third parties (e.g., location
anonymizer [24], [26], peer users [27]). This makes the sys-
tem more complex and may bring additional vulnerabilities.

DFPS proposes an entropy-based cloaking technique
that overcomes these drawbacks. DFPS generates cloaked
regions that satisfy the privacy requirements of drivers
by achieving k anonymity. The construction of a cloaked
region satisfies four requirements: (1) the cloaked region is
not centered around the actual destination to avoid "center-
of-cloaked-region" attack [28], [29]; (2) the destinations in
the region are not very close to each other to avoid the
clustering problem; (3) the region has enough open parking
spaces to ensure the effectiveness of the parking assignment
algorithm; and (4) the process of generating the region does
not rely on trusted third-party servers.

These requirements are considered in the four phases
of the cloaked region construction: (a) basic k-anonymity
region creation; (b) center adjustment; (c) entropy-distance
adjustment; and (d) parking-availability adjustment. Fig-
ure 2 illustrates these phases, with a running example. In
the figure, 13 destinations are represented with solid circles,
and dv is the real destination of the driver. We assume that
the required k anonymity level is four, i.e., k = 4. The
operations in these phases are as follows:

Phase (a): Basic k-anonymity region creation: This
phase starts by applying the k nearest neighbours algo-
rithm (K N N) to determine the k 1 nearest destinations
to dv . Then, as shown in Figure 2(a), it defines a circular
region A centered at dv that encompasses the k 1 nearest
destinations (i.e., N umDest(A) k).

Phase (b): Center adjustment: For the different requests
with the same destination, phase (a) always generates the
same cloaked region. This makes the solution vulnerable
to “center-of-cloaked-region” privacy attack — an attacker
could guess that the destination closest to the center of the
cloaked region is the real destination of the driver. Thus,

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

X

i

v

it(x; d)
2k

= 1

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING 5

DFPS selects the k 1 destinations in this phase such that
these destinations have a large entropy value, indicating
that they are evenly distributed in the region. For this,
DFPS forms m destination groups, each of which has k 1
destinations randomly selected from the 2k destinations. For
each group, DFPS calculates two values: 1) an aggregated
distance D , which is the sum of the distances between each
of the k 1 destinations and the center x, and 2) an entropy
value H , which measures the uncertainty of the destinations
(more uncertainty indicates more even distribution). The en-
tropy of a group is calculated using the following equation.

k 1

H (n) = / n i log / n i (1)
i = 1

Fig. 2: Entropy-based cloaking technique. (a) Basic k-
anonymity region creation; (b) Center adjustment; (c)
Entropy-distance adjustment; (d) Parking-availability ad-
justment.

we propose an adjustment scheme for the region’s center.
As shown in Figure 2(b), DFPS randomly selects a point
x in A and finds a set of k 1 nearest destinations to x.
Phase (a) guarantees that x is not too far from dv. DFPS
then constructs a new region A’, which is centered at x
and contains the k-nearest destinations (including the real
destination dv).

To further increase the parking destination privacy, DFPS
could use the solution proposed in [30] which adds random
noise when shifting the center to guarantee that point x is
not too close to the real destination d .

Phase (c): Entropy-distance adjustment: Region A0 sat-
isfies requirement (1), but not requirements (2) and (3). It is
possible that the distance between the k 1 neighboring
destinations in A0 is small, making it easier for an attacker to
infer the driver ’s destination. Knowing the driver ’s identity
helps an attacker to physically inspect which destination
the driver is located at. To prevent this type of attack, the
cloaked region may be further expanded while keeping x as
its center. This adjustment is conducted using the entropy
of distance method [15]. If the destinations of A0 are located
on fewer than k/2 segments (i.e., they are too close to each
other), DFPS selects a different set of k 1 neighboring des-
tinations and ensures that: (i) the selected k 1 destinations
are evenly distributed in the new, expanded region; and (ii)
the new region is not expanded too much.

We first use the K N N algorithm to find 2k nearest neigh-
bour destinations around x. The area containing all these
destinations is inevitably large. Thus, we examine the distri-
bution of these 2k destinations to determine a smaller region
A00, which contains k 1 destinations that can hide well the
location of the real destination, based on the entropy values
defined below. The number 2k is experimentally determined
and provides a good trade-off between performance and
overhead. In a practical deployment, DFPS can allow users
to adjust a threshold for this method (in addition to the
anonymity parameter k).

In the equation, / n is the the weight of the destination
i, which is defined as follows:

/ n i = P
j

dis
dist(x; d j)

(i = 1; ::; k 1) (2)

Among m groups, we select the group to determine the
cloaked region A00 as follows. If the D values of the groups
are equal, we select the group whose destinations are more
evenly distributed (larger entropy value). Otherwise, we
select the group with the largest D value.

Figure 2(c) depicts how a cloaked region is expanded
using the entropy of distance method. The area of A0 is
first expanded to cover 2k=8 nearest destinations in-
cluding dv . Lines between the destinations indicate the
spatial neighbor relation between each destination and x,
and the values marked on the lines indicate the distances.
Assume that three (m=3) groups of destinations are ran-
domly selected, G1=fx; d5; d8; d9g, G2=fx; d3; d5; d6g, and
G3=fx; dV ; d7; d8g. According to formula 1, the entropy
on distances is obtained. The total distance of destinations is
also calculated for each group. The total distance of
destinations in G1 is less than those of G2 and G3. The
total distances of G2 and G3 are almost equal; however,
the destinations in G2 are more evenly distributed than the
ones in G3. According to the entropy of distance method,
G2 is chosen in this example. Then, the cloaked area A00 is
computed based on group G2. The cloaked area shown in
the figure is after the shrinking done according to G2.

Phase (d): Parking-availability adjustment: this phase
happens when the DFPS app at the driver sends a parking
request for region A00 to the dispatcher. As explained, A00

guarantees k-anonymity destination protection (i.e., the dis-
patcher cannot tell the real destination from k 1 other des-
tinations, which are not clustered together). Upon receiving
the request, the dispatcher has to decide whether to forward
it to the peer-to-peer network of parked drivers as is or to
expand the region further. The decision is based on the park-
ing availability in A00. The dispatcher dynamically maintains
the spatial distribution of parking availability in the whole
city as described in [1]. If the number of available spaces in
A00 is less than a threshold P m i n , the dispatcher expands the
region to encompass the closest available parking spaces to
center x that are not within A00 until the number of parking
spaces in the region reaches P m i n . This is done to avoid the
parking space scarcity problem. In DFPS, there is always

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

m i n

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

a chance that an unsubscribed driver will take a parking
space before the driver assigned to that space arrives there.
The probability of this situation to happen is much higher
when there is parking space scarcity in a region. Expanding
the region up to P m i n parking spaces reduces the likelihood
of such a situation.

Figure 2(d) depicts how the cloaked region A00 is ex-
panded to satisfy the parking availability condition. We
assume that P = 3, and the number of available parking
spaces within A00 is two. A00 will be expanded to contain at
least three available parking spaces.

The Dispatcher over-estimates the number of available
parking spaces as it uses only information from the DFPS
parked drivers. This is because unsubscribed drivers may
take parking spaces presumed to be available by our system
(this problem is addressed in our previous work [5] based on
keeping track of spaces occupied by unsubscribed drivers
and on avoiding assigning these spaces for a period of
time). Thus, the value of P m i n should be reasonably large
to tolerate this over-estimation. This value is determined
experimentally as a function of the number of destinations
and the total number of spaces in the region in order to
provide a good trade-off between destination privacy and
system optimization.

An alternative solution that avoids phase (d) is to make
the cloaked region significantly larger than A00 before sub-
mitting the request. In this way, there will be a high chance to
find parking spaces available in the region. However, this
alternative solution may assign the parking spaces too early
(when the drivers are far away from their parking spaces),
and the parking spaces may be taken by unsubscribed
drivers before the subscribed drivers arrive there. Thus, we
choose to apply phase (d) instead of this alternative solution.

4 OV E R L AY N E T W O R K S T R U C T U R E & O P E R AT I O N

DFPS uses a peer-to-peer overlay network to organize
parked drivers and the regions managed by the parked
drivers. The organization of parked drivers needs to satisfy
the following requirements:
 Scalability: The drivers must be organized in a scalable way
to share the workload effectively.
 Fast Routing: Given a request, DFPS must quickly identify
the driver managing the region where the parking space is
requested.
 Adaptability: The overlay network must adapt quickly
and with low overhead to high churn (i.e., parked drivers
coming and going frequently).

4.1 K-D Tree Network Structure in DF P S
To meet the above requirements, DFPS organizes the over-
lay network of the parked drivers as a K - D tree. A K - D
tree is a k-dimensional binary search tree for partitioning
and spatially indexing data distribution in a k-dimensional
space [8], [31]. A node in the K - D tree is associated with
three types of information: a value, a rectangular represen-
tation (i.e., a region) containing a set of data points, and the
coordinates of these data points.

Each node in the K - D tree represents a region. The
region corresponding to a parent node is divided into sub-
regions corresponding to the children of that node. The

6

Fig. 3: The roles associated with nodes in the K - D tree.

locations of the parking spaces in a region are represented
as data points associated with the node for that region. The
node’s value is the location of the first driver parked in the
corresponding region when the region and the node are
created. For brevity, we call this value the location of the
node.

DFPS associates a parked driver with each tree node.
The tasks of forwarding parking requests and allocating
parking spaces, as well as the data structures required to
manage these tasks, are associated with nodes. Since the
nodes follow a tree structure, DFPS can manage the tasks
and data structures in a hierarchical way, which leads to
good scalability.

There are two roles that may be associated with a node in
the K - D tree as shown in Figure 3: 1) region manager which
forwards parking requests, divides a region into two sub-
regions when necessary, and assigns sub-regions to drivers
that park in these sub-regions; 2) parking manager which
assigns parking spaces within the region associated with
the node. Depending on its position in the tree, a node may
have one or both of these roles. A leaf node acts only as
parking manager for its region (i.e., nodes C, F, G, and H).
An internal node that has two children acts only as region
manager (i.e., nodes A and E). An internal node that has
only one child acts as parking manager for the sub-region
that is not covered by the child node, and it acts as a region
manager by forwarding requests to its child or by assigning
the sub-region not covered by the child to a driver that parks
in that sub-region (i.e., nodes B and D).

Since parking space allocation is handled by the phones
of parked drivers, we also refer to the parked drivers as
the region manager or the parking manager of the regions
corresponding to the node (depending on the node’s role).

4.2 Joining and Departing K-D Tree

The K - D tree grows dynamically when more drivers park.
When a driver informs its parking manager that it had
parked, the parking manager creates a sub-region and a
new node for the sub-region. Then, it attaches the new
node as the child of the node it manages and assigns the
newly parked driver to manage the new node and the
parking spaces in the corresponding sub-region. Thus, the
newly parked driver becomes the parking manager for these
parking spaces. Over time, it also becomes a region manager
when it has to divide this sub-region.

When a parking manager creates sub-regions, it divides
its region based on the location of its parking space. This
design has two advantages over evenly splitting the entire
region among all the parked drivers. First, it helps to evenly
distribute parking requests to parking managers. Due to
hot spots, the destinations of drivers are not distributed

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

p s e u d o n y m

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

Fig. 4: Example showing how a K - D tree grows when drivers
A, C, B, D, E, F, G, H, I park in a 100x100 2D region. Dots in
the sub-regions represent parking spaces and letters represent
parked drivers. The numbers in each box of the K - D tree are
the 2D coordinates of the parking space of the corresponding
driver.

evenly in the region. If the entire region is evenly partitioned
among parking managers, the drivers managing hot areas
might be overloaded. In contrast, the method employed by
DFPS guarantees that more parking managers are assigned
to hot areas than cold areas. Second, sub-regions are created
dynamically within a small region where the driver parks.
Other regions are not affected. This minimizes the changes
to regions and the associated overhead, such as exchanged
messages.

Each node in the K - D tree is represented as a value (the
parking location of a parked driver, i.e., its x, y-coordinates)
and a rectangular region, whose parking spaces will be
managed the parked driver associated with this node. The
region of the parent node is split into two rectangular sub-
regions based on the K - D tree splitting rule: all dimensions
are selected alternatively, e.g., x, y, x, and then y; the split
is at the parking location of the driver managing the region,
along the selected dimension. After the split, the driver is
on the boundary of the two sub-regions.

Figure 4 shows a 100x100 2D region as an example of
how the regions and the location points of the K - D tree are
matched. Initially, the region is managed by the dispatcher,
whose location is set to (50, 30). The region is split when
driver A arrives and parked at (10, 35). Suppose the x
dimension is selected first. The region is split along the
line x=50. The sub-region containing A is now managed
by A. When another driver (i.e., C) arrives and parks in
this sub-region, it is further split. This time, y dimension is
selected, and the split is at A’s y coordinate (i..e, y=35). For a
location point, its region is the smallest region containing the
point. Since all the regions are rectangular, it can be easily
determined by comparing its coordinates against the x and
y values of the region boundaries.

When parked drivers leave their parking spaces, the tree
nodes associated to those drivers must be updated. For
each node managed by a leaving driver, if the node is a
leaf, the node is deleted from the K - D tree and its parent
node (i.e., the corresponding driver) takes over the parking
space allocation task associated with the node. If the node
is an internal node, one option is to apply existing solutions
for deleting K - D tree internal nodes [31]. However, because
the sub-trees rooted at the internal node’s children must be
re-organized to form another sub-tree, these solutions can

7

be very expensive and may cause considerable overhead,
especially when the sub-trees are large.

Instead of deleting an internal node, DFPS assigns the
node to another parked driver. DFPS considers the follow-
ing two situations:
 The node is the parking manager of the region containing its
location (the node value). In this case, the node has only one
child node. DFPS will find the driver who is managing the
child node, and assign the node to this driver.
 The location of the node is managed by another node, i.e.,
another node is the parking manager of the region
containing its location. DFPS will first locate the parking
manager, then assign the node to the driver of the parking
manager. In the example shown in Figure 4, when E leaves,
driver H will be asked to take care of the node of E, since
H is in charge of the parking space allocation in the region
where E parked. Thus, later on, when the parking space is
re-allocated by H to another driver K, K can be assigned to
manage the node.

4.3 Request Forwarding

Each parking request, which includes the pseudonym of
the driver and the cloaked region computed at the driver ’s
phone, is forwarded down the tree from the root (i.e., dis-
patcher) until it reaches the corresponding parking manager,
which will assign a parking space in its region. If privacy
were not considered, then request forwarding will simply
use the K - D tree to reach the parking manager that manages
the region including the destination. However, when we
consider privacy, the cloaking region may intersect several
regions managed by different parking managers. This prob-
lem is illustrated by the protocol shown in Algorithm 1.

Algorithm 1 Parking request forwarding procedure
1: Upon node n receiving a parking request (v , C K)
2: if (n is not a parking manager) then
3: Forward the request to the children whose regions intersect with

C K
4: else if (n has no children) then
5: //Region(n) is the region managed by n when acting as parking

manager
6: Send the coordinates of Region(n) to the driver
7: else
8: / / n is a parking manager and a region manager
9: if (C K \ Reg ion(n)) and (C K \ Reg ion(child(n))) then

10: Send the coordinates of Region(n) to the driver and forward
the request to the child

11: else if (C K \ R e g i o n (n)) and (: (C K \ R eg i on(ch i l d(n)))) then
12: Send the coordinates of Region(n) to the driver
13: else
14: Forward the request to the child node
15: end if
16: end if

Upon node n receiving a parking request along with the
cloaked region C K , n’s state is examined to determine if it
can answer this request or forward it down the tree. If n is
a region manager, then the request is forwarded to the
children whose regions overlap with C K (lines 2-3). C K
could overlap the region of one child or both. If n is a
parking manager and its region overlaps with the C K , then
the region coordinates are sent to the driver (lines 4-6). If n is
both a parking manager and a region manager, then both its
region and its child’s region have to be examined (lines 7-8). If
C K overlaps with both regions, n sends the coordinates

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

j

if vi

0; rwise

X

X

O i

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

of its region to the driver and forwards the request to the
child (lines 9-10). If only n’s region overlaps with C K , n
sends the coordinates of its region to the driver (lines 11-
12). Otherwise, it forwards the request to the child (lines
13-14).

This process works recursively until the coordinates of
all regions that intersect with C K are sent to the driver,
along with the identities of their parking managers. The app
at the driver determines in which region her destination is
located and then communicates directly with the parking
manager of that region. In this communication, the app
at the driver requests a parking space from the parking
manager using its exact destination, not the cloaked region.
The parking manager then performs parking assignment,
as described in Section 5. In this way, only one parking
manager learns the driver ’s destination. A l l the other nodes
in the tree that processed the original request know only the
cloaked region C K .

4.4 Load Balancing

Each parking manager receives requests for its region.
However, the distribution of destinations and requests cou-
pled with the tree-structure of the network can cause a
heavy load on certain managers. Heavy load leads to slow
downs and significant battery consumption on the impacted
phones. To avoid this problem, DFPS applies a simple load
balancing mechanism. An overload threshold is determined
by each parking manager as the difference between the local
load (i.e., the number of requests that have been processed by
the phone) and a load threshold . If > , an imbalance is
detected and the phone removes itself from the system. The
threshold can be determined experimentally on each phone
such that the phone does not consume more than a small
fraction of its battery power serving DFPS requests. As
described in Section 4.2, a phone of another parked driver
will replace this phone in the overlay network and will
handle any pending requests inherited from the removed
phone.

4.5 Failure Recovery

DFPS employs the mechanism proposed in [31] to ensure
that the system continues to function in the presence of fail-
ures or disconnections of the phones of parked drivers. For
example, the phones may fail without warning if the drivers
decide to turn them off. Failure or disconnection of the
phones is detected by periodic gossip messages from their
neighbors. Each neighbor knows the region boundary of the
failing node w and maintains a replica of the data it stores
(e.g., the number of available spaces and total number of
spaces) in order to restore the data and improve availability.
In addition, a parent maintains a list of requests forwarded
to w and requests assigned by w in case of failure. To avoid
consistency problems, a disconnected parking manager will
not attempt to reconnect to the system when the wireless
connection becomes available again. Finally, let us note that
the overload threshold at parking managers (used for load
balancing as described in Section 4.4) also reduces the effect
of node failures or disconnections.

8

5 PA R K I N G S P A C E A S S I G N M E N T

In DFPS, each parking manager periodically runs the same
parking space assignment algorithm to satisfy the outstand-
ing requests that have been forwarded to it. The algorithm
computes an assignment for these requests, aiming to opti-
mize the total travel time of the drivers.

5.1 Assumptions and Problem Statement
The set of curbside parking spaces in the region is de-
noted S = fs1; s2; ::::; smg. The set of drivers whose re-
quests have been forwarded to the parking manager be-
cause their destinations are within its region are denoted V
= fv1; v2; ::::; vng. To the greatest extent possible, each
driver will be assigned a parking space in the region that
contains her destination. If this is not possible (e.g., all the
parking spaces in that region are taken), the driver will
receive a parking space in a nearby region.

The destinations of the drivers are geographical loca-
tions, such as shops, banks, houses, hotels, etc. Their ad-
dresses are converted into latitude and longitude coordi-
nates, similar to the locations of parking spaces. The drivers
are assumed to be moving independently based on legal
speeds and the congestion levels on different road segments.
We also assume that the parking request is submitted to the
dispatcher when the driver is about to reach the cloaked
region. Then, the request is forwarded to the corresponding
parking manager.

An assignment of parking spaces to drivers is defined as
Y: V ! S , where yij is the assignment of a driver vi 2 V to
a parking space s 2 S :

(

yij =
1;

othe
is assigned to sj 1 i n; 1 j m

n
(3)

yij 1; 1 j m (i:e:; sj 2 S) (4a)
i = 1

m

yij = 1; 1 i n (i:e:; vi 2 V) (4b)
j = 1

Constrains 4a and 4b ensure, respectively, that a driver
receives at most one space and that a space is not assigned
to more than one driver.

For a set of drivers and a set of parking spaces, there
may exist a large number of assignments. The algorithm is
to find an assignment that can minimize the total travel time
of the drivers. The travel time T C (vi) of a driver vi is the
time period from the moment when the driver submits her
request until she arrives at her destination. It consists of two
parts, the driving time and the walking time:
 Td (Ovi , sj) is the driving time of driver vi from the
moment she submits her request from location v until she
parks at the parking space sj .
 Tw (sj , D v i) is the walking time of the driver from the
moment she parks until the moment she arrives at her
destination D v i .

5.2 Parking Space Assignment Algorithm
Each parking manager in DFPS assigns parking spaces in its
region in the same way as the dispatcher assigns parking

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

spaces in our centralized solution. The detailed algorithm
can be found in [5]. A brief description is included below
for convenience.

A parking manager assigns parking spaces periodically
to outstanding requests. Each manager can adjust the pe-
riod as a function of its outstanding request queue size to
achieve a good trade-off between assignment performance
and overhead. In each period, the manager first pre-allocates
to the driver of each outstanding request the closest avail-
able parking space to her destination. The pre-allocation
adapts the solution to the flow problem described in [32]
to minimize the total walking time of these drivers.

The actual assignment of parking spaces takes place
based on the urgency of the demands for parking spaces
(i.e., how close the drivers are to their destinations). We ap-
ply a modified version of the compound laxity algorithm [5]
to determine how long a request can be delayed before it
must be assigned a space. Specifically, in each period, the
drivers with the most urgent demand are selected. Their
pre-allocated parking spaces are officially allocated to them.

The algorithm described above is named FPA. It assumes
that subscribed drivers are generally representative of the
entire driving population and all spaces in the region are
available to them. To consider the cases in which spaces may
be taken silently by unsubscribed drivers, the algorithm is
enhanced to track the spaces taken by unsubscribed drivers
and avoid assigning these spaces. This algorithm, described
in [5], is named FPA-1.

FPA and FPA-1 are used under the assumption that there
are still available parking spaces in the region. However, in
DFPS, the assignment of parking spaces is done by multiple
parking managers. It is possible that a parking manager
runs out of parking spaces, but still has outstanding re-
quests. In such a case, DFPS allows a parking manager
to acquire parking spaces from nearby parking managers
temporarily to satisfy her outstanding requests. For this
purpose, DFPS uses a multi-indexing technique to locate
nearby regions and find the best available spaces that are
close to the destinations of the parking requests. This pro-
cess is detailed in [1]. The multi-indexing technique is also
leveraged to pass the parking availability information up
the tree to the dispatcher, which needs it for phase (d) of the
cloaked region construction.

Let us note that, unlike the dispatcher, the parking
managers know the real destination of the drivers and the
parking assignment is optimized based on these destina-
tions.

6 P R I VA C Y A N A LY S I S

This section analyzes how the DFPS protocol satisfies the
desired privacy goals.

Driver Identity privacy: A driver uses a randomly-
generated pseudonym identity with every parking request,
which is completely unrelated to her true identity. This
pseudonym is not identifiable by attackers at the dispatcher
side because (1) the parking request is a snapshot query
(i.e, a request submitted just once by the driver); (2) the
pseudonymity mechanism is effective due to the discrete
characteristic of the parking behavior (i.e., the average time
interval between two parking demands is long enough).

9

Thus, the attacker cannot infer the driver identity from a
parking request.

Unlinkability of parking requests: Given two parking
requests, no one should be able to tell if they are made by
the same driver or by different drivers. This is achieved by
the use of pseudonyms and cloaked regions. In other words,
with each parking request, a driver ’s privacy is protected by
(1) replacing her true identity with a randomly-generated
pseudonym; (2) constructing the cloaked regions such that
two requests from the same driver to the same destination
will result in different cloaked regions.

The security of inferring information about the driver ’s
identity from the pseudonym and the security of linking
two requests purely based on pseudonyms can be reduced
to the security of the underlying function used to generate
the pseudonyms, which are indistinguishable from random
strings.

Parking destination privacy: By design, the cloaked area
contains k destinations, which ensures the driver ’s true
destination is hidden among these k destinations. However,
to infer a driver ’s destination, the attacker may deploy a
“center-of-cloaked-region” privacy attack [28], [29], i.e., the
destination is inferred to be at the center of the cloaked
region. The attacker may also be physically present at a
location to determine a driver ’s destination.

The parking request in DFPS includes provisions to
mitigate these attacks. To alleviate the “center-of-cloaked
region” attack, phase (b) of the parking request protocol
randomly shifts the center of the cloaked region. Thus, even if
the same driver chooses to travel to the same destination on
different occasions, the cloaked area (which contains the true
destination) will appear differently to the dispatcher.
Although the cloaked area contains k destinations after
phase (b) of the parking request protocol, it may still be
possible that these k destinations be clustered in a small
region. If the attacker decides to be physically present in
this small region, the driver ’s true destination may be de-
termined based on direct observation. To mitigate this issue,
phase (c) of the parking request protocol uses the entropy of
distance method to select a cloaked region which contains k
destinations that are located on more than k/2 segments
and are evenly distributed in the cloaked region. As a result,
the probability of inferring the true destination within the
cloaked region remains 1=k.

Due to the fact that the dispatcher manages the entire
space before any driver parks, the real destinations of the
first right and left managers will be known, which can lead
to privacy leakage. However, this has a very minor effect on
the privacy of the whole system.

In extreme cases, for example when the dispatcher re-
ceives only one request during a long period of time, the
dispatcher could learn the parking space of the driver based
on the availability statistics it receives from the overlay
network. However, the dispatcher will not learn the actual
destination of the driver since each parking request is served
and assigned only by a parking manager who manages the
region that the driver ’s destination is located in, which is
our main goal in terms of privacy. Although DFPS tries
to assign an available parking space in close proximity of
the destination, there may not be available spaces near the
destination, or the destination merely has no parking spaces

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING 10

to begin with. Therefore, it is not easy for the dispatcher to
link the parking space to the querying driver. Furthermore,
the pseudonyms and anonymizers will protect the driver ’s
identity, so the dispatcher will not be able to link this
parking space to other parking spaces of the same driver.

7 E X P E R I M E N TA L E VA L UAT I O N

In this section, we experimentally evaluate the performance
of DFPS, in terms of (1) scalability and load balancing, (2) as-
sessing the benefits of DFPS with and without privacy com-
pared to the centralized system;(3) measuring the benefits
of DFPS in terms of travel time when compared to a Naive
parking assignment solution, which resembles what drivers
normally do; (4) investigating the DFPS performance under
different privacy protection mechanisms; (5) understanding
the relationship between the average travel time and the
size of the cloaked regions; (6) analysing the impact of the
privacy level on the average travel time.

The evaluation is done via simulations over a real road
network. The experiments simulate two different scenar-
ios: subscribed-drivers-only scenario, which assumes that
all drivers in the system use DFPS; unsubscribed-drivers-
interference scenario, which assumes there are a number of
drivers who have not subscribed to DFPS and who may
occupy, without notification, parking spaces known to the
system as available.

We use SUMO/TraaS [16], an open source framework for
running vehicular network simulations, and PeerSim [17], a
simulation environment for P2P protocols. SUMO/TraaS
simulates vehicles going to their destinations in a business
district in Manhattan, New York City. PeerSim simulates the
overlay peer-to-peer network of parked drivers. Figure 5(a)
shows the road network used in the simulations, while Fig-
ure 5(a) illustrates an example of destinations and parking
spaces along a few road segments. The total number of
parking spaces is 1024, and the total number of destinations
is 400.

We generate a set of trips for the drivers. While the
starting locations of the vehicles are randomly chosen over
the entire road network, the target destinations are chosen
randomly from a small region in the center of the map to
ensure enough contention for parking spaces. The travel
time of a driver is the sum of the driving time and the
walking time. In these experiments, the driving time is the
sum of the time the driver takes to reach the cloaked region
and the time from the edge of the cloaked region to the
assigned parking space. The walking time is calculated from
the assigned parking space to the destination. We consider
a walking speed of 1.4 m/s [33]. DFPS starts each test with
1024 vacant parking spaces. The arrival rate of the requests
falls within the range of 1 to 5 requests per second. For
each experiment, we collect results from 5 runs and average
them.

We compare the performance of DFPS with (1) our
centralized system FPS [5] and (2) a version of DFPS without
privacy protection (DFPS-wop) in terms of the average
travel time. Unlike DFPS, which uses the edge of the cloaked
region to trigger a parking assignment request, FPS and
DFPS-wop trigger the request when the driver reaches a
circle centered at the destination and with a radius (request

Fig. 5: Road network used in experiments (a). Example of
zoomed-in road segments (b): parking spaces (gray dots) and
destinations (red circles).

Fig. 6: Number of messages handled by the dispatcher/server
in DFPS and FPS for a different number of drivers and a fixed
number of destinations (8).

distance) set based on the parking availability in that region.
The radius is initially set to the average length of the road
segments within the whole region, and it is adjusted peri-
odically based on the parking occupancy rate in the region:
the radius is increased when the occupancy becomes higher.
Each driver in DFPS selects the value of her k anonymity
randomly from the set {3,5,7,9}.

7.1 Results and Analysis

Scalability and Load Balancing. Compared to our central-
ized system FPS, the computation bottleneck at the central
server (i.e., dispatcher) in DFPS is removed, as the parking
assignment is computed in a distributed fashion by the
phones of the drivers. Therefore, DFPS scales better from
a computation point of view.

The total computation time consumed in each period for
the parking assignment algorithm is the sum of (1) finding a
valid allocation that minimizes the total walking time to
destinations and (2) determining the urgency of pending re-
quests in order to assign spaces to the most urgent requests
and minimizing the total driving time.

Minimum-cost network flow in a directed bipartite
graph is used to generate a valid allocation. Its cost is
O(ve), where v is a number of nodes (i.e., m spaces + n
drivers in the region) and e is the number of edges (i.e.,
equal to n, the number of drivers in the region). The cost of
computation to determine request urgency and select
urgent requests is O((n + ’) 2) , where n is the number of
drivers to be assigned parking spaces and ’ is the number
of drivers with high urgency. Thus, the total time for each
parking manager is O(n2 + nm)+O((n + ’) 2) . Given that

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

(KB)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

TA B L E 1: Data Exchanged in FPS, DFPS-wop and DFPS
Systems with 768 Drivers, and 2 Destinations

F P S DFPS-wop DFPS(k=3) DFPS(k=5) DFPS(k=7) DFPS(k=9)
Data Exchanged

34 27 62 70 78 83

each parking manager handles only a limited number of
parking spaces and drivers, as described in Section 4.4, this
computation can easily be done on today’s smart phones.

To generate a privacy-aware parking request, each driver
needs to compute a cloaked region, and the dispatcher may
need to adjust it. However, computing a cloaked region is
a one-time cost and is fully distributed. Adjustment is re-
quired only by a small proportion of requests when parking
areas become full. Due to the privacy-preserving request
forwarding, some nodes will have to handle more messages
than in the case without privacy. However, the computation
cost for these operations is negligible compared to the
computation cost of the parking assignment algorithm.

Figure 6 compares the number of messages handled by
the dispatcher in DFPS and the server in FPS by varying the
number of drivers from 128 to 768. The results show that
DFPS reduces the number of messages by a factor of 2 or
better when compared to FPS.

To handle privacy-aware parking requests, DFPS needs
to contact all parking managers whose regions intersect the
cloaked regions in the requests, incurring higher commu-
nication cost than contacting only one parking manager
if privacy is not considered. Furthermore, the size of the
messages is slightly larger in DFPS than in FPS, due to
the additional protocol information to preserve privacy. To
evaluate this cost, we measure the total amount of data
exchanged in the system for FPS, DFPS (with privacy), and
DFPS-wop (without privacy). The results in Table 1 show
that the amount of data exchanged by each system in a
scenario with 768 drivers and 2 destinations is in the order
of tens of KB. We also notice that the amount of data for
DFPS with k=3 is about double of that for DFPS-wop. Then,
the amount of data for DFPS increases linearly with k. This
demonstrates that there is a communication cost associated
with privacy, but the system scales well.

Next, we investigate the effect of load balancing on
parking managers. We compare the number of requests
assigned by the phone of a parked driver when DFPS
employs its load balancing mechanism (DFPS) and when
it does not (DFPS*). The value of the load threshold in the
load balancing mechanism is set to 10. Table 2 compares the
maximum number of assigned requests in DFPS and
DFPS*. As expected, DFPS scales better due to its load
balancing mechanism. The maximum number of requests in
DFPS* is about 20 times higher than the maximum number
in DFPS. We also observe that the maximum in DFPS is
13, not 10 as expected (the load threshold). This is because
of two reasons. First, a parking manager receives requests
until it has served of them (while the others are pending).
Second, a parking manager can not depart the network until
it completes its set of requests with high urgency.

Figure 7 presents another measure of scalability: the
average number of parking managers cooperating to serve
the incoming parking requests in DFPS and DFPS*. The
results show that the number of managers in DFPS increases
by as much as 185% compared to DFPS*. Higher numbers

11

TA B L E 2: Maximum Number of Requests Assigned by a
Parked Driver for Different Numbers of Destinations and

768 Drivers

Destinations
2 4 8

D FPS 13 12 12
DFPS* 268 166 100

Fig. 7: Number of parked drivers involved in the assignment
process for different total numbers of drivers and 8 destina-
tions.

Fig. 8: Average travel time for a different number of drivers
and 8 destinations.

are better because the load is distributed more evenly across
the participants, and the system scales better.

Average travel time. The average travel time measures
the performance of the system from a global point of view.
Figure 8 shows the average travel time for DFPS compared
to FPS and DFPS-wop in the subscribed-drivers-only scenario.
In FPS and DFPS-wop, destination privacy is not consid-
ered. Their regions are constructed based only on parking
availability. The results show that DFPS reduces the travel
time by as much as 26% compared to DFPS-wop and FPS.
We observe that a DFPS-wop and FPS have similar results.

The improvement in performance observed when com-
paring DFPS with DFPS-wop and FPS is due to combining
the privacy and parking availability requirements when
generating the cloaked region. Let us recall that DFPS-
wop and FPS use just parking availability to generate their
regions. The privacy requirement allows DFPS to optimize
the size of the region better than DFPS-wop and FPS. This
is due to the even distribution of the destinations, which
also distributes better the available parking spaces. An opti-
mized region allows for more effective parking assignment

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

Fig. 9: Walking time and driving time for different number
of destinations and 768 drivers.

optimizations.
For the same scenario, Figure 9 shows the average travel

time when the number of destinations is varied from 2 to
8. The figure breaks down the travel time into two parts:
driving time and walking time and shows that drivers
spend most time on driving, and DFPS reduces the average
travel times by mostly reducing the driving time. With 8
destinations, DFPS can reduce driving time by 67% and 64%
compared to FPS and DFPS-wop, respectively. Reducing
the driving time is very important, as this reduces traffic
congestion and implicitly the gas cost and pollution. Since
the number of parking spaces in the centroid area is limited,
all systems can hardly reduce the walking time.

The next set of experiments evaluate the performance of
DFPS and DFPS-wop in the unsubscribed-drivers-interference
scenario. Each system, has two parking assignment algo-
rithms. One (DFPS/FPA and DFPS-wop/FPA) just keeps
trying to find another space if the assigned parking space
is found to be taken by an unsubscribed driver. The other
(DFPS/FPA-1 and DFPS-wop/FPA-1) keeps track of the
spaces found to be taken by unsubscribed drivers, avoids
them for a while, and tries them later. We call the spaces
taken by unsubscribed drivers “hidden” spaces. These
spaces are taken at the beginning of the simulation to help
tracking them. More details on how we model the behavior
of unsubscribed drivers can be found in [5]. Figure 10 shows
that DFPS continues to perform better than DFPS-wop, even
in the presence of unsubscribed drivers. We also notice
that FPA-1 improves the performance for both systems, and
DFPS/FPA-1 achieves the lowest average travel time. These
results demonstrate that DFPS/FPA-1 adapts well to the
interference caused by unsubscribed drivers.

Individual Travel Time Gains/Losses. In the subscribed-
drivers-only scenario, we conduct an experiment to find out
the gains and losses in travel time for individual drivers
when comparing DFPS with a Naive solution, a baseline
assignment algorithm that assumes the driver goes to the
destination and, after arriving there, she starts a breadth-
first-search for parking spaces along the nearby road seg-
ments. The Naive solution is similar to what most people
do in real life. To measure the gains/losses, we calculate the
ratio between the travel time obtained by the Naive solution
and the travel time obtained by DFPS for each driver. If the
ratio is higher than 1, the driver has benefited from DFPS.
Otherwise, the driver has not.

Figure 11 plots the distribution of individual travel time

12

Fig. 10: Average travel time for different numbers of hidden
spaces, 768 drivers, and 8 destinations.

Fig. 11: Distribution of travel time gain/loss for 512 drivers
and 8 destinations. Error bars are shown.

gains/losses for all drivers in the experiment. We observe
that DFPS manages to improve the travel time for a large
majority of drivers (over 95%). Many drivers reduce their
travel times by more than an order of magnitude. These
results are possible due to the high parking contention
generated in the experiment, which leads to high traffic
congestion and thus to very high travel times for the Naive
solution. The small error bars in the figure demonstrate that
these results are consistent across different simulation runs.

Entropy-based cloaking. To determine how our entropy-
based cloaking technique affects travel times, we com-
pare its performance with that of a simple k-anonymity
technique, which creates cloaking areas containing the
k 1 nearest neighbor destinations around the real desti-
nation. Figure 12 shows the average travel time for when
DFPS works with either of these two methods in three
cases: DFPS with subscribed-drivers-only, DFPS/FPA with
unsubscribed-drivers-interference, and DFPS/FPA1 with
unsubscribed-drivers-interference. The results show that
DFPS with the entropy-based cloaking technique achieves
better performance consistently for all three cases. There-
fore, we conclude that the entropy-based cloaking improves
both the destination privacy and the travel time. This is
because its cloaked region is larger, with destinations spaced
more evenly, and thus avoids parking contention and traffic
congestion.

Effect of region size. To understand how the region size
affects performance, we compare the average travel times
for DFPS and two versions of DFPS-wop. The minimum
number of available parking spaces in a region, P m i n , is set
to 3 for DFPS and one version of DFPS-wop, denoted DFPS-

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING 13

TA B L E 3: Average Travel Time for Different Region Sizes, Different Numbers of Destinations, and 768 Drivers

Destinations
DFPS

Region Size 319.6
Avg. Travel Time 18.1

2
DFPS-wop(3)
356.2
17.8

DFPS-wop(6) DFPS
405.8 309.3
16.5 17.9

4
DFPS-wop(3)
366.8
16.9

DFPS-wop(6) DFPS
403.6 684.2
16 13.5

8
DFPS-wop(3)
371.5
15.8

DFPS-wop(6)
394
15

Fig. 12: Average travel time for simple k-anonymity cloaking
vs. entropy-based cloaking for 768 drivers, 8 destinations, and
265 hidden spaces.

wop(3), and to 6 for the other version of DFPS-wop, denoted
DFPS-wop(6).

Table 3 shows that the average travel time gradually de-
crease with larger region sizes. The cloaked regions of DFPS
with two and four destinations are smaller than the regions
in DFPS-wop, due to two reasons: (1) There are many neigh-
bour destinations around the 2 or 4 destinations chosen in
the experiments; this helps reducing cloaked region sizes in
DFPS. (2) The parking availability around the destinations is
high when drivers submit their parking requests. However,
we noticed that the region with eight destinations is larger
in DFPS than the regions in DFPS-wop. The reason is that
the distance between the 4 new destinations (in addition to
the first 4) and their nearest neighbours are relatively large
(i.e., sparsely populated region). Thus, to construct a region
that satisfies DFPS privacy requirement, the region has to be
expanded.

The results show that a slight increase in the region
size can significantly improve the travel time in DFPS. This
indicates that using larger k values is a good solution: it
expected to increase the privacy protection and improve
the travel time, at the same time. However, if the regions
become too large, it is possible that the parking assignment
is done too early and unsubscribed drivers may take some
of the assigned spaces. Next, we investigate this trade-off
between privacy protection as measured by the value of k
and the average travel time.

Impact of increasing the privacy level on average travel
time. Figure 13 shows how the average travel time and the
region size vary with k in an unsubscribed-driver interfer-
ence scenario. A number of 256 hidden spaces are taken by
unsubscribed drivers gradually at a rate of two spaces every
minute. We observe that increasing k leads to larger cloaked
regions, which provide better privacy protection. The travel
time, however, is not proportional with the region size. It
gradually reduces until k = 7, when it achieves the best
value, and then it increases. The slight decrease in the travel
time for k = 11 vs. k = 9 can be explained by the fact that

Fig. 13: Average travel time and cloaked region size for
different values of k(-anonymity), 768 drivers, 2 destinations,
and 265 hidden spaces.

parking spaces are taken unevenly by unsubscribed drivers.
For example, for k = 11, the unsubscribed drivers tend to
occupy spaces farther away from the real destinations. The
substantial increase from k=13 to k=17 is due to the large
size of the cloaked region, which allows the close parking
spaces to be taken by unsubscribed drivers. This forces the
DFPS drivers to go to the assigned parking space, find that
it is occupied, and then search for a new parking space.
Overall, the results demonstrate that a good balance can be
found between the level of privacy protection and the travel
time (e.g., k = 7 in this experiment).

8 R E L A T E D WO R K

This section discusses the parking problem from differ-
ent perspectives: parking assignment algorithms, privacy-
preserving parking systems, privacy-preserving VA N E T
protocols, location privacy techniques, and parking occu-
pancy detection.

8.1 Parking Assignment Algorithms

Parking assignment is studied in two contexts: centralized
and distributed. The works in [5], [34] are examples of
centralized solutions. Ayala et al. [34] developed a pricing
model to minimize the system-wide driving distance. How-
ever, the proposed approach depends on pricing data and
is offline in nature, as the number of drivers and resources
are known in advance and do not dynamically change. In
[5], we introduced FPS, a parking assignment system that
dynamically adapts to new parking requests and shows
good performance in reducing the total travel time for
drivers. However, it has a scalability problem, inherent to
a centralized solution.

Among the decentralized solutions, Ayala et al. [32] an-
alyzes the parking problem as a competitive game in which
individual, selfish drivers are competing for the available
spaces. It is assumed that each vehicle has access to the
location of the other vehicles, which raises privacy concerns

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

TA B L E 4: Comparison Between DFPS and Other
Privacy-Preserving Parking Solutions

[36] [37] [14] [13] [6] [7] [38] DFPS

Free Curbside Parking X X

Destination Privacy X X

Identity Privacy X X X X X X X

Location/Parking Privacy X X X X X X

VANET-Based X X

Distributed System X X X X

Parking Assignment X X X X X

Parking Navigation X X

Large Scale Coverage X X X

and has technical difficulties in real-time. In [35], the parking
assignment capitalizes on the ability of a trustworthy central
controller to protect driver ’s destination and to construct a
feasible assignment in a distributed fashion via the co-
ordination of drivers. The problem with this solution is
that the assignment computation and communication are
burdens on the coordinator. The preliminary version of
this article [1] presented a distributed parking assignment
system that solves the scalability problem in the centralized
FPS system, while maintaining the same level of travel
time performance. Yet, it did not take driver ’s privacy into
consideration. In this article, DFPS takes full advantage of
drivers’ smart phones to perform privacy-preserving and
scalable parking assignment, while optimizing the total
travel time for drivers.

8.2 Privacy-Preserving Parking

Several privacy-preserving parking techniques have been
recently proposed. Table 4 illustrates the differences be-
tween DFPS and all these techniques. The table also demon-
strates the benefits of DFPS when compared to these tech-
niques. In the following, we briefly discuss each of these
techniques in relation to DFPS.

PEPS [36] is a distributed scheme using blockchain tech-
nology to enable agents to lease their private parking spaces
and make a profit. PEPS [36] targets private parking spaces
only and does not protect the privacy of drivers’ destina-
tions. Differently, DFPS targets public free parking spaces
and protects the privacy of drivers’ destinations. Amiri
et al. [37] propose a decentralized and privacy-preserving
smart parking system using consortium blockchain and
private information retrieval. A consortium blockchain is
created by different parking lot owners to ensure security,
transparency, and availability of the parking offers. This
work preserves the drivers’ privacy, but it works only for
parking lots. DFPS can protect driver privacy, while as-
signing free curbside parking spaces close to the drivers’
destinations.

ASAP [14] is an anonymous smart-parking and payment
scheme in vehicular networks. It uses short randomizable
signatures to provide anonymity and conditional privacy.
ASAP handles private parking spots through a trusted
server, which may suffer from data breaches. Furthermore, it

14

is designed to achieve pseudonymity, but not unlinkability.
DFPS, on the other hand, works as a scalable distributed sys-
tem that prevents linking multiple parking assignments of
the same driver. In addition, DFPS does not maintain driver
data after a request has been served, thus preventing sub-
sequent data breaches. Furthermore, DFPS provides a free
parking solution, while ASAP involves payments. Huang
et al. [13] propose a centralized privacy-preserving park-
ing reservation scheme for securing the automated valet
parking system AVP. The scheme preserves the privacy of
drivers’ real identities using anonymity. It also uses location
obfuscation techniques (e.g., geo-indistinguishability and
cloaking) to protect the drivers’ desired destinations. Unlike
this scheme, DFPS is decentralized and does not store user
parking information in the system database, which has the
risk of privacy breach and data loss. Further, the location
obfuscation techniques of this scheme may assign parking
spaces to drivers far away from their destinations. On the
other hand, as shown in our evaluation, DFPS protects
destination privacy while providing parking spots close to
the destinations.

P-SPAN [6] is a smart parking navigation system, which
uses a cloud server and roadside units (RSUs) to guide
users to available parking lots at their destinations. P-SPAN
hides drivers’ identities using anonymous credentials. How-
ever, the cloud server can still identify the drivers from
their parking locations or by linking their multiple parking
locations. Furthermore, other sensitive information about
drivers is released to the cloud server, e.g., current loca-
tions, destinations, and arrival times. This enables the cloud
server to track drivers more easily. DFPS is designed to
hide drivers’ destinations and prevent linking their multiple
parking locations by constructing a new cloaked region with
each parking request for the same destination. PrivAV [7]is
a secure and privacy-preserving automated valet parking
scheme for self-driving vehicles. PrivAV extends anony-
mous authentication to support two-factor authentication to
reduce the risks of vehicle theft while protecting the privacy.
While location privacy is protected by the parking assistant,
the driver ’s identity and destination may still be exposed.
Unlike PrivAV, DFPS protects both the driver ’s identity and
destination. Lu et al. [38] consider VA N E T with a privacy-
preserving parking scheme for large parking lots, which
enables RSUs to locate vacant parking spaces for arriving
vehicles. Differently, DFPS covers free curbside parking
spaces across entire cities and drivers do not depend on
VANETs , which may have intermittent connectivity.

8.3 Privacy-Preserving VANET Protocols

To support safety or infotainment applications without
exposing drivers’ privacy, a variety of privacy-preserving
vehicular communication protocols have been proposed
in VA N E T. We discuss these protocols next, but we do
not include them in Table 4 because they do not target
parking assignment as DFPS. Chim et al. [39] proposed
VSPN, which can guide vehicles to desired destinations
in a distributed manner while preserving drivers’ privacy.
Identity privacy is preserved using pseudo-identities and
anonymous credentials. Unfortunately, this protocol is vul-
nerable to internal attacks from vehicles as the master key

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

is shared among all vehicles. Cho et al. [40] introduced a
security-enhanced navigation system based on the concept
of two-person multi-signature and identity-based crypto-
graphic schemes. However, this work does not discuss how
to collect traffic information, which is a difficult problem.
Sur et al. [41] proposed a secure navigation system based
on vehicular cloud, a trapdoor hash function, and zero-
knowledge proofs. One problem with this solution is that
the anonymous credentials can only be used once in order
to avoid sharing of vehicles’ credentials with unregistered
users.

8.4 Location Privacy Approaches

Location obfuscation [11], space transformation [42], and
cloaking [20], [27] are traditional approaches to preserving
location and/or query privacy. The former means that given
a query, attackers cannot learn the issuer’s exact position;
the latter enforces the unlinkability between the issuer and
the query. Cloaking is more widely used than other tech-
niques because of its efficiency. The main idea is to blur
user locations into spatial cloaked regions that satisfy certain
privacy requirements (e.g., k anonymity). Different from
existing solutions, cloaking is utilized in a unique way in
DFPS. First, existing solutions use it to break the linkability
between users and their location and/or queries, while
our solution aims to protect drivers’ destinations. Second,
existing solutions rely on a third party agent to perform
cloaking in a centralized way or a peer-to-peer infrastruc-
ture for mobile users to perform cloaking collaboratively.
DFPS does not assume these architectures, since it uses the
smart phones of the drivers to compute the cloaked regions.

Location privacy preserving mechanisms (LPPMs) have
been extensively studied. Cao et al. [43] investigated a new
type of LPPM’s privacy goal: protecting spatiotemporal
events in continuous location-based services, e.g., hospi-
tal visits. Spatiotemporal event privacy guarantees flexible
and customizable protection; however, it focuses only on
protecting drivers’ real-time locations. DFPS is designed
to protect drivers’ destinations and to prevent linking of
multiple parking requests from the same driver.

Anonymity algorithms are proposed to form spatial
cloaked regions. In [44], Abul et al. proposed a quad-
tree-based anonymity algorithm which adopts a recursive
method to continuously divide the space region in which
the mobile user resides into four quadrants. In [24], Mokbel
et al. proposed an anonymous algorithm based on the
Casper model, which effectively improves the performance
of the anonymity algorithm in [20]. However, there are some
problems with these algorithms. In [44], the anonymity
algorithms may form redundant regions in the process of
constructing an anonymous region. In [24], the distribution
of users is not considered and due to the lack of users in
sparsely populated regions, the anonymous region will fail
to be constructed. Our proposed privacy technique works
well for both sparse and dense regions. It considers the
distance between the real destination and its neighbour-
ing destinations to construct a cloaked region that satis-
fies k anonymity and ensures that the destinations in the
cloaked region are not clustered together.

15

8.5 Parking Occupancy Detection

Monitoring and sensing parking spaces approaches have
been presented in order to track free parking spaces at
any time. For instance, SFpark [2] installs sensors on
streets to detect and provide real-time parking availability.
ParkNet [3] uses ultrasonic sensor technology on a vehicle
door to collect parking availability information and then
build a real-time map for drivers. Although these solutions
increase the probability of finding vacant spaces on streets,
they have several shortcomings. First, the cost involved in
deploying and maintaining the sensor infrastructure is high.
Second, all drivers see the same parking availability map at
any given time, and many of them will compete for the same
spaces. This parking contention problem leads to traffic
congestion and frustrating driving/parking experience.

An alternative proposal to the process of finding parking
spaces is relying on estimated/predicted information. Au-
thors in [45] used wireless ad hoc networking to estimate the
probability of successful parking within a certain distance
from the current location. Authors in [4] proposed an online
parking guidance system that recommends parking spaces
in real-time based on parking availability prediction. Park-
ing payment terminals are also used in [46] to disseminate
information about available parking spaces. While this type
of work may be useful for guiding drivers to a region where
they have a high likelihood to find a free parking space, it
can also lead to parking contention and traffic congestion.

DFPS differs from the above research in three aspects.
First, DFPS does not rely on expensive infrastructure, but on
cooperative mobile phones, which is a cheaper, more conve-
nient, and more flexible alternative. Second, DFPS allocates
parking spaces to drivers to reduce parking contention,
which improves the parking effectiveness when multiple
drivers are looking for parking in the same region. Third,
to the best of our knowledge, DFPS is the first such system
to protect the privacy of drivers’ destinations without help
from a trusted third-party.

9 C O N C L U S I O N

This article presented DFPS, a cost-effective and efficient
distributed mobile system for parking assignment that can
be implemented and deployed in real-life settings. DFPS
uses the smart phones of the drivers to offload the compu-
tation of parking request assignments from a central server,
and thus the assignment process becomes scalable in real-
time. Parked drivers cooperate to serve parking requests
in a distributed fashion while optimizing the social wel-
fare of the whole system, i.e., minimizing the total travel
time. DFPS protects the privacy of the drivers’ destinations
through a novel entropy-based cloaking technique, which
guarantees k anonymity. The simulation results demon-
strated that DFPS is scalable, effectively reduces the av-
erage travel time, and achieves better performance than
a centralized system. Furthermore, the results show that
achieving destination privacy does not hurt the travel time
performance.

AC K N OW L E D G M E N T

This research was supported by the National Science Foun-
dation (NSF) under Grants No. D G E 1565478, SHF 1617749,

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

and C N S 1801430. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF.

R E F E R E N C E S

[1] A . Hakeem, N. Gehani, R. Curtmola, X. Ding, and C. Borcea,
“Cooperative System for Free Parking Assignment,” in Proceedings
of the IEEE Vehicular Networking Conference (VNC), 2017, pp. 319–
326.

[2] “SFpark,” https://sfpark.org, San Francisco, C A , USA, [Online;
accessed 02-April-2020].

[3] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue,
M. Gruteser, and W. Trappe, “ParkNet: Drive-by Sensing of Road-
side Parking Statistics,” in Proceedings of the 8th International Con-
ference on Mobile Systems, Applications, and Services (MobiSys), 2010,
pp. 123–136.

[4] K . S. Liu, J. Gao, X. Wu, and S. Lin, “On-Street Parking Guidance
with Real-Time Sensing Data for Smart Cities,” in Proceedings of
the 15th Annual IEEE International Conference on Sensing, Communi-
cation, and Networking (SECON), June 2018, pp. 1–9.

[5] A . Hakeem, N. Gehani, X. Ding, R. Curtmola, and C. Borcea, “On-
The-Fly Curbside Parking Assignment,” in Proceedings of the 8th
EAI International Conference on Mobile Computing, Applications and
Services, ser. MobiCASE’16, 2016, pp. 1–10.

[6] J. Ni, K . Zhang, Y. Yu, X. Lin, and X. Shen, “Privacy-Preserving
Smart Parking Navigation Supporting Efficient Driving Guidance
Retrieval,” I EEE Transactions on Vehicular Technology, vol. 67, no. 7,
pp. 6504–6517, July 2018.

[7] J. Ni, X. Lin, and X. Shen, “Toward Privacy-Preserving Valet Park-
ing in Autonomous Driving Era,” I EEE Transactions on Vehicular
Technology, vol. 68, no. 3, pp. 2893–2905, 2019.

[8] E. Nardelli, “Distributed K - D Trees,” in Proceedings 16th Conference
of Chilean Computer Science Society (SCCC’96), 1996, pp. 142–154.

[9] B.Gedik and L. Liu, “Location Privacy in Mobile Systems: A
Personalized Anonymization Model,” in Proceddings of the 25th
IEEE International Conference on Distributed Computing Systems
(ICDCS’05), June 2005, pp. 620–629.

[10] F. Dürr, P. Skvortsov, and K. Rothermel, “Position Sharing for Lo-
cation Privacy in Non-Trusted Systems,” in Proceedings of the IEEE
International Conference on Pervasive Computing and Communications
(PerCom), March 2011, pp. 189–196.

[11] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and
J.-Y. Le Boudec, “Protecting Location Privacy: Optimal Strategy
Against Localization Attacks,” in Proceedings of the ACM Confer-
ence on Computer and Communications Security. Association for
Computing Machinery, 2012, p. 617–627.

[12] H. Kido, Y. Yanagisawa, and T. Satoh, “An Anonymous Commu-
nication Technique using Dummies for Location-based Services,”
in Proceedings of the ICPS ’05. International Conference on Pervasive
Services, 2005., 2005, pp. 88–97.

[13] C. Huang, R. Lu, X. Lin, and X. Shen, “Secure Automated
Valet Parking: A Privacy-Preserving Reservation Scheme for Au-
tonomous Vehicles,” I EEE Transactions on Vehicular Technology,
vol. 67, no. 11, pp. 11 169–11 180, Nov 2018.

[14] L . Zhu and M. L i and Z. Zhang and Z. Qin, “Asap: An anonymous
smart-parking and payment scheme in vehicular networks,” I EEE
Transactions on Dependable and Secure Computing, vol. 17, no. 4, pp.
703–715, 2020.

[15] L . Ni, F. Tian, Q. Ni, Y. Yan, and J. Zhang, “An anonymous
Entropy-based Location Privacy Protection Scheme in Mobile So-
cial Networks,” EURASIP Journal on Wireless Communications and
Networking, vol. 2019, no. 1, p. 93, Apr 2019.

[16] M. Behrisch, L . Bieker, J. Erdmann, and D. Krajzewicz, “SUMO
- Simulation of Urban MObility: An overview,” in Proceedings of
the Third International Conference on Advances in System Simulation
(SIMUL), 2011, pp. 63–68.

[17] A. Montresor and M. Jelasity, “PeerSim: A Scalable P2P Simu-
lator,” in Proceedings of the IEEE Ninth International Conference on
Peer-to-Peer Computing, 2009, pp. 99–100.

[18] “Blockchain Smartphones - Going Mobile,” https:
//innovationatwork.ieee.org/blockchain-smartphones-going-
mobile/.

[19] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation Onion Router,” in Proceedings of the 13th Conference on
U S E N I X Security Symposium - Volume 13, 2004, p. 21.

16

[20] M. Gruteser and B. Hoh, “On the Anonymity of Periodic Location
Samples,” in Proceedings of the Security in Pervasive Computing, 2005,
pp. 179–192.

[21] T. Xu and Y. Cai, “Location Anonymity in Continuous Location-
Based Services,” in Proceedings of the 15th Annual ACM International
Symposium on Advances in Geographic Information Systems, 2007.

[22] X. Chen and J. Pang, “Measuring Query Privacy in Location-based
Services,” in Proceedings of the Second ACM Conference on Data and
Application Security and Privacy, 2012, pp. 49–60.

[23] C.-Y. Chow and M. F. Mokbel, “Enabling Private Continuous
Queries for Revealed User Locations,” in Proceedings of the 10th In-
ternational Conference on Advances in Spatial and Temporal Databases,
2007, pp. 258–273.

[24] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The New Casper:
Query Processing for Location Services Without Compromising
Privacy,” in Proceedings of the 32Nd International Conference on Very
Large Data Bases, 2006, pp. 763–774.

[25] L . Sweeney, “K-anonymity: A Model for Protecting Privacy,” Int.
J. Uncertain. Fuzziness Knowl.-Based Syst., pp. 557–570, 2002.

[26] P. Kalnis, G. Ghinita, K . Mouratidis, and D. Papadias, “Preventing
Location-based Identity Inference in Anonymous Spatial Queries,”
I EEE transactions on knowledge and data engineering, vol. 19, no. 12,
pp. 1719–1733, 2007.

[27] C.-Y. Chow, M. F. Mokbel, and X. Liu, “A Peer-to-peer Spatial
Cloaking Algorithm for Anonymous Location-based Service,” in
Proceedings of the 14th Annual ACM International Symposium on
Advances in Geographic Information Systems, 2006, pp. 171–178.

[28] G. Ghinita, P. Kalnis, and S. Skiadopoulos, “MobiHide: A Mobilea
Peer-to-Peer System for Anonymous Location-Based Queries,”
in Proceedings of the Advances in Spatial and Temporal Databases.
Springer Berlin Heidelberg, 2007, pp. 221–238.

[29] C. Zhang and Y. Huang, “Cloaking Locations for Anonymous
Location Based Services: A Hybrid Approach,” GeoInformatica,
vol. 13, no. 2, pp. 159–182, Jun 2009. [Online]. Available:
https://doi.org/10.1007/s10707-008-0047-2

[30] M. E. Andrés, N. E. Bordenabe, K . Chatzikokolakis, and
C. Palamidessi, “Geo-indistinguishability: Differential privacy for
location-based systems,” in Proceedings of the ACM SIGSAC Confer-
ence on Computer Communications Security, 2013, p. 901–914.

[31] G. Tsatsanifos, D. Sacharidis, and T. Sellis, “MIDAS: Multi-
Attribute Indexing for Distributed Architecture Systems,” in Ad-
vances in Spatial and Temporal Databases. Springer, 2011, pp. 168–
185.

[32] D. Ayala, O. Wolfson, B. Xu, B. Dasgupta, and J. Lin, “Parking
Slot Assignment Games,” in Proceedings of the 19th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems, 2011, pp. 299–308.

[33] R. W. Bohannon, A. W. Andrews, and M. W. Thomas, “Walking
Speed: Reference Values and Correlates for Older Adults,” Journal
of Orthopaedic & Sports Physical Therapy, vol. 24, no. 2, pp. 86–90,
1996.

[34] D. Ayala, O. Wolfson, B. Xu, B. DasGupta, and J. Lin, “Pricing of
Parking for Congestion Reduction,” in Proceedings of the 20th Inter-
national Conference on Advances in Geographic Information Systems,
2012, pp. 43–51.

[35] E. Alfonsetti, P. C. Weeraddana, and C. Fischione, “A Semi Dis-
tributed Approach for Min-Max Fair Car-Parking Slot Assignment
Problem,” arXiv preprint arXiv:1401.6210, 2014.

[36] L . Wang, X. Lin, E. Zima, and C. Ma, “Towards Airbnb-Like
Privacy-Enhanced Private Parking Spot Sharing Based on
Blockchain,” I EEE Transactions on Vehicular Technology, vol. 69,
no. 3, pp. 2411–2423, 2020.

[37] W. A. Amiri, M. Baza, K . Banawan, M. Mahmoud, W. Alasmary,
and K. Akkaya, “Privacy-Preserving Smart Parking System Using
Blockchain and Private Information Retrieval,” in Proceedings of the
International Conference on Smart Applications, Communications and
Networking (SmartNets), 2019, pp. 1–6.

[38] R. Lu, X. Lin, H. Zhu, and X. Shen, “An Intelligent Secure and
Privacy-Preserving Parking Scheme Through Vehicular Commu-
nications,” I EEE Transactions on Vehicular Technology, vol. 59, no. 6,
pp. 2772–2785, July 2010.

[39] T. W. Chim, S. M. Yiu, L . C. K . Hui, and V. O.K. Li, “VSPN:
VANET-Based Secure and Privacy-Preserving Navigation,” I EEE
Transactions on Computers, vol. 63, no. 2, pp. 510–524, 2014.

[40] W. Cho, Y. Park, C. Sur, and K. Rhee, “An Improved Privacy-
Preserving Navigation Protocol in {VANET}s,” J. Wirel. Mob. Net-
works Ubiquitous Comput. Dependable Appl., vol. 4, pp. 80–92, 2013.

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3080222

I E E E TRANSACTIONS ON MOBILE COMPUTING

[41] C. Sur, Y. Park, and K. H. Rhee, “An Efficient and Secure
Navigation Protocol Based on Vehicular Cloud,” Int. J. Comput.
Math., vol. 93, no. 2, p. 325–344, Feb. 2016. [Online]. Available:
https://doi.org/10.1080/00207160.2014.934685

[42] G. Ghinita, P. Kalnis, A . Khoshgozaran, C. Shahabi, and K.-L.
Tan, “Private Queries in Location Based Services: Anonymizers
Are Not Necessary,” in Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’08.
ACM, 2008, pp. 121–132.

[43] Y. Cao, Y. Xiao, L . Xiong, L . Bai, and M. Yoshikawa, “Protecting
Spatiotemporal Event Privacy in Continuous Location-Based Ser-
vices,” I EEE Transactions on Knowledge and Data Engineering, pp.
1–1, 2019.

[44] O. Abul, F. Bonchi, and M. Nanni, “Never Walk Alone: Uncer-
tainty for Anonymity in Moving Objects Databases,” in Proceedings
of the 24th IEEE International Conference on Data Engineering, April
2008, pp. 376–385.

[45] V. Verroios, V. Efstathiou, and A. Delis, “Reaching Available Public
Parking Spaces in Urban Environments Using Ad Hoc Network-
ing,” in Proceedings of the IEEE 12th International Conference on
Mobile Data Management, 2011, pp. 141–151.

[46] M. Caliskan, D. Graupner, and M. Mauve, “Decentralized Discov-
ery of Free Parking Places,” in Proceedings of the 3rd International
Workshop on Vehicular Ad Hoc Networks, 2006, pp. 30–39.

Abeer Hakeem is an Assistant Professor in the
department of Information Technology at King
Abdulaziz University (KAU), Saudi Arabia. She
received a P.h.D degree in Computer Science
from New Jersey Institute of Technology (NJIT).
Her research interests include wireless network-
ing, vehicular networking, mobile computing, lo-
cation based services, and distributed systems.

17

Reza Curtmola is a Professor of Computer Sci-
ence at NJIT. He received a Ph.D. degree in
Computer Science from The Johns Hopkins Uni-
versity. His research focuses on the security of
cloud services, security of the software supply
chain, and applied cryptography. He is the recip-
ient of the NS F C A R E E R award and has partic-
ipated in several other projects funded by NS F
and DARPA. Dr. Curtmola has published over 65
papers under the umbrella of cybersecurity.

Xiaoning Ding is an Associate Professor in the
Department of Computer Science at NJIT. His in-
terests are in the area of experimental computer
systems, such as distributed systems, virtualiza-
tion, operating systems, and storage systems.
He earned his Ph.D. degree in computer science
and engineering from the Ohio State University.

Cristian Borcea is a Professor in the Depart-
ment of Computer Science at NJIT. He is also a
Visiting Professor at the National Institute of
Informatics in Tokyo, Japan. His research inter-
ests include mobile computing and sensing, ad
hoc and vehicular networks, distributed systems,
and cloud computing. Borcea received his Ph.D.
degree from Rutgers University in 2004. He is a
member of the ACM and IEEE.

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

