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Abstract

The nematode Caenorhabditis elegans (C. elegans) is a model organism used frequently in

developmental biology and neurobiology [White, (1986), Sulston, (1983), Chisholm, (2016)

and Rapti, (2020)]. The C. elegans embryo can be used for cell tracking studies to under-

stand how cell movement drives the development of specific embryonic tissues. Analyses in

late-stage development are complicated by bouts of rapid twitching motions which invalidate

traditional cell tracking approaches. However, the embryo possesses a small set of cells

which may be identified, thereby defining the coiled embryo’s posture [Christensen, 2015].

The posture serves as a frame of reference, facilitating cell tracking even in the presence of

twitching. Posture identification is nevertheless challenging due to the complete reposition-

ing of the embryo between sampled images. Current approaches to posture identification

rely on time-consuming manual efforts by trained users which limits the efficiency of subse-

quent cell tracking. Here, we cast posture identification as a point-set matching task in which

coordinates of seam cell nuclei are identified to jointly recover the posture. Most point-set

matching methods comprise coherent point transformations that use low order objective

functions [Zhou, (2016) and Zhang, (2019)]. Hypergraphs, an extension of traditional

graphs, allow more intricate modeling of relationships between objects, yet existing hyper-

graphical point-set matching methods are limited to heuristic algorithms which do not easily

scale to handle higher degree hypergraphs [Duchenne, (2010), Chertok, (2010) and Lee,

(2011)]. Our algorithm, Exact Hypergraph Matching (EHGM), adapts the classical branch-

and-bound paradigm to dynamically identify a globally optimal correspondence between

point-sets under an arbitrarily intricate hypergraphical model. EHGM with hypergraphical

models inspired by C. elegans embryo shape identified posture more accurately (56%) than

established point-set matching methods (27%), correctly identifying twice as many sampled

postures as a leading graphical approach. Posterior region seeding empowered EHGM to

correctly identify 78% of postures while reducing runtime, demonstrating the efficacy of the

method on a cutting-edge problem in developmental biology.
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Introduction

Point-set matching describes the task of finding an optimal alignment between two sets of

points. The problem appears in computer vision applications such as point-set registration [1],

object recognition [2], and multiple object tracking [3]. Often the point-sets are modeled via

graphs, abstract mathematical objects in which points are represented as vertices and edges

define relationships between pairs of vertices.

User defined attributes characterize the vertices and edges, such as coordinate positions or

shape descriptions and lengths of chords connecting vertices, respectively. Specified attributes

give insight to observable relationships between vertices and allow for structural analyses of

graphs. Graph matching is the optimization problem defined by the search for a correspon-

dence of vertices between a pair of attributed graphs. The optimization problem uses binary

variables xij to specify a matching between vertex i in the first graph to vertex j of the second.

The graph matching domain, X , consists of assignment matrices of size n1×n2, for matching

graphs of size n1 and n2:

X ¼ fX 2 f0; 1g
n1�n2 : 8j;

Xn1

i¼1

xij � 1; 8i
Xn2

j¼1

xij ¼ 1g: ð1Þ

The assignment matrix space, X (Eq 1), comprises assignment matrices which each

describe a one-to-one alignment between nodes of the two graphs. The specification of the

graph matching optimization objective function allows for joint assignment costs: i.e., how the

assignment of a pair of vertex-to-vertex assignments changes the quality of the match. Let C be

an n1×n2 matrix and D be a n1×n2×n1×n2 tensor storing the vertex-to-vertex and edge-to-edge

dissimilarities, respectively. The graph matching optimization problem is expressed in Eq 2,

which takes the form of the quadratic assignment problem (QAP):

minimize
X2X

Xn1

i¼1

Xn2

j¼1

Xn1

k¼1

Xn2

l¼1

dijklxijxkl þ
Xn1

i¼1

Xn2

j¼1

cijxij: ð2Þ

Graphs are limited in their expressive power as edges can only relate pairs of vertices at a

time; hypergraphs extend the definition of a graph to include hyperedges which can specify

relationships among an arbitrary number of vertices. Hypergraph matching then concerns

finding an optimal vertex correspondence between pairs of attributed hypergraphs. The

number of vertices aligned by the most comprehensive hyperedge defines the degree of a

hypergraph.

Maximum degree hypergraphs with hyperedges composed of all n1 vertices yield the most

comprehensive point-set matching function possible. The optimization objective function cap-

tures the dissimilarity arising between the matching: ðl1; l2; . . . ; ln1
Þ7!ðl0

1
; l0

2
; l0

3
; . . . ; l0n1

Þ. Then,

for a given assignment matrix X 2 X , the hypergraph matching objective can be expressed

using n1 dissimilarity tensors of dimension 2, 4, . . ., 2d, . . ., 2n1, each measuring dissimilarity

between degree d hyperedges, respectively. Define Z(d) as the tensor mapping the dissimilarity

for the degree d hyperedges. The hypergraph matching objective uses all n1 hyperedge
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dissimilarity terms, extending the degree 2 QAP objective:

f ðXjZð1Þ;Zð2Þ; � � � ;Zðn1ÞÞ ¼
Xn1
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Xn2

l0
1

¼1
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Hypergraph matching allows for the modeling of intricate point-set matching problems

through high multiplicity assignment objective function formulations. The Z(d) dissimilarity

terms measure degree d hyperedge dissimilarity comprising d simultaneous vertex assign-

ments. The range in assignment problem objective complexity from d=1 to d=n1 trades off

model capacity for increased computation. The traditional linear assignment problem (d=1) is

solvable in polynomial time [4], but treats points between sets independently. Existing graphi-

cal methods (d=2) and hypergraphical methods (d>2) rely on approximate searches and do

not generalize to high degree formulations of Eq 3. Exact Hypergraph Matching (EHGM) is

able to find globally optimal solutions to hypergraph matching problems of arbitrary degree,

allowing for the modeling of intricate point-set matching tasks.

Related research

Finding an exact solution to the QAP is anNP-hard problem. That is, unless P=NP, there

does not exist a polynomial time solution to exactly solve the QAP [5]. Higher order assign-

ment problems (i.e. hypergraph matching) are alsoNP-hard as they are at least as hard as the

QAP [6]. As a result, recent methods for graph matching and lower-degree hypergraph match-

ing focus on heuristic solutions which offer no guarantee on performance [7–11]. Heuristic

hypergraph matching methods are adapted from existing graph matching algorithms. In

particular, spectral methods for solving graph matching (Eq 2) have been extended to solve

hypergraph matching. Duchenne et al. [9] adapt Leordeanu’s [1] work to obtain a rank-1

approximation of the affinity tensor via higher order power iteration. However, calculating

affinity tensors (Z(d) terms) is computationally prohibitive, especially for higher degree hyper-

graphs due to the exponentially growing number of entries in the tensors. Simplifying assump-

tions such as super-symmetry and sparseness are used with sampling methods to build large

affinity tensors [9, 12]. Chertok and Keller propose similar methodology to [9], but instead

unfold the affinity tensor and use the leading left singular vector to approximate the adjacency

matrix [10]. All such methods operate outside the permutation matrix space. The Hungarian

algorithm or similar binarization step is used to yield a valid assignment, e.g. as in [1].

Exactness allows for a more rigorous analysis of a hypergraphical point-set matching model

than is possible using heuristic techniques. The guarantee of a globally optimal correspon-

dence allows an iterative tuning of the underlying model in pursuit of accurate characteriza-

tion, whereas the output of a heuristic algorithm could be incorrect due either to the

stochasticity of the search or to inadequacy of the point-set matching model. Branch-and-

bound is a paradigm originally developed to exactly solve the travelling salesman problem, a

type of QAP [13, 14]. Branch-and-bound methods recursively commit partial assignments and

solve successive subproblems within X . The paradigm iteratively partitions the search space

while bounding the optimum at each branch. At each step the method prunes branches which

cannot contain the optimum. Convergence occurs when only feasible assignments achieving a
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global optimum remain. TheNP� hardness of the QAP implies convergence occurs only

after implicit enumeration of X .

Overview of EHGM & application to C. elegans
EHGM deviates from recent graph matching and hypergraph matching methodology as an

exact method, guaranteeing convergence to a globally optimal solution (S1 File: Convergence of
EHGM). The algorithm builds upon the seminal branch-and-bound paradigm by extending

the methodology to branch and prune based upon a given hypergraphical model [13]. A k-

tuple of nodes at branch m is greedily selected while another step encapsulates the full hyper-

graphical objective upon selection. The decomposition of the objective into lower degree

hyperedges used for steering the search and higher degree hyperedges fully evaluating branch

decisions ensures completeness and enables flexibility in altering the underlying hypergraphi-

cal model.

Exactness limits EHGM to smaller problems (n � 20); however, point-set matching tasks

featuring larger numbers of points may be able to leverage lower degree relationships as points

are ideally closer and relationships are less variant frame-to-frame. Sparsely sampled points

may require an intricate model to adequately match; EHGM is applicable in the niche com-

prised of smaller point-sets requiring added context to adequately match. EHGM is better

suited than competing heuristic methods for such smaller challenging point-set matching

tasks for two reasons. First, the objective decomposition is independent of the branch-and-

bound paradigm used to solve the optimization problem. As a result, point-set matching mod-

els of varying intricacies can be rigorously compared without substantial change to the algo-

rithm. This feature allows for comparing models without having to use different methods.

Second, EHGM is capable of solving maximum degree hypergraph matching problems, a first

in the literature. The capability to jointly evaluate a complete alignment of points may enhance

matching accuracy in challenging applications featuring smaller point-sets.

EHGM was inspired by Caenorhabditis elegans (C. elegans), a small, free-living roundworm

often studied as a model of nervous system development due to its relative simplicity [15, 16].

The complete embryonic cell lineage has also been determined [17]; methods and technology

have been developed to allow study of cell position and tissue development in the embryo [18–

23]. However, the onset of muscular twitching in late-stage development invalidates traditional

methods applied to track cells in the embryo. Recently developed methods use seam cells as

fiducial markers to mitigate cellular displacement due to embryo repositioning [24].

The 20 seam cells and two associated neuroblasts form in lateral pairs along the left and

right sides of the worm, resulting in eleven pairs upon hatching [17]. The neuroblasts appear

in the final hours of development, just prior to hatching. The pairs of cells are named, anterior

to posterior: H0, H1, H2, V1, V2, V3, V4, V5, Q (neuroblasts), V6, and T. Each pair’s left and

right cell is named accordingly; for example, H1L and H1R cells comprise the H1 pair. We

define posture as the identification of all seam cells and neuroblasts, which together reveal the

shape of the coiled embryo. Fig 1A depicts locations of seam cell nuclei in an example image

volume (left) and straightened to reveal the bilateral symmetry in seam cell locations (right).

The process allows for studying tissue development despite late-stage twitching [24]. Captur-

ing the image volumes at the desired spatial resolution necessitates pausing (5 minute interval)

between image volumes to preserve embryo health. Repositioning between images contributes

to the challenge in posture identification; Fig 1B shows four sequential images of an embryo,

five minutes between images.

Current methods for posture identification rely on trained users to manually annotate the

imaged nuclei using Medical Imaging, Processing, Analysis and Visualization (MIPAV), a 3D
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rendering tool [25]. The process takes several minutes per image volume and must be per-

formed on approximately 100 image volumes per embryo [24]. Fig 2 depicts manually identi-

fied postures in the first two successive image volumes of Fig 1B. Manual annotation strategies

leverage the bilateral symmetry and patterned shape of the embryo (thinner tail leading to a

thicker body). Specks of fluorescence on the skin and other subtle visual cues not visible in Fig

2 often assist cell identification in challenging body positions. Posture identification serves as

an intermediate step to late-stage cell tracking.

Posture identification allows for traditional frame-to-frame tracking of imaged cells belong-

ing to various tissues such as the gut, nerve ring, and bands of muscle [24]. Images are cap-

tured in five minute intervals (Fig 1B) in order to achieve necessary resolution to track cells of

other tissues without disturbing embryo development. For example, Fig 3A highlights muscle

cell nuclei (red dots) with the identified seam cell nuclei (bold black dots) to contextualize the

embryo’s positioning. The posture is used to remap the muscle cells such that traditional cell

tracking approaches can be applied in the late-stage embryo (Fig 3B). Fig 3C depicts the cell

remapping process which uses splines fitted to the seam cell nuclei coordinates along the left

and right sides [24]. The untwisted cell positions can then tracked frame-to-frame using tradi-

tional point-set matching methods (Fig 3D). Manual posture identification stands as a barrier

to such analyses; EHGM was developed to approach the task.

Patterns throughout the embryo’s body motivated our hypergraphical matching models, as

established methods for point-set matching failed to adequately capture the relationships

between seam cells throughout myriad twists and deformations of the developing embryo.

Fig 1. Seam cells are used to recover C. elegans posture in high spatial resolution, low temporal resolution imaging. A: Manually identified seam

cell nuclei from an imaged C. elegans embryo. The cells form in pairs; they are labelled anterior to posterior: H0, H1, . . ., V6, T. The identification of all

seam cells reveals the embryo’s posture. Natural cubic splines through the left and right-side seam cells estimate the coiled embryo’s body. The left

image depicts identified nuclei connected to outline the embryo; splines are used to untwist the embryo, generating the remapped straightened points in

the diagram on the right. B: Labelled nuclear coordinates from a sequence of four images. The embryo repositions in the five minute intervals between

images, causing failure of traditional point-set matching approaches.

https://doi.org/10.1371/journal.pone.0277343.g001
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EHGM uses hypergraphical models comprising biologically driven geometric features to more

accurately identify posture than established graphical methods. The limited expressive power

of graphical models hinders accurate seam cell identification; graphical models accurately

identify posture in 27% of samples compared to 56% using a hypergraphical model. User label-

ling of the posterior-most seam cell nuclei improves the success of hypergraph matching to

correctly identifying all nuclei in 77% of samples. The improved accuracy in posture identifica-

tion attributed to high-degree hypergraphical modeling solved via EHGM paves a path toward

automatic posture identification while presenting a general framework for approaching simi-

larly challenging point-set matching tasks.

Fig 2. Manual posture identification in two successive image volumes of Fig 1B using MIPAV. The 20 fluorescently imaged seam cell nuclei

rendered in two successive image volumes. Scale bar: 10 μm. A & B: Seam cell nuclei appearing in two successive image volumes visualized in MIPAV.

The five minute interval allows the embryo to reposition between images, yielding entirely different postures. C & D: Manual seam cell identification by

trained users reveals the posture. The curved lines are cubic splines as described in Fig 3C.

https://doi.org/10.1371/journal.pone.0277343.g002
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Results

Posture identification models

Posture was predicted via EHGM according to three models: a graphical model, denoted Sides,
and two hypergraphical models: Pairs and Posture. The two hypergraphical models showcased

EHGM as existing algorithms cannot find solutions under such high degree hypergraphs. Each

of the three models used incrementally higher degree relationships to model posture. Sides
followed the form of Eq 2, leveraging pairwise assignments to calculate lengths of portions of

the embryo. Pairs used degrees four and six hyperedges to better model local regions of the

embryo than is possible with graphical methods. Posture further demonstrated the capabilities

of EHGM by including a degree n1 hyperedge to maximize context in evaluating a hypothe-

sized posture. Geometric features such as pair-to-pair rotation angles and left-right flexion

angles were developed to measure and compare posture hypotheses more accurately. The cal-

culation of each angle or distance requires identification of multiple seam cells in tandem to

calculate, necessitating the use of edges and hyperedges.

Fig 4 depicts four types of models applied to perform posture identification on the two sam-

pled images in Fig 2. Linear models (Fig 4A & 4B) are ill-equipped to identify posture due to

the repositioning of the embryo between successive images; linear models were not applied to

sample data. The graphical model Sides (Fig 4C & 4D) associates pairs of seam cells via edges

Fig 3. Posture identification allows the tracking of other cells during late-stage embryogenesis. A: Annotated seam cell nuclei coordinates (bold

black) and muscle nuclei coordinates (red) from a sequence of three volumetric images. The untwisting process (green arrows) uses the seam cell

locations to remap muscle cells to a common frame of reference. B: The remapped muscle nuclei are tracked frame-to-frame (blue arrows). C: A higher

magnification view from the right coordinate plot of A. The left, right, and midpoint splines are used to create a change of basis defined by the tangent

(black), normal (blue), and binormal (cyan) vectors. Ellipses are inscribed along the tangent of the midpoint spline, approximating the skin of the coiled

embryo. D: A portion of the left (red) and center (blue) remapped muscle coordinates. Black lines connect the coordinates, frame-to-frame.

https://doi.org/10.1371/journal.pone.0277343.g003
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(purple). Edge-wise features, lengths between adjacent cells, varied when the embryo coiled

differently in successive images, but were otherwise approximately static frame-to-frame.

However, the similarity in length measurements throughout the embryo yielded a model inca-

pable of differentiating portions of the embryo (S1 Fig). Hypergraphical models Pairs (Fig 4E

& 4F) and Posture (Fig 4G & 4H) used aforementioned hyperedges to more strongly character-

ize embryonic posture. Pair-to-pair hyperedges (red), three-pair sequences (blue), and n1

degree hyperedges (black) allow for measuring angles and lengths more consistent frame-to-

frame (S2 and S3 Figs).

Posture identification accuracy

Annotators curated a dataset of seam cell nuclei center coordinates from 16 imaged embryos.

Each imaged embryo yielded approximately 80 image volumes for a total of N=1264 labelled

seam cell nuclei coordinate sets. Homogeneity in C. elegans embryo development allowed use

of samples spanning multiple embryos to fit models via a leave-one-out approach (S1 File:

Model Fitting, S1 File: Posture Modeling). EHGM allows for known correspondences, hence-

forth referred to as seeds, to be given as input prior to search initialization. The algorithm

was evaluated both in a traditional point-set matching scenario given no a priori information,

and in a series of seeded simulations. Seeded trials assumed incrementally more pairs given

sequentially from the tail pair, T. KerGM [8], the leading algorithm for heuristic graph match-

ing, was applied to posture identification using the same connectivity matrix as Sides. How-

ever, KerGM processed results frame-to-frame serially; this approach relied on using the

correct posture at the prior image as input.

Fig 4. Posture identification applied to the two successive images in Fig 2 according to a series of increasingly intricate models. The embryo

repositions between images. A & B: Linear models (LAP) cannot quantify relationships between seam cells; posture identification is impossible without

context of neighboring cell identities. C & D: A graphical model (Sides) specifies edges (purple) between pairs of seam cell nuclei. Edge lengths are

relatively static frame-to-frame, but the similarity of edge lengths throughout the embryo causes the edges to have a weak signal in identifying seam

cells. E & F: The Pairs model uses degrees four (red) and six (blue) hyperedges to model a greater local context than is possible in a graphical model. G

& H: The Posture model extends the Pairs model to use a degree n1 (black) hyperedge to evaluate all seam cell assignments jointly.

https://doi.org/10.1371/journal.pone.0277343.g004
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EHGM is able to store complete assignments encountered during the search as it compares

against the current solution upon committing a final branch. This feature allowed for an analy-

sis of the similarity between cost minimizing posture hypotheses and progressively higher cost

solutions encountered during search. The necessity to identify all seam cells to form the pos-

ture motivated the implementation of a strict metric for success. The top x accuracy is defined

as the percentage of all N samples in which EHGM returned the correct posture in the x lowest

cost solutions; e.g. the top 1 accuracy describes the percentage of samples in which the correct

posture was returned as the cost minimizing assignment, and the top 3 accuracy is the percent-

age of samples in which the correct posture was among 3 lowest cost posture hypotheses

returned by the search.

Table 1 shows the percentage of all samples in which the correct posture (correct identifica-

tion of all n1 seam cells) was returned as the minimizer according to KerGM and each of the

three models solved via EHGM: Sides, Pairs, and Posture. KerGM identified 27% of sampled

postures correctly, outperforming Sides (10%). Pairs and Posture more effectively identified

posture with 52% and 56% top 1 accuracies, respectively. Pairs and Posture achieved statisti-

cally similar average top 1 accuracies (independent two-sample pooled t-test, p=0.051, one-

sided).

Differences between reported top accuracies, particularly in Pairs and Posture model

results, reflect the challenge in posture identification. Hypergraphical models’ objective values

for correct postures were often similar for hypotheses with minor mistakes. Notably, the Pos-
ture model returned the correct posture in the top 3 hypotheses in approximately 67% of sam-

ples, an approximate 20% increase in relative accuracy over the top 1 percentage, 56%.

Posture identification results were stratified by the presence of the Q neuroblasts; 875 of the

1264 samples contain only the seam cells while the remaining 389 samples were developed

enough to express the Q neuroblasts as well. Table 2 depicts the findings presented in Table 1

split by Q neuroblast presence. All methods achieved a higher accuracy on post-Q samples.

The stratification revealed an advantage of the Posture model over Pairs for the pre-Q samples:

48% vs 44% (independent two-sample pooled t-test, p=.034, one-sided). The hypergraphical

models’ enhanced top 1 accuracies on the post-Q samples, 71% vs. 44% and 72% vs. 48%,

Table 1. Hypergraphical models Pairs and Posture achieved highest posture identification accuracy. Posture identi-

fication accuracies across all N=1264 samples. Point-set matching models are listed across columns: KerGM [8] was

compared to proposed EHGM models. Rows list the top x accuracy as a percentage of samples. The differences between

top x accuracies across hypergraphical models highlight the difficulty in posture identification.

Accuracy KerGM [8] Sides Pairs Posture
Top 1 0.27 0.10 0.52 0.56

Top 2 0.27 0.14 0.60 0.65

Top 3 0.27 0.15 0.63 0.67

https://doi.org/10.1371/journal.pone.0277343.t001

Table 2. Hypergraphical models leveraged Q neuroblasts to more accurately identify posture. The samples were split according to the absence (left) or presence (right)

of the Q neuroblasts, which form in the last two hours of development. There were 875 n1=20 cell (pre-Q) samples and 389 n1=22 cell (post-Q) samples. Hypergraphical

models Pairs and Posture more accurately identified posture in the post-Q samples than the pre-Q samples, suggesting the increased continuity along the body enhanced

posture modeling.

Pre-Q (n1 = 20) Post-Q (n1 = 22)

Accuracy KerGM [8] Sides Pairs Posture KerGM [8] Sides Pairs Posture
Top 1 0.25 0.07 0.44 0.48 0.35 0.19 0.71 0.72

Top 2 0.25 0.10 0.51 0.57 0.35 0.25 0.80 0.81

Top 3 0.25 0.11 0.55 0.60 0.35 0.26 0.82 0.82

https://doi.org/10.1371/journal.pone.0277343.t002
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demonstrates the advantage of hypergraphical modeling for posture identification. The

increased continuity of the embryo via the Q neuroblasts provided substantial context in defin-

ing the coiled embryo by better penalizing incorrect postures.

We then investigated how effectively each of the proposed models captured patterns in pos-

ture identification using a cost ratio metric. The cost ratio was defined as the ratio of the cor-

rect posture’s objective value to the cost minimizing posture’s objective value for each model.

A cost ratio greater than one implied the hypothesized posture’s objective value of was lower

than that of the correct posture, suggesting the model did not aptly characterize posture as an

incorrect posture hypothesis was preferred by the model. Table 3 highlights the median run-

times (minutes) and median cost ratios across samples split by Q cell presence. Posture outper-

formed Pairs on the pre-Q samples not just according to top 1 accuracy, but also cost ratio

(1.00 vs. 1.04, two-sample Kolmogorov-Smirnov (KS) test, p=0.027, one-sided). The distinc-

tion between models did not extend to the post-Q samples, echoing their similar top 1 accura-

cies (1.00 vs. 1.00, two-sample KS test, p=0.20, one-sided). Nevertheless, hypergraphical

modeling (represented by Posture) modeled posture more effectively than graphical modeling

(represented by Sides) on both pre-Q (1.00 vs. 1.36, two-sample KS test, p<10-72, one-sided)

and post-Q (1.00 vs. 1.16, two-sample KS test, p<10-51, one-sided) samples. Improvements on

posture identification performance attributed to hypergraphical modeling came at the cost of

increased computation. The the addition of the n1 degree hyperedge in Posture increased run-

time over the Pairs model on pre-Q samples (51.12 minutes vs. 34.25 minutes, two-sample KS

test, p<10-22, one-sided).

Seeded experiments specifying nuclear identities provided a priori information starting

with the tail pair (T), and incrementally identified more pairs (V6, V5, etc.). Each experiment

was given four hours of maximum runtime. Table 4 reports top accuracies for EHGM models

by number of seeded pairs. Seeding the especially challenging posterior region greatly

improved top accuracies, but not enough to fully solve posture identification. Particularly,

Posture showed a 15% improvement in top 1 accuracy (54% to 62%) when seeded with the

tail pair, T. On the other hand, Sides did not impactfully improve performance with tail pair

seeding. Further seeding improved results for all models. Fig 5 depicts top 1 accuracies (red)

and median runtimes (blue, log-scaled) across seeded experiments for the Sides (dashed

Table 3. Hypergraphical models more aptly contextualized posture than a graphical model but required more computation. Runtime (minutes) refers to the median

runtime of each model in minutes. Cost ratio reports the median cost ratio, defined as the ratio of the correct posture cost to the returned posture cost. Hypergraphical

models more effectively described posture than the graphical model at expense of computation.

Pre-Q (n1 = 20) Post-Q (n1 = 22)

Sides Pairs Posture Sides Pairs Posture
Runtime (minutes) 4.81 34.25 51.12 9.66 56.58 72.60

Cost Ratio 1.36 1.04 1.00 1.16 1.00 1.00

https://doi.org/10.1371/journal.pone.0277343.t003

Table 4. Seeding posterior pair identities enabled more accurate posture identification. Top accuracies are reported across all samples on each row; each simulation

had a four hour maximum runtime. Spanning columns specify which model was used while subcolumns under each model list which pairs were given as seeds prior to

search. The None columns recreate the original no information case reported in Table 1, but with the runtime limit.

Sides Pairs Posture
Accuracy None T T-V6 T-V5 None T T-V6 T-V5 None T T-V6 T-V5

Top 1 0.10 0.11 0.22 0.28 0.53 0.59 0.72 0.78 0.54 0.62 0.72 0.78

Top 2 0.14 0.15 0.27 0.34 0.60 0.64 0.76 0.81 0.63 0.67 0.77 0.82

Top 3 0.15 0.16 0.27 0.35 0.63 0.66 0.77 0.82 0.64 0.68 0.78 0.82

https://doi.org/10.1371/journal.pone.0277343.t004
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lines) and Posture (solid lines) models split by Q pair presence (pre-Q: triangles, post-Q: Qs).

Posture leveraged T pair seeding to reduce median runtime from 51 minutes to 6 minutes

and 72 minutes to 9 minutes while improving top 1 accuracy to 56% and 76%, pre-Q and

post-Q, respectively.

Fig 5. Posterior region seeding improved posture identification in both graphical (Sides) and hypergraphical (Posture) models while

exponentially decreasing runtime. The Sides (dashed lines) and Posture (solid lines) models are compared by Q pair presence (pre-Q: triangles, post-Q:

Qs). Top 1 accuracies (red) improved across models while runtimes (blue) especially fell with T pair seeding (1 on the horizontal axis). Hypergraphical

modeling especially benefited from posterior pair seeding while Sides required more context to improve.

https://doi.org/10.1371/journal.pone.0277343.g005
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Discussion

We have presented EHGM as a dynamic and effective tool for intricate point-set matching

tasks. The hypergraph matching algorithm provides a method in which to gauge the efficacy of

modeling point correspondences in conservatively sized problems; problems featuring larger

numbers of points likely contain the context required to adequately match via lower degree

models. For example, post-Q samples were more accurately identified across models, but the

largest marginal gain in accuracy came from Sides (19%) to Pairs (71%). The results suggest

that added context throughout the embryo would further improve posture identification

accuracy, reducing the reliance on higher degree (and thus more computationally expensive)

hypergraphical models. EHGM specifically addresses a gap in literature concerning challeng-

ing point-set matching applications in which domain-specific features lead to rigorously

testable models. Seeding allows a wider range of problems to be approached by mitigating

computational expense of the algorithm for scenarios featuring larger point-sets.

Posture identification in embryonic C. elegans is a challenging problem benefiting from

high degree hypergraphical modeling. EHGM equipped with biologically inspired hypergra-

phical models led to substantial improvement in posture identification. The top 1 accuracy

doubled from 27% with a graphical model to 56% via the Posture model (Table 1). The top 3

accuracy rate improved to 67%, highlighting the challenge in precisely specifying the coiled

embryo due to the similarity of competing posture hypotheses. The presence of Q neuroblasts

further contributed to accurate posture identification. The added context empowered the Pos-
ture model to identify the correct posture in 82% of post-Q samples (Table 2).

The top x percentage accuracy metric reflects the need to correctly identify all seam cells to

recover the underlying posture but does not distinguish between hypotheses that are incorrect

due to one cell identity swap or a more systemic modeling inadequacy. A qualitative analysis

highlighted a few themes among incorrectly predicted postures. The foremost errors concern

the tail pair cells, TL and TR; spurious identifications occurred when the tail pair coiled against

another the body of the embryo, causing one tail cell identity to be interchanged with a cell of

a nearby body pair. The variance of feature measurements in the posterior region resulted in

similar costs for postures with minor differences about the posterior region.

Pair seeding allowed for the strengths of EHGM to compensate for the most challenging

aspect of posture identification. The posterior region of the embryonic worm is especially flexi-

ble and contributed to most of the incorrectly predicted postures. Feature engineering stands

to create hypergraphical models more capable of reliable posture identification, particularly in

contextualizing the posterior region. The method and application outline a protocol for chal-

lenging point-set matching tasks.

Methods

Exact Hypergraph Matching

EHGM extends the branch-and-bound paradigm to exactly solve hypergraph matching. The

algorithm performs the search in the permutation space X subject to a given branch size k
which specifies the number of vertices assigned at each branch. A size n1 hypergraph will

require M≔ n1

k branch steps, where branch m concerns the assignment of vertices ((m−1)k
+ 1, (m−1)k + 2, . . ., mk); vertices 1, 2, . . ., mk have been assigned upon completion of the mth

branch. The set P contains all possible permutations of the indices of the unordered point

set, jPj ¼
n2!

ðn2�kÞ!
. P is incrementally subset into queues Qm � P at branches m = 1, 2, . . ., M at

each branching. The queue Qm is subset according to both a pruning rule which eliminates
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permutations leading to a suboptimal solution as well as the one-to-one constraints of X . The

search converges to a global optimum upon the implicit enumeration of Q1 = P.

The objective function f is further stratified based upon the branch size k. Lower degree

(d � 2k) hyperedge dissimilarity tensors are computed prior to search. Branches comprising

k-tuples of vertices are partially assigned in a greedy manner using the lower degree hyperedge

dissimilarities via the selection rule H. Later branches accrue higher degree (d > 2k) hyperedge

dissimilarities which are calculated at time of branching; the intent of the method is to rely on

lower degree terms to steer the search towards an optimum in effort to minimize the number

of branches explored. The aggregation rule I accrues higher degree hyperedge dissimilarity

terms upon branching, further guiding the pruning step and ensuring the complete specifica-

tion of the objective f.
The branching and selection rules are designed to reduce computation performed through-

out the search. A partial assignment at branch m: Km ¼ ðl0
ðm�1Þkþ1

; l0
ðm�1Þkþ2

; . . . ; l0mkÞ 2 Qm is

selected via precomputed lower degree hyperedge dissimilarity tensors Z(1), . . ., Z(2k). A larger

branch size k results in a selection rule with larger scope of the optimization landscape, better

equipped to place optimal branches earlier in each queue Qm at time of branching. However,

computing the lower degree dissimilarity tensors prior to search can be prohibitively expensive

for larger point-sets.

Selection & aggregation

The first branch permutation K1 ¼ ðl0
1
; l0

2
; . . . ; l0kÞ 2 Q1 ¼ P assigns vertices (l1, l2, . . ., lk) to

points ðl0
1
; l0

2
; . . . ; l0kÞ according to the initial branch selection rule H1 (Eq 4). H1 defines a cost

given dissimilarity tensors Z(1), Z(2), . . .Z(k) according to a permutation K1. The k pairs of

constraints given by the branch m and permutation of point indices Km: fðl1; l0
1
Þ; . . . ; ðlk; l0kÞg

enables a simplification in the objective formulation. H1 can be simply described as quantify-

ing the first k assignment costs for hyperedge degrees 1 to k:

H1ðK1jZ
ð1Þ;Zð2Þ; :::;ZðkÞÞ ≔

Xk

i1¼1

Zð1Þ

li1 l
0
i1

þ
Xk

i1¼1

Xk

i2¼i1þ1

Zð2Þ

li1 l
0
i1
li2 l

0
i2

þ ::: þ
Xk

i1¼1

Xk

i2¼i1þ1

� � �
Xk

ik¼ik�1þ1

ZðkÞ

l1 l0i1
li2 l

0
i2

���lik l
0
ik

:
ð4Þ

Subsequent branches m = 2, 3, . . .M then use the general selection rule Hm to order the per-

mutations of the mth branch: Km ¼ ðl0
ðm�1Þkþ1

; l0
ðm�1Þkþ2

; . . . l0mkÞ 2 Qm. Branch m incurs a selec-

tion rule cost Hm (Eq 5) comprising lower degree hyperedge dissimilarities for assignments

both within branch m and the assignments between branches 1, 2, . . ., m−1 and branch m. The

partial assignment constraints Km allow further simplification of notation; the reversed order

of summation indices satisfies the criteria that only hyperedge dissimilarities pertaining to

branch m assignments are considered via Hm:

HmðKmjK1; :::;Km�1;Zð1Þ; :::;Zð2kÞÞ ≔
Xmk

i1¼ðm�1Þkþ1

Zð1Þ

li1 l
0
i1

þ
Xmk

i2¼ðm�1Þkþ1

Xi2�1

i1¼1

Zð2Þ

li1 l
0
i1
li2 l

0
i2

þ
Xmk

i3¼ðm�1Þkþ1

Xi3�1

i2¼1

Xi2�1

i1¼1

Zð3Þ

li1 l
0
i1
li2 l

0
i2
li3 l

0
i3

þ ::: þ
Xmk

i2k¼ðm�1Þkþ1

Xi2k�1

i2k�1¼1

� � �
Xi2�1

i1¼1

Zð2kÞ

li1 l
0
i1

���li2k l
0
i2k

:

ð5Þ

The greedy selection rule orders queues Qm but does not account for higher degree (2k < d
� n1) hyperedge dissimilarities. Precomputing higher degree dissimilarity tensors can be both
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computationally expensive and inefficient as ideally only a small percentage of combinations

are queried throughout the search. The aggregation rule Im (Eq 6) measures the dissimilarity

attributable to higher degree (2k < d � mk) hyperedges accessible due to branch m partial

assignments. The aggregation rule updates the cost of branch Km assignments, further inform-

ing the pruning step to subset the next queue Qm + 1. The greedy selection rule Hm in tandem

with the aggregation rule Im aim to minimize the total computation performed in finding an

optimum. The definition Im follows the form of the general selection rule Hm but applied to

the higher degree hyperedge dissimilarities. The aggregation rule Im (Eq 6) can be expressed as

the degree d dissimilarities calculable upon assignments of branch m assignments for degrees

2k < d � mk:

ImðKmjK1;K2; . . . ;Km�1;Z
ð2kþ1Þ; . . . ;ZðmkÞÞ ≔

Xmk

d¼2kþ1

Xmk

id¼ðm�1Þkþ1

Xid�1

id�1¼1

:::
Xi2�1

i1¼1

ZðdÞ

li1 l
0
i1

:::lid l
0
id

:
ð6Þ

The mth branch allows for hyperedge dissimilarities up to degree mk concerning the first

mk assignments. The Mth branch yields a complete assignment, allowing the evaluation of

maximum degree n1 hyperedge dissimilarities. The partitioning and further regrouping of

each Hm and Im as defined fully accounts for the objective f while allowing efficient computa-

tion during the search (S1 File: Hypergraphical Objective Decomposition, S1 File: Convergence
of EHGM).

Posture identification in embryonic C. elegans
Caenorhabditis elegans (C. elegans) is a small, free-living nematode found across the world.

The worm is often studied as a model of nervous system development due to its relative sim-

plicity [15–17, 26]. The adult worm features only 302 neurons, the morphology and synaptic

patterning of which have been determined via electron microscopy [15]. The complete embry-

onic cell lineage has also been determined [17]; methods and technology have been developed

to allow study of cell position and tissue development in the embryo [18–23]. Systems-level

studies of these processes may be able to discover larger-scale principles underlying develop-

mental events.

The embryo features a set of twenty seam cells and two associated neuroblasts. The seam

cells and neuroblasts together describe anatomical structure in the coiled embryo, acting as a

type of “skeleton” outlining its body. Identification of the seam cells and neuroblasts defines

the embryo’s posture. Fluorescent proteins are used to label cell nuclei, including the seam cell

nuclei so that they may be visualized during imaging, e.g., with light sheet microscopy [27].

Volumetric images are captured at five minute intervals in order to capture subcellular resolu-

tion without damaging the worm’s development [24]. Seam cell nuclei appear in the fluores-

cent images as homogeneous spheroids. Their positions relative to other nuclei and other

salient cues present in the image volumes comprise the information that trained users employ

to manually identify seam cells. Fig 6 shows the two rendered fluorescent images from Fig 1A

in Medical Image Processing, Analysis and Visualization (MIPAV), a 3D rendering tool [25].

The interface is used to annotate both seam cell nuclei and track remapped nuclei, as in Fig 2

[24].

We cast posture identification as hypergraph matching and use EHGM to solve the result-

ing optimization problem. The proposed models: Sides, Pairs, and Posture trade off modeling

capacity for increased computation to identify optimal solutions. Sides expresses posture iden-

tification as graph matching; edge-wise (degree d=2) features take the form of standardized
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Fig 6. Rendered image volumes in the MIPAV GUI. The imaged twisted embryo (left) and imaged straightened embryo (right) rendered in Medical

Image Processing, Analysis and Visualization (MIPAV) [25]. The fluorescent images are those depicted in Fig 1A. Trained users navigate the MIPAV

GUI to identify seam cells based upon relative positioning and other salient features such as specks of fluorescence on the skin. Correct identification of

all imaged nuclei reveals the coiled embryonic posture. Green (left), red (center), and purple (right) splines yield an approximation of the coiled

embryo’s posture. Yellow lines connect seam cell nuclei laterally. The splines are used with the image volume to sweep planes orthogonal to the center

spline, yielding the straightened embryo image.

https://doi.org/10.1371/journal.pone.0277343.g006
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Fig 7. The Pairs hypergraphical model uses expansive local contexts about each portion of the embryo. A: The Pairs hyperedges connect local seam

cell nuclei in sets of four and six. B: Degree four hyperedges connect sequential pairs of seam cells while degree six hyperedges connect sequential

triplets of pairs. The posterior-most degree four hyperedge and a central degree six hyperedge are bolded.

https://doi.org/10.1371/journal.pone.0277343.g007

Fig 8. Hypergraphical geometric features contextualize seam cell assignments. Anatomically inspired geometric features describe bend and twist of a

posture assignment. A: Three pairs of sequential nuclei: red, green, blue. Rectangles represent pair midpoints. The angle Θ in red is used as a degree six

feature given six nuclei assignments. B, C: Degree four hypergraphical features measuring twist angles φ and τ. These angles measure posterior to

anterior twist pair-to-pair and left-right twist, respectively.

https://doi.org/10.1371/journal.pone.0277343.g008
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Fig 9. EHGM applied to the sample image depicted in Fig 1A. A: Two points are selected at the initial branch for TL and TR,

respectively. Candidates for the successive pair, V6L and V6R, are queued based on hypergraphical relationships between the established

cell identities TL and TR and each hypothesized V6 pair (lower costs are green to higher costs in red). B: The leading hypothesis at branch

m=2 given the initial branch pair is chosen. The recursion continues to queue V5 pair choices at branch m=3. Black arrows within branch

m specify the ordering of the branch given established cell assignments. Each branch creates a new subproblem of completing the posture

given partially assigned identities. C: The tree continuing from the V5 pair hypothesis is fully explored according to the established

recursion. D: The next leading V5 hypothesis is initiated upon exhaustion of the subtree formed at panel C. E: Implicit enumeration of the

subtree formed at panel B causes the search to progress to the second leading V6 hypothesis.

https://doi.org/10.1371/journal.pone.0277343.g009
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chord lengths between nuclei laterally and sequentially along each side. The first hypergraphi-

cal model, Pairs, employs a greater local context than Sides using degrees four and six hyper-

edges to describe relationships between seam cells. Hyperedges formed by two or three

sequential pairs (d=4,6) better detail local regions throughout the embryo than is capable of a

graphical model. Fig 7A presents the hyperedge connectivity among nodes in the Pairs model

[28]. The Posture model extends the Pairs model by leveraging complete posture (d=n1) fea-

tures in effort to further discriminate between posture hypotheses that appear similar in

sequential regions of the embryo. Geometric features help contextualize the coiled posture. Fig

8 illustrates three of the features used in the Pairs and Posture models. The angle Θ measures

the angle between three successive pair midpoints. The angles Θ decrease throughout develop-

ment as the worm elongates. Pair-to-pair twist angles φ and τ penalize posture hypotheses in

which posterior to anterior transitions are jagged and unnatural in appearance. See S1 File:

Posture Modeling for further details and specification of model features.

The traditional point-set matching task requires a labelled point-set and a second unidenti-

fied point-set. Higher order features such as bend and twist angles may vary largely frame-to-

frame depending on the posture at moment of imaging. However, elongation throughout late-

stage development causes macroscopic trends in these geometric features. We estimate a tem-

plate posture as a composite of feature measurements from a corpus of manually annotated

postures. The templates are time dependent to reflect the elongation from the first point of

imaging throughout development until hatching. See S1 File: Model Fitting for details on tem-

plate estimation.

Together, the fitted models are used with EHGM to identify posture in imaged C. elegans
embryos. The branch size k=2 is set for all models, i.e. a lateral pair of seam cell identities are

assigned at each branch starting with the tail pair cells TL and TR. The successive pair cells,

V6L and V6R, are assigned given the established cells and hypergraphical relationships accessi-

ble with the hypothesized identities. Fig 9 depicts EHGM applied to the sample image depicted

in Fig 1A. The initial pair (TL and TR) is selected, instantiating a search tree (Fig 9A). Succes-

sive seam cell identities are partially assigned according to the given hypergraphical model in a

pair-wise fashion. Each branch greedily queues hypothesized point-pair assignments condi-

tioned on the previous branch assignments (black arrows within a branch). The next leading

V6 pair (Fig 9E) is chosen upon exhaustion of the leading hypothesized V6 pair (Fig 9B).

EHGM continues the recursion to implicitly identify a globally optimal posture under the

given hypergraphical model; each possible initial pair will follow this illustrated process subject

to pruning of the minimizing posture accessed via the hypothesized tail pair in Fig 9A.

Supporting information

S1 File.

(PDF)

S1 Fig. Sides model features. A) Distances between nuclei of lateral pairs. Notably, the tail

pair distance (left-most panel) is constant throughout imaging. The tail pair distance informs

the initial pair selection rule H1. B) Chord lengths along left and right sides of the posture.

Both quadratic features show high variance.

(TIF)

S2 Fig. Pairs model features. A) Ratios of pair distances. B) Distance between successive pair

midpoints. C) Cosine similarities between successive left and right sides. D) Lateral axial twist

angles. E) Axial twist angles. F) Midpoint bend angles. G) Planar intersection angles.

(TIF)
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S3 Fig. Posture model features include all Pairs features and posture-wide versions of Pairs
features. A) Summed ratios of pair distances. B) Summed distances between successive pair

midpoints. C) Summed cosine similarities between successive left and right sides. D) Summed

lateral axial twist angles. E) Summed axial twist angles. F) Summed midpoint bend angles. G)

Summed planar intersection angles.

(TIF)
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