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Keywords: . .
Y Natural hazards such as windstorms, earthquakes, and floods cause damage and failure to

Infrastructure Resilience both structural and non-structural elements, significantly impacting the functional integrity and
overall performance of the building systems. The economic loss due to such events and the
often tortuous path to recovery call for revisiting engineering approaches to resilience assessment
Lattice element method through developing simulation methods that provide a balance between fidelity and efficiency,
particularly if the post-event assessment is to be performed at a large scale, e.g., the scale of a
community. In this paper, we develop a discrete simulation framework for modeling the response
Calibrated interaction potentials of structures as a middle-ground solution between overly simplistic multi-degree-of-freedom
models on the one hand and intricate FE models on the other. The framework draws upon the
Potential-of-Mean-Force (PMF) approach to Lattice Element Method (LEM) where the main
idea is to discretize the system into a set of particles that interact with each other through
prescribed interaction potentials. These potentials are calibrated beforehand at member scale,
for different structural and non-structural components. Here we focus on providing the main
elements and the steps necessary for adaptation to modeling structural components in linear
regime and leave the extension to nonlinear regime and the modeling of damage for future
developments. This includes calibration of the potentials for structural members of different
types (1D vs. 2D) under different actions (axial, bending, in-plane and out-of-plane actions)
through an energetic handshake between the lattice model and continuum theories, e.g., the
Timoshenko beam theory and Kirchhoff-Love plate theory. We explore the utility of the proposed
method through its application to simulation of a set of building systems with different levels of
complexity and under various loading conditions.

Energy-based modeling

Mean-force potential

1. Introduction

The vulnerability of U.S. civil infrastructures to natural hazards such as windstorms, earthquakes, and flooding
and their severe economic and societal impacts are well known. In 2020 alone, the total damage from natural disasters
amounted to $95 billion in loss [1]. These widespread impacts, followed by the lengthy and costly recovery processes,
call for novel, robust, and efficient damage assessment tools for resilience analytics that allow for accurate examination
of functional integrity for structures with various levels of complexity. The corresponding extreme loading conditions
can cause failure and damage to both structural and non-structural elements, leading to loss of functionality of the
entire structural system. Despite the proven fact that failure of non-structural members can significantly contribute
to the overall performance under extreme loading conditions [2, 3, 4, 5, 6], many existing approaches to damage
assessment, consider solely the failure of structural components and disregard the role of non-structural elements,
such as non-load-bearing walls, partitions, and building envelop, on system’s functional integrity, a practice that can
prove detrimental to the assessment process considering the impact of sever damage in these non-structural elements
on system’s overall performance [7, 8].

Disregarding the impact of non-structural failure on system-level performance is mostly rooted in the substantial
computational expense associated with the detailed modeling of the system at all levels. The research efforts, to a
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large extent, have focused on developing rigorous nonlinear models to investigate the performance of non-structural
components as they interact with structural members. These include detailed finite element simulations of the elements
and connections [9] and development and use of special nonlinear elements (e.g., macro-element-based models
in OpenSees [10]) among others [11, 12, 13, 14]. While such approaches to modeling can accurately capture the
interaction and load transfer between structural and non-structural elements, they require significant computational
resources and are not amenable to large-scale system/community level analysis.

Additionally, most simulation strategies rely on continuum approaches and, as such, are not robust against modeling
discontinuity, failure, and damage. Finite element method, for example, has been extensively used for modeling fracture
in continuum domains with different types of pre-existing discontinuity [15, 16, 17]. One of the challenges associated
with such strategies is that they require mesh refinement around discontinuities to conform to the geometry during crack
propagation [18, 19]. While more advanced methods such as the extended-finite element method (XFEM) have been
developed by elemental enrichment of FEM to minimize the need for re-meshing around discontinuities and complex
morphologies [20, 21, 22, 23], there still remain unresolved issues when modeling non-linear failure [24, 25, 26] or
dynamic fracture [25, 27, 28], particularly if the goal is to perform simulation-based assessments at large scales, say
the scale of a community.

Discrete methods have recently become increasingly popular in modeling materials at the meso-scale due to their
inherent capability and effectiveness in simulating a variety of material behaviours, and complex failure and fracture
phenomena [29, 30, 31, 32, 33, 34]. These include distinct or discrete element method (DEM) [35], widely used
methods for simulating granular materials, rock mechanics and more recently architected materials [36, 37, 38, 39],
material point method (MPM) [40], a powerful tool for simulating the crack initiation and growth under dynamic
loading conditions for brittle and ductile materials [41, 42], rigid block spring method (RBSM) [43], used for simulation
of cement-based and other cohesive materials [44, 45], among others.

Lattice Element Method (LEM) is a class of discrete methods that has proved very effective in robustly
modeling fracture, crack propagation and coalescence of discontinuities in quasi-brittle and heterogeneous materials
[46,47,48,49]. The core idea of the method is to discretize the material domain into a number of particles connected via
one-dimensional elements that break according to strength- or strain-based failure criteria [50, 51, 52]. LEM has been
used for modeling microcracks in single-phase or multi-phase materials [53], as well as crack formation, debonding,
and crack propagation in concrete at the meso-scale [54, 55, 56, 57]. There have also been efforts to utilize LEM for
examination of the energy dissipation during failure through the definition of element-level softening models [58].

A potential of mean force (PMF) approach to LEM has recently been proposed that uses interaction potentials,
akin to those used in molecular simulations, to capture the interactions between material points in the discretized
domain [59]. A similar approach to free-energy calculation has been successfully used as an efficient upscaling strategy
from molecular scale to meso-scale in multi-scale modeling of complex materials such as cement [60], and clay and
soil [61], among others. The PMF-based LEM allows for direct implementation of energetic definition of fracture
as a successive irreversible process of energy release due to bond breakage between a sequence of thermodynamic
equilibrium states [59, 62]. More recently, Wang et al. [63] proposed a novel hybrid methodology for simulating the
fracture of heterogeneous materials. The proposed methodology transcends conventional LEM by enabling near-global
enforcement of the Griffith criteria at a significantly reduced computational cost.

In this study, we leverage the PMF approach to LEM and adapt it to develop a novel tool for modeling the response
of building systems. We do this based on the premise that the PMF approach to LEM offers several advantages regarding
the potential for the examination of a building system’s overall performance and functional integrity, namely, (i) a
handshake between computational efficiency and fidelity, allowing for the modeling of the entire system comprised of
both structural and non-structural components. We view this as finding the middle ground between overly simplistic
multi-degree-of-freedom models [64, 65] and intricate FE models for the case where the analysis needs to be performed
at a massive scale, e.g., the scale of a community, (ii) the discrete nature of the lattice element method that permits
proper modeling of failure and damage without confronting the discontinuity and instability challenges intrinsic to
continuum approaches, (iii) the prospects of leveraging a broad range of effective interaction potentials to enable the
modeling of different nonlinear behaviors in structural and nonstructural members [66, 59, 67, 68, 69, 30], along with
energy-based failure criteria [70, 71, 72]. Having laid out the utilities offered by the PMF approach to LEM, however,
we note that this study is focused on providing the elements of the conceptual framework and its application in linear
regime and, as such, leaves the extension to nonlinear regime and the modeling of damage for future. Furthermore, with
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Figure 1: (a) Discretization of a solid medium with the lattice of unit cell size ay; n,, n, and n, are the number of
nodes along the axes x, y and z; each particle is connected to its 18 immediate neighboring particles; (b) Translational,
3,» = {6{’, 65’ s 5;}, and rotational, :9} = {19:7, 1911? s 195 }, degrees of freedom in the bond’s local coordinate system with unit
vectors [e,,, ey, ;1.

the assumption of quasi-static conditions, the current formulation of LEM is not amenable to modeling the dynamic
response of systems. While our ongoing research focuses on leveraging advances in MD simulation techniques [73, 74]
and enabling LEM to traverse the dynamic equilibrium path, the developments in this manuscript are solely for quasi-
static conditions and establish the basis for further extensions.

The organization of the paper is as follows: We first review the PMF approach to LEM in Section 2. The details
pertaining to the adaptation of LEM to model structural elements are presented in Section 3. These include the
calibration of harmonic interaction potentials for one- and two-dimensional elements under both in-plane and out-
of-plane actions through an energetic handshake between the continuum theories, that is the Timoshenko beam theory
and Kirchhoff- Love plate theory, and the lattice model, as well as the validation of the simulation results. In Section
4 we showcase the application of the proposed approach to different structures, from a plate under combined loading
to more complicated scenarios, including the modeling of an entire building comprised of beams, columns, floors and
a central core. Section 5, finally, provides the concluding remarks.

2. Lattice Element Method: A Potential-of-Mean-Force Approach

The main premise in the potential-of-mean-force (PMF) approach to the Lattice Element Method (LEM) is the
ability to describe the mechanical behavior of a medium by discretizing it into particles that interact with each other
through interaction potentials [62]. The total internal energy of the system comprised of N particles is then the
summation of the particles’ ground-state energy and the interaction energy between the particles:

N N N
U = Z U;(x) + Z U;; (X, %)) + Z Uiji (X, X %) + oo €))
i ij ik
where X; denotes the position vector of ith particle, and U;, U, ; and U are respectively the ground-state, two-
and three-body interaction energies [62]. The PMF approach is consistent with the classical LEM, when only two-
and three-body interactions between a point and its nearest neighbors are accounted for and the higher-order terms
are disregarded. In the classical LEM, the interactions between material points are modeled via axial, bending, and
occasionally shear and torsional actions [75, 76, 77, 50] and the total internal energy of the system reads:

1 I g -
U,y » D el +US6,0,)+U@,0,)+ Ul @,.0), 2)
i=1 jeI,

>

where I; denotes a set including 18 immediate neighbors of the i particle according to the lattice configuration
illustrated in Fig. 1, and 5,- = (gi,ﬁi) is the corresponding generalized vector of degrees of freedom. Here 3,- =
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{57, 5” (St } and 5 {97, 191’ St } respectively denote vectors of translational and rotational degrees of freedom in
the local lattice coordinate w1th unit vectors [e,, &, ¢;1; see Fig. 1(b). Finally, Uif, , Ui? and U; represent the energy
contributions from stretch, bending and torsional actions, respectively, for the bond connecting particles i and j with a
well depth energy of e?j. The translational and rotational degrees of freedom at each equilibrium state is then determined
via minimizing the total potential energy of the system according to the minimum potential energy theorem:

{§1, s §N} = argminél iy U,o,(él, s éN) - W(@l, s §N) 3

,,,,,

with W denoting the external work supplied to the system. Hence, the forces and moments in the bonds, i.e. the
derivatives of the internal energy with respect to the corresponding degrees of freedom:

—

_ athot Fva aUtot

= M;=-— )
95, 93,

1

satisfy the balance of momentum:
T T
Fl.+F;—0, M[+M;+(xj—x,-)><F;.—0. 5)

With LEM inherently a force-field method, the stress components at particle i —as a continuum metric— are determined
a posteriori via the virial expression [78]:

2 & -%)® F/. 6)
Ui JEI;
with v; the voxel volume centered at particle i/, and @ representing the tensor product.

The PMF approach enables LEM to leverage a wide range of interaction potentials for characterizing different
behaviors of structural and non-structural members. Focusing on the linear response and the harmonic potential, the
internal energy of a bond connecting particles i and j is decomposed into the components associated with stretch (Uif ),

bending (Ui];3 > and Ui? ’ corresponding to local axes b and t), and torsional (Ug) actions:

1 2
Uj =26 (4)"

v =1 Bf{ (= 80)7 + (a8, — 0) (90— ) + S (01— )7 Ly Leto(or 1)
7
uBt = ; f”{ (2, +0°)* + (21, - sf)(&f —9) + %(sj - ,957)2} + %ég’b(sf — 9, v
Uf = 3659 - 90"
where Z =6 ;= gi) / l?j is the normal strain, l?j |(X; — X;)-€,| denotes the bond initial length, whereas ei 17;
eBb

€ and 8 i " are, respectively, the non-negative parameters corresponding to interaction potentials for stretch, torsion,
and bendlng in two directions. Modeling a structural system with reasonable fidelity requires a discretization of the
structural domain with high-resolution leading to “short" and “deep" bonds for which the shear effect is non-negligible.
We thus define additional potential parameters éil;” and ég’b and modify the bending energy expressions to account for
the contribution of shear deformation to the total internal energy expression. The above representation of the bond’s
internal energy can also be presented as the following quadratic expression:

- \T >

N 1 0. 0.
UIJ(HI,HJ) = = < ql > Kl./ < ql >, (8)

2\ ¢ ey

where K;;, the stiffness matrix for link ij (see Appendix I), accounts for the stretch, bending, shear, and torsional

ij»
actions.
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Figure 2: (a) Lattice discretization of a building into one-dimensional (1D) and two-dimensional (2D) members; (b) A
material point in the lattice system is connected to its neighboring points through two different types of 1D elements:
the slender element (left) and the deep element where shear deformation is significant (right).

Since the conception of lattice element method, its use has been mainly limited to modeling material systems where
the domain is discretized via a lattice-like network of particles connected via interaction potentials. The parameters of
the interaction potentials are calibrated so as to describe three-dimensional or, in some cases, in-plane response of the
material. Buildings and structural systems, however, are composed of one-dimensional (e.g., beams, columns, braces,
etc.) and two-dimensional (e.g., floors, partitions, building envelope, etc.) members. In what follows, we adapt LEM
to simulate the response of both types of structural members and subsequently an entire building system.

3. Adaptation to Structural Elements: Calibration of Potential Parameters

Structural elements, whether 1D or 2D, are discretized by a lattice network (see Fig. 2(a)) with nodes exhibiting
both displacement and rotational degrees of freedom and the interaction between the nodes modeled via harmonic
energy potentials. The non-negative parameters of the interaction potentials are then calibrated so as to simulate the
behavior of different structural members.

3.1. One-dimensional members

The parameters of the interaction potential for one-dimensional (1D) elements are readily calibrated through a
handshake between the total energy of the lattice in LEM, assuming harmonic interaction potentials, and the strain
energy of the 1D elements due to stretch, bending, torsion, and shear. We note that a high-resolution discretization
that allows for a more accurate simulation can result in short and deep 1D elements where shear deformation and its
contribution to internal energy are significant; see Fig. 2(b) for a material point connected to its neighboring points in
a 2D lattice. To account for this, we use the Timoshenko beam theory in the calibration process of 1D elements. More
specifically, to obtain the parameters of the interaction potentials, the total internal energy in Eq. (2) for a member
discretized into » particles is set equal to the total internal energy of the same member under axial, bending and shear
actions.

The results are summarized in Table | in terms of the elastic and geometric properties of the 1D element. Here

o = 12E1b / (GAIIQZ) is a dimensionless number describing the bending to shear stiffness ratio, E, G and v are
respectively the elastic modulus, shear modulus and Poisson’s ratio of the material, whereas A, I and J are the area,
second moment of inertia and torsional constant of the member’s cross-section. It is readily seen from the results that
the potential parameters for 1D elements are independent of the level of discretization n.

3.2. Two-dimensional members

Two-dimensional (2D) components appear in both structural (e.g., shear walls, floors, bearing walls) and non-
structural (e.g., partitions and building envelope) members when simulating buildings as systems. Fig. 3 shows a 2D
plate of dimensions /., [, and thickness d discretized via a regular 2D lattice. Each particle interacts with a maximum
of eight neighboring particles across straight and diagonal directions. Akin to the classical plate theory, the interactions
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Table 1: Calibrated potential parameters for one-dimensional member

between particles are decomposed into membrane (in-plane) and flexural (out-of-plane) actions. The corresponding
potential parameters are then calibrated according to the plane stress and Kirchhoff-Love theories, respectively.
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UXIXIXIXT

y Ly=ag(ne— 1)
.

Figure 3: Lattice discretization of a 2D plate of dimensions /., /, with lattice size a,. Within this lattice configuration,
each particle interacts with up to eight neighboring particles across the straight bonds connecting points in x and y
directions and the diagonal bonds connecting points in the diagonal directions, denoted by 1 and 2 respectively.

3.2.1. In-plane calibration

Consider an isotropic and homogeneous membrane in plane stress condition discretized into n, X n,, points using a
2D lattice as shown in Fig. 3. The lattice is composed of two types of bonds, the short bonds connecting points in x and
y directions and the long bonds connecting points in the diagonal directions. Noting that the length of a bond plays a
key role in its internal energy, we require four unique potential parameters to characterize the in-plane response of the
lattice. These parameters are associated with stretch GIS , ef and in-plane bending ef; > and eZB > actions, with subscripts

1 and 2, respectively, representing the parameters corresponding to the closest neighbor direction (13 = q;) and the
direction of neighbors along the diagonal (l?j = \/an).

To calibrate the parameters of the interaction potential, we leverage the theory of minimum potential energy, stating
that the deformations and rotations of all degrees of freedom at equilibrium must minimize the total potential energy of
the medium. It is also known that the components of the elastic stiffness matrix are the second derivatives of internal
energy density with respect to the corresponding strain and rotational components:

. | P 104 9
ij = 26 0 o Lj=1,2, ( )
(I’lx— 1)(ny— 1)(10 € 5/

with £, and ¢, the in-plane normal strains in x and y directions, and &4 the in-plane shear strain. We thus subject the

. . . . . . LS T .
2D lattice to an in-plane uniform strain field, characterized via a vector of strains £ = [e 1> €25 84] . Removing the
subscripts i and j for notational simplicity, the normalized in-plane deformations at each lattice bond reads:

A'=Q", AF=Q'%€ 10
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Here £ is the applied strain, and Q" and Q' are matrices of transformation from the global to the lattice local system
of coordinates given in Appendix II. Utilizing Eqns. (2), (7), and (10), the total energy of the system is expressed as a
function of the four unique energy parameters (ef , ef , ef > and ef 5. Finally, the potential parameters are determined
by equating the second derivatives of the total energy and the corresponding components of the plane stress stiffness
matrix for isotropic materials:

Cy 1 nf/(in—1) 1/2 0 2] €
E 1 &
C,|= =— 0 1/2 0 -1/2 , 11
2= T2 v 2 / / Bt (In
Cyy (1-v)/2 0 1/2 n/20-1) 172 ||’

The results are summarized in Table 2 in terms of material properties (elastic modulus E, Poisson’s ratio v), lattice
configuration properties (level of discretization n, size of the lattice unit cell a;), and plate thickness d. As can be
seen, the lattice model adopted will reduce to the classical central-force lattice when the parameter associated with
in-plane bending internal energy eiB b s equal to zero, leading to a lattice representative of an isotropic membrane

with a Poisson’s ratio v = 1/3 [62]. Nonzero values of eiB’b, on the other hand, enable the lattice with both axial and
bending actions to model membranes with a wide range of Poisson’s ratios. The limits of Poisson’s ratio are governed
by the non-negativeness of the parameters of interaction potentials. Within the limits defined by this constraint, the
harmonic potentials in Eq. (7) require three nonzero energy parameters to properly simulate the isotropic behavior of
a membrane by the lattice system shown in Fig. 3.

Energy parameters —1<v <0 0<v<1/3
oS E(n_l)azd E(n—l)a2
1 n(l—v) 0 n(l+v) O
2Ev
Ky 2
€ 0 .2 aod
B En-1) , E(1-3vn-1) ,
1 n(l—-v) 0 n(l —v2) 0
B.b 2Ev ,
€, - 1a0d 0

Table 2: Calibrated potnatial parameters for in-plane deformation

The calibrated potential parameters in Table 2 are validated by comparing the analytical values for dimensionless
stiffness constants Cy; / E, Cy,/ E and Cy, / E with those obtained from numerical simulations of the discretized system.
The results are illustrated in Fig. 4 for a wide range of Poisson’s ratio v and different levels of discretization n. We
observe that, especially for positive Poisson’s ratio, a relatively low-resolution discretization with LEM can provide
results that are in close agreement with their continuum counterparts.

3.2.2. Out-of-plane calibration
We postulate that the out-of-plane deformation of the lattice system is a consequence of torsional and out-of-plane
bending actions. We hence use the Kirchhoff-Love plate theory to calibrate the parameters corresponding to the torsion
€T and out-of-plane begdin% eB7 potentials. Analogous to the in-plane calibration procedure, we identify four unique
St St

. T T . . . . 0 _
potential parameters, €, €, , € and €, , with subscripts 1 and 2, respectively, corresponding to short bonds / ij = 9

and the diagonal bonds l?j = \/an.
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Figure 4: Validation of the in-plane calibration procedure through comparing theoretical values of dimensionless
stiffness constants C;, /E, C,,/E and C,4/ E (solid lines) in terms of Poisson’s ratio with those obtained by numerical
simulations of discretized lattice system (symbols) for different levels of discretization n; (a) n = 5; (b) n = 11;
(c) n = 21. The results indicate a close match between the calibrated lattice discretized system and its continuum
counterparts at relatively low-resolutions.

The out-of-plane deformation of a plate, according to the Kirchhoff-Love theory is described using the moment-
curvature relationships:

MX KX
M, |=F|x, (12)
Mxy Ky

where M, and M, represent the moment around x and y axes, and M,,, is the twisting moment. The corresponding
curvatures are k, = 0>w/dx?, Ky, = ?w/oy* , Kyy = 0%w/dxdy, and the flexural rigidity matrix is given by:

10 v 0
F=D|v 10 o |,
0 0 2(1-v)

Ed3

- Ed 1
b 12(1 —12) (13)

with d the plate thickness. It follows that the components of the flexural rigidity matrix are the second derivatives of
the strain energy density due to out-of-plane deformation with respect to curvatures:

1 azUtot

F, = (14)
Y, = D(n, - 1)a? 9x;0x;

To calibrate the out-of-plane potential parameters, we subject the lattice to deformation fields that result in bending
of the plate with a constant curvature. The total energy of the lattice system is a function of the curvatures k., k), Ky,
and the out-of-plane rotations 9", 9'. To obtain the four unique parameters of the interaction potential, the second
derivatives of the energy with respect to the curvatures are then set equal to the corresponding components of the
flexural rigidity matrix of a thin isotropic plate. Table 3 summarizes the corresponding potential parameters for both

straight and diagonal bonds.

The dimensionless components of the flexural rigidity matrix F;; for the calibrated lattice are compared with the
ones from Kirchhoff-Love plate theory in Fig. 5 indicating a close agreement for a wide range of Poisson’s ratio and
different levels of discretization. We, however, observe that a higher resolution is required for convergence compared
to the in-plane calibration, which can be attributed to the complexity of the out-of-plane bending deformation. Never-
theless, the convergence for positive values of Poisson’s ratio is achieved with a rather low resolution discretization.

3.3. Additional validation for combined loading

By way of example, we use LEM with calibrated interaction potentials to model a plate of thickness 0.12m with
elastic modulus E = 23.52 GPa and Poisson’s ratio v = 0.2. The plate domain is discretized via a n, = 41 by n,, = 31
lattice of size ay = 0.2m, and is subjected to a general deformation field (see Fig. 6).
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Figure 5: Validation of the out-of-plane calibration procedure through comparing the theoretical dimensionless
flexural rigidity constants F;; /(Ed?) (solid lines) as a function of Poisson’s ratio with those obtained from numerical
simulations of discretized lattice system (symbols) at different discretization levels n; (a) n = 21, (b) n = 51, and
(c) n = 97. The results indicate that, in comparison to the in-plane response, a more resolved lattice discretization is
needed to achieve accurate results. However, for positive values of Poisson’s ratio of interest in structural mechanics
applications, accurate results can be achieved at relatively low resolutions.

Energy parameters -1<v<0 0<v<1/3
(B 12D -1 +v) 12D(n—1)(1-v)
1 n n
el 0 12Dv
o7 D(n—1)1-v) D(n—1)(1-3v)
1 n n
e -Dv 0

Table 3: Calibrated energy parameters describing out-of-plane deformation

e uv,w=_0

Ly=6m — w=-0.125m
v=0u=015m
— u,v=0
vYe ®
Yy >

T—»x

L,=8m

Figure 6: Geometry and boundary conditions for a concrete plate example with a thickness of 0.12m, elastic modulus
of E = 23.52 GPa and Poisson’s ratio of v = 0.2. The plate is subjected to a general deformation field, causing both
in-plane and out-of-plane displacements.

The results in Fig. 7 indicate a close agreement between the displacements and rotations obtained via LEM and
those from finite element analysis. The figures in the right column (7 ¢, f, i and 1) display the probability density function
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Figure 7: Comparison of the results of PMF-based LEM and finite element analysis for the plate problem depicted
in Fig. 6 discretized by a lattice of size a; = 0.2m. (a) and (b) display the in-plane deformation u in x direction,
respectively, obtained via PMF-based LEM and FEM simulation, whereas (d) and (e) present the out-of-plane
deformation w. Similar comparisons are presented for rotations around the x axis (R,) in (g) and (h), and around
the y axis (R,) in (j) and (k). The right column (c.f,i,]) illustrates the probability density functions of the relative error
for each of the above displacement components. Relative errors greater than 2% are only observed in a limited number
of particles, indicating a close agreement with the result of FEM. The insets show the reduction of the maximum
relative error with increasing resolution of discretization.

of the percentage relative error and the insets exhibit the decay of maximum error with increased resolution. As can
be seen, errors higher than 2% are only observed for a small number of nodes and decline further by increasing the
discretization resolution. The largest relative errors are generally attributed to insignificant values of the corresponding
displacement components.

4. Application to Multi-story Building Systems

In this section, we simulate the response of different building systems using the PMF-based lattice element methods
developed in the preceding sections. The systems under examination include: (i) a multi-story building made of
moment-resisting frames in two directions and floor systems, (ii) a core system analogous to shear cores in buildings,
and (iii) a multi-story building with moment-resisting frames, floor systems and an inner core. The above systems
provide systems of different complexity comprised of both 1D and 2D members, allowing for a thorough examination
of the utility of the proposed simulation framework in modeling the responses of the structures as well as the interactions
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Figure 8: Schematic of the four-story concrete building, after the Department of Energy (DOE) reference building
library for medium offices [79]. The structural system comprises moment-resisting frames in two directions with rigid
connections, alongside floor systems and fixed supports. The building is subject to a lateral displacement of u = 0.5m
(in the x direction) on the left side of the top floor.
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Figure 9: Comparison of the results of PMF-based LEM and finite element analysis for the four-story concrete building
represented in Fig. 8 discretized by a lattice of size a, = 0.3m. (a) and (b) represent displacement u in x direction
obtained via PMF-based LEM and FEM simulations, respectively, whereas (d) and (e) illustrate the rotation around
the y axis (R)). Figures (c,f) illustrate the probability density functions of the relative error for u and R,. The 95-
percentiles for the errors in displacement u and rotation R, stand at 0.07% and 0.79%, respectively, indicating a close
agreement with finite element results.

between 1D and 2D members. For simplicity and without loss of generality, all 1D members (beams and columns) are
assumed to have a square cross-section with a side length of 0.45m, and the thickness of 2D members (floors and roof)
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is set at 0.12m. The material is considered to be linear elastic with Young’s modulus E = 23.52 GPa and Poisson’s
ratio v = 0.2. Using the above material and geometric properties, the parameters of the interaction potentials for 1D
and 2D members are determined according to the calibration procedure described in Section 3 and the robustness of the
proposed framework is demonstrated via comparison of the results with those obtained from Finite Element Analysis.

4.1. Multi-story building
A 4-story building, resembling the Department of Energy (DOE) reference building library for medium offices

[79], as illustrated in Fig. 8, is considered. The structure comprises moment-resisting frames in two directions with
rigid connections, floor systems and fixed supports. The building is subject to a lateral displacement of u = 0.5m in
x direction at the left side of the top floor, as shown in the figure, and is discretized via a lattice of size ay; = 0.3m
A finite element model with the same resolution is used to provide a benchmark for comparison. Fig. 9 compares the
displacement in x direction () and rotation around y axis (Ry) obtained via LEM and FEM. The right column in the
figure shows the probability density function of the percentage relative error, with the 95-percentiles at 0.07% for the
displacement u and 0.79% for the rotation R, both indicating a close agreement between the two methods. Similar to
the plate example in Section 3.3 the maximum discrepancy between the two models pertains to the deformations with
negligible magnitudes. For instance, the maximum relative error of 0.31% in displacement u and 2.76% in rotation R,
both occur in columns of the first storey, with the corresponding absolute values approaching zero.

@ (b)

u=05m y=—28, 08
0 u=Re-L)m
2

=08
u=,-ym /

v=£(L1—x)m
Ly

h=168m
(4@42 m)
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e L.y
D L LT T

Figure 10: Schematic of a concrete shear core, featuring rigid connections to beams, columns, and the base. The core
is subjected to different deformation fields: (a) lateral and (b) torsional displacements, both applied at the top floor.

4.2. Building core system
Core systems, for example, concrete shear cores located typically at the center of the structure, are used to resist

lateral loads in buildings. Here we study the response of a 4-story concrete shear core system, shown in Fig. 10, with
rigid connections to beams, columns and the base. The core system is analyzed under two load conditions: (i) lateral
and (ii) torsional displacements at the top, as indicated in Figures 10(a) and (b). The domain of the core is discretized
via a regular lattice of size 0.3m. Analogous to the previous example, an equally resolved finite element model is used

for comparison.

Degrees of freedom u v w R, R, R,

Maximum relative error (%) 2.77 5.54 4.55 5.05 3.51 6.02

Table 4: Maximum relative error in displacements and rotations for core wall system subjected to lateral displacement
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Figure 11: Comparative evaluation of PMF-based LEM results and finite element analysis for the concrete shear
core system subjected to lateral displacement is shown in Fig. 10(a). The system is discretized using a lattice of size
ag = 0.3m. (a) and (b) present displacement u, obtained from PMF-based LEM and FEM simulations, respectively.
whereas (d) and (e) show the rotation R,. Figures (c,f) are the probability density functions of the relative error for u
and R,. The 95-percentile of the errors for u and R, are 1.43% and 1.71%, respectively, signifying a high degree of
consistency between the two approaches.

The results for the lateral loading condition are illustrated in Fig. 11 for the two significant displacement
components u and R,. We observe a close agreement between the deformation fields obtained via LEM and finite
element analysis. The probability density functions of the relative errors shown in the left column of the figure indicate
high accuracy of the results, with the 95-percentile of the relative errors at 1.43% for u and 1.71% for R,, .

The maximum relative errors for the displacements at all degrees of freedom are reported in Table 4. While
the resolution of the discretization is identical to that of the framed structure in the previous example, we observe
larger values for the relative error for different responses. This increase in error is attributed to the fact that the
shear walls perpendicular to the loading direction exhibit out-of-plane deformations that require a higher resolution
discretization to properly capture. We also examine the behavior of the same core system subject to a prescribed
torsional displacement at the top, as illustrated in Figure 10(b). The applied displacement induces identical responses
in x and y directions, one of which (e.g., u in x direction) is presented here. Figure 12 illustrates the displacement u
and rotation R, obtained via the LEM and compares them with the result of finite element analysis. The 95-percentile
of the errors is 1.72% and 1.83% for u and R, respectively, again indicating the promise of the PMF-based LEM in
accurately capturing the response of an assembly of two-dimensional members.

4.3. Multi-story building with a core system

In our final example, we examine the response of a structural system that is a combination of the above two systems,
namely a coupled system of frame and core. The structure is a four-story building with moment-resisting frames along
the x and y axes, coupled with a shear core,both acting as lateral-load resisting components, and floors. The 1D and
2D components are discretized via a lattice of size a; = 0.3m leading to the total of 65120 particles, and the building
is subjected to a lateral displacement u = 0.5m in x direction on the top floor, as shown in Fig. 13.
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Figure 12: The results of PMF-based LEM and finite element analysis are compared for the concrete shear core
system under torsional displacement at the top, as shown in Fig. 10(b). The lattice discretization of size a; = 0.3m
is utilized. In figures (a) and (b), the u displacement in the x direction obtained from PMF-based LEM and FEM
simulations are depicted, whereas (d) and (e) provide the rotation around the z axis (R,). The figures (c,f) illustrate the
probability density function of the relative error for the u displacement and R, rotation, respectively. The 95-percentile
errors, standing at 1.72% for displacement u and 1.83% for rotation R,, underline the accuracy of PMF-based LEM in
predicting the behavior of the core system.

Fig. 14 compares the magnitudes of displacements u and R, obtained via PMF-based LEM with those obtained
via finite element analysis. Analogous to the previous examples, the results are in close agreement at almost every
lattice particle. Fig. 14(g) shows the plot of the relative error in u within a section cut in the x direction, whereas Fig.
14(h) illustrates the relative error in R, within a section cut in the y direction. As observed in these two error plots,
large relative error magnitudes correspond to particles with insignificant displacement components. More specifically,
we observe large relative errors in displacement u in the bottom of the shear wall of the first floor where u approaches
zero. Similarly, the maximum error for rotation R, occurs in the mid-span of the frame along the y direction with
close to zero rotations. The probability density function of the relative errors shown in Figs. 14c and f also indicate the
accuracy of the LEM results, with 95-percentile of errors at 0.79% and 0.71% for u and R, respectively.

5. Concluding remarks

We proposed a simulation framework based on Lattice Element Method (LEM) for modeling the response of
structures that provides a middle-ground solution between intricate FE models on one hand and overly simplistic
multi-degree-of-freedom models on the other. The proposed framework draws on the potential of mean force approach
to LEM, widely used in modeling fracture and damage in heterogeneous materials, and uses member- and component-
level calibrated interaction potentials to model structural and non-structural elements as a collection of interacting
nodes and bonds. The details needed for adaptation to modeling of building systems were laid out. This included
calibration strategies for the determination of parameters of interaction potentials based on energy equivalency
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h=168m
(4@4.2 m)

TP

Figure 13: Schematic of a four-story concrete building comprised of moment-resisting frames along the x and y
axes and a shear core, both functioning as lateral-load resisting components. The building is subjected to a lateral
displacement u = 0.5m in the x direction on the top floor.

arguments for the lattice models of structural members and their continuum counterparts. We considered both 1D
structural members (beams, columns, etc.) and 2D structural members (load-bearing walls, partitions, floors, etc.) under
in-plane and out-of-plane actions. It was demonstrated that as the lattice discretization resolution increases, the in-plane
and out-of-plane responses converge to those of the continuum models, but the resolution required for convergence for
in-plane deformations is significantly lower than that needed for convergence for out-of-plane deformations.

The accuracy and effectiveness of the proposed framework were examined through analysing a set of building
systems with different levels of complexity and comparison with the results of finite element simulations, indicating
a close agreement between the results of the two methods with a similar discretization resolution and under various
loading conditions.

While the development in this paper was limited to the linear regime, the prospects of leveraging a broad range
of effective interaction potentials and the discrete nature of the proposed framework, along with energy-based failure
criteria, are expected to enable modeling of nonlinear behavior and damage in structural and nonstructural members.
It is further expected that LEM, as a quasi-static approach that relies on the minimum potential energy theorem, is
amenable to studying dynamic problems through consideration of the system’s potential and kinetic energies and
satisfying the Euler-Lagrange equation. The proposed framework, therefore, has the potential to serve as (the basis
for) an effective tool for evaluating the functional integrity and overall performance of building systems post-extreme
events.
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Appendix L. Expansion of Lattice Stiffness Matrix

The total internal energy of the lattice bond ij can be expressed as the matrix form in Eq.8. Incorporating the
contributions of stretch, bending, and torsional energy, the K;; matrix is decomposed into K, 5 , K 5. and K£
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Figure 14: Comparison of the results of PMF-based LEM and finite element analysis for the concrete building shown
in Fig. 13 with lattice discretization of size a; = 0.3m. (a) and (b) show the displacement component u obtained,
respectively, via PMF-based LEM and FEM simulations, while (d) and (e) present the rotation R,. Figures (c) and
(f) illustrate the probability density functions of the relative error for u and R,. The 95-percentile error is 0.79% for
displacement u and 0.71% for rotation R, highlighting the accuracy of the PMF-based LEM in predicting the behavior
of complex systems. Figures (g) and (h) show the plots of relative error for the displacement component u and rotation
R, in the section views (A-A) and (B-B) with the highest relative error values. A significant increase in relative errors
in displacement u at the base of the shear wall on the first floor, where u tends to zero, is observed. Similarly, the
maximum relative error for rotation R is seen at the mid-span of the frame, where rotation R, approaches zero.

— xS B T.
K;=KS+KE+K]; (15)

The stiffness matrix K;; can be expanded to:
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Appendix II. Transformation from Global to Local System of Coordinates

The following matrices are used to transform the deformation field from the global coordinate system (x, y, z) to
the lattice coordinate system (n, b, t) according to equation 10:

10 V272 —vV272 -1 0 -v2/2 V22
O"=|0 1 v2/2 =vV2/2 0 -1 =272 -\2/2 (17)
00 0 0 0 0 0 0
0 0 0 0 0 0 0 0
o'=(0 0 0 0 0 O 0 0 (18)
Io=1 V2/2 V272 -1 1 =272 V22
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