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In this work, we study the existence and stability of constant density (flat-top) solutions to the Gross-Pitaevskii

equation (GPE) in confining potentials. These are constructed by using the “inverse problem” approach which

corresponds to the identification of confining potentials that make flat-top waveforms exact solutions to the GPE.

In the one-dimensional case, the exact solution is the sum of stationary kink and antikink solutions, and in the

overlapping region, the density is constant. In higher spatial dimensions, the exact solutions are generalizations of

this wave function. In the absence of self-interactions, the confining potential is similar to a smoothed-out finite

square well with minima also at the edges. When self-interactions are added, terms proportional to ±gψ∗ψ

and ±gM with M representing the mass or number of particles in Bose-Einstein condensates get added to the

confining potential and total energy, respectively. In the realm of stability analysis, we find (linearly) stable

solutions in the case with repulsive self-interactions which also are stable to self-similar deformations. For

attractive interactions, however, the minima at the edges of the potential get deeper and a barrier in the center

forms as we increase the norm. This leads to instabilities at a critical value of M. Comparing the stability

criteria from Derrick’s theorem with Bogoliubov-de Gennes (BdG) analysis stability results, we find that both

predict stability for repulsive self-interactions and instability at a critical mass M for attractive interactions.

However, the numerical analysis gives a much lower critical mass. This is due to the emergence of symmetry-

breaking instabilities that were detected by the BdG analysis and violate the symmetry x → −x assumed by

Derrick’s theorem.

DOI: 10.1103/PhysRevE.107.064202

I. INTRODUCTION

The study of Bose-Einstein condensates (BECs) [1,2] plays

a fundamental role in many investigations related to address-

ing timely questions in physics. Indeed, it has recently been

suggested that some fundamental questions concerning the

unification of the theory of general relativity and quantum

mechanics can be explored by considering the gravitational

interaction between two BECs [3]. One problem that has

been less studied in the BEC literature, and which has been

an experimental challenge, is how one can confine BECs in

configurations which have constant density. Efforts in this

direction through the use of an optical box trap have been

reported by Gaunt et al. [4] and by Lin et al. [5] for a BEC

in a uniform light-induced vector potential. Morever, flat-top

solitary waves have been found in not only nonlinear optics

[6,7] but also in cubic-quintic nonlinear media [8] and in

cubic nonlinear media with non-Hermitian potentials [9]. The
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numerical investigations in Ref. [10] suggest the existence of

linearly stable flat-top solutions which can be obtained by

spatially modulating the cubic nonlinear interaction. Exact

one-dimensional flat-top solitons have also been found in

the cubic-quintic nonlinear Schrödinger equation (NLSE) by

Konar et al. [11], and their stability in harmonic traps has been

studied in a variational approximation by Baizakov et al. [12].

The analytic form we take for the flat-top soliton is the

well-known kink-antikink wave function and its generaliza-

tions in higher spatial dimensions. In the context of compact

domains this type of flat-top soliton is called a “kovaton” and

was first discovered numerically by Pikovsky and Rosenau

[13,14] in the so-called K (cos) equation:

∂t u + ∂x cos u + ∂xxx cos u = 0. (1)

We use the “inverse problem” method to determine the con-

fining potential which makes this analytic form to be an exact

solution of the Gross-Pitaevskii equation (GPE) in this ex-

ternal potential. This method has previously been used by

Malomed and Stepanyants [15] to determine potentials that

have Gaussian-like exact solutions. In our recent paper [16],

we adopted this “inverse problem” method (that we called

“reverse engineering” method) and explored blowup in the

NLSE with arbitrary nonlinearity by considering Gaussian

initial data. In that setting we were able to compare analytic
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results for blowup found using a generalized Derrick’s theo-

rem exploiting an energy landscape as well as a variational

method and a numerical linear stability analysis. We found

that the criteria for instabilities to set in were reasonably well

captured by the energy landscape approach and the variational

method.

In this paper we start with the GPE [17,18] (i.e., the NLSE

in an external potential) and first construct a simple wave

function (kink-antikink and its generalizations) that has a

constant density in one, two, and three spatial dimensions

[respectively denoted as one-dimensional (1D), 2D, and 3D,

hereafter]. We then determine the confining potential which

makes this wave function an exact solution by the inverse

method. After finding these potentials, we numerically study

their stability by using spectral stability [or Bogoliubov–de

Gennes (BdG)] analysis [19]. We also study their stability

with respect to self-similar deformations of the wave functions

(Derrick’s theorem) [20]. Both approaches lead to the conclu-

sion that when the self-interactions are repulsive, the solutions

are stable (these are the dark solitons commonly found in most

BECs). For the case of attractive self-interactions, for which

the NLSE supports bright solitons found in 7Li BECs [21], our

analysis shows there is a critical mass M related to the number

of atoms N in the BEC above which the solution becomes

unstable. The numerical analysis shows that the most unstable

modes break parity symmetry and that the soliton then travels

toward the boundary of the confining potential. For the flat-top

bright solitons, Derrick’s theorem is not a useful guide in

predicting when the soliton becomes unstable as a function

of M. This is due to the fact that the second derivative of the

energy functional with respect to the scaling parameter β is

always positive at β = 1 for fixed M (here β is the scaling

parameter x → βx). Therefore we cannot use the criteria that

this derivative becoming zero determines the critical mass. A

variant of Derrick’s theorem which studies how the energy

landscape changes when we vary the position of one of the

kinks gives results more in accord with the numerics. This

is in sharp contrast to the case of Gaussian solitons, where

Derrick’s theorem gave an excellent estimate of a critical mass

for blowup [16].

The trapping potentials that we find by the “inverse

method” consist of two terms. The first term is present in the

linear Schrödinger equation and is similar to a finite “square

well” and its generalizations, except the hard edges of the

potential are smoothed out. There are also shallow minima

near the edges of the potential. The second term therein is

proportional to ±|ψ (x, t )|2, which depends on the norm M

or number of particles N . In the repulsive case the second

term makes the well progressively deeper, and the flat-top

solutions are always stable. In the attractive case the second

term adds a positive term proportional to the density which

makes the minimum at the edges deeper, and starts a barrier at

the center of the potential. This leads to the instability of the

solution. We want to stress that in this paper the treatment of

the BEC is purely classical. Quantum fluctuations around the

BEC solution will also play a role in the stability of the BEC,

such as losses to the continuum. That will be the subject of a

future study.

The paper is organized as follows. In Sec. II, we present

the general methodology to construct exact flat-top soliton

solutions to the GPE in any spatial dimension by using the

inverse problem method. Then Sec. III presents the 1D flat-top

soliton solutions together with their stability analysis results

emanating from Derrick’s theorem as well as the energy land-

scape as a function of a collective position coordinate for one

of the kinks which breaks the parity symmetry. In Sec. IV, we

consider 2D square and radial flat-top soliton solutions, and

similarly to Sec. III, we utilize Derrick’s theorem to discuss

their stability. The stability analysis results of Secs. III and

IV are compared with numerical results that are presented in

Sec. V. We briefly discuss the generalization of our approach

to 3D flat-top solitons in Sec. VI, and in Sec. VII, we state our

conclusions.

II. FINDING EXACT FLAT-TOP SOLITON SOLUTIONS

BY THE INVERSE PROBLEM METHOD

The time-dependent NLSE with an external potential [or

the GPE] is given by

{−∇2 + g|ψ (r, t )|2 + V (r)}ψ (r, t ) = i∂tψ (r, t ), (2)

where ψ (r, t ) ∈ C is the wave function and ∇2 is the Lapla-

cian operator in the respective spatial dimension. The real-

valued function V (r) is the external potential in the NLSE.

For this form of the equation, g > 0 refers to the repulsive

case pertinent to the study of most BECs. On the other hand,

the case with g < 0 is the one usually studied in connection

with blowup of bright solitons in the NLSE [22].

Suppose that u(r) ∈ R is the solution to Eq. (2) at t = 0. If

we assume a time-dependent solution for ψ (r, t ) given by the

separation of variables ansatz:

ψ (r, t ) = u(r)e−iωt , (3)

then Eq. (2) is written as:

ωu(r) + ∇2u(r) − gu2(r)u(r) = V (r)u(r). (4)

If we have an analytic expression for u(r), then we can find the

potential that makes u(r) an exact solution to Eq. (4) and thus

to Eq. (2) through Eq. (3). We note in passing that Eq. (4) can

be directly compared with the time-independent GPE for the

condensate wave function [17,18] (see Appendix A for units)

given by:
{

−
h̄2

2m
∇2 + V (r) + U0u2(r)

}

u(r) = μu(r), (5)

where U0 = 4π h̄2as/m is the coupling constant and as is the

s-wave scattering length of two interacting bosons. The norm

of the wave function, denoted by M is a constant of motion

and is given by

M =
∫

dru2(r). (6)

Thus ω can be identified with the chemical potential μ and

the norm M with the particle number N up to a rescaling.

Throughout this paper, we will use M and N interchangeably.

For a given u(r), exact solutions to Eq. (4) are possible

provided that we can find a well-behaved external potential

function V (r) such that

V (r) = ω + [∇2u(r)]/u(r) − gu2(r). (7)
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In our inverse problem method, the density ρ(r) = u2(r) is

specified a priori and does not depend on ω. As a result,

this determines a V (r) from Eq. (7) so that u(r)e−iωt is an

exact solution of the NLSE. Although changing ω shifts the

potential by a constant, this shift has no effect on the stability

of the solutions, so for convenience we will set ω = ω0 in all

our plots, where ω0 is chosen so that V (r) → 0 as r → ∞.

For arbitrary ω, the potential as well as the energy per particle

gets shifted by ω − ω0.

The conserved energy for solutions of Eq. (2) is given by

E [ψ,ψ∗] =
∫

dr{|∇ψ |2 + (g/2)|ψ |4 + V (r)|ψ |2}, (8)

and the conserved particle number by

M[ψ,ψ∗] =
∫

dr|ψ |2. (9)

Varying the energy E [ψ,ψ∗] while holding the normalization

M[ψ,ψ∗] constant leads to the time-independent GPE [cf.

Eq. (5)] with Lagrange multiplier μ.

III. FLAT-TOP SOLITONS IN ONE DIMENSION

In one spatial dimension (1D), we create a flat-top soliton

by the following combination of kink and antikink solutions:

u(x) = A[tanh(q − x) + tanh(q + x)], (10)

where A and 2q are its amplitude and width, respectively. The

conserved particle number is given by

M = 4A2[2q coth(2q) − 1], (11)

which fixes A in terms of M and q of the distribution. We thus

find

ρ(x) = u2(x)

=
M sinh2(2q)sech2(q − x)sech2(q + x)

4(2q coth(2q) − 1)
. (12)

To determine the 1D potential in this case, we substitute

Eq. (10) into Eq. (7) and obtain:

V (x) = V0(x) − gρ(x),

V0(x) = ω +
cosh(4x) − 2 cosh(2q) cosh(2x) − 3

2[cosh2(q) + sinh2(x)]2
. (13)

Here we choose ω = −4 so that V (x) → 0 as x → ±∞.

In Fig. 1, we summarize our analytical results for the 1D

case. In particular, we present the condensate density ρ(x) =
u2(x) in Fig. 1(a) for M = 1, 5, 10 with q = 5. Figures 1(b)

and 1(c) depict the confining potentials for (b) g = 1 and (c)

g = −1, respectively, and for various values of the particle

number M (see the legends therein). We see that for the

repulsive case the potential is progressively morphed into a

finite square-well potential, whereas for the attractive case the

minima near ±q get deeper, and a barrier forms in the center.

The energy per particle is the sum of three terms: e(q) =
e1(q) + e2(q) + e3(q) with

e1(q) =
∫

dx[u′(x)]2/M =
csch3(2q)[−24q cosh(2q) + 9 sinh(2q) + sinh(6q)]

6(2q coth(2q) − 1)
, (14a)

e2(q, M ) =
g

2

∫

dxu4(x)/M =
gMcsch3{2q[q(9 cosh(2q) + cosh(6q)] − 27 sinh(2q) − 11 sinh(6q)}

48(2q coth(2q) − 1)2
, (14b)

e3(q) =
∫

dxV (x)u2(x)/M =
∫

dx[ωu2 − gu4 + uu′′]/M = ω − 2e2(q) − e1(q), (14c)

where in the last term we have used Eq. (4) and integrated by

parts. The resulting energy per particle is then given by

e(q) = e1(q) + e2(q, M ) + ω − 2e2(q, M ) − e1(q)

= ω − e2(q, M ). (15)

In Fig. 2, we show the energy per particle as a function of q

emanating from Eq. (15) for values of M = 1 and g = ±1.

A. Stretching instability

Derrick’s theorem [20] gives a criterion for stability of a

solution of Schrödinger’s equation under a rescaling x → βx

in the soliton wave function keeping the mass M fixed. This

transformation is a self-similar transformation. For all the

exact solutions we present here, we find that for the repulsive

case, the energy of the stretched (or contracted) solution is

always a minimum at the exact solution value β = 1. How-

ever, for the attractive case the energy as a function of β

shows an instability as we increase M in that at β = 1 the

minimum gets progressively shallower and the energy has an

inflection point near β = 1. Note that for this problem, where

V is considered an external potential, the confining potential

is actually different for each value of M.

For the stretched wave function, we have:

u(x, β, M ) = A(β, M )[tanh(q − βx) + tanh(q + βx)], (16)

where now

A(β, M ) =

√

βM

4[2q coth(2q) − 1]
. (17)

The external potential V (x) is held fixed and is given by:

V (x) = V0(x) − gu2
0(x), (18)

where V0(x) is given by (13) and u0(x) is fixed by

u0(x, M ) = A0(M )[tanh(q − x) + tanh(q + x)], (19)
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FIG. 1. One-dimensional condensate density ρ(x) and potentials

V (x) for q = 5 and ω = −4 for g = ±1.

with

A0(M ) =

√

M

4[2q coth(2q) − 1]
, (20)
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FIG. 2. The 1D energy per particle as a function of q with ω =
−4 and M = 1 for g = ±1.
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FIG. 3. The 1D energy h(β ) as a function of β for g = ±1 and

for M0 = 1.

and is independent of β. On using the notation hi(β, M ) =
Ei(β, M )/M, the energy per particle of the stretched wave

function [cf. Eq. (16)] is the sum of three terms: h(β, M ) =
h1(β, M ) + h2(β, M ) + h3(β, M ) where we consider ω0 =
−4 as before. These terms are given explicitly by:

h1(β, M ) =
∫

dx[u′(x, β, M )]2/M = β2e1(q), (21a)

h2(β, M ) =
g

2

∫

dxu4(x, β, M )/M = βe2(q), (21b)

h3(β, M ) =
∫

dxV (x)u2(x, β, M )/M

= j1(β, M ) − j2(β, M ), (21c)

where e1(q) and e2(q) are given by Eqs. (14a) and (14b),

respectively, and j1(β, M ) and j2(β, M ) are just numeric and

given by the integrals:

j1(β, M ) =
∫ ∞

−∞
dxV0(x)u2(x, β, M )/M, (22a)

j2(β, M ) = g

∫ ∞

−∞
dxu2

0(x, M )u2(x, β, M )/M, (22b)

where V0(x) is given in (13). In Fig. 3 we present h(β, M ) as

a function of β for q = 5 and g = ±1 for various values of

M (see the legend therein). For the repulsive case with g = 1

shown in Fig. 3(b), there is a distinct minimum at β = 1,

and so Derrick’s theorem predicts that this system is stable

for all values of M. For the attractive self-interaction case

with g = −1 shown in Fig. 3(a), it is not clear that there is a
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minimum at β = 1 for large values of M. It can be discerned

from the figure that there is a minimum of the potential for

M = 1 although the minimum gets exceedingly narrow in its

width and depth for M = 10 and M = 20. For M = 1, the

minimum is at β = 1 with a minimum value of h(1, 1) ≈
−3.94959, and the latter agrees with the exact value of the en-

ergy at q = 5 and M = 1. Similarly, for M = 20, h(1, 20) ≈
−2.99177, which also agrees with the exact energy calcula-

tion. Since the second derivative remains positive for all M

(see Appendix B), we cannot use the criterion of the second

derivative vanishing at β = 1 to determine a critical mass Mc.

However, from the curves h(β, M ) it is clear that even when

M = 10 the solution is unstable to be driven to larger β by a

small perturbation (i.e., blowup).

The numerical stability simulations we have performed in

Sec. V indicate that for the attractive self-interaction (g =
−1), the flat-top soliton becomes unstable at considerably

smaller values of M than we could expect from the energy

landscape as a function of β. The instability breaks the x →
−x symmetry and it involves a solution at the minimum at

x = q for a slight deformation in the positive x direction.

B. Translational instability

Because the numerics indicate that there is a parity-

violating instability, we would like to see if the flat-top soliton

is stable to an asymmetric translation of the wave function

u(x, q, a, M ) = A(M )[tanh(q + a − x) + tanh(q + x)],

A(M ) =

√

M

4[2(q + a/2) coth(2q + a) − 1]
, (23)

while keeping the particle number M fixed. We have consid-

ered a symmetric version of this transformation previously in

Refs. [16,23].

There, it was shown that the critical particle number Mc

found using this method is the same as that found by studying

the stability of small oscillations in a four collective coor-

dinate approximation to the dynamics of a perturbed wave

function and then setting the oscillation frequency of the

translational parameter q(t ), i.e., ωq to zero. We now cal-

culate the energy as a function of a holding M fixed. The

confining potential V (x) is given in Eq. (18). The energy per

particle number M is again the sum of three terms: h(a, M ) =
h1(M ) + h2(M ) + h3(a, M ) with h1(M ) and h2(M ) being un-

changed by the asymmetric shift. As a result, the dependence

on a only involves the h3(a, M ) term:

h3(a, M ) =
∫ ∞

−∞
dxV (x)u2(x, a, M )/M

= j1(a, M ) − j2(a, M ), (24)

where j1(a, M ) and j2(a, M ) are given by the integrals:

j1(a, M ) =
∫ ∞

−∞
dxV0(x)u2(x, a, M )/M, (25a)

j2(a, M ) = g

∫ ∞

−∞
dxu2

0(x, M )u2(x, a, M )/M, (25b)

which are determined numerically with V0(x) given by

Eq. (13).
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FIG. 4. Plot of h3(a, M ) for the 1D case for g = ±1.

The results are shown in Fig. 4. The flat-top soliton looks

unstable for both g = +1 and g = −1 for large M. For the

latter case (g = −1) there is a critical mass M for which

the minimum starts moving away from a = 0. For q = 5 this

occurs when M = 1.63. To show this effect we plot h3(a) as

a function of a at M = 2, which is shown in Fig. 5. For that

case we find the minimum occurs at a = 0.023 showing that

the right-hand side of the flat-top soliton wants to move to the

right.

Thus we see that if we choose a collective coordinate that

shifts just the position of the kink making up the right side of

the flat-top soliton (here a is proxy for the position of the kink

on the right side of the flat-top soliton) (x > 0), then it will

start moving to the right once it is perturbed with M > 1.63.

So this crude way of taking into account that numerical simu-

lations show that the mechanism that determines the onset of
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FIG. 5. Plot of h3(a) for M = 2 for the 1D case for g = −1. The

minimum is at a = 0.023.
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FIG. 6. V (x, y) for the square flat-top soliton with q = 5.

instabilities breaks parity invariance. This type of instability

sets in much sooner (as a function of M) compared to the case

of the usual self-similar blowup instability of the NLSE in the

absence of a confining potential.

IV. FLAT-TOP SOLITONS IN TWO SPATIAL DIMENSIONS

In this section we turn our attention to 2D flat-top soliton

solutions. The latter appear in two distribution types: square

and radial shapes.

A. The 2D square flat-top soliton

Motivated by the 1D flat-top soliton solution of Eq. (10),

one can generalize this in 2D to be a square flat-top soliton

solution which is the product of 1D flat-top soliton solutions

in the x and y directions. That is, the wave function for the 2D

square flat-top soliton solution is given by:

u(x, y) = A(q)[tanh(q − x) + tanh(q + x)]

× [tanh(q − y) + tanh(q + y)], (26)

where the amplitude in terms of M is

A(q) =
√

M

4[2q coth(2q) − 1]
. (27)

FIG. 7. The density ρ(x, y) for the square, flat-top soliton with

q = 5 and M = 1.

As in the 1D case, we can now find a potential in 2D that

makes Eq. (26) an exact solution. Indeed, the confining poten-

tial in question is as follows:

V (x, y) = V0(x, y) + ω − gu2(x, y),

V0(x, y) = −2csch(2q)

× [cosh(q + x)sech(q − x) tanh(q − x)

+ cosh(q − x)sech(q + x) tanh(q + x)

+ cosh(q + y)sech(q − y) tanh(q − y)

+ cosh(q − y)sech(q + y) tanh(q + y)], (28)

where we select ω = −8 so that V (x, y) → 0 at |x|, |y| → ∞.

We display V (x, y) in Fig. 6. We again see that for the linear

Schrödinger equation, the potential needed to confine a flat-

top soliton solution is similar to a finite square well in two

dimensions. It is further rounded out at the edges and has

its true minimum near the boundary of the well. The density

ρ(x, y) for M = 1 and q = 5 is shown in Fig. 7.

For the repulsive self-interaction, g = 1 the interaction

term deepens the well, whereas for the attractive case again,

it causes the minimum of the potential at the edges to deepen

and a barrier to rise away from the edge. However, until M

gets quite large the self-interaction term is small compared to

V0(x, y).

We now proceed similar to the 1D case. The energy per par-

ticle is the sum of three terms: e(q) = e1(q) + e2(q) + e3(q).

We find:

e1(q) =
∫∫

dxdy[∇u(x, y)]2/M =
2csch2(2q)[5 + cosh(4q) − 12q coth(2q)]

3(2q coth(2q) − 1)
, (29a)

e2(q, M ) =
g

2

∫∫

dxdyu4(x, y)/M =
gMcsch6(2q){−12q[9 cosh(2q) + cosh(6q)] + 27 sinh(2q) + 11 sinh(6q)}2

1152(2q coth(2q) − 1)4
, (29b)

e3(q) =
∫∫

dxdyV0(x, y)u2(x, y)/M = ω − 2e2(q, M ) − e1(q), (29c)
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FIG. 8. Plot of e(q) = E (q)/M for the 2D square case with ω =
−8, M = 20, and g = ±1. The red curve is for the attractive case

(g = −1).

where in the last term, we have used again the equations of

motion and performed integration by parts. The resulting en-

ergy per particle is then given by:

e(q) = ω − e2(q, M ), (30)

and is plotted in Fig. 8 as a function of q, and for g = ±1.

B. Derrick’s theorem for the 2D square flat-top soliton

For Derrick’s theorem in the 2D square case, we consider

the energy for the self-similar solution with xi → βxi while

keeping the mass M fixed. We get the same general picture

for h(β, M ) for g = ±1 as for the 1D case. For the repulsive

interactions, β = 1 is a minimum, whereas for the attractive

case, an inflection point develops at β > 1 as we increase M.

This is seen in Fig. 9.

Since Derrick’s theorem does not give a reliable value for

Mc we will not discuss this further.

C. Radially symmetric flat-top solitons in 2D

Another possibility for a 2D flat-top soliton is a radially

symmetric flat-top soliton solution of the form:

ψ (r, θ, t ) = u(r)e−iωt , u(r) ∈ R, (31)

(a) h(β, M) for g = 1

(b) h(β, M) for g = −1

FIG. 9. Plot of h(β, M ) for the 2D square case with g = ±1,

ω0 = −8, and M = 1, 10, 20, 50.

where

u(r) = A(M, q)[tanh(q − r) + tanh(q + r)]. (32)

In this case, its density is given by ρ(r) = u2(r), and the

particle number M is given by

M = 2π

∫ ∞

0

rdrρ(r) = 4πA2{−Li2[−e2q] coth(2q) − [q2 + (π2/12)] coth(2q) − log(e2q + 1) + q}, (33)

where Lin[x] is the PolyLog function of degree n [24]. Solving for A2(M, q), we find:

A2(M, q) =
M

4π{−Li2[−e2q] coth(2q) − [q2 + (π2/12)] coth(2q) − log(e2q + 1) + q}
. (34)

Substitution of Eq. (32) into (7) gives:

V (r) = V0(r) − gρ(r),

V0(r) = ω −
sech2(q − r)[1 + 2r tanh(q − r)] − sech2(q + r)[1 − 2r tanh(q + r)]

r[tanh(q − r) + tanh(q + r)]
, (35)

with ω = −4. In Fig. 10 we show the potential V (x, y) for q = 5. We see it is a round wastebasket-like potential which has a

slightly deeper minimum near the boundary at r = 5. Again for the repulsive case g = 1 the full potential gets deeper as we

increase M, whereas for the attractive case g = −1 the potential develops deeper minima near r = q as well as a barrier in the

middle. The plot of ρ(r) for q = 5, M = 20 is shown in the left panel of Fig. 11. The middle and right panels of the figure depict

the potential V (r) as a function of r for the case when g = ±1 with q = 5. The energy per particle of the round flat-top soliton
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is the sum of three terms: e(q) = e1(q) + e2(q) + e3(q). We find:

e1(q) = 2π

∫ ∞

0

rdr[∇u(r)]2/M

= −
16πe6q

3(e4q − 1)
3

A2(M, q)

M
{−12Li2(−e2q) cosh(2q) −

(

12q2 + π2
)

cosh(2q)

+ [q − log(e2q + 1)][9 sinh(2q) + sinh(6q)] + 8 sinh3(q) cosh(q)}, (36a)

e2(q) = gπ

∫ ∞

0

rdru4(r)/M

= −
4πA4(M, q)ge6q

3M(e4q − 1)3
{9(12q2 + π2) cosh(2q) + 12Li2(−e2q )[9 cosh(2q) + cosh(6q)]

+ (12q2 + π2) cosh(6q) − 2[q − log(e2q + 1)][27 sinh(2q) + 11 sinh(6q)]

− 16 sinh3(q)[2 cosh(q) + 3 cosh(3q)]}, (36b)

e3(q) = 2π

∫ ∞

0

rdrV (r)u2(r)/M = 2π

∫ ∞

0

rdr{ω0u2(r) − gu4(r) + u(r)[∇2u(r)]}/M = ω − 2e2(q) − e1(q), (36c)

where in the last term we have used the equations of motion and integrated by parts with A2(M, q) being given by (34). The

resulting energy per particle is then:

e(q) = e1(q) + e2(q) + ω − 2e2(q) − e1(q) = ω − e2(q), (37)

and is plotted in Fig. 12.

1. Derrick’s theorem for the 2D radial flat-top soliton

For Derrick’s theorem in 2D for the round case, we perform the transformation r → βr keeping the mass M fixed. That is,

we calculate the energy as a function of β and at a given M when the wave function has the form:

u(r, β, M ) = A(β, M )[tanh(q − βr) + tanh(q + βr)],

A2(β, M ) =
Mβ2

4π
{

−Li2[−e2q] coth(2q) −
[

q2 + π2

12

]

coth(2q) − log(e2q + 1) + q
} . (38)

The potential is fixed to be the potential of the problem with

β = 1. The results for the energy of the stretched flat-top

soliton as a function of β for different M are shown in Fig. 13.

Again we see the same qualitative behavior of h(β ). For the

repulsive case β = 1 is a minimum for all M, whereas there

is a critical value of M which is signaled by there being an

inflection point developing near β = 1 as we increase the

mass M.

FIG. 10. V (x, y) given by Eq. (35) for q = 5.

V. NUMERICAL ANALYSIS AND RESULTS

FOR THE 1D AND 2D GPES

In this section, we discuss the existence, stability, and

selective cases on the dynamics of flat-top soliton solutions

in 1D and 2D. In doing so, we consider first the steady-state

problem, i.e., the GPE of Eq. (4). The physical domains in 1D

and 2D, i.e., R and R
2 are truncated respectively into finite

ones: 	1D = [−L, L] and 	2D = [−L, L]2. We then introduce

a finite number of equidistant grid points in both cases with

lattice spacing 
x = 0.04 (with L = 40) for the 1D GPE,

and 
x = 0.06 (with L = 15) for the 2D one. The Laplacian

that appears in Eq. (4) [and equivalently in Eq. (2)] is re-

placed by fourth-order accurate, finite differences, where we

impose zero Dirichlet boundary conditions at the edges of the

computational domain, i.e., u|∂	1D,2D
= 0. With this approach,

we want to identify the numerically exact, flat-top soliton

solutions on the above computational grid in order to per-

form a spectral stability analysis followed by direct dynamical

simulations. It should be noted that one may use directly the

exact solution we presented in this work for performing a

spectral stability analysis but the calculation will suffer from

local truncation errors. The latter are avoided by finding the

numerically exact flat-top soliton solutions.
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FIG. 11. The radial density ρ(r) and potentials V (r) for g = ±1

for the 2D radial case with M = 20 and q = 5.

FIG. 12. Plot of e(q) for the 2D radial case with ω = −4, q = 5,

and M = 20. The repulsive case (g = +1) is given by the blue curve,

the attractive case (g = −1) is given by the red curve.
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FIG. 13. The energy of the stretched round 2D flat-top soliton

h(β ) as a function of β.

We identify numerically exact solutions (with strict toler-

ances of 10−12 on the convergence and residual errors) by

using Newton’s method where the associated Jacobian ma-

trix of the pertinent nonlinear equations is explicitly supplied

therein. We note in passing that the potential V (r) we consider

for our numerical simulations is given by Eq. (7), and the

u(r) that appears therein is replaced by the 1D and 2D (either

square or radial) flat-top soliton solutions of Eq. (10) as well

as Eqs. (26) and (32), respectively. The amplitude A of the

solution is expressed in terms of the mass M, rendering the

potential to be a function of M (the values of g, ω, and q

are fixed). Then for fixed M, we use the exact waveforms

of Eqs. (10), (26), and (32) as initial guesses to the Newton

solver. On convergence, we perform a sequential continuation

over M and trace branches of flat-top soliton solutions whose

spectral stability analysis is carried out next.

To do so, we consider the perturbation ansätz:

ψ (r, t ) = ψ0(r, t ) + εψ1(r, t ) + · · ·

= e−iω0t {u0(r) + ε[a(r)eλt + b∗(r)eλ∗t ]} + · · · ,

(39)

where ε � 1 and where u0(r) satisfies the time-independent

Gross-Pitaevskii equation (4) with ω → ω0. On plugging

Eq. (39) into Eq. (2), to O(ε) we arrive at the eigenvalue

problem:

A(r)V (r) = iλV (r), (40)

V (r) = [a(r) b(r) ]T ∈ C
2, λ ∈ C, (41)
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FIG. 14. Spectral stability analysis of 1D flat-top soliton so-

lutions for (a) g = −1 (attractive) and (b) g = 1 (repulsive),

respectively. The left and right columns depict respectively the imag-

inary and real parts of the eigenvalues of the stability problem of

Eq. (40). The parameter values here are ω = −4 and q = 5. Note

that the parameter M herein coincides with the mass (or l2 norm) of

the flat-top soliton solution via Eq. (11).

where A(r) is the 2 × 2 matrix

A(r) =
[

A11(r) A12(r)

−A∗
12(r) −A11(r)

]

, (42)

and the matrix blocks are given by

A11(r) = −∇2 + 2gu2
0(r) + V (r) − ω0, (43a)

A12(r) = gu2
0(r). (43b)

Then, the eigenvalue problem of Eq. (40) is solved by

using the contour-integral-based FEAST eigenvalue solver

[25] (see also Refs. [26,27] for its applicability to relevant

yet higher-dimensional problems, too). A steady-state flat-top

soliton solution u0(r) is deemed stable if all the eigenvalues

λ = λr + iλi have zero real part, i.e., λr = 0. On the other

hand, if there exists an eigenvalue with nonzero real part

(λr �= 0), then this signals an instability, and thus the solution

is deemed linearly unstable.

1. Numerical results for the 1D GPE

We begin our discussion on the numerical results by con-

sidering first the 1D flat-top soliton solution and its spectra

as a function of M. It should be noted that the parameter M

that appears in the potential coincides with the actual mass

(or l2 norm) of the flat-top soliton solution via Eq. (11). The

respective results on the stability are summarized in Fig. 14,

which showcases the dependence of λi and λr on the (bifurca-

tion parameter or) mass M for the attractive case with g = −1

[see Fig. 14(a)] and repulsive one with g = 1 [see Fig. 14(b)].

It can be discerned from Fig. 14(a) that the flat-top soliton

solution is spectrally stable from its inception (i.e., M � 1)

to Mc ≈ 0.65 whereupon the solution becomes (spectrally)

unstable, and the growth rate of the instability increases with

M. On the other hand, and for the repulsive case of g = 1, the

flat-top soliton solutions are spectrally stable throughout the

parameter interval in M that we consider therein. It is worth

pointing out in Fig. 14(a) that the emergence of the instability

is due to the fact that a pair of imaginary eigenvalues cross

the origin and give birth to the unstable mode at Mc ≈ 0.653.

Moreover, this “zero crossing” of the pertinent eigenvalues

signals the emergence of a pitchfork (or symmetry-breaking)

bifurcation [28] around that point in the parameter space.

Although such bifurcations are important in their own right (in

fact, and in the present setup, there exist more such bifurca-

tions at M ≈ 2.528, 5.475, and M ≈ 9.18), we do not pursue

them all. Such bifurcating branches can be obtained by using

Newton’s method where the solver is fed by the steady-state

flat-top soliton solution at the value of M (where such a zero

crossing happens) perturbed by the eigenvector corresponding

to that unstable eigendirection.

Illustratively, we briefly discuss the emergence of two

“daughter” branches of solutions at Mc ≈ 0.653, i.e., at the

point where the “parent” flat-top soliton solution branch un-

dergoes a symmetry-breaking bifurcation. Indeed, in the top

row of Fig. 15, we present our results on this bifurcation.

In particular, the top left and middle panels showcase the λi

and λr both as functions of M of the bifurcating branch (the

other one has exactly the same spectrum), and the (top) right

panel presents the spatial distribution of the densities, i.e.,

ρ(x) of two profiles at M = 30. In addition, the density of the

flat-top soliton solution (emanating from the parent branch)

for the same value of the bifurcation parameter M is included,

too, in the figure and shown with dashed-dotted black lines

for comparison. It can be discerned from the middle panel

of the figure that the daughter branches are spectrally sta-

ble all along, i.e., over the parameter window in M that we

considered therein). At the bifurcation point Mc ≈ 0.653, the

daughter branch “inherits” the stability of the parent branch,

whereas the latter becomes (spectrally) unstable past that

point, i.e., pitchfork bifurcation. From the top right panel

of the figure, we further note that the bifurcating solutions

resemble solitary yet shifted pulses.

In the bottom panels of Fig. 15 we corroborate our stability

analysis results by performing time evolution of perturbed

steady states. In particular, the bottom left and middle panels

of Fig. 15 depict the spatiotemporal evolution of the density

ρ(x) for the stable bifurcating solutions of the top right panels

of Fig. 15. We added a random perturbation with a strong am-

plitude of 10−3 × max(|u(0)|) to the localized pulse. It can be

discerned from these two panels that the bifurcating branches

are indeed stable solutions. On the other hand, the flat-top

soliton solution, i.e., the parent branch, is spectrally unsta-

ble, whose dynamics is shown in the bottom right panel of

the figure. We initialized the dynamics therein by perturbing

the steady-state solution with the eigenvector correspond-

ing to the most unstable eigendirection [essentially, utilizing

Eq. (39) for t = 0 with ε being 10−3 × max(|u(0)|)]. This way,

we feed the instability of the pertinent solution. It can be

discerned from that panel that the solution oscillates in the

presence of the potential while simultaneously interpolating

between the two stable (bifurcating) solutions of the top right

panel of the figure.

We now move to Fig. 16 which corroborates further our

stability analysis results for the flat-top soliton solutions

themselves by presenting the spatiotemporal evolution of the

density ρ(x) for a perturbed flat-top soliton solution with (a)
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FIG. 15. Top panels: Spectral stability analysis and existence results of bifurcating branches emanating from the flat-top soliton solution

in 1D with g = −1 (and q = 5 as well as ω = −4). The left and middle panels depict λi and λr as functions of M (the same spectral picture

is obtained for the other branch that has the same norm). Note that the bifurcating branch is spectrally stable due to the absence of real

eigenvalues (see the middle panel). The right panel depicts spatial profiles of the density of the bifurcating branches for M = 30. Note that the

density of the flat-top soliton solution for M = 30 is plotted, too, in the panel with dashed-dotted black lines for comparison. Bottom panels:

Spatiotemporal evolution of densities ρ(x) for the bifurcating branches is shown in the left and middle panels with M = 30, as well as the

flat-top soliton solution (for the same M) in the right panel. For the stable steady states, we perturbed the initial condition with a random

perturbation [of 10−3 × max(|u(0)|) amplitude], whereas for the unstable flat-top soliton solution of the right panel, we perturbed the initial

condition by considering the eigenvector corresponding to the most unstable eigendirection.

M = 0.65, (b) M = 2, and (c) M = 4, respectively. Based

on Fig. 14(a), the flat-top soliton solution for M = 0.65 is

deemed spectrally stable, and its perturbed dynamics (on

adding a random perturbation to the localized region of the
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FIG. 16. Spatiotemporal evolution of the density ρ(x) for a per-

turbed flat-top soliton solution for (a) M = 0.65, (b) M = 2, and

(c) M = 4, with g = −1, q = 5, and ω = −4. For the stable steady

state of panel (a), a random perturbation with amplitude 10−3 ×
max(|u(0)|) was added to the localized pulse, whereas for the unstable

states of panels (b)–(c), the initial condition was perturbed by the

most unstable eigendirection (and with the same amplitude for the

pertinent cases).

flat-top soliton) is shown in Fig. 16(a). It can be clearly

discerned from the figure that the flat-top soliton solution is

dynamically stable. On the other hand, and for Figs. 16(b)

and 16(c), the flat-top soliton solutions are unstable for M = 2

and M = 4 [see Fig. 14(a)]. We investigate this finding dy-

namically in these panels by furnishing an initial condition

corresponding to the stationary flat-top soliton solution plus

a perturbation added on top of the localized region of the

pulse (as we did before in the bottom right panel of Fig. 15).

In Fig. 16(b), we observe that after a short time interval,

the flat-top soliton solution starts oscillating in the confining

potential featuring a beating pattern whose temporal period

decreases as time passes by, thus effectively approaching the

stationary yet stable solitary pulse shown in the top right panel

of Fig. 15 (see the one depicted with solid blue line). This

is not surprising due to the fact that the branch associated

with this pulse is spectrally stable, thus creating a basin of

attraction in the dynamics. This is also evident in Fig. 16(c).

Indeed, after a transient period of time, featuring a solitary

pulse mounted on top of a flat-top soliton solution, these oscil-

lations have a progressively smaller period, and the dynamics

start approaching the stationary state of the top right panel of

Fig. 15.

We finalize our discussion on the 1D GPE by briefly re-

porting the stability of flat-top soliton solutions with g = 1,

i.e., the repulsive case. We performed dynamical simulations

of perturbed flat-top soliton solutions in that case, and we

corroborated the stability results of Fig. 14(b) (the results

on the dynamics are not shown). Having finalized a detailed

exposure on the existence, stability (and bifurcations), as well
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FIG. 17. Spectral stability analysis of 2D square flat-top soliton

solutions for (a) g = −1 (attractive) and (b) g = 1 (repulsive). The

format of the figure is the same as of Fig. 14. The parameter values

here are ω = −8 and q = 5.

as dynamics for the 1D GPE, we move now to the 2D GPE

case next.

2. Numerical results for the 2D GPE

Similarly to the 1D case, we present in Figs. 17 and 18 our

spectral stability analysis results for the 2D square and radial

flat-top soliton solutions, respectively, that emanate from the

solution of the eigenvalue problem of Eq. (40). We consider

both the attractive case with g = −1 [see Figs. 17(a) and

18(a)] and the repulsive case with g = 1 [see Figs. 17(b) and

18(b)], where we set q = 5 for both cases, and ω = −8 and

ω = −4 for the square and radial flat-top soliton cases, re-

spectively. It can be discerned from Fig. 17(a) that the square

flat-top soliton solution with g = −1 is spectrally stable from

its inception until Mc ≈ 6.5. At that value of M, we notice

a zero crossing of a pair of eigenvalues that give birth to an
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FIG. 18. Same as Fig. 17 but for the 2D radial flat-top soliton

solutions with (a) g = −1 (attractive) and (b) g = 1 (repulsive). The

format of the figure is the same as of Fig. 14. The parameter values

here are ω = −4 and q = 5.
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FIG. 19. Spatial distribution of the density ρ(x, y) at t = 500

corresponding to perturbed square (top panels) and radial (bottom

panels) flat-top soliton solutions for g = −1 (left column) and g = 1

(right column). The densities shown in the left and right columns

correspond to M = 5 and M = 20, respectively, i.e., at values of M

where the solutions are linearly stable (see Figs. 17 and 18). For the

square flat-top solitons, ω = −8, whereas ω = −4 for the radial ones

(with q = 5 in both cases).

unstable mode whose growth rate increases with M (see the

top right panel of the figure). Similarly to the 1D case, this

signals the fact that the parent square flat-top soliton branch

undergoes a pitchfork bifurcation at that point although we do

not pursue them here. In addition, a secondary unstable mode

emerges at M ≈ 14.2 from the same mechanism, i.e., a zero

crossing of a pair of eigenvalues (see also the top left panel in

the figure). On the other hand, and for the repulsive case, i.e.,

g = 1, the square flat-top soliton solutions are deemed stable

over the parameter interval in M we considered herein. This is

clearly evident in Fig. 17(b) (see, in particular, the right panel

showcasing λr as a function of M). A similar result is obtained

for the radial flat-top soliton, and is shown in Figs. 18(a) and

18(b), where we present our spectral stability analysis results

for g = −1 and g = 1, respectively. The 2D radial flat-top

soliton solution with g = −1 is stable from its inception and

becomes unstable at Mc ≈ 6.8, i.e., slightly above the square

case. This instability emerges again from a zero crossing of a

pair of eigenvalues (see the left panel therein). The secondary

unstable mode appears at a larger value of M (in contrast

to the square case), and in particular at M ≈ 19.3. For the

repulsive case of g = 1, the 2D radial flat-top soliton is spec-

trally stable over the interval in M that we consider in the

figure.

Having discussed the spectral stability analysis results for

2D flat-top solitons, we now present selective case examples

of the dynamics for square and radial flat-top soliton solutions

in Figs. 19 and 20. We mention in passing that we per-

turbed stationary flat-top soliton solutions by adding a random

perturbation with amplitude 10−4 × max(|u(0)|) for stable so-

lutions and by adding the eigenvector corresponding to the

most unstable eigendirection for unstable solutions. In Fig. 19,

we check the stable square (top panels) and radial (bottom

panels) flat-top soliton solutions for g = −1 and g = 1 in the
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FIG. 20. Snapshots of densities ρ(x, y) of linearly unstable square (top panels) and radial (bottom panels) flat-top soliton solutions with

M = 12, and g = −1. The rest of the parameter values are the same as in Fig. 19.

left and right columns, respectively, of the figure. In particular,

for the case with g = −1, the square and radial flat-top soliton

solutions at M = 5 are deemed stable [see Figs. 17(a) and

18(a)], and we depict the density ρ(x, y) at t = 500 in the left

column of Fig. 19. In the right column of the figure, we again

showcase the density of perturbed square and radial flat-top

soliton solutions with g = 1 and M = 20. Recall that in the

repulsive case, the pertinent waveforms have been found to

be stable [see Figs. 17(b) and 18(b)], and this is corroborated

in the panels of the right column of Fig. 19 where again the

density ρ(x, y) at t = 500 is shown therein.
We conclude this section on numerical results for the 2D

GPE by considering Fig. 20, which presents snapshots of
densities for the square (top panels) and radial (bottom panels)
flat-top soliton solutions at different instants of time (see the
labels at each panel). These results correspond to g = −1
and M = 12 for both cases, i.e., square and radial flat-top
soliton solutions. At t = 0 (see the leftmost panels in Fig. 20),
we perturb the steady states therein along the most unstable
eigendirection, and around t = 285 and t = 230 we notice
the onset of the instability for the square and radial flat-top
soliton solutions, respectively. As time progresses, the insta-
bility manifests itself (see the panels in the third column in the
figure), driving the dynamics towards an almost stationary so-
lution that is shown in the rightmost panels. This transition on
the dynamics is strongly reminiscent of the one we observed
in the 1D case, where the dynamics lead to the stationary
bright solitary profiles of Fig. 15. Herein, we observe shifted
2D bright solitary pulses which should be connected with
the pitchfork bifurcations we briefly mentioned previously.
In other words, the “daughter” branches emanating from the
square and radial flat-top soliton solutions at M ≈ 6.5 and 6.8,
respectively, are expected to be stable (i.e., they inherit the
stability of the respective “parent” branches), and they form
an attractor on which an unstable solution (such as the ones
shown in Fig. 20) is driven to.

VI. THREE DIMENSIONS

The methodology and stability analysis is similar in three

dimensions that we briefly discuss herein. For constant density

in a cube one takes the wave function to be a product of

1D flat-top solitons. The simplest 3D flat-top soliton is the

product of three 1D flat-top solitons in Cartesian coordinates.

In this case we can take ψ (x, y, z, t ) = A(M )u(x, y, z)e−iωt

where

u(x, y, z) = [tanh(q − x) + tanh(q + x)]

× [tanh(q − y) + tanh(q + y)]

× [tanh(q − z) + tanh(q + z)], (44)

with

M =
∫ ∞

−∞
d3x|u(x, y, z)|2 = 64A2(M )[2q coth(2q) − 1]3.

(45)

This leads to a confining potential:

V (x, y, z) = −12 + V2(x, y, z) + V3(x, y, z), (46)

where

V2(x, y, z) = 2

{

[−2 cosh(2q) cosh(2x) + cosh(4x) − 3]

[cosh(2q) + cosh(2x)]2

+
[−2 cosh(2q) cosh(2y) + cosh(4y) − 3]

[cosh(2q) + cosh(2y)]2

+
[−2 cosh(2q) cosh(2z) + cosh(4z) − 3]

[cosh(2q) + cosh(2z)]2

}

,

(47)

and

V3(x, y, z) =
gM sinh6(2q)[2q coth(2q) − 1]−3[cosh(2q) + cosh(2x)]−2

[cosh(2q) + cosh(2y)]2[cosh(2q) + cosh(2z)]2
. (48)
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Similarly, in the radial case we obtain:

u(r) = A[tanh(q − r) + tanh(q + r)]

= A sinh(2q)sech(q − r)sech(q + r), (49)

where r =
√

x2 + y2 + z2. In this case, the density is given by

ρ(r) = |u(r)|2 and the mass by

M = 4π

∫ ∞

0

r2drρ(r) (50)

=
2

3
πA2[−12q2 + 2(4q2 + π2)q coth(2q) − π2],

(51)

as well as the potential reads:

V (r) = sech2(q − r)[A2g sinh2(2q)sech2(q + r) − 1]

+ tanh2(q − r) + tanh2(q + r) +
2 tanh(q − r)

r

− 2 tanh(q − r) tanh(q + r) −
2 tanh(q + r)

r

− sech2(q + r) + ω, (52)

with ω = −4 leading to V → 0 as r → ∞. Again one can

perform a stability analysis using Derrick’s theorem, and

reach the conclusion that the attractive interaction case be-

comes unstable as one increases the mass M, whereas the

repulsive interaction case is always stable.

VII. CONCLUSIONS

In this paper we have shown how to find confining poten-

tials such that the exact solution of the NLSE in that potential

has constant density in a specified domain. This inverse prob-

lem method is entirely general, and one could have chosen

Gaussian solutions [15,16] and multi-soliton-like solutions.

We then investigated the stability properties of these solutions

using a numerical spectral stability analysis approach. We also

tried to understand the stability of these solutions using energy

landscape methods such as Derrick’s theorem. We found that

the “dark solitons” were always stable to small perturbations

and the “bright solitons” exhibited different critical masses for

an instability to develop depending on the type of perturbation

applied.

We corroborated these findings by performing numerical

simulations as well as numerical stability analysis computa-

tions. In particular, for self-repulsive interactions, both results

from Derrick’s theorem and BdG analysis predict stability.

However for the self-attractive case the BdG stability analysis

results showed that for g = −1 (bright solutions), the flat-top

soliton solutions undergo a symmetry-breaking evolution, i.e.,

a pitchfork bifurcation where the solution itself follows the

most unstable eigenvalue direction, and eventually reaches a

nearby stable solution over the course of time integration of

the GPEs. This instability sets in at a much lower mass than

the usual self-similar blowup instability found in the NLSE

without an external potential.

In that situation, the critical mass for this instability to set

in is well described by Derrick’s theorem. Derrick’s theorem

considers dilations or contractions only which preserve the

x → −x symmetry. Thus it cannot shed light on potential

modes that may exhibit an instability at smaller values of the

mass. Another interesting property that we find on applying

Derrick’s theorem is that because the external potential is a

function of M, it is no longer true that the second derivative

becomes zero for β = 1 at the critical mass. In fact, it always

stays positive. What happens is that near β = 1 an inflection

point develops as we increase M.

To partially overcome the parity preserving defect of only

considering self-similar perturbations, we considered how the

energy changes when we change the position of one of the

components of the flat-top soliton (i.e., the kink). This defor-

mation breaks the parity symmetry of the problem. We found

that indeed the energy minimum as a function of this position

parameter starts shifting from the origin at a critical mass

which is more in line with the results of the BdG analysis.

ACKNOWLEDGMENTS

E.G.C,. F.C., and J.F.D. thank the Santa Fe Institute and

the Center for Nonlinear Studies at Los Alamos National

Laboratory for their hospitality. E.G.C. acknowledges funding

support from the the U.S. National Science Foundation under

Grant No. DMS-2204782. A.K. is grateful to Indian National

Science Academy (INSA) for the award of the INSA Senior

Scientist position at Savitribai Phule Pune University. The

work at Los Alamos National Laboratory was carried out

under the auspices of the U.S. DOE and NNSA under Contract

No. DEAC52-06NA25396.

APPENDIX A: UNITS

In ordinary units, the time-dependent GPE is given by

ih̄
∂ψ (r, t )

∂t
=

{

−
h̄2

2m
∇2 + U0|ψ (r, t )|2 + V (r)

}

ψ (r, t ),

(A1)

where at low energy we have that the interaction coefficient is

given by:

U0 =
4π h̄2a

m
, (A2)

with a (either a > 0 or a < 0) the scattering length being on

the order of atomic size. The wave function for the GPE is

normalized so that

N =
∫

dr|ψ (r, t )|2, (A3)

where N is the particle number. We now need to relate a length

scale b to a time (or frequency ω0) scale. We take this to be

such that:

h̄

2mω0b2
= 1, (A4)
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so that if we set h̄ = 1 and m = 1/2, we have simply ω0 =
1/b2. This way, and on setting

ξ = r/b, τ = ω0t, φ(ξ, τ ) =

√

b3

N0

ψ (br, ω0t ), (A5)

the GPE [cf. Eq. (A1)] becomes dimensionless, that is,

i
∂φ(ξ, τ )

∂τ
= {−∇2

ξ + g|φ(ξ, τ )|2 + W (ξ )}φ(ξ, τ ), (A6)

where

g =
N0U0

h̄ω0b3
= 8πN0

(a

b

)

, W (ξ ) =
V (r/b)

h̄ω0

. (A7)

Using the inverse problem method we set

φ(ξ, τ ) = u(ξ )e−iωτ , (A8)

and found that

W (ξ ) = ω +
[

∇2
ξ u(ξ )

]

/u(ξ ) − g|u(ξ )|2. (A9)

The particle number is now given by

N/N0 =
∫

d3ξu2(ξ ). (A10)

It would be natural to take b = q, which is the range of the

external potential. Then in order for g ∼ 1, we should take:

N0 ∼
1

8π

q

a
� 1, (A11)

so that if we take N/N0 ∼ 1, then we see that since N0 is a

large number, this is a reasonable scaling. This means that we

can take q/b = 1 in the scaled external potential. For 7Li, the

positive s-wave scattering length is ∼34a0 [29], whereas the

negative scattering length is on the order of −15a0 [30], where

a0 = 53 × 10−12 m is the Bohr radius. The mass of 7Li is

7.016 u where u = 1.660 × 10−27 kg is the atomic mass unit,

the reciprocal of Avogadro’s number. The critical temperature

for a BEC to form must be on the order of T ∼ 5µK.

APPENDIX B: CURVATURE OF DERRICK ENERGY

FUNCTION AT MINIMUM

In this Appendix, we compute the second derivative of the

Derrick energy function h(β, M ) in 1D for the attractive case

(g = −1) evaluated at β = 1. The first two derivatives can be

determined analytically at β = 1. Indeed, on using the fact

that

∂|u|2

∂β

∣

∣

∣

∣

β=1

=
M sinh2(2q)[cosh(2q) − 4x sinh(2x) + cosh(2x)]

[2q coth(2q) − 1)(cosh(2q) + cosh(2x)]3
, (B1)

and

∂2|ũ|2

∂β2

∣

∣

∣

∣

β=1

= −
4Mx sinh2(2q){2 cosh(2q)[sinh(2x) + x cosh(2x)] + 4x + sinh(4x) − 2x cosh(4x)}

[2q coth(2q) − 1][cosh(2q) + cosh(2x)]4
, (B2)

we indeed find that ∂h
∂β

|β=1 = 0. For the second derivative of h with respect to β, we get contributions from h1, j1 and j2 [see

Eqs. (21)] which tell us the answer depends on g as well as M. The second derivative is explictly given by:

∂2h

∂β2

∣

∣

∣

∣

β=1

= 2 f1(q) + gM f2(q) + f3(q), (B3)

where

f1(q) =
csch3(2q)[9 sinh(2q) + sinh(6q) − 24q cosh(2q)]

6(2q coth(2q) − 1)
,

f2(q) =
∫

dx|u0(x)|2|uββ (x, β, M )|2|β=1/M2,

f3(q) =
∫

dx

{

cosh(4x) − 2 cosh(2q) cosh(2x) − 3

2[cosh2(q) + sinh2(x)]2

}

|uββ (x, β, M )|2|β=1

M
. (B4)

The functions f2(q) and f3(q) are explicitly known in terms of PolyLog functions [24] but presenting them would not be very

informative. The surprise is that the second derivative of h(β, M ) evaluated at β = 1 is positive for all negative values of g. Thus

one cannot determine the critical number of atoms for an instability to arise from the second derivative alone. The instability

caused by a perturbation in the width degree of freedom is a result of the minimum getting shallower and shallower as we

increase M. This is seen in our numerical evaluation of h(β, M ).
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