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Abstract
We describe a family of 3d topological B-models whose target spaces are Hilbert
schemes of points in C

2. The interfaces separating theories with different numbers of
points correspond to braid strands. The Hilbert space of the picture of a closed braid
is the HOMFLY-PT homology of the corresponding link.

Keywords Knot homology · TQFT · Matrix factorizations ·
Kapustin–Rozansky–Saulina models · Bow varieties

Mathematics Subject Classification 57R56 · 57K10

1 Introduction

In our previous papers, we proposed a construction of theHOMFLY-PT link homology
which is based on an interaction between two quiver varieties: the cotangent bundle to
the flag variety and the Hilbert scheme of points in C

2. For r , n � 0 denoteMn;r the
moduli space of n U (r) instantons in C

2. Equivalently, Mn;r is the Nakajima quiver
variety of the framed Ã0 quiver:
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n

r

(1.1)

Following [21, 22], we associate to Mn;r the 2-category C̈at(Mn;r ). We consider
a special flag-related object Fn in this category. Using our previous results [38], we
construct a monoidal functor

� : Brn −→ Hom(Fn,Fn), β �→ �(β),

where Brn is a braid group on n strands.
Our main knot theoretic result from [38, 40] can be recast into

Theorem 1.1 If β ∈ Brn is a braid, then in case of r = 1 there is an isomorphism

HomHom(Fn ,Fn)(�(1n),�(β) ⊗ �•Vn) ∼= HHH(L(β)). (1.2)

Here, 1n is the identity braid, Vn = C
n is the defining representation of GL(n), L(β)

is the link constructed by closing β and HHH(L(β)) is its HOMFLY-PT homology.

In this paper, we consider this construction of link homology from a 3-category
perspective. We outline a construction of a 3-category

...
Cat(Q) for any Ãn-type quiver

Q. In the case Q = Ã0, we provide a conjectural description of a part of 3-categorical
structure by relating our setting to the theory ofmonoidal 2-categories ofKapranov and
Voevodsky [23]; in Sect. 4.3, we construct the relevant monoidal 2-category C̈at(Q).
That allows us to define the 3-category

...
Cat(Q) as a subcategory of module 2-category

over C̈at(Q) in Sect. 4.2.
The 2-category C̈at(Mn;r ) emerges as the 2-category of morphisms between the

objects Ã0(n; r) and Ã0(0; 0) that is C̈at(Mn;r ) = Hom( Ã0(n; r), Ã0(0; 0)). The
objects of the 3-category

...
Cat( Ã0) are Ã0(n; r) or, equivalently, pairs of numbers

(n; r). For two pairs (n; r) and (n + k; r), we define two ‘box’ functors:
̂�k,̂�k : C̈at(Mn;r ) −→ C̈at(Mn+k;r ). (1.3)

The functors represent generalized Lagrangian correspondences between Mn;r and
Mn+k;r , and those originate from the edges of the second Nakajima quiver which
is ‘transversal’ to the Ã0 quiver (1.1) in the sense of Gaiotto–Witten defects [12] in
Kapustin–Witten theory [24], or brane arrangements in the superstring theory, see
Sect. 2.

The quiver variety M0;r is just a point, hence its 2-category C̈at(M0;r ) has a
canonical objectO∅, and we show in Proposition 5.1 that Fn is the result of applying
̂�1 n times to this object:

Fn = ̂�1 · · ·̂�1
︸ ︷︷ ︸

n

O∅ ∈ C̈at(Mn;r ).
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Each individual̂�1 corresponds to a braid strand, and an elementary braid σi which
braids the i th and the (i + 1)st string, becomes a natural self-transformation of the
composition:

σi � ̂�1̂�1 : C̈at(Mi−1,r ) −→ C̈at(Mi+1,r ).

When r = 0 we define two more ‘box’ functors

q�k, q�k : C̈at(Mn,0) −→ C̈at(Mn+k,0). (1.4)

These functors are related to Cherkis bow edges of the transversal ‘arrow-bow’ quiver.
For an n-box, m-row Young diagram λ with rows λ1 � · · · � λm � 0, we consider
an object

Sλ = q�λ1 · · · q�λmO∅ ∈ C̈at(Mn+k,0)

related to the equivariant Slodowy slice of a nilpotent matrix corresponding to λ. The
category of morphisms between Fn and Sλ is the category of sheaves on (the S-dual
of) the Nakajima quiver variety related to the weight space λ in the tensor product of
n fundamental representations of GL(m).

Most recently, the related categories were studied by Nakajima, Takayama [32] in
the context of 3D mirror symmetry (see Sect. 6.2 for more discussion). The case of
S n

2 , n2
is related to the equivariant resolution of the Slodowy slice for the two-block

nilpotent orbit in gl2n . In [2], it was conjectured that the corresponding category can be
used to construct the annular GL(2) link homology [3].We explain a precise statement
of the conjecture and its TQFT interpretation in Sect. 6.2.

The box functors have a natural interpretation as defects in 3d B-models considered
by Kapustin–Rozansky–Saulina [21, 22]. This allows us to expand our results in three
directions.

First, we provide details of the mathematical construction of some the structural
morphisms of 3-category

...
Cat(Q) for a linear quiver.

Second, we use basic TQFT axioms to give a physical interpretation of the Chern
functor fromour previouswork [37] and thus provide an explanation for the appearance
of the Hilbert scheme of points on C

2 in knot homology [40].
Third, we unify several homology theories of the closures of an affine braid β ∈

Braffn by interpreting them as the TQFT partitions functions on the annulus with
external boundary consisting of nNS5 defects braided into the braidβ.More precisely,
by setting an appropriate configuration of the defects on the internal boundary of the
annulus, we obtain: Hochschild homology of the Rouquier complex [20], the Hilbert
scheme version of the triply braided homology [40] and the trace of the braid action
on sl2 conformal blocks.

While exploring the categorical foundations ofKapustin–Rozansky–Saulina (KRS)
theory [22], we avoid working with 3-category of KRS directly. Instead, we work with
the de-looped version C̈at(Q) of the 3-category. The 3-categorical nature of the 2-
category C̈at(Q) is reflected in the 2-categorical monoidal structure of C̈at(Q). The
categorical details can be found in Sect. 4; in the rest of the introduction, we discuss
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the last two directions that are concerned the most topologically motivated case TQFT
that is based on the three category

...
Cat( Â0).

1.1 Partition-function evaluation for HOMFLY-PT homology

The initial construction in [38] is based on the homomorphism from the braid group
to a special category of matrix factorizations which appears as the category of
endomorphism of the object Fn ∈ C̈at(Mn;1) MFst := Hom(Fn,Fn):

Brn → MFst = MFGLn
(

(gln × C
n × T∗Fl × T∗Fl)st,W

)1
, W = μ1 − μ2,

(1.5)

where Fl is the flag variety, μ is the moment map of the GLn action on T∗Fl and the
index ‘st’ stands for the stability condition.1

The object Fn appears as a boundary condition for the KRS theory with the target

Mn;r = (T∗gln × Hom(Cr , C
n)
)st

//GLn .

The cases r = 0 and r = 1 are the most relevant for the link homology. We refer to
the first case as unframed and to the second case as framed. We choose the space-time
of all our 3d TQFTs to be S2 × R.

The total space-time S2×R can have ‘defect surfaces’ separating different models,
that is, the connected components of the complement of defect surfaces are labeled by
integers n. The defects can intersect along curves and curves can intersect at points.
In the framed category, the defects have orientation and in both settings the curves of
the intersection of the defects have signs.

The simplest case of the defect picture is when the defect is equal to Def =
C × R ⊂ S2 × R where C is an immersed curve (possibly with many connected
components). In this case, we define the partition-function evaluation Z• where • is
∅ in the unframed case and • = f in the framed case. Our choices in the construction
of the partition-function evaluation are driven by the topological applications [38] of
the homomorphism (1.5):

Theorem 1.2 Let S1 × 0 ⊂ S2 × {0} ⊂ S2 × R be an embedded circle such that it
intersect the defect Def = C ×R (C can have many connected components) transver-
sally at 2n points and the labels of the connected components of S1\S1 ∩ Def are
0, 1, 2, . . . , n, n − 1, . . . , 2, 1, as for example, in the picture below2:

n n−1 . . . 2
1

1
0

1 In the original paper we worked with the affine version of this category of matrix factorizations.
2 On the picture the red circle is S1 and the black lines are the defect curve C .
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then

Z(S1) = MFGLn (gln × T∗Fl × T∗Fl,W ).

Moreover, if the first n intersection points of S1 ∩ Def are oriented up and the rest
down, as in the above picture, then

Zf(S1) = MFGLn

(

(gln × C
n × T∗Fl × T∗Fl)st,W

)

. (1.6)

Let us remark that in the last statement, we evaluated partition functions on the
circle S1 and the values do not depend on the part of curve C that is away from S1. On
the other hand, the values of the partitions function on a disc D ⊂ S2 ×{0}, ∂D = S1

depends on the part of curve C that is inside D. We discuss values of the partition
function on the discs below.

Let us use short-hand notation MFst for MFGLn
(

(gln × C
n × T∗Fl × T∗Fl)st,W

)

.

In [37], we constructed the pair of adjoint functors:

MFst Dper(Hilbn(C2))

CHst
loc

HCst
loc

, (1.7)

where Hilbn(C2) is the Hilbert scheme of n points onC
2, while Dper(Hilbn(C2)) is the

derived category of two-periodic Tq,t -equivariant complexes on the Hilbert scheme.
We also showed that

HHH(β) = Hom(CHst
loc(β),�•B). (1.8)

Let us recall that Hilbn(C2) is a manifold that parameterizes ideals I ⊂ C[x, y]
of codimension n. Respectively, B is a rank n vector bundle with a fiber at I equal to
the vector space dual to C[x, y]/I . The vector bundle B is called tautological vector
bundle.

The TQFT picture gives a natural interpretation of the isomorphism (1.8) as the
result of gluing the same disc in two different ways. The appearance of Hilbn(C2) is
due to the following:

Theorem 1.3 Let K = S1×0 ⊂ S2×R be an embedded circlewhich does not intersect
the defect Def = C × R and lies in the connected component of the complement of
the defect with the label n (see Fig.4 for n = 2 example) then

Zf(K ) = Dper(Hilbn(C
2)).

Moreover, if D∅ is a disc in the complement of the defect, such that ∂D∅ = K, then

Zf(D∅) = O ∈ Dper(Hilbn(C
2)).
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Fig. 1 R
2
β for β = σ 3

1

To explain the appearance of the exterior powers of B, we introduce a special line
of defect in our theory: (0, 0) × R ⊂ R

2 × R ⊂ S2 × R, S2 = R
2 ∪ ∞. We assume

that this line of defect does not intersect the surface of defect. For a small disc Dtaut

transversally intersecting this line of defect, we have:

Zf(Dtaut ) = �•B ∈ Dper(Hilbn(C
2)). (1.9)

The link homology emerges as the vector space associated with a disc which intersects
defect surfaces and a defect line:

Theorem 1.4 Suppose that the curve C ⊂ R
2\(0, 0) ⊂ R

2 ∪ ∞ = S2 in the defect
Def = C × R is the picture of the natural closure of the braid β ∈ Brn, the closure
goes around the line of defect. We also assume the following constraint on labeling
of the connected components of S2 × R\Def. The connected component that contains
the infinite point ∞ is labeled by 0. The connected component that contains (0, 0) has
label n. The labels decrease by 1 as we cross the surface of defect while moving along
a ray that starts at (0, 0) and avoids singular points of Def. In the picture below

n

n−1

...

1

0

β

the green dot represents a cross section of the defect line. Then

Zf(S2) = HHH(β). (1.10)
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Fig. 2 Plane R
2
σ3
1
cut by

R0,1,2,1,0

Thus, the formulas (1.2) and (1.8) correspond to two ways to present S2 as a gluing
of two D2 along their common boundary S1. The formula (1.2) is given by cutting
along S1 with S1 as in Theorem 1.2 and the formula (1.8) is given by cutting along
S1 that is boundary of a tubular neighborhood of the line of defect. The Figs. 3and 4
represent examples of these two cuts.

Let us denote bypn a point in a connected component of S2×R\Def that has label n.
Note that Theorem 1.3 interprets Dper(Hilbn(C2)) as the category of endomorphisms
of the identity functor in the two category Zf(pn):

Hom(Id, Id) = Dper(Hilbn(C
2))

where Id is the identity endomorphism of 2-category Zf(pn). Thus, it is reasonable to
call Dper(Hilbn(C2)) the Drinfeld center of 2-category Zf(pn). Since it is not common
to work with the Drinfeld centers of 2-categories, we spell out the expected property
of such a center in Corollary 5.1.

1.2 Unified perspective on traces

The space HHH(β), β ∈ Brn is triply graded, two gradings come from Tq,t -action
and the third is from the exponent in the exteriour power �•B. The graded dimension
P(β) = dimq,t,a HHH(β) is sometimes called super-polynomial of the closure of β,
[8]. It is shown in [39] thatP(β)|t=−1 is equal to the HOMFLYPT polynomial [17].

Thus, equation (1.10) can be interpreted as a categorification of the Jones–Oceanu
trace [17] on

⋃

n Brn . Another construction of a categorification of the Jones–Ocneanu
trace is the triply graded HOMFLYPT homology from the papers [18, 20]. In the last
cited paper, Rouquier’s realization of braids inside Soergel bimodule is used. We
denote the homology from the paper [18] by HHHalg(β), β ∈ Brn .
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We have shown in [40] that HHH(β) = HHHalg(β) for any β ∈ Brn . So far, we do
not have a physical explanation for this equality but both categorifications of the Jones–
Oceanu trace fit in our TQFT picture. In this section, we briefly discuss construction of
HHHalg and explain how we construct HHHalg by a slight modification of the TQFT
construction for HHH from the previous section. We also explain how one can modify
the TQFT construction to obtain other interesting traces on

⋃

n Brn .
Let us fix notations for the traces we plan to discuss. Soergel explained [43] a real-

ization of the braid graphs γ ∈ Br
	
n inside the additive category of Soergel bimodules

Sbimn . Thus, the Hochschild homology functor HH∗ yields a trace on Br
	
n :

�S : Brn → Sbimn, HHHalg(γ ) = HH∗(�S(γ )) = Hom(�S(β),�S(I )).

The last example that we discuss is related to the space of conformal blocks. Let
us denote by Vλ and Lλ the Verma module and its irreducible quotient for quantum
groupUq(sl2) and λ ∈ C = h)∗. In particular, L1 = C

2 is the vector representation of
Uq(sl2) and Lλ is irreducible for not integer λ and Lλ = Vλ. The space of conformal
on the cylinder is defined as

Hλ
1n ,μ = HomUq (sl2)(Lλ, L1 ⊗ · · · ⊗ L1 ⊗ Lμ),

where we assume that λ, μ are not integers.
The R-matrix yields the braid groupBrn action on the last space. Let’s denote the

trace of the action by Tr(β)[Hλ
1n ,μ]. The space Hλ

1n ,μ is trivial unless |λ − μ| � n. On
the other hand if λ − μ = k, |k| � n then the above mentioned trace does not depend
on the value of λ as long as λ is not integer.

The vector space Hλ
1n ,μ has two gradings that originate from the weight grading on

Lμ and the decomposition of L⊗n
1 on the irreducible components. The braid action

respects these gradings. We propose a construction of doubly graded vector space
Tr(β)[Hλ

1n ,μ] that categorifies the above trace.
Now let us turn to TQFT interpretation of the traces. A pictorial presentation of the

configuration of the defects that participate in the formula (1.10) is the annulus with
two boundary circles:

β B

nNS5

0

n

(1.11)

here β ∈ Brn , the numeric labels indicate the type TQFT in the connected component.
The picture is topologically equivalent to the pictures in Theorem (1.4) and for

n = 3 and β = σ 3
1 to Fig. 4. Let us explain appearance of labels NS5 in the last
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picture. In the Sect. 2, we explain that in a string-theoretic presentation of our TQFT,
the defect Def = C × R is an S1-reduction of the stack of n NS5 branes. Thus, in the
picture, we have n NS5 defects following the outer boundary of the annulus and braid
themselves into the braid β.

The red domain contains the inner circle boundary defect configuration B. In the
case treated by Eq. (1.10), the boundary configuration is the domain with the line
defect that carries the vector bundle �•B. The line defect is reflected by equation
(1.9).

It turns out that by varying the configuration of defects B in the center we can
categorify several other interesting trace evaluations on the braid group as well as
algebra of the braid graphs Br

	
n .3

The three constructions are partition-function evaluations of defect configuration
as in the picture and the internal disc defect B as in the table where NS5(k), D5(k) are

B �•Vn NS5(n) D5(k) + D5(n−k)

β Brn Br
	
n Brn

r 1 1 0
Z HHH(β) HHHalg(β) Tr(β)[Hλ

1n ,λ+k ]

NS5 and D5 defects of charge k discussed in Sect. 2.5.3. The first two columns of the
table reflect mathematically proven statements and the last column seems to be new
mathematical construction. We explain the mathematical details of the relations in the
table in Sect. 6.

In Sect. 2, we discuss the physics theories that motivate our key results. In details,
we discuss in Sect. 2.2 Kapustin–Witten theory with Gaiotto–Witten interfaces and
give mathematical description of the interfaces in Sect. 2.3. In Sect. 2.4, we explain
a reduction to 3d theory. Finally, in Sects. 2.6 and 2.7, we explain a string theoretic
perspective and the relation with the Chern-Simons theory, respectively.

In Sect. 3, we recall some basics of the constructions in [21]. In the Sect. 4, we
explain how our particular example of TQFT fits into the setting of [21]. In Sect. 5,
we construct the partition-function Zf and prove the results that we mentioned in the
introduction. We also discuss the Drinfeld center subtleties in Sect. 5.3.

2 Physics background

2.1 The hierarchy of type-B categories

From the mathematical perspective, we work within a 4-categoryBGLwhich, accord-
ing to Kapustin andWitten [24] represents the Galois side of the geometric Langlands
duality. Let us review the pyramid of BGL from the bottom to the top.

3 The elements ofBrn are related to the braid graphs by the MOY relations [27].
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2.1.1 The category of matrix factorizations

At the first level lies the category of G-equivariant matrix factorizations MFG(X;W ),
where X is a (affine) variety with an action of an algebraic group G, while W is a
G-invariant function on X: W ∈ C[X]G . The category MFG(X;W ) is the category of
boundary conditions of the gauged Landau-Ginzburg B-model with the target space
X and the superpotential W .

2.1.2 The equivariant 2-category of a symplectic variety

At the second level lies the 2-category B̈
G
(Xsym) of a symplectic variety Xsym with a

Hamiltonian action of G. If Xsym is a cotangent bundle

Xsym = T∗X

and the Hamiltonian action comes from the action of G on X, then an object of

B̈
G
(Xsym) is a pair (Z ;W ), whereZ is an auxiliary variety with an action ofG, while

W ∈ C[Z × X]G in this context is the action describing a Lagrangian submanifold
in classical mechanics andZ is the source of auxiliary variables. Intuitively, the pair
(Z ;W ) represents a Lagrangian object in the Hamiltonian reduction Xsym//G, that
is, aG-equivariant fibration L̃ → Lwhose base is a Lagrangian subvarietyL ⊂ Xsym.
Here, L̃ ⊂ T∗(Z × X) is the graph of dW .

The category of morphisms between two Lagrangian objects is the category of
G-equivariant matrix factorizations

Hom
(

(Z1;W1), (Z2;W2)
) = MFG(Z1 × Z2 × X;W2 − W1). (2.1)

For two varieties Xsym
1 and Xsym

2 a Lagrangian object (Z12;W12) in the 2-category

B̈
G1×G2(T∗(X1 × X2)

)

determines a Lagrangian functor

B̈
G1

(T∗X1) B̈
G2

(T∗X2)
(Z12;W12)

stemming from the Lagrangian correspondence between T∗X1 and T∗X2.

The 2-category B̈
G
(Xsym) is the category of boundary condition of the gauged 3d

B-model with target Xsym.

2.1.3 The 3-category of G-equivariant symplectic varieties

At the third level is a 3-category
...
B(G). Its objects are symplectic varieties Xsym with

a Hamiltonian action of G. The 2-category of morphisms between two such varieties
is the 2-category of their product:

Hom(Xsym
1 ,Xsym

2 ) = B̈
G
(Xsym

1 × Xsym
2 ).
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Equivalently, a morphism is a (generalized) Lagrangian correspondence, and the
morphisms are composed accordingly. The 3-category

...
B(G) is the category of the

boundary conditions of the Kapustin–Witten theory at t = i , which is related to the
Galois side of the geometric Langlands duality.

2.1.4 The 4-category of Lie groups of type A

Finally, at the top of the pyramid is the 4-category BGL of the groups of type A:

Obj(BGL) = Z�0

that is an object n corresponds to the group GL(n). The morphisms between two
groups form the 3-category of their product:

Hom
(

GL(n1),GL(n2)
) = ...

B
(

GL(n1) × GL(n2)
)

(2.2)

and the composition ofmorphismsXsym
1,2 andXsym

2,3 is their jointHamiltonian reduction:

Xsym
2,3 ◦ Xsym

1,2 = (Xsym
1,2 × Xsym

2,3 )//GL(n2).

The 4-category BGL is the category of Gaiotto–Witten interfaces in the t = i
Kapustin–Witten theory.

2.2 Kapustin–Witten theory with Gaiotto–Witten interfaces

The 4-category BGL comes from the TQFT of Kapustin and Witten [24] combined
with the interfaces of Gaiotto and Witten [12] and inspired by the string theory setup
of Hanany and Witten [15].

Following [24], we consider a family of 4-dimensional (4d) N = 4 supersymmetric
Yang-Mills (SYM) theories with gauge groups U(n), n = 0, 1, . . .. The space-time is
a 4d manifold M4 containing 3d (possibly mutually intersecting) submanifolds (inter-
faces) of two types: NS5 and D5. These interfaces separate M4 into cells, each cell
being assigned a particular value of n. The interface submanifolds may contain their
own 2d interfaces-submanifolds, splitting 3d interfaces into 3d cells, etc. Topologi-
cally, the whole construction is an example of a 4d ‘foam’ (a smooth CW complex)
with a particular property that the total ambient space M4 is just a manifold.

Following [24], we consider the topological version of our SYM theory: we apply
the GL-twist and choose the differential corresponding to t = i . As explained by
Kapustin and Witten, the resulting theory corresponds to the Galois side of the
Langlands duality. The gauge groups U(n) are effectively complexified to GL(n).

Mathematically, a TQFT on a 4d manifold with interfaces is equivalent to a 4-
category. Each 4d cell is colored by its object, a cell of a 3d interface is colored by
a morphism between the adjoint cells, etc. In order to determine a category whose
objects should be assigned to an m-dimensional cell, one has to compactify the full
theory on its (3−m)-dimensional link. The cell becomes a boundary of the resulting
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71 Page 12 of 62 A. Oblomkov, L. Rozansky

(m + 1)-dimensional TQFT and the category of the cells emerges as the category of
its boundary conditions.

Consider a 3d interface in the Kapustin–Witten theory separating the gauge groups
GL(n1) and GL(n2). Consider the Kapustin–Witten theory at t = i . The link of a
3d interface is two points, and the compactification amounts to folding the 4d space
across the interface resulting in a 4d half-space whose boundary is the 3d interface and
whose gauge group is GL(n1) ×GL(n2). According to Gaiotto–Witten, the boundary
condition is described by a symplectic variety Xsym with the Hamiltonian action of
GL(n1) × GL(n2), that is, by an object of BGL.

Suppose that the 3d interface has a 2d interface inside, separating the boundary
conditions Xsym

1 and Xsym
2 . The link of this interface is a semicircle ending at the

boundary of the 4d halfspace, so compactifications results in a 3d half-space whose
theory is the 3d gauged B-model with the target Xsym

1 × Xsym
2 and the gauge group

GL(n1) × GL(n2). The 2-category of the boundary conditions of this theory is (2.1)
as explained (in the non-equivariant case) in [21, 22]. In particular, an object (Z ;W )

describes a combination of a Lagrangian boundary condition with an added 2d B-
model at the boundary,while the category ofmatrix factorizations describing interfaces
between two such boundary conditions is the category of boundary conditions of the
2d Landau-Ginzburg B-model emerging after the folding of the 3d halfspace carrying
the 3d B-model.

2.3 Bow (D5) and arrow (NS5) interfaces

Gaiotto andWitten suggest the version of the 4-categoryBGL in which all morphisms
(that is, 3d interfaces) are compositions of two types of elementary ones: the NS5
interface and the D5 interface. Recall that any interface in Hom

(

GL(n1),GL(n2)
)

is
represented by a symplectic variety with the Hamiltonian action of GL(n1)×GL(n2).
The NS5 and D5 varieties also emerge as edges in the Nakajima-Cherkis quiver vari-
eties, theNS5 variety corresponding to an arrow edge and theD5variety corresponding
to a bow edge. Ignoring the stability conditions, these edge-related varieties have a
form

∏

(i, j)

T∗Hom(Cni , C
n j )//

∏

i

Gi = T∗
⎛

⎝

∏

(i, j)

Hom(Cni , C
n j )
/
∏

i

Gi

⎞

⎠ .

In subsequent pictures, we mark only the arrows of Hom(Cni , C
n j ) (ignoring the

cotangent arrows) because only these arrows (together with the auxiliary ones marked
as dashed) are the variables of the superpotential W in Lagrangian objects (Z ;W ).

Ignoring the stability condition, the arrow variety is

An1,n2 = T∗Hom(Cn1, C
n2), (2.3)

the action of GL(n1) × GL(n2) on Hom(Cn1 , C
n2) being

(g1, g2) · X = g2 Xg
−1
1 .
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Pictorially,

n2

n1

NS5

X

where X ∈ Hom(Cn1, C
n2).

The description of the bow variety Bn1,n2 is more complicated, but the case of
n1 = n2 = n is straightforward:

Bn,n = T∗GL(n) × T∗
C
n, (g1, g2) · (g, v) = (g2 g g

−1
1 , g2 v)

(one can replace g2 v with g1 v). The role of T∗GL(n) factor is to reduce the gauge
group GL(n) × GL(n) down to its diagonal subgroup GL(n). Pictorially,

n

n

D5

g

v

1
or D5

v

n 1

the second picture corresponding to the diagonal GL(n) equivariance.
With these choices, the composition of elementary morphisms in the categoryBGL

produces a Nakajima quiver variety of type A:

NS5 NS5r D5

v

n1 n2 n3

X1 X2

(2.4)
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2.4 From 4d to 3d

2.4.1 Compactification

We consider the Kapustin–Witten theory on the 4-manifold

M4 = R0 × 
 × S13 , (2.5)

where 
 is a 2-dimensional surface, R
k
i1···ik denotes R

k with coordinates xi1 , . . . , xik
and S1i denotes the circle S

1 with the periodic coordinate xi . In fact, we will be mostly
interested in the case of 
 = R

2
12, which is a local form of a general 
.

We place simultaneously two arrangements of parallel elementary NS5 and D5
interfaces in M4. The first horizontal arrangement consists of parallel NS5 and D5-
interfaces, each interface sweeping a 3-dimensional subspace R0 × 
 × {sI }, where
sI ∈ S13 is a point on the circle corresponding to x3 = sI . We assume that the
values of n are the same on both sides of each D5-interface, but they can vary across
NS5-interfaces.

An interface I of the second vertical arrangement has the formR
1
0×αI ×S13 , where

αI ⊂ 
 is a curve. The curves of different additional interfaces may intersect.
Fix a point b ∈ R0 and a curve β ⊂ 
 possibly intersecting the curves αI of

additional interfaces. Consider a 2d submanifold C and a 3d submanifold N of M4:

C = {b} × β × S13 , N = {b} × 
 × S13 .

We want to describe the category of C and the vector space (that is, the Hilbert space)
of N. Since both manifolds have S13 as a factor, we can first compactify M4 on S13 ,
thus reducing it to M3 = R0 × 
, which is split by vertical interfaces into domains.
Each domain of M3 carries a 3d topological ‘Coulomb-twisted’ N = 4 SYM theory
with matter fields.

The B-twisted Higgs branch of this theory is the Nakajima quiver variety
M n , r ( Ãm−1)whose affine quiver Ãm−1 and the dimensions at circles n and at fram-
ing boxes r are determined by the positions of the horizontal arrangement interfaces
on S13 and the gauge groups GL(ni ) between them in accordance with the picture (2.4):
m is the number of NS5-interfaces in the basic arrangement, the dimensions of the cir-
cles are n = (n1, . . . , nm) and the dimensions of the framing boxes r = (r1, . . . , rm)

equal the numbers of D5 interfaces between each pair of adjacent NS5 interfaces. If
one of the numbers ni is zero, then the affine quiver Ãm−1 becomes an Am−1 quiver.

Let Q be either the Ãm−1 or the Am−1 quiver. We denote by Q( r ) the assignment
of dimensions r to the framing boxes and by Q( r ; n ) the additional assignment of
dimensions n to the circles.

In mathematical language, the compactification on a circle S13 intersecting the ver-
tical brane arrangement means that we reduce the 4-category BGL to the 3-category...
Cat(Q( r )). An object of

...
Cat(Q( r )) is Q( r ; n ) and the 2-category of morphisms

is the subcategory

Hom
(

Q( r ; n ), Q( r ; n ′)
) ⊂ B̈

(

M n , r × M n ′, r
)
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formed by Lagrangian functors corresponding to the NS5 branes of the vertical
arrangement and described in Sect. 2.4.3.

2.4.2 Elementary intersections

From the 3d TQFT perspective, the original 3d vertical interfaces become 2d inter-
faces between quiver-related gauged 3d B-models. Hence a vertical interface is a
Lagrangian functor between two Ãm−1 quiver varieties with different dimensions at
circles. This Lagrangian functor is a combination of Lagrangian functors assigned to
the intersections of the vertical interface with the horizontal interfaces.

There are two types of the vertical NS5 branes that appear in our discussion, see
Sect. 2.6.3 for a string-theoretic interpretation of these two types of NS5 branes. The
first type of branes we denote NS5, in the language of Sect. 2.6.3 these are branes that
wrap cigar R

2
3̇7̇
. A vertical NS5 brane of the second type wraps the cigar R

2
8̇9̇

and we
use notation NS5′ for such branes.

The intersection of a vertical NS5 brane with a horizontal NS5 brane results in a
2d defect that is an object in the 2-category B̈ of the Ã3 quiver. This 2-category has
two simplest objects: (Z ;W ) and its Legendre dual ( ˜Z ; ˜W ) which correspond to the
intersection of a horizontal NS5 brane with a vertical NS5 and NS5′, respectively:

NS5hor

NS5vert

n1 n′
1

n2 n′
2

X X ′
ϕ2

ϕ1

ψ

NS5hor

NS5’vert

n1 n′
1

n2 n′
2

X X ′

ϕ2

ϕ1

ψ

Ỹ

Ỹ ′

(2.6)
The auxiliary variety and the superpotential of the first object are

Z = Hom(Cn′
2 , C

n1), W = Trψ(X ′ϕ1 − ϕ2X).

The Legendre dual object has auxiliary variety

˜Z = Z × Hom(Cn2 , C
n1) × Hom(Cn′

2 , C
n′
1),

while the superpotential becomes

˜W = W − TrỸ X − TrỸ ′X ′.

The intersection of an NS5 interface with a stack of r D5 interfaces results in a
2d defect from the category of the quiver A2 with the common framing space, the
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corresponding object being (Z ;W ):

NS5

rD5

ϕ

v2v1

ψ fr

rn1 n2

=

v1 v2

n1 n2

r r

ϕ

ψ fr

(2.7)
the second picture omitting the branes and being more quiver-style,

Z = Hom(Cn2 , C
n1), W = Trψ fr(v2 ϕ − v1).

Note that the spaces C
r in the second picture of (2.7) are canonically identical.

2.4.3 A Lagrangian correspondence between two quiver varieties

Now we can describe a (formerly vertical) interface between two Ãm−1 quiver related
domains in the 3dTQFT.Weassume that both Ãm−1 quivers share the samedimensions
at boxes while having generally different dimensions at circles.

In order to assign a pair (Z ;W ) to the interface, we put both quivers side by side.
For each pair of matching circle to circle edges we put one of two squares (2.6) and
for each pair of matching circle to box edges we put a square (2.7). Here is a portion
of the resulting diagram with two such squares:

n′
i n′

i+1

ni ni+1

ri

ri

X ′
i

Xi

=

ϕi
ϕi+1

v′
i

vi

ψ fr
i

ψi

(2.8)
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The auxiliary variety Z is formed by all dashed arrows: ϕi , ψi and ψ fr
i as well as Ỹi

and Ỹ ′
i , while the superpotential W is the sum of all individual superpotentials.

2.5 Examples of inter-quiver Lagrangian correspondences

2.5.1 NS5 interfaces between Grassmannians

This example was communicated to us by Tudor Dimofte and it represents an interface
between two A1 quivers, obtained from Ã1 quivers by setting n2 = r2 = 0. If we
impose theGrassmannian stability conditions requiring that v and v′ have highest ranks
(n and n′), then the corresponding quiver varieties are cotangent bundles T∗Grn,r and
T∗Grn′,r . If n � n′, then the first diagram of (3.10) yields a well-known Lagrangian
functor:

v v′

ϕ

=

ψ fr

n

r

n′

r

, W = Trψ fr(v′ϕ − v).

whose Lagrangian correspondence is the conormal bundle to the subvariety of Grn,r ×
Grn′,r determined by the condition

C
n ⊂ C

n′ ⊂ C
r . (2.9)

Indeed, the criticality condition for W with respect to ψ fr implies the commutativity
of the vertical and horizontal arrows, so v = v′ϕ and subdiagram of the arrows ϕ

and v′ determines the partial flag formed by the subspaces of both Grassmannians,
as stated in (2.9). C

n ⊂ C
n′ ⊂ C

r . In addition, the criticality condition with respect
to ϕ guarantees that the map ψ fr represents the vector of the conormal bundle to the
condition (2.9).

The superpotential and the space of maps ϕ, realizes NS5 defect of charge n − n′,
NS5(n−n′) in three category

...
Cat(A0). We use the super-index in the notation of NS5

branes to indicate a difference of labels on two sides of the defect: the difference of
labels on two sides of NS5(k) is k.

2.5.2 NS5 interfaces between instantonmoduli spaces

Now we consider the interfaces between two Ã0 quivers with n′ = n + k and r = r ′
which yield the functors ̂�k and ̂�k of (1.3). The NS5 interfaces NS5(n−n′) of charge
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n − n′ are described by diagrams

v v′

ϕ

ψ

=

ψ fr

X X ′

n

r

n′

r

v v′

ϕ

ψ

=

ψ fr

X

Ỹ

X ′

Ỹ ′

n

r

n′

r

,

(2.10)
and the superpotentials are

W1 = W (X , X ′) + W fr, W2 = Tr(XỸ ) + Tr(X ′Ỹ ′) − W (Ỹ , Ỹ ′) + W fr,

where

W (X , X ′) = Tr(X ′ϕψ) − Tr(Xψϕ), W fr = Trψ fr(v′ϕ − v).

Note that the second Lagrangian object is the Legendre transform of the first one with
respect to the loop arrows X , X ′.

2.5.3 NS5 and D5 interfaces between commuting varieties

The following discussion is parallel to that of [42].
The commuting variety Mn = T∗gln//GL(n) is the instanton moduli space for

r = 0, the quiver diagram being a single loop:

n

X (2.11)

For the family of these quivers, in addition toNS5Lagrangian functors, we introduce a
pair of D5-related Lagrangian functors, borrowing them from bow edges of Nakajima-
Cherkis quiver varieties. The commuting variety Mn is intimately related to the
Hamiltonian reduction of a symplectic variety by the action ofGL(n), and the composi-
tion of NS5-related and D5-related Lagrangian functors results in a Nakajima-Cherkis
quiver variety, this time related to the vertical arrangement of interfaces.
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A symplectic varietyZ with the Hamiltonian action of GL(n) and themoment map
μ : Z → gl(n) determines an object (Z ;TrXμ) in the 2-category B̈(Mn). Assuming
that the action of GL(n) is free, the category of morphisms between two such objects
is

Hom
(

(Z1;TrXμ1), (Z2;TrXμ2)
) = DCoh

(

(Z1 × Z2)//GL(n)
)

.

This relation is due to the fact the category of matrix factorizations of a linear
superpotentialW = TrXμ is equivalent to the category of coherent sheaves onμ = 0.

Any symplectic variety Z with the Hamiltonian action of GL(n1) × GL(n2) and
momenta μ1, μ2 determines a Lagrangian functor between Mn1 and Mn2 :

(Z ,Wsym), Wsym(X1, X2) = TrX2μ2 − TrX1μ1, (2.12)

n1

X1

n2

X2

Z
μ1 μ2

(2.13)

and its Legendre transform

(

Z × T∗gln × T∗gln;Tr(X1Ỹ1) + Tr(X2Ỹ2) − W (Y1,Y2)
)

n1

X1

n2

X2

Z
μ1 μ2

Ỹ1 Ỹ2

If the auxiliary varietyZ is the arrow edge variety (2.3):An1,n2 = T∗Hom(Cn1 , C
n2),

then the Lagrangian functor (2.12) is that of (2.10) for r = 0.
A general bow edge variety has a more complicated form: ignoring the stability

conditions, it is the critical locus of the pair

ϕ

ψ

Ỹ Ỹ ′

ρ σ

1

n n′
, Wbow(Ỹ , Ỹ ′) = Trψ(Ỹ ′ϕ − ϕỸ + σρ).
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Hence, its Lagrangian functor has the form

ϕ

ψ

X

Ỹ

X ′

Ỹ ′

ρ σ

1

n n′
, W = TrX ′Ỹ ′ + TrXỸ − Wbow(Ỹ , Ỹ ′).

while is Legendre transform cousin has fewer arrows:

ϕ

ψ

X X ′

ρ σ

1

n n′
, W = Wbow(X , X ′).

These two correspondences yield the functors q�k and q�k , k = n−n′ of (1.4) which
realize the D5 interfaces D5(k) of charge k. We use the super-index in the notation of
D5 branes to indicate a difference of labels on two sides of the defect: the difference
of labels on two sides of D5(k) is k.

2.6 String theory perspective

2.6.1 IIB construction

The Galois version of the Kapustin–Witten model with two interface arrangements
describes the physics of D3 branes stretched between two Hanany–Witten type NS5
and D5 brane arrangements in IIB string theory.

Consider the IIB string theory on M10
IIB = R

4
0123 × R

4
4567 × R

2
89, where R

k
i1···ik

denotes R
k with coordinates xi1 , . . . , xik . The twisting identifies the first two factors,

so that the SO(4) rotation of R
4
0123 is accompanied by the matching rotation of R

4
4567.

D3-branes are stretched along R
4
0123. Consider an orthogonal splitting R

4
0123 = R

3
br ⊕

R
1, where R

3
br subspace is tangent to an NS5 or a D5 brane, and the corresponding

splitting R
4
4567 = R

3
br

′ ⊕ R
1′
. For this choice of the brane directions within the stack

of D3-branes, the D3-transverse subspace R
6
456789 splits into the sum of the Coulomb
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subspace R
3
c = R

3
br

′
and the Higgs subspace R

3
h = R

1′ × R
2
89. Now an NS5-brane

must be parallel to R
3
br × R

3
c , while a D5-brane must be parallel to R

3
br × R

3
h.

2.6.2 IIA construction

Replace R
4
0123 with M4 of (2.5). Now the IIB space-time is

M10
IIB = R0 × R

2
12 × S13 × R

4
4567 × R

2
89.

The horizontal Hanany–Witten brane arrangement corresponds to the choice R
3
br =

R
3
012, so its m NS5-branes stretch along R

3
012 × R

3
456 and its D5-branes stretch along

R
3
012 × R

3
789. The vertical Hanany–Witten arrangement has the form R

3
br = R

1
0 ×

R
1
dr × S13 , where the ‘directional’ subspace R

1
dr ⊂ R

2
12 is tangent to the brane interface

which is represented by its curve αI in the R
2
12 plane.

In sting theory, the compactification of S13 within the KW theory is a result of
performing T -duality on S13 . This duality turns the IIB theory into IIA theory and the
stack of D3-branes turns into the stack of D2-branes stretched along R

3
012. Now their

movements are described by a 3d TQFT. Since the circle S13 intersects m NS5-branes
of the horizontal arrangement, the T -duality turns their orthogonal space S13 × R

3
789

into the m-centered Taub-NUT space mTN, so the IIA space-time is

M10
IIA = R0 × R

2
12 × R

3
456 × mTN.

D5 branes of the horizontal arrangement become D6-branes wrapping R
3
012 × mTN.

After the T -duality, the NS5 and D5 branes of the vertical HW arrangement turn
into NS5 and D4-branes of IIA. They separate the stack of D2-branes into domains. In
otherwords, they become the interfaces of the 3dB-model and hence they are described
by Lagrangian correspondences. The form of the Lagrangian correspondence for an
additional brane depends on which 2-cycle this brane wraps inside the Taub-NUT
space mTN.

2.6.3 The case of a single NS5 brane

The commuting variety of Sect. 2.5.3 emerges when the horizontal arrangement con-
sists of a single NS5 brane. If we ignore the metric, identifying the Taub-NUT space
with R

4
3̇7̇8̇9̇

, then after the T-duality the IIA space-time becomes

M10
IIA = R0 × R

2
12 × R

3
456 × R

4
3̇7̇8̇9̇

∼= R
10.

Here, we use dotted indices to separate the new coordinates from the T -dual old ones.
The manifold M10

IIA
∼= R

10 this time contains a single (formerly, vertical) Hanany–
Witten-type arrangement of NS5 and D4 branes, and the Higgs branch of D2 branes
stretched between them is the Nakajima quiver variety corresponding to the vertical
brane arrangement. As explained in Sect. 2.5.3, this time the zero moment conditions
at quiver circles are due to the criticality of the superpotential.
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The origin of Legendre pairs of interfaces is now transparent. The Taub-NUT space
R
4
3̇7̇8̇9̇

has two cigar subspaces: R
2
3̇7̇

and R
2
8̇9̇

that correspond to the arrow X in the
commuting variety quiver diagram (2.11) and to its omitted symplectic dual arrow.
The NS5 brane of the interface ̂�k and the D5 brane of the interface q�k wrap the cigar
R
2
3̇7̇
, while the NS5 brane of ̂�k and the D5 brane of q�k wrap the cigar R

2
8̇9̇

(the latter
branes are often denoted in string theory literature as NS5’ and D5’).

2.7 Link homology from a stack of D2 branes

2.7.1 A general setup

A stack of D3 branes sandwiched between two Hanany–Witten arrangements and a
stack ofD2 branes split byNS5 andD4 related interfaces into domains carrying quiver-
based 3d B-models, appear in theories of link homologies. Generally, link homology
is a special example of (categorified) Donaldson–Thomas invariants of a Calabi-Yau
3-fold CY3 in presence of special Lagrangian submanifolds L ⊂ CY3. Hence, we
begin with M-theory on a manifold of the form

M11
M = CY3 × HK2 × Rcob, (2.14)

where HK2 is a (complex) 2-dimensional hyper-Kähler manifold and Rcob is the
cobordism time. Hanany–Witten brane arrangements come fromM5 branes. EachM5
brane has a form L × C × Rcob, where L ⊂ CY3 is Lagrangian, while C ⊂ HK2 is a
complex curve.

Assume that CY3 is “small” (that is, all relevant physics happens within a small
domain inside CY3). Then, link homology is (a part of) the space of states of BPS
particles attached toM5-related defects in the effective 5-dimensional theory onHK2×
Rcob. The BPS particles are M2 branes of the form


 × {pM2} × Rcob, (2.15)

where 
 ⊂ CY3 is a holomorphic curve attached by its boundary components to the
Lagrangian submanifolds L , while p ∈ HK2 is a point.

Our approach to the description of the BPS states involves three steps.
First, suppose that a group U(1)CY acts on CY3 preserving the Calabi-Yau form.

Taking a quotient by this action reduces M-theory on M11
M to IIA string theory on

M10
IIA = M5 × HK2 × Rcob, M5 = CY3/U(1)CY.

The quotient may produce D6 branes of the form CD6×HK2×Rcob, where CD6 ⊂ M5

is the 2-dimensional surface of U(1)CY-stable points. Depending on whether L is
transverse to U(1)CY orbits or contains them, each M5 brane becomes an NS5 brane
or a D4 brane. If M2 branes are transverse to U(1)CY orbits or invariant with respect
to U(1)CY action, then they become D2 branes, possibly lying inside D6 branes and
with boundaries on NS5 and D4 branes.

123



3D TQFT and HOMFLYPT homology Page 23 of 62 71

Second, we place M5 branes inside CY3 in such a way that the resulting D2 branes
assemble in a stack, whose collective movements and vibrations are described by a
d = 3, N = 4 SYM theory. The boundaries of individual D2 branes ending on NS5
and D4 branes now transform into interfaces inside the stack of D2 branes, separating
domains with (generally) different “stack thickness”.

Third, the SYM theory of the D2 stack may be twisted in such a way that a special
scalar supercharge Q would allow us to turn the theory into a (possibly gauged)
topological 3d B-model. If the NS5 and D4 interfaces are Q-invariant, then the space
of BPS particle states becomes isomorphic to the homology of Q, that is to the space
of of states of this 3d topological B-model.

2.7.2 Witten’s setup

According to Witten, in order to relate the graded dimension of BPS states to the
Chern-Simons-Witten (CSW) partition function, one has to make two specific choices
in (2.14). First, one has to choose HK2 = TN, TN being the Taub-NUT space, that
is TN = C

2 = Cx × Cy with a special ALF metric. Second, one has to choose
CY3 = T∗M3, where M3 is a 3d manifold carrying the CSW theory. A Chern-
Simons generating stack of N M5 branes wraps M3 × Cy × Rcob. For each link
component L ⊂ M3 one introduces an M5 brane of the form N∨L × Cx × Rcob,
where N∨L ⊂ T∗M3 is the conormal bundle of L. One has to push these link-related
M5 branes off the zero section M3, then the BPS particles will be M2 branes of the
form (2.15), where
 is an annulus, one of its boundary components being attached to
the stack of Chern-Simons M5 branes and the other being attached to the pushed-off
link-related M5.

In order to implement our approach and following M. Aganagic, we choose M3 =
C

∗
cyl × Rbr, where C

∗
cyl is a cylinder and Rbr is the braid time. A link component is

locally a braid component of the form {pbr} × Rbr, pbr ∈ C
∗
cyl. Present T

∗
Rbr as a

product: T∗
Rbr = Rbr × R

∨
br. Each M5 brane is represented by a point at the origin of

R
∨
br, which is the zero section of T∗

Rbr. We push all M5 branes off the zero section
by giving each M5 brane its own position at R

∨
br. It is particularly convenient to keep

Chern-Simons M5 branes to the left of the braid M5 branes. M2 branes are now
stretched along R

∨
br, being sandwiched between these M5 branes. For example, the

following diagram represents the case of aU(2)Chern-Simons theory and a two-strand
braid:

R
∨
br

M5CS M5CS M5brM5br

M2M2 two M2

(2.16)

Now we implement our approach. Present the cylinder C
∗
cyl as C

∗
cyl = S1cyl × Rcyl.

The group U(1)CY rotates S1cyl and M-theory is reduced to IIA theory on

M10
IIA = Rcyl × C

∨
cyl × Rbr × R

∨
br × TN × Rcob.
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Chern-Simons relatedM5 branes becomeD4 branes spanningRcyl×Rbr×Cx ×Rcob,
braid relatedM5 branes become NS5 branes spanningC

∨
cyl×Rbr×Cx ×Rcob andM2

branes which represent the link homology related BPS particles of the 5d theory on
TN×Rcob becomeD2branes spanning•−•×Rbr×Rcob,where•−•denotes the segments
stretched along R

∨
br. The diagram (2.16) now becomes a familiar Hanany–Witten type

arrangement:

R
∨
br

D4 D4 NS5NS5

D2D2 two D2

(2.17)

Following the presentation C
∗
cyl = S1cyl × Rbr, we decompose C

∨
cyl = R

∨
S1 × R

∨
cyl.

We twist the 3d theory of D2 branes by identifying their worldspace R
∨
br ×Rbr ×Rcob

with Rcyl × R
∨
cyl × R

∨
S1 . Now a domain of thickness n in the stack of D2 branes

carries the 3d B-model whose target is the commuting variety Mn = T∗gln//GL(n)

of Sect. 2.5.3. These domains are separated by NS5 and D4 interfaces corresponding
to the functorŝ�k and q�k respectively. If the sandwich (2.17) of NS5 and D4 branes is
squeezed, then 3d B-models become a single 2d B-model whose target is the Nakajima
quiver variety MQ of the corresponding bow-arrow quiver. The braiding of the braid
strands {pbr} × Rbr within M3 = C

∗
cyl × Rbr results in the action of the affine braid

group on the category DCoh(MQ) introduced by Rina Anno [2].
This construction can be generalized, if we allow Chern-Simons-related and braid-

relatedM5 branes to wrap both types of cigars:Cx andCy . If N M5 branes wrapM3×
Cy ×Rcob while M M5 branes wrap M3×Cx ×Rcob, then M3 carries the supergroup
U(N |M) Witten-Chern-Simons theory. The Cx -related D4 branes are denoted D4’
and they correspond to the interfaces q�k . The original braid M5 branes wrapped on
Cx cigar yield U(M |N ) representations C

N |M . If a braid-related M5 brane is wrapped
on Cy cigar, then it becomes an NS5’ brane in the IIA string theory corresponding
to an interface q�k and producing the representation C

N |M . Note that in the original
setup the group U(N ) appears as U(N |0) and a braid-related NS5 generates the odd
version C

0|N of the defining representation.

2.7.3 Vafa’s setup

The following is a brief account of a part of [7]. If M3 = S3, then the corresponding
Calabi–Yau manifold CY3

dc = T∗S3 is a deformed conifold. Assume that a link in S3

is a closed ‘tight’ braid winding along a ‘base unknot’. Then, according to Vafa, this
M-theory setup with N Chern-Simons related M5 branes wrapping the zero section
S3 ⊂ T∗S3 can be equivalently replaced by a resolved conifold

CY3
rc =
(

O(−1)1 ⊗ O(−1)2 −→ P
1
)

.

The Chern-Simons-related M5 branes disappear, but the braid-related M5 braids
remain as Lagrangian submanifolds of CY3

rc in such a way that the BPS-generating
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M2 branes emerge as a tight disk-shaped stack inside the fiber ofO(−1)1 at the “north
pole” of P

1.
We select the symmetry U(1)CY of CY3 which rotates P

1 around the polar axis (so
that 0 and ∞ (that is, the north and south poles of P

1) remain fixed) while rotating the
fibers ofO(−1)1 andO(−1)2 in such away that the fiber ofO(−1)1 at the north pole is
fixed. As a result, the braid-related branesM5 becomeNS5, while a stack ofM2 branes
becomes a stack of D2 branes inside a D6 brane sweeping O(−1)1|0 × TN × Rcob.
This stack carries the 3d B-model whose target is the Hilbert scheme of points on
C
2 = TN and it is separated into domains by braid-related NS5 branes.
The fiber ofO(−1)2 at the south pole of P

1 (that is,O(−1)2|∞) is also stable under
the action of U(1)CY; hence, the IIA picture includes another D6 brane O(−1)2|∞ ×
TN× Rcob. The M2 branes wrapping the zero section P

1 of CY3
rc and attached to M2

branes of link homology become strings stretched between the south pole D6 and the
center of the stack of D2 branes at north pole, creating the Wilson line carrying the
exterior powers of the tautological bundle over the Hilbert scheme target.

3 Mathematical perspective

This section provides a motivation for the definition of our main working category.
We do not provide details for the constructions in this section. The main 2-category
that we work with appears in Sect. 3.4 and the details of the main working category
are spelled out in this section.

In [21, 22], a 2-category C̈at(Y) was associated with a symplectic variety Y. This
construction admits a generalization to the equivariant case, namely a 2-category

C̈at
G
(Y) emerges when a group G has a Hamiltonian action on Y. We present an

three-categorical description of this category.

3.1 Large 3-category
...
Catsym: a proposal

The objects of Obj(
...
Catsym) are holomorphic symplectic manifolds. The morphisms

between two such manifolds X,Y ∈ Obj(
...
Catsym) form a 2-category Hom(X,Y)

whose objects are fibrations with Lagrangian bases:

(F, L, f : F → L), L ⊂ X × Y is a Lagrangian subvariety. (3.1)

As hinted in [22], the fibration of F over the Lagrangian L is a categorical analog
of a local system over the Lagrangian in the Fukaya category theory.

The composition of (F, L, f ) ∈ Hom(X,Y) and (G, L ′, g) ∈ Hom(Y,W) is
defined to be (H , L ′′, h) where

H := (F × W) ×Y (X × G),

while h : H → X×W is the natural projection and L ′′ := h(H). The composition is
not always defined since the L ′′ is not always a Lagrangian.
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The morphisms between the objects (F, L, f ), (F ′, L ′, f ′) ∈ Hom(X,Y) is
defined as follows:

Hom((F, L, f ), (F ′, L ′, f ′)) := Qcoh(F ×X×Y F ′).

The category of quasi-coherent sheaves can be enriched to (∞, 1)-category. The
study of the structure of these categories as well as (2,∞)-category of such (∞, 1)-
categories is initiated in [11]. The abovementioned work is extremely technical and
we do not attempt to use infinity categories in our work. Instead, we use the previous
definition as a guiding principle.

Let us also remark that the category
...
Catsym contains a final object pt which is just

a point. Thus for every X ∈ Obj(
...
Catsym) there is a related 2-category

C̈at(X) := Hom(pt,X).

3.2 Small 3-category: first steps

In this paper, we construct smaller category
...
Cat that has fewer objects and fewer

morphisms. As a pay-back we get a mathematically satisfactory theory for two and
three-morphisms in such categories, without use of heavy machinery the derived
algebraic geometry mentioned above.

The objects of the category
...
Cat are smooth algebraic varieties. The 2-category of

morphisms Hom(X,Y) between two objects X,Y ∈ Obj(
...
Cat) has objects

(Z ,W ), Z is algebraic manifold, W ∈ C[X × Z × Y].

For X,Y,W ∈ Obj(
...
Cat) and (Z ,W ) ∈ Hom(X,Y), (Z ′,W ′) ∈ Hom(Y,W) the

composition is defined by:

(Z ′,W ′) ◦ (Z ,W ) = (Z × Y × Z ′, π∗
xy(W

′) − π∗
yz(W )) ∈ Hom(X,W),

where πxy, πyz are the projections from X×Z ×Y×Z ′ ×Y onto X×Z ×Y and
Y × Z ′ × Z, respectively.

The category of morphisms Hom((Z ,W ), (Z ′,W ′)) between the objects
(Z ,W ), (Z ′,W ′) ∈ Hom(X,Y) is a triangulated one-category of matrix factor-
izations

Hom((Z ,W ), (Z ′,W ′)) = MF(X × Z × Z ′ × Y, π ′,∗(W ′) − π∗(W )),

where π, π ′ are projections onto X × Z × Y and X × Z ′ × Y.
In the discussion above we indicated pull-backs in the formulas for the potentials.

To lighten up the notations in the discussion below we omit the pull-backs in formulas
for the potentials, since the pull-backs are clear from the context.
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The objects of the homotopy category MF(Z ,W ), W ∈ C[Z ] are pairs

(M, D), M = M0 ⊕ M1, D ∈ HomC[Z ](M, M), D2 = W ,

where D is Z2-graded morphism: D(Mi ) = Mi+1. If we think of the matrix factor-
izations as two periodic curved complexes, then the homotopy is defined in exactly
the same way as for usual complexes.

The standard convolution product � (see the next section for the details) yields the
monoidal structure:

� : MF(Z × Z ′,W − W ′) × MF(Z ′ × Z ′′,W ′ − W ′′) → MF(Z × Z ′′,W − W ′′).

For two objects F = (M, D), G = (M ′, D′) ∈ MF(Z ,W ), the space of
morphisms is defined by:

Hom(F,G) = {φ ∈ HomC[Z ](M, M ′) | D ◦ φ = φ ◦ D′}.

We also define Dper(Z ) to be a derived category of the two-periodic complexes
of C[Z ]-modules. Given an element F = (M, D) ∈ MF(Z ,W ), by inverting the
sign of the component of the differential from M0 to M1 we obtain an element of
MF(Z ,−W ) which we denote F∗. Since the potentials of the matrix factorizations
add if take tensor product, we have:

Hom(F,G) = Ext(F,G) = G ⊗ F∗ ∈ Dper(Z ).

There is a special class of invertible morphisms that we want to discuss separately.
These morphisms provide an explicit realization of the Knörrer periodicity functor
[19]. Namely, if V → Z is a finite rank vector bundle overZ and V ∗ is its dual then
there is a canonical bilinear function

QV ∈ C[V × V ∗].

For any W ∈ C[V ], there is a invertible functor [19]:

KNV : MF(Z ,W ) → MF(V × V ∗,W + QV ), KNV (F) = KNQ ⊗ F,

KNQ =
(

�•Vθ , D =
∑

vi
∂

∂θi
+ v∗

i θ

)

,

where�•Vθ is an exterior algebrawith the generators θi , v∗
i and vi are dual coordinates

on the spaces V and V ∗.
That isKNQ ∈ Hom((Z ,W ), (V×V ∗,W+QV )), (Z ,W ), (V×V ∗,W+QV ) ∈

Hom(X,Y). The functor KNV is an equivalence of categories [19]. To construct the
inverse, we need a functor:

KN∗
V : MF(V × V ∗,W + QV ) → MF(Z ,W ), KN∗

V (F) = Hom(F,KNQ).
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The composition of functors KNV and KN∗
V is the duality functor D. In general,

for a matrix factorization F ∈ MF(Z ,W ), the dual matrix factorization D(F) ∈
MF(Z ,−W ) is defined by

D(F) = Hom(F,OZ ).

Since, KN∗
V and D are functors we can enlarge Hom((V ×V ∗,W +QV ), (Z ,W )) by

including KN∗
V and D. Thus, the Knörrer functor internally invertible in our category.

3.3 Relation between the 3-categories

There is a functor j3 : ...
Cat → ...

Catsym which acts on the objects as

X �→ T∗X = Xsym.

This functor explains an introduction of matrix factorizations in our construction, for
more discussion of the role of matrix factorizations in context of 3D TQFT see the
original [21].

The embedding at the level of morphism is based on describing Lagrangian sub-
manifolds by generating functions [4]. Let us recall the basic facts. Given a (complex)
manifold Z and function W : X × Z → C we define a subvariety FW ⊂ T∗X × Z
by the equations

∂zi W (x, p, z) = 0, ∂xi W (x, p, z) = pi ,

where zi are local coordinates along Z , xi are local coordinates along X and pi are
the coordinates on the cotangent space that are dual to the coordinates xi . As shown
in [4], the image Lw of Fw in T∗X under the natural projection π is a generically
Lagrangian subvariety.

Thus, the functor j3 at the level of homomorphisms between the objects is defined
as

(Z ,W ) �→ (FW , π, LW ).

The real problemarises at the level ofmorphisms between themorphisms of objects.
It is tempting to say that we have a functor

MF(X × Z × Z ′ × Y,W ′ − W ) −→ DGper
coh(Fw ×T ∗(X×Y) Fw′).

It is not clear to the authors how one could construct such a functor in a canonical
way. One option here is to use the functorHom, if we fix some element F ∈ MF(X×
Z × Z ′ × Y,W ′ − W ); then we obtain a functor

Hom(F, ·) : MF(X × Z × Z ′ × Y,W ′ − W ) → DGper
coh(X × Z × Z ′ × Y).

However, it is not clear whether we can make a choice of F canonical.
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3.4 Equivariant version of the 3-category
...
Cat

If X is an affine variety with an action of G and T∗X, then an object in the 2-category
C̈at

G
(T∗X) is a pair (Z ,W ), where the auxiliary variety Z is an affine variety with

the action of G, while W is a super-potential: W ∈ C[X × Z ]G .
Let us introduce an equivariant version of 3-category

...
Cat that has as objects pairs:

Obj(
...
Cat) = {(X,G)|G is an algebraic group acting on X}.

Respectively, forXwith action ofG andYwith action of H the space ofmorphisms
Hom((X,G), (Y, H)) consists of an the pairs (Z ,W ),W ∈ C[X×Z ×Y]G×H and
Z has an action of G × H .

For a pair (Z 1,W 1), (Z 2,W 2) ∈ Hom(X,Y), we define the category of
morphisms as category of G × H -equivariant matrix factorizations.

Hom
(

(Z 1,W 1), (Z 2,W 2)
) = MFG×H

(

X × Z 1 × Z 2 × Y,W 2 − W 1).

In most of the cases, we omit the group from the notation; on the other hand if we
want to emphasize the presence of the group action, we use notation (X,G) for the
object with G-action. Similarly, sometimes we include the group in the notation of the
composition of morphisms, that is (X,G), (Y, H), (W, K ) ∈ ...

Cat and (Zxy,Wxy) ∈
Hom((X,G), (Y, H)), (Zyw,Wyx ) ∈ Hom((Y, H), (W, K )) then

(Zxw,Wxw) = (Zyw,Wyw) ◦H (Zxy,Wxy) = (Zyw × Y × Zxy/H ,Wyw − Wxy)

(3.2)
Furthermore, for

F12
xy ∈ Hom((Z 1

xy,W
1
xy), (Z

2
xy,W

2
xy)), F12

yw ∈ Hom((Z 1
yw,W 1

yw), (Z 2
yw,W 2

yw))

(3.3)
the vertical composition is defined by

F12
xw = F12

yw ◦H F12
xy := (π∗

YW (F12
yw) ⊗ π∗

XY (F12
xy))

H2
,

whereπyw, πxy are the projections from (X×Z 1
yw×Z 2

yw×Y)×(Y×Z 1
xy×Z 2

xy×W)

to the first and the last factors, respectively and

(Z i
xy,W

i
xy) ∈ Hom((X,G), (Y, H)), (Z i

yw,Wi
yw) ∈ Hom((Y, H), (W, K )).

(3.4)
Similarly, we define the horizontal composition for F12

xy as before and

F23
xy ∈ Hom((Z 2

xy,W
2
xy), (Z

3
xy,W

3
xy)), (3.5)

here we assume (3.4). In more details, we have

F13
xy = F23

xy�F12
xy = π13∗(π∗

12(F23
xy) ⊗ π∗

23(F12
xy)),
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where πi j : X × Z1 × Z2 × Z3 × Y → X × Zi × Z j × Y. In particular,

C̈at
G
(T∗X) = Hom((X ,G), (p, {1})).

We often omit the group super-script when the group is clear from the context.
Finally, let us observe that the vertical composition satisfies the exchange rule:

Proposition 3.1 For any (X,G), (Y, H), (W, K ) ∈ ...
Cat and (Zxy,Wi

xy), (Zyw,Wi
yw)

as in (3.4) and F12
xy,F12

yw as in (3.3), F23
xy as in (3.5) and

F23
yw ∈ Hom((Z 2

yw,W 2
yw), (Z 3

yw,W 3
yw))

there is a three-isomorphism:

E(Z •
xy;Z ∗

yw;F•∗
xy;F•∗

yw) : (F12
yw ◦ F12

xy)�(F23
yw ◦ F23

xy) → (F12
yw�F23

yw) ◦ (F12
xy�F23

xy).

Both sides of the last equation are functors between one-categories and the three-
isomorphism E is a natural transformation of between these functors.

Proof In the proof below, we use the short hand notationZ i1...ik•� = Z i1•� × · · ·×Z ik•� .
First, we observe that (F12

yw ◦F12
xy)�(F23

yw ◦F23
xy) is computed with the push-forwards

and pull-backs along the maps in the diagram and taking H2-quotient:

X × Z 123
xy × Y2 × Z 123

yw × W

X × Z 12
xy × Y X × Z 23

xy × Y

X × Z 12
xy × Y2 × Z 12

yw × W X × Z 23
xy × Y2 × Z 23

yw × W

Y × Z 12
yw × W X × Z 13

xy × Y2 × Z 13
yw × W Y × Z 23

yw × W

here all the maps are the natural projections. In more details, the matrix factorizations
Fi j•� are the matrix factorizations on the spaces in the boxes. Thus, to obtain (F12

yw ◦
F12
xy)�(F23

yw ◦ F23
xy), we pull-back and push-forward these matrix factorizations along

the solid arrow until we reach the space in the center of the bottom row.
The dashed arrow maps indicate the natural projections that make the diagram

commute. By functoriality of the pull-back, we can obtain (F12
yw ◦F12

xy)�(F23
yw ◦F23

xy)

by first pulling back along the dashed arrow and then pushing forward along the central
down arrow.
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Similarly, we draw the diagram for the maps that participate in the construction of
(F12

yw�F23
yw) ◦ (F12

xy�F23
xy):

X × Z 12
xy × Y ˚ Y × Z 12

yw × W

X × Z 123
xy × Y � Y × Z 123

yw × W

Y × Z 23
xy × W X × Z 13

xy × Y Y × Z 13
yw × W Y × Z 23

yw × W

here the maps are the natural projections and

� = X × Z 13
xy × Y2 × Z 13

yw × W.

We obtain (F12
yw�F23

yw) ◦ (F12
xy�F23

xy) by the sequence of pull-backs and push-
forwards that starts from the boxed spaces and ends at �. By setting

˚ = X × Z 123
xy × Y2 × Z 123

yw × W

we can complete the diagram to the commuting diagram where the dashed arrows are
the natural projections.

The dashed arrow maps are the same maps as in the previous diagram. Thus to
complete our proof we need to show that (F12

yw�F23
yw) ◦ (F12

xy�F23
xy) can be obtained

by the pull-back along the dashed arrows followed with the push-forward along the
vertical dashed arrow.

The last statement follows from a repeated application the base change relation.
Indeed, first we apply base change to the commuting squares that have as sides the
vertical dashed arrow and the dotted arrows. Finally, we apply the functoriality of the
pull-backs since the composition of the pull-backs along the vertical arrow and the
dotted arrows are equal to the pull-back along the corresponding non-vertical dashed
arrows.

Each base change in the construction is facilitated by a particular invertible mor-
phism between the matrix factorizations. The composition of these morphisms yields
the three-morphism E(Z •

xy,Z
∗
yw;F•∗

xy,F•∗
yw). The base change morphism are natural

transformations. Hence, E is a natural transformation. ��
In the cases when the first group of arguments of E(. . . ) is clear, we abbreviate the

notation as E(;F12
xy,F23

xy;F12
yw,F23

yw).
Let us also discuss the exchange relation for two-morphisms and three-morphisms.

Let us fix the objects (X,G), (Y, K ) and let

(Z i ,Wi ) ∈ Hom(X,Y), Fi i+1,Gi i+1,Hi i+1 ∈ Hom((Z i ,Wi ), (Z i+1,Wi+1)).

(3.6)
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Respectively, we define Fi i+2 = Fi i+1�Fi+1,i+2, Gi i+2 = Gi i+1�Gi+1,i+2.

Let us also fix notation for the three-morphisms

uii+1
f g ∈ Hom(Fi i+1,Gi i+1), uii+1

gh ∈ Hom(Gi i+1,Hi i+1). (3.7)

We denote by • for the composition of morphisms in the category of matrix
factorizations, for example u12gh • u12f g ∈ Hom(F12,H12).

On the other hand, we can define the horizontal composition u23f g�u
12
f g ∈

Hom(F13,G13) by

u23f g�u
12
f g = π13∗(G12 ⊗ π∗

23(u
23
f g) • π∗

12(u
12
f g) ⊗ F23),

π∗
12(u

12
f g) ⊗ F23 = π∗

12(u
12
f g) ⊗ Idπ∗

23(F23) ∈ Hom(π∗
12(F12)

⊗π∗
23(F23), π∗

12(G12) ⊗ π∗
23(F23)),

G12 ⊗ π∗
23(u

23
f g) = Idπ∗

12(G12)
⊗ π∗

23(u
23
f g) ∈ Hom(π∗

12(G12)

⊗π∗
23(F23), π∗

12(G12) ⊗ π∗
23(G23)). (3.8)

The exchange rule in this setting is given by

Proposition 3.2 In notations of (3.6), (3.7), (3.8), we have

(u23gh�u
12
gh) • (u23f g�u

12
f g) = (u23gh • u23f g)�(u

12
gh • u12f g).

Proof To show that the morphisms of the matrix factorizations are equal, it is enough
to check that the morphisms are equal as morphisms of stalks at a point z ∈ X ×
Z 1 × Z 3 × Y. The convolution � intertwines i∗(x,z1,y) × i∗(x,z3,y) with i∗z where z =
(x, z1, z3, y). Thus, it is enough to show the statement in the case X = Y = Z1 =
Z3 = p. In this case, the statement of the theorem is equivalent to the functoriality of
the push-forward.

Indeed, in this situation F12,G12,H12 ∈ MF(Z 2,W ), F23,G23,H23 ∈
MF(Z 2,−W ). Respectively, the convolutions F12�F23 = H∗(F12 ⊗ F23),
G12�G23 = H∗(G12⊗G23),H12�H23 = H∗(H12⊗H23) are the derived push-forwards
Rπ∗ to the point, Rπ∗ : Z → p.

Since the derived push-forward is a functor, the convolutions of the endomor-
phism are defined by means of functoriality u23gh�u

12
gh = Rπ∗(u23gh ⊗ u12gh), u

23
f g�u

12
f g =

Rπ∗(u23f g ⊗ u12f g), (u
23
gh • u23f g)�(u12gh • u112f g ) = Rπ∗((u23gh • u23f g)⊗ (u12gh • u112f g )). Thus,

the statement of the proposition is equivalent to the relation:

Rπ∗(u23gh ⊗ u12gh) • Rπ∗(u23f g ⊗ u12f g) = Rπ∗((u23gh • u23f g) ⊗ (u12gh • u112f g ))

which follows from the functoriality of Rπ∗. ��
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3.5 Categories of linear quivers and NS5 interfaces

In this paper, we consider the subcategories
...
Cat( Ãm) (resp.

...
Cat(Am)) of

...
Cat formed by

Nakajima quiver varieties of (Dynkin diagram) type Ãm (resp. Am) and describe some
generalized Lagrangian correspondences connecting them. These correspondences
are of two distinct types: NS5 and D4 (or D5). We will describe mostly the NS5
correspondences (1.3) for m = 1. Their auxiliary varieties originate from arrows
similar to the ones appearing in Nakajima quivers, which could be expected given that
both come from NS5 branes in the super-string theory. We will also conjecture the
D4 Lagrangian correspondences connecting the so-called commuting varieties, that
is, Nakajima varieties of the Ã0 quiver without framing (1.4).

3.5.1 NS5 interfaces between Ãm−1 quiver varieties

The Ãm−1 quiver has the form

ni ni+1

ri ri+1

where i = 1, . . . ,m. It is ‘colored’ by the numbers n = (n1, . . . , nm) and r =
(r1, . . . rm).We denote this quiver by Ãm( n ; r ). An edge between the i th and (i+1)st
circles corresponds to the i th basic, in the sense of Sect. 2, NS5 interface, the number
ni refers to the gauge group U(ni ) between the (i − 1)st and i th NS5-interfaces, and
there are ri D5-interfaces there.

Remark 3.1 A ‘linear’ Am quiver appears as a particular case of the Ãm−1 quiver if
one sets nm = rm = 0.

In order to describe additional interfaces as Lagrangian correspondences, we have
to present the quiver varieties as cotangent bundles. Hence, we choose the orientation
of quiver edges (for example, clockwise and from circles to boxes) and denote the
corresponding maps as Xi and vi :

ni ni+1

ri ri+1

Xi

vi vi+1
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The quiver variety Xsym
n ; r is the stable part of the cotangent bundle

Xsym
n ; r = (T∗X n ; r )st , X n ; r =

(

m
∏

i=1

Hom(Cni , C
ni+1)

)

×
(

m
∏

i=1

Hom(Cni , C
ri )

)

.

The stable locus is defined by means the Hamiltonian action of the group

G n =
m
∏

i=1

GL(ni ).

In more details, given a character of χ = (χ1, . . . , χm) of G n the χ -stable locus
of T∗X n ; r is the projection of the GIT stable locus of T∗X n ; r × C

∗
χ1

× · · · × C
∗
χm

,
see for example [30, Section 3.1]. The χ -stable condition can also be described by
explicit linear algebra construction as explained in [30, Section 3.1], we also use the
linear algebra construction in Proposition 5.1 below. If r is zero, we do not impose
any stability constraints.

Consider two affine quivers Q = Ãm( n ; r ) and Q′ = Ãm( n ′; r ′)with the same
m but, generally, different dimensions: ( n ; r ) and ( n ′; r ′). The NS5-interface
auxiliary variety Z has an arrow description, that is, it is based on the spaces of
linear maps. First of all, we introduce the maps ϕi ∈ Hom(Cni , C

n′
i ) and ϕfr

i ∈
Hom(Cri , C

r ′
i ). We fix the values of all ϕfr

i and require that they all have the highest
rank. Then for each ‘horizontal square’

Xi X ′
i

ϕi

ϕi+1

ψi

ni

ni+1

n′
i

n′
i+1

or Xi X ′
i

ϕi

ϕi+1

ψi
Ỹi Ỹ ′

i

ni

ni+1

n′
i

n′
i+1

(3.9)
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and for each ‘vertical square’

vi v′
i

ϕi

ϕfr
i

ψ fr
i

ni

ri

n′
i

r ′
i

or vi v′
i

ϕi

ϕfr
i

ψ fr
i

ṽi ṽ′
i

ni

ri

n′
i

r ′
i

ψ fr

(3.10)

Two columns of the formulas (3.9) and (3.10) are Legendre dual to each other as
we explain in Sect. 2.4.3. In the same section, we explain these two types of interfaces
correspond to the interface between a horizontal NS5 brane and vertical NS5 andNS5’
brane. Figure (2.8) explains how the vertical and horizontal squares a glued together.

In more details, we choose either the first diagonal (on the left) or the second
diagonal (on the right) and add the corresponding linear maps ψi , ψ fr

i and, in case
of the second diagonal choice we also add maps Ỹi , Ỹ ′

i , ṽi and ṽ′
i . The variety Z is

formed by all these maps, see the figure (2.8), including ϕi , while the superpotential
W is the sum of superpotentials Wsquare of individual squares. The latter being the
sums of traces along the boundaries of triangles and digons. The formula below list
these sums for the squares from the formulas (3.9) and (3.10):

Wsquare =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Tr(ψi X ′
iϕi ) − Tr(ψiϕi+1Xi ),

(

Tr(X ′
i Ỹ

′
i ) − Tr(Ỹ ′

i ϕi+1ψi )
)− (Tr(Ỹi Xi ) − Tr(Ỹiψiϕi )

)

Tr(ψ fr
i v′

iϕi ) − Tr(ψ fr
i ϕfr

i vi )
(

Tr(ṽ′
iv

′
i ) − Tr(ψ fr

i ṽ′
iϕ

fr
i )
)− (Tr(ṽivi ) − Tr(ψ fr

i ϕivi )
)

We get more interface squares by swapping the quivers Q and Q′ in the diagrams (3.9)
and (3.10), that is, reversing the directions of horizontal arrows and adjusting the
choices of diagonals.

Not all of these choices are compatible with stability conditions on the arrows of the
quivers, and some of these choices are Legendre-equivalent if we replace the spaces
at the quiver vertices by their dual spaces and, at the same time, reverse the directions
of all arrows. For example, the generalized Lagrangian correspondence of the second
diagram of (3.10) can be equivalently presented, if we reverse the directions of vertical
arrows:
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ṽi ṽ′
i

ϕi

ϕfr
i

ψ fr
i

ni

ri

n′
i

r ′
i

In our previous work [35, 37, 38] and in Sect. 5, we work with the last choice of the
direction of circle-square edge. In the rest of this section, we work with convention
of Formulas (3.9), (3.10) since this choice is closer the standard quiver description of
Grassmannians.

Remark 3.2 If r ′ = r while n � n ′, that is, ni � n′
i for all i , and one requires

all horizontal arrow maps to have highest rank, then the first correspondences of (3.9)
and (3.10) describe the ‘standard’ interface which has a simple symplectic interpreta-
tion. Vertical arrow maps describe representations of Q and Q′, the horizontal arrows
establish the representation of Q as a subrepresentation of Q′, and one takes the
conormal bundle to this arrangement within the product of two full quiver varieties.
These correspondences are also known under the name Hecke correspondences. The
theory of Hecke correspondences was developed by Nakajima, please consult [14] for
a survey and further references.

We consider several special cases the special cases of NS5 interfaces between
Grassmannians in Sect. 2.5.1. More generally, the NS5 interfaces are discussed in
Sect. 2.5.2. Also we discuss D5 and NS5 interfaces between the commuting varieties
as described in Sect. 2.5.3.

4 Categorical aspects of the theory

In this section, we discuss the categorical setting for the proposed TQFT. In particular,
we explain how de-looping procedure allows us to state a precise mathematical state-
ment that underlies a construction of the TQFT. The delooping procedure conjecturally
produces a monoidal 2-category C̈at(Q) for a quiver Q.

4.1 Delooping

In the previous section discussed the general setting for a construction of the 3-category...
Cat as well as the simplest equivariant version of the 3-category

...
Cat(Q) for a linear

quiver Q. It is natural to conjecture that
...
Cat and

...
Cat(Q) are weak 3-categories [10].

However, checking the conditions for the structural morphisms of a weak 3-category
is a rather challenging task. We choose a different path for constructing

...
Cat(Q). First,
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we define a delooped monoidal 2-category C̈at(Q), then we define a large 3-category...
Cat(Q) as category of module 2-categories over C̈at(B). The 3-category

...
Cat(Q) is a

subcategory inside
...
Cat(Q).

To construct 2-category C̈at(Q), we first reduce the 3-category
...
Cat(Q) to a 3-

category with one object OQ = ⊕n,rQ(n; r). Respectively, the category of the
endomorphisms Hom(OQ, OQ) of OQ has objects that are collections of elements

(Zn;r,Wn;r) ∈ Hom(Q(n; r), Q(φ(n);ψ(r))), n, r ∈ Z
Q
+ , φ, ψ : Z

Q
+ → Z

Q
+ .

The composition law for the morphisms in
...
Cat(Q) yields a monoidal structure on

Hom(OQ, OQ).
Now we declare that the 2-category C̈at(Q) has elements of Hom(OQ, OQ) as

objects and the rest of the structure is inherited from the 3-category
...
Cat(Q). Thus, we

state our main categorical statement:

Theorem 4.1 The delooped 2-category C̈at(Q) has a structure of a monoidal
2-category (without a unit) in the sense of Kapranov–Voevodsky [5, 23].

Theessenceof themonoidal 2-category is itsmonoidal structure and the correspond-
ing coherence conditions that are imposed by the compatibility with the monoidal
structure. If we ignore themonoidal structure, we essentially put ourself in the standard
setting similar to the one considered in [6].

Proposition 4.1 The vertical composition � and the horizontal composition • ofHom
functors define a structure of a weak 2-category on C̈at(Q).

Proof It is enough to show that Hom(Q(n, r), Q(n′, r′)) is a weak 2-category for a
fixed choice n, r,n′, r′. For a given (Z ,W ) ∈ Hom(Q(n, r), Q(n′, r′)), there is a
canonical choice of the convolution unit:

1Z ∈ Hom((Z ,W ), (Z ,W ))

= MFG(n)×G(n′)(Q(n, r) × Z 2 × Q(n′, r′),W (1) − W (2)),

whereW (1) = π∗
i (W ) is the pull-back of the potentialW along two natural projections

to Q(n, r) × Z × Q(n′, r′). The unit is given by the push-forward of the structure
sheaf along the inclusion 1× � × 1 of Q(n, r) ×Z × Q(n′, r′) into Q(n, r) ×Z ×
Z × Q(n′, r′), here � is the diagonal inclusion.

To show that 1Z is the convolution unit we need to use the base change
transformation relations in the commuting diagram of maps:

Z 3 Z 4 Z 3

Z 2 Z 3 Z 2

π23

�×1×1

π124

π12×π23
π13

�×1

,
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here πi1...is is the projection on the corresponding product of copies of Z . Thus, we
have

1Z �F = π13∗ ◦ (π12 × π23)
∗ ◦ (� × 1 × 1)∗ ◦ π∗

23(F)

= π13∗ ◦ (π12 × π23)
∗ ◦ π∗

124 ◦ (� × 1)∗(F)

= π13∗ ◦ (� × 1)∗(F) = F.

Here, the second equality follow from the base-change along the commuting square
and the last two equalities follow from π124 ◦ π12 × π23 = 1 and π13 ◦ (� × 1) = 1.
Since we use the base-change, we obtain an invertible natural transformation Ul(Z )

between the functor of the left multiplication by 1Z and the identity functor. Similarly,
one defines the natural transformation Ur (Z ) for the right multiplication.

The first group of axioms of the weak 2-category that is concerned with the inter-
action of the vertical composition � and horizontal composition ◦ is exactly the
interchange relation from Proposition 3.1.

Our 2-category is weak because in the standard proof of the associativity of the
convolution product � one has to use the base change relation. Thus, the base change
natural transformations yield the associator natural transformation:

A(F,G,H) : (F�G) �H → F� (G�H) .

The associator in a weak two category satisfies the pentagon axiom and the unitors
Ul ,Ur satisfy the triangle axioms see for example [9]. The construction of the associ-
ator and the unitors is in terms of base-change relations. Thus, we can use the standard
argument for convolution of coherent sheaves to show the axioms in our setting.

We refer to the original paper [23] and subsequent paper [5] for a streamlined
treatment of the (semi-strict) monoidal 2-category. In our case, the composition oper-
ation ◦ is strictly associative since the equivariant pull-backs in the definition of the
composition in (3.2).

Thus, the only nontrivial structural two-morphism R = R(F,G) of our 2-
category is the two-isomorphism ◦F,G that relates the morphisms of pairs of objects
F ∈ Hom(Z ,Z ′), G ∈ Hom(X,X′) as in the diagram below:

Z ◦ X Z ◦ X′

Z ′ ◦ X Z ′ ◦ X′

1Z ◦G

F◦1X F◦1X′

1Z ′ ◦G

R

We define R(F,G) as composition of exchange morphisms from Proposition 3.1:

R(F,G) = E(Z ,Z ,Z ′;X,X′,X′; 1Zxy ,F;G, 1X
′

yz)

◦E−1(Z ,Z ′,Z ′;X,X,X′;F, 1Z
′

xy ; 1Xyz,G),

where 1Y�,∗ stands for the identity element in Hom(Y ,Y ). ��

123



3D TQFT and HOMFLYPT homology Page 39 of 62 71

Proof of Theorem 4.1 The 2-category C̈at(Q) is almost semi-strict. Indeed, the con-
volution ◦ is strictly associative on the objects. In more details, in notations [23] ◦
corresponds to the composition ⊗. The structural one-morphisms that appear in the
definition of themonoidal of [23] areaA,B,C : A⊗(B⊗C) → (A⊗B)⊗C , in notations
of of [23]. The analogous one-morphisms in our setting are the identity morphisms.
Respectively, the related analogs of two-morphisms aA,B,C,D, au,A,B , aA,u,B , aA,B,u

are also identity in our setting.
The analogs of the structural two-morphisms ⊗u,u′,B , ⊗A,v,v′ , ⊗u,v in our setting

are expressed in terms of the exchange natural-transformation E fromProposition 3.1:

⊗u,u′,B R(F,G;X ) = E(Z ,Z ′,Z ′′;X ,X ;F,G; 1Xxy , 1Xyw)

⊗A,v,v′ R(Z ;F,G) = E(Z ,Z ,Z ;X ,X ′,X ′′; 1Zxy , 1Zyw;F,G)

⊗u,v R(F,G).

where we set u = F, u′ = G, B = X for the first relation, A = Z, v = F, v′ = G for
the second relation and u = F, v = G for the last relation.We do not repeat definitions
of the Kapranov-Voevodsky tensor products from the left column of the last three
formulas, see the original text for the definition. Our formulas give a definition of
the operators R(F,G;X ), R(Z ;F,G), R(F,G) as well as reference to the relevant
operation from [23]. We also translate Kapranov-Voevodsky axioms to our language
in our argument below.

The rest non-trivial two-morphisms in our setting are structural morphisms of the
2-category from Proposition 4.1. One can apply the method of MacLane strictness
theorem to turn the 2-categories of 1-morphisms into the strict 2-categories, thus we
suppress associator and unitor two-morphism in the discussion below.

The axioms that need to be checked for the structural two-morphisms
R(•, •; •),R(•, •), are on the pages 221 and 222 of [23]. Let us first explain how
one can prove the relations on the page 222 of [23] which are also the essential rela-
tions of the semi-strict monoidal 2-category (see Lemma 4 in [5]). The rest of the
axioms can be check by a similar computation.

The relation from the top of the page 221 of [23] as well as relation (viii) in Lemma
4 of [5] can be read of the commuting diagram:

X ◦ Z X ′′ ◦ Z

X ′ ◦ Z

X ◦ Z ′ X ′′ ◦ Z ′

X ′ ◦ Z ′

(F�F′)◦1Z

1X ◦G

F◦1Z

1X
′′ ◦G

F′◦1Z

1X
′ ◦G

F◦1Z ′

(F�F′)◦1Z ′

F′◦1Z ′

here F ∈ Hom(X ,X ′),F′ ∈ Hom(X ′,X ′′),G ∈ Hom(Z ,Z ′) and Z ,Z ′ ∈
Hom(Y,Z) X ,X ′,X ′′ ∈ Hom(X,Y), we omit spaces X,Y,Z from our notations.
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There are two dotted paths that connectX ◦Z toX ′′ ◦Z ′. The relation that we
are after is the equality of two compositions of two-morphisms that relate these two
paths. In more details, the first sequences of two-morphisms is as follows:

(X ◦ Z → X ◦ Z ′ → X ′ ◦ Z ′ → X ′ ◦ Z ′′)
R(F,F′;Z′)������⇒ (X ◦ Z → X ◦ Z ′ → X ′′ ◦ Z ′),

(X ◦ Z → X ◦ Z ′ → X ′′ ◦ Z ′)
R(F�F′,G)������⇒ (X ◦ Z → X ′′ ◦ Z ′ → X ′′ ◦ Z ′).

The second sequence of two-morphisms is

(X ◦ Z → X ◦ Z ′ → X ′ ◦ Z ′ → X ′ ◦ Z ′′)
R(F,G)����⇒ (X ◦ Z → X ′ ◦ Z → X ′ ◦ Z ′ → X ′′ ◦ Z ′),

(X ◦ Z → X ′ ◦ Z → X ′ ◦ Z ′ → X ′′ ◦ Z ′)
R(G,F′)����⇒ (X ◦ Z → X ′ ◦ Z → X ′′ ◦ Z ′ → X ′′ ◦ Z ′),

(X ◦ Z → X ′ ◦ Z → X ′′ ◦ Z → X ′′ ◦ Z ′)
R(F,F′;Z )������⇒ (X ◦ Z → X ′′ ◦ Z ′ → X ′′ ◦ Z ′).

The two morphisms in the sequences are compositions of the base-change two-
morphisms of some geometric maps. Let us discuss sequences of two-morphism in
details. There is a sequence of maps gi+1/2;k , k = 1, . . . , r between spaces Si;k ,
gi+1/2;k : Si+(−εi;k+1)/2 → Si+(εi;k+1)/2, εi;k = ±1 and the functors Fk = f1 ◦ · · · ◦
fmk where fi = gi+1/2;k∗ if εi;k = 1 and fi = g∗

i+1/2;k if εi;k = −1 such that

(1) F1 : (F,F′,G) �→ ((1X ◦ G)�(F ◦ 1Z
′
))�F′ ◦ 1Z

′
,

(2) There is s > 1 such that Fs : (F,F′,G) �→ ((1X ◦ G)�(F�F′ ◦ 1Z
′
)),

(3) Fr : (F,F′,G) �→ ((F�F′ ◦ 1Z
′
)�(1X ◦ G)),

(4) Fk+1 is obtained from Fk either by the base-change morphism or composition of
some the push-forwards or or pull-backs in the sequence fi;k .

(5) the corresponding sequence of natural transformations connecting F1 with Fs is
R(F,F′;Z ) and the sequence connecting Fs and Fr is R(F�F′,G).

Similarly, there is a sequence of maps hi+1/2;k , ε′
i;k = ±1 and spaces S′

i;k
k = 1, . . . , l that realizes the sequence of the two-morphisms R(F,G), R(G,F′),
R(F,F′;Z ). Moreover, hi+1/2;k = gi+1/2;k′ , ε′

i;k = εi;k′ for k = k′ = 1 and
k = r , k′ = l.

Thus, we can paste the sequence of the maps hi+1/2;k and the sequence gi+1/2;k
along the sequences gi+1/2;1 and gi+1/2;r . One half of the pasted diagram yields
the compositions of the natural transformations R(F,F′;Z ) and R(F�F′,G) and
the other half the composition of R(F,G), R(G,F′), R(F,F′;Z ). The commutativ-
ity of the diagram of maps implies the equality of two compositions of the natural
transformations.
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Thenext groupof the relations on the page 221of [23] are equivalent to the naturality
of R(F,G), in our case the naturality is automatic since R(F,G) is a composition of
natural transformations of base change. The last group of relation relation on that page
follows immediately from the exchange relation from Proposition 3.2.

The first group of relations on the page 222 of [23] is equivalent to naturality of
R(F,G;Z ). Finally, the last relation on this page is based on the commuting diagram:

X ′′′ ◦ Z

X ◦ Z X ′′ ◦ Z

X ′ ◦ Z

F�F′�F′′◦1
F�F′◦1

F◦1

F′′◦1

F′�F′′◦1
F′◦1

.

There are two compositions of the dotted arrow that start at X ◦ Z and end at
X ′′′ ◦ Z . Respectively, there are two ways to connect these compositions by the
two-morphisms which suppose to result into the same two-morphism:

R(F,F′�F′′;Z ) ◦ R(F′,F′′,Z ) = R(F�F′,F′′;Z ) ◦ R(F,F′;Z ).

The last equality follows from the pasting argument as in the case discussed at the
beginning of the proof. ��

4.2 Module category construction of
...
Cat(Q)

Let us define
...
Cat(Q) to be a 3-category of 2-categories with the two-monoidal action

of C̈at(Q). This 3-category is too big and the 3-category
...
Cat(Q) is a sub 3-category

inside
...
Cat(Q). Indeed, the product of 2-categories

Mn,r =
∏

n′,r′
Hom(Q(n, r), Q(n′, r′))

is a 2-category with the monoidal action of C̈at(Q), that is an object in
...
Cat(Q).

Respectively, the 2-category Hom(Q(n, r), Q(m, s)) is a sub 2-category of 2-
category of morphisms from Mn,r to Mm,s. Thus, we define the 3-category

...
Cat(Q)

to be the 3-category with objects Mn,r and the morphisms between these objects as
above.

4.3 The caseQ = Ã0

In the case of general quiver Q it is not immediately clear how to construct a unit
in the monoidal 2-category C̈at(Q). However, in the case Q = Ã0, there is a natural
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candidate for the unit.

Lid = {Ln,r
id }n,r�0, L

n,r
id ∈ Hom( Ã0(n; r), Ã0(n; r)),

the one-morphism L
n;r
id is defined in the next section where we provide a proof for

Theorem 4.2 The 2-category C̈at(Q), Q = Ã0 is a monoidal 2-category with a unit
Lid.

In the notations of the previous section, the 3-category
...
Catgl is a subcategory of

...
Cat( Ã0) with objects Ã0(n, 0), n � 0. We also define the framed version of the 3-

category
...
Cat

f
gl in the second half of this section. The later category is a sub-category

of
...
Cat( Ã0) with objects Ã0(n, 1). Implicitly, this category was studied in [33, 36, 38]

where several results in theory of knot homology were derived.We spell out the details

of the categories
...
Catgl and

...
Cat

f
gl and state some conjectures about these categories.

4.3.1 Objects andmorphisms

The objects of
...
Catgl are labeled by Z�0:

Obj
...
Catgl = {n|n ∈ Z�0}.

The objects in the 2-category of morphisms are pairs (Z , w), where Z is an algebraic
variety with an action of GLn × GLm :

ObjHom(n,m) = {(Z , w), w ∈ C[gln × Z × glm]GLn×GLm }.

The composition of morphism (Z , w) ∈ Hom(n,m), (Z ′, w′) ∈ Hom(m,k) is
defined as

(Z , w) ◦ (Z ′, w′) = (Z × glm × Z ′/+GLm, w′ + w) ∈ Hom(n,k).

Here, the quotient is defined via GIT theory as follows. Suppose that X is a variety
with a GLm-action. A character χ of GLm determines the trivial line bundle Lχ with
GLm-equivariant structure defined by χ . Recall that a point x ∈ X is semistable (with
respect to Lχ ) if there is m > 0 and s ∈ �(X , Lχ )GLm such that s(x) �= 0. Denote

X/χGLm := Xss/GLm .

Since the group of characters of GLm is generated by det, we introduce short-hand
notations:

X/±GLm := X/det±1GLm, X/0GLm := X/det0GLm .
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Two-morphism are the objects of the corresponding category of equivariant matrix
factorizations. Given (Z , w), (Z ′, w′) ∈ Hom(n,m) we define:

Hom
(

(Z , w), (Z ′, w′)
) = MFGLn×GLm (gln × Z × Z ′ × glm, w − w′).

The group GLn×GLm is reductive; hence, the equivariance of the matrix factorization
(M, D) is equivalent to the condition that the group action on M commutes with the
differential D.

The space of morphisms Hom(·, ·) between the equivariant matrix factorizations
is defined to be the space of morphisms between the underlying matrix factorizations
that commute the group action.

4.3.2 Framed version of the 3-category

We enlarge slightly our category to include the framing. The objects of the new 3-

category
...
Cat

f
gl are again labeled by the positive integers:

Obj(
...
Cat

f
gl) = {nf | n ∈ Z�0}.

For the space of morphisms, we have

Hom(nf,mf) = (Z , w), w ∈ C[Vn × gln × Z × glm × Vm]GLn×GLm

here Z is an algebraic variety with an action of GLn ×GLm and Vn = C
n, Vm = C

m

with the standard GLn and GLm actions.
The rest of definitions are identical to the constructions from the previous sub-

section, after we replace gln with Vn × gln . For brevity, we introduce the following
shorthand notation:

glfn := gln × Vn .

In general, many definitions in our paper are parallel in framed and unframed cases,
in the cases when the definitions are parallel we use • notation to indicate that • could
be "f" or empty set.

First of all, note that the category Hom(n•,m•) has a natural monoidal struc-
ture. Given F ∈ Hom((Z , w), (Z ′, w′)) and G ∈ Hom((Z ′, w′), (Z ′′, w′′)) we define
F�G ∈ Hom((Z , w), (Z ′′, w′′))

F�G := π∗(F ⊗ G), π : gln × Z × Z ′ × Z ′′ × glm → gln × Z × Z ′′ × glm

Remark 4.1 The 3-categories
...
Catgl,

...
Cat

f
gl can be realized in terms of 4-category BGL

by assigning to n the morphisms

gln ∈ Hom(GL(n),GL(0)), gln × Vn ∈ Hom(GL(n),GL(0)),
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respectively. That is
...
Catgl = ...

Cat( Ã0(0)),
...
Cat

f
gl = ...

Cat( Ã0(1)) in notations of
Sect. 2.4.1.

4.4 Monoidal properties of
...
Cat

•
gl

The objects of
...
Cat

•
gl are labeled by the positive numbers and it seems natural to use

the addition for the monoidal structure on the level of objects. It is much harder to
extend this monoidal structure to 1, 2, 3-morphisms. Nevertheless, we conjecture that
it is possible to construct such extension. Below, we provide detailed motivation for
the

Conjecture 4.1 The 3-category
...
Cat

•
gl can be enhanced to a monoidal 3-category.

Let us introduce the auxiliary object that facilitates the extension of monoidal
structure to level of 1-morphisms. The object is the pair

In,k;n+k = (T ∗GLn+k,Wn,k;n+k),

Wn,k;n+k(X , z, X ′) = Tr(Xμgln+k
(z)) − Tr(X ′μpn,k )

∈ C[gln+k × T ∗GLn+k × pn,k]GLn+k×Pn,k ,

here Pn,k ⊂ GLn+k is the standard parabolic subgroupwith the Levi groupGLn×GLk ,
respectively pn,k = Lie(Pn,k) and μgln+k

and μpn,k are the moment maps for the left
and right actions of the corresponding groups.

Given two objects O1 ∈ Hom(m•
1,n

•), O2 ∈ Hom(m•
2,k

•) we define the induced
object

O1 ⊕ O2 := O1 × O2 ◦Pn,k In,k;n+k ∈ Hom(m•
1 × m•

2, (n + k)•).

Thus, defined operation extends to the level of two-morphisms. Moreover, the
exchange relation from Proposition 3.1 implies that this operation is monoidal with
respect to the monoidal structure �. In the case m1 = m2, the above operation was
studied in [38] where it is called induction functor and it was used to construct the
braid realization discussed in the next section.

We expect that the object In,k;n+k will play an important role in the foam extension
of our TQFT, this element is the element one needs for defining a value of the partition
function on the configurations that contain three planes of defect intersecting along
the line of defect. Also this element interacts well with NS5 defects discussed in the
next section:

Il|n × O ◦Pn,k In,k;n+k = L
l
id × O ◦Pn,k Il,k;l+k ◦GLn+k Il+k|n+k, l � n,

where O ∈ Hom(m•,k•) is any one-morphism and Il|n ∈ Hom(l•,n•) is NS5 type
one-morphism discussed in the next section.
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5 Defects and knot invariants

In this section, we explain how the we interpret the results of [38] in terms of 3-

categories
...
Catgl and

...
Cat

f
gl. In particular, wemake a connectionwith the theory of foams

and provide an explanation for the Chern character construction. We also construct
a partition functions Zf for the KRS theories the targets Hilbn(C2), n ∈ Z�0 with
NS5 type defects in S2 × R. In particular, we show that for a circle S1 inside of a
connected component of the defect complement S2 × R Def, the partition function
yields Zf(S1) = Dper(Hilbn(C2)) where n is the label of the connected component.

Recall the standard setup of the 3D topological field theory with defects. A 3D
QTFT is characterized by its partition-function evaluation Z. The partition function is
an assignment:

closed connected three-manifold X �→ Z(X) ∈ C,

closed connected surface S �→ Z(S) ∈ Vect,

three-manifold X with boundary ∂X =
⋃

i
Si �→ Z(X) ∈ Z(∂X) =

m
⊗

i=1

Z(Si ),

closed connected curve C �→ Z(C) ∈ Cat,

surface with boundary S �→ Z(S) ∈ Z(∂S) = ⊗k
i=1Z(Ci ),

point p �→ Z(p) ∈ ...
Cat•gl,

interval I = [b, e] �→ Z(I ) ∈ Hom
(

Z(b), Z(e)
)

.

This collection of data behaves naturally under the gluing operation. For example,
suppose that a three-manifold X without a boundary is cut into two pieces over a
surface S:

X = X1 ∪ X2, ∂(X1) = S, ∂(X2) = S∨.

Then, S and S∨ have opposite orientations, hence Z(S) and Z(S∨) are dual vector
spaces and the partition function Z(X) is a pairing between their elements:

Z(X) = Z(X1) · Z(X2),

More generally, the formalism of TQFT provides a method for computing values
of Z(Y ) by cutting Y into pieces, evaluating Z on the pieces and pairing them in a
standard way. More details can be found in [25]. To define a 3D TQFT, we need to
include into the domain of Z also manifolds with corners and work with more subtle
setting of (∞, k)-categories. We postpone the discussion of such extension to our
future publication [34].

Often TQFTs may be defined not only on smooth manifolds but also on ‘smooth’
CW-complexes. In particular, a TQFT may have defects (coming from lower-
dimensional cells). Topologically, defects are unions of embedded surfaces and curves.
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Surfaces and curves may intersect. The cuts must be transverse to the defects. All other
properties of TQFT without defects are preserved.

The full categories
...
Cat

•
gl will be used to construct 3D TQFT and we discuss the

construction in the forthcoming publication [34]wherewe construct the corresponding
maps Z and Zf.

In this note, we concentrate on R-invariant part of the TQFT. That is from now on
all defects are invariant with respect to shift along last coordinate in S2 × R and thus
we can recover a configuration of defects from the two-dimensional cut which is an
intersection with S2 × {0}.

We present S2 as R
2 compactified by a point ∞ at infinity and we can assume

that the defects do not contain ∞. The two-dimensional cut is R
2 ∪ ∞. Studying

two-dimensional slice is equivalent to restricting ourselves to the defects of the form
C × R where C is a curve in R

2.
The surfaces of defect intersect our fixed R

2 along the union of oriented curves.
Suppose that the curves on the plane lies in an annulus and their union is a projection
of the closure of a braid. By assigning a sign to each intersection, we obtain an
interpretation of the union of curves as a projection of a link in R

3 presented as a
closure L(β) of a braid β ∈ Brn . Denote the plane with defect R

2
β .

From the results of [38], it follows that our TQFT provides an isotopy invari-
ant of L(β), namely the vector space Zf(R2

β), assigned to R
2
β . We show that this

invariant categorifies HOMFLYPT polynomial and coincides with previously defined
Khovanov-Rozansky invariant [40].

Now let us give details of the R
2-sliced TQFT. A small neighborhood of the plane

contains two-dimensional surfaces of defect that are products of the defect curves in
R
2 with an interval. The surfaces of defect divide R

3 into connected components and
each connected component has an integer marking. We choose the markings in such a
way that if we move along the (oriented) intersection of a defect surface with R

2 and
the marking on the left is k, then the marking on the right is k + 1.

We assume that the curves of intersection are compact, thus their union is contained
in a large disc. Themarking of the disc complement (‘the infinitemarking’) determines
all other markings.

In this paper, we only consider the theories with the infinite marking equal to 0.
Hence, if the intersection of the surface defect and R

2 is the braid closure then all
markings are positive. Thus, the picture of the braid β determines the marking of our
theory uniquely. Slightly abusing notation, we denote such data as R

2
β . The figure is

a slice R
2
β for β = σ 3

1 . The closure of L(β) is a trefoil and we explain below how we
can compute the homology of this knot (Fig. 1).

5.1 Values on points and defect trivial intervals

There is a canonical way to upgrade the marking of R
2
β to a categorical marking.

Denote by pn a point lying inside a region marked by n. To a pair of points (pn1,pn2),
we assign a 2-category

Z•(pn1,pn2) = Hom(n•
1,n

•
2). (5.1)
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Fig. 3 Decomposing R
2
β on two

half-planes

Recall that an object of this 2-category is a pair (Z ,W ), where Z is a variety with a
(GL(n1) × GL(n2))-action and W ∈ C[gln1 × gln2 × Z ]GL(n1)×GL(n2).

In accordance with the assignment (5.1), to an interval I connecting pn1 and pn2
(and possibly crossing defect surfaces) we assign an object Z•(I ) of Hom(n•

1,n
•
2), so

that if I is the result of gluing together the intervals I1 and I2 over the common middle
point, then the object of I is the composition:

Z•(I ) = Z•(I2) ◦ Z•(I1).

This relation implies that if the interval I lies within a single regionmarked by pn , then
the corresponding object Z•(I ) is the identity with respect to the monoidal structure
(i.e., the composition) of the category Hom(n•,n•).

Theorem 4.2 states that the following pair is the identity object of the ‘unframed’
2-category Hom(n,n):

L
n,0
id = Ln

id =
(

T∗GLn,Wid := Trφ
(

X − Adg(X
′)
)

)

in which (g, φ) ∈ GL(n)×gln
∼= T∗GL(n), while (X , X ′) ∈ gln ×gln , and the action

of GL(n) ×GL(n) on the total variety gln × gln ×T∗GL(n) is given by the following
formula:

(a, b) · (X , X ′, g, φ) = (Ada X ,AdbY , agb−1,Adaφ
)

The identity object in the framed 2-categoryHom(nf,nf) is the case r = 1 of

L
n,r
id = (T∗GLn × Hom(Vn, C

r ),W f
id := Wid(X , g, φ, X ′) + Tr(w · (v − gv′))

)

,
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where (X , v), (X , v′) ∈ gln × Hom(Cr , Vn), while (g, φ,w) ∈ T∗GL(n) ×
Hom(Vn, C

r ) and the action of GL(n) × GL(n) on framing related variables is

(a, b) · (v, v′, w) = (av, bv′, aw).

Proof of Theorem 4.2 We need to define the left and right unitizing 1-morphisms

l(X ) : X → L
n;r
id ◦ X , X ∈ Hom( Ã0(n, r), Ã0(n

′, r ′)),
r(X ) : X → X ◦ L

n;r
id , X ∈ Hom( Ã0(n

′, r ′), Ã0(n, r)).

We the left unitizer to be the tensor product of matrix factorizations

l(X ) := 1X ◦ KN, KN = [φ, X − Adg(X
′)] ⊗ [w, v − gv′],

where we use the notation from the definition of the unit object as well as the standard
notations for the Koszul matrix factorization. The right unitizer is defined by the
identical formula.

Thematrix factorizationKN|g=1 is thematrix factorization that yields theKnörrer’s
equivalence of categories [19]. The composition ◦ in the productO◦Lid involves taking
quotient by the GLn-action. Since the left and right actions on GLn on T ∗GLn is free,
we can trade the GLn-quotient for the gauge fixing g = 1. Thus, we are in the setting
of the Knörrer periodicity. Respectively, the inverse to the Knörrer equivalence is
composition of KN∗ and the duality functor.

The only non-trivial structural two-morphisms that involves the unit object are

X X′

L ◦ X L ◦ X′

F

l(X) l(X′)

1L◦F

l(F) ,
X X′

X ◦ L X′ ◦ L

F

r(X) r(X′)

F◦1L

r(F) ,

which are defined by

l(F) = R(KN,F), r(F) = R(F,KN).

Thus, these structural two-morphisms are compositions of the base-change natural
transformations. The relevant conditions for the structural morphism related to the unit
object of monoidal 2-category are listed on the page 224 of [23]. Since the structural
two-morphisms in our setting are of geometric origin one prove the conditions by the
pasting method used in theorem ��

It follows from the axioms of the monoidal 2-category (see for example [5]) that
the category of endomorphisms of unit object is a universal Drinfeld center, in the
following sense.
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Corollary 5.1 Themonoidal categoryHom(L
n;r
id , L

n;r
id ) is a braidedmonoidal category.

Moreover for anyX ∈ Hom( Ã0(n; r), Ã0(n′; r ′)), there is a monoidal functor to the
Drinfeld center of Hom(X ,X ):

HC[X ] : Hom(L
n;r
id , L

n;r
id ) → Z(Hom(X ,X ), �).

In the special case of n′ = 0 and r = r ′ = 1 and special choice ofX , this functor
was studied in [37]. The exact connection is explained in the next subsections. In this
work, we also define a right adjoint functor to the HC. We expect that the adjoint
functor exists in more general setting:

Conjecture 5.1 For any X ∈ Hom( Ã0(n; r), Ã0(n′; r ′)) there is a functor

CH[X ] : Hom(X ,X ) → Hom(L
n;r
id , L

n;r
id )

that is the right adjoint to HC[X ] and is a categorical trace

CH[X ](F�G) = CH[X ](G�F).

5.2 Value on the intervals intersecting defects

In this section, we discuss the intersection of small interval with the three-dimensional
trace of NS5-brane, as discussed in Sect. 2.5.3. We assume that I is a small interval
intersecting a surface of defect in a smooth point. The surface of defect separates the
regions with labels k and l as on the figure below:

k l

Let us assume that the curve of defect separates regions with marking k and l. Denote
by (φkl , φlk) the coordinates on T∗Hom(Vk, Vl), where φkl ∈ Hom(Vk, Vl) and φlk ∈
Hom(Vl , Vk). Also denote by vl and vk the coordinates on Vl and Vk and denote by
Xl and Xk the coordinates on gll and glk . Now the object assigned to the interval �I in
the unframed category is a pair

Z( �I ) = Ik|l = (T∗Hom(Vk, Vl),

Wk,l := Tr(Xkφklφlk) − Tr(Xlφlkφkl)
)

.

In the context of Sect. 3.5 Ik|l corresponds to the NS5 defect of charge k − l with no
framing i.e. r = 0.
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In case of framed 2-categories, if the interval starts at k and ends in l and the shortest
path from the head of the vector �I to the head of the vector of direction of the defect
goes clockwise, then we choose

Zf( �I ) = I
f
k|l = (T∗Hom(Vk, Vl) × V ∗

k ,

W f
k,l := Tr(Xkφklφlk) − Tr(Xlφlkφkl) + Tr(ψ(vk − φklvl)

)

.

In case of opposite orientation, we set

Zf( �I ) = (T∗Hom(Vk, Vl) × V ∗
l ,

W f
k,l := Tr(Xkφklφlk) − Tr(Xlφlkφkl) + Tr(ψ(vl − φlkvk)

)

.

The three-dimensional picture of these two cases could visualized as two cases
below:

k l k l

.

Two pictures above present a local picture of the intersection in the case when
all defects (the grey wall on the picture) are invariant with respect to the vertical
translation.

To match the objects I
f
k|l with the description of NS5 defects of charge k − l with

r from Sect. 2.5.2, we need to set ϕfr = 1 and ψ = ψ fr. The element Z•( �I ) is an
element of the 2-category Hom(k•, l•) thus the composition construction allow us to
interpret an element Z•( �I ) as morphism from Hom(k•, 0•) to Hom(l•, 0•).

Let us denote the intervals as above by �Ik↑l and �Ik↓l . More generally we denote by

�Ik1↑k2↑...↑kl , �Ik1↓k2↓...↓kl

the interval that connects the connected components with the labels k1 and kl and
traverses the domains with the labels k2, . . . , kl in between with the orientation of
the intersections as indicated by the arrows. We also allow a mixture of down/up
orientations of the intersections.

According to the definition of our TQFT, we have:

Z( �Ik1↑k2...↑kl ) = Z( �Ik1↑k2) ◦ Z( �Ik2↑k3) ◦ · · · ◦ Z( �Ikl−1↑kl ). (5.2)

The GIT quotient in the definition of the composition can be made explicit in many
important cases:
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Proposition 5.1 For any n � 0, we have:

Zf( �I0↑1↑...n) = (T∗Fln × Vn, w), Zf( �I0↓1↓...n) = (T∗Fln, w),

Z( �I0|1|...n) = (T∗Fln, w), w = μ · X ∈ C[gln × T∗Fln]GLn ,

where μ : T∗Fln → gl∗n is the moment map and X are the coordinates on gln.

Proof Let us first prove the last equation, the other equations are analogous and it
will be indicated at the end of the proof how one needs to modify the proof to get
the first two formulas. We proceed by induction on n. Thus, we need to compute the
composition:

Z( �I0|1|...|n−1) ◦ Z( �In−1|n).

It is convenient to think of T∗Fln as Bn-quotient because the trace map gives a
natural pairing on gln thus we can think of μ as a map T∗Fln → gln :

T∗Fln = GLn × nn/Bn, μ(g,Y ) = AdgY ,

where g and Y are the coordinates on GLn and nn .
In these notations, the composition in question is the pair of the GIT quotient space

and a potential:

T∗Fln−1 × T∗Hom(Vn−1, Vn)/+GLn−1, wn−1,n

= Tr(X ′AdgY ′) + Tr(X ′φψ) − Tr(X ′′ψφ),

where X ′ ∈ gln−1, X
′′ ∈ gln , g,Y are the coordinates along T∗Fln−1 and ψ ∈

Hom(Vn, Vn−1), φ ∈ Hom(Vn−1, Vn) are the coordinates along T∗Hom(Vn−1, Vn).
The GIT quotient in last formula could be made very explicit, and we choose to

describe the quotient by constructing explicit charts in the quotients. Then, we show
that in each chart, we can apply the Knorrer periodicity to simplify the potential.

The GIT stable locus consists of points where φ is injective. Thus, we can assume
that there is k such that

det(φ
̂k) �= 0,

where φ
̂k is φ with kth row removed. Let us denote the locus where the last inequality

holds by Uk . It is clear that the quotient is covered by the charts Uk/GLn−1 and we
can analyze the potential in each chart.

To simplify notations let us consider the case k = n. The natural slice to the
GLn−1-action is the closed subset of elements constrained by:

φi j = δi, j , 1 � i � j � n − 1.
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Let us also denote the last row of φ by v and the matrix of the first n − 1 columns of
ψ by ψ̃ and the last row of ψ by ψ ′. Then, the potential wn−1,n becomes:

Tr(X ′AdgY ′) + Tr(X ′ψ̃) + Tr(vX ′ψ ′) − Tr(X ′′φψ). (5.3)

The sum of the first three terms is quadratic and we can apply Knorrer reduction. The
reduction forces the following vanishing of the coordinates:

X ′ = 0, AdgY
′ + ψ̃ + ψ ′v = 0.

Thus, the new coordinates on the Knorrer reduced space are X ′′,Y ′, v, ψ ′, and in these
coordinates, we have:

φψ =
[ −ψ ′v − AdgY ′ ψ ′
−vψ ′v − vAdgY ′ vψ ′

]

Thus, a direct computation shows that the last term of (5.3) is equal to

Tr(X ′′AdhY ), with Y =
[

Y g−1ψ ′
0 0

]

, h =
[

g 0
vg 1

]

.

Hence, we proved the last formula in the chartUn and the computations in other charts
are analogous. The argument in the framed case is basically the same. ��

The last proposition computes the object Fn from the introduction since
Zf( �I0↑1↑...n) = ̂�1 · · ·̂�1

︸ ︷︷ ︸

n

O.

5.3 The categories of closed curves

The choice of defect-related objects Z•( �I ) determines categories assigned to closed
curves: a curve C is presented as a gluing of two intervals, then its category Z•(C)

must be the category of morphisms between their objects. Two curves are of special
importance for our braid-related constructions.

The first type is a curve that does not intersects any defects. So the curve is a circle
that lies inside of the connected component with the marking n. We denote such circle
S1n . To a point p ∈ S1n we assign 2-category Hom(n•, 0•). For brevity, we start using
notation

[n•,m•] := Hom(n•,m•),

for the corresponding 2-category.
The interval I connecting pn to itself get assigned the identity Z•(I ) = L

n
id ∈

[n, n]. Since S1n is a result of gluing two such intervals, its category is the category of
endomorphisms of the interval object:

Z•(S1n) = Hom(Ln
id, L

n
id).
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In the introduction explained the matrix factorization realization of the braid group
(1.5) and the Drinfeld center construction of the corresponding monoidal category
(1.7) from [37]. To relate these constructions to Corollary 5.1 and motivate the
Conjecture 5.1, we need to study the Drinfeld category from [37]:

MF•
Dr = MFGn

(

(g• × g• × G)st,W •
Dr

)

,

WDr(X ,Y , g) = TrX(Adg(Y ) − Y ),

W f
Dr(X , v,Y , u, g) = WDr(X ,Y , g) + u∗ · v − u∗ · gv. (5.4)

Proposition 5.2 For • = ∅, f, the categories MF•
Dr are equivalent to the categories of

endomorphisms of the identity objects L
n
id:

MF•
Dr = Hom(Ln

id, L
n
id)

Proof We consider only the case • = ∅ the other case is analogous. The statement
follows from the Knorrer periodicity [19]. Indeed, by our definition we have

Hom(Ln
id,L

n
id) = MFGLn (T

∗GLn × gln × gln × T∗GLn/GLn,W ),

W = Trφ
(

X − Adg(X
′)
)− Trφ

(

X ′ − Adg′(X)
)

where (φ, g) and (φ′, g′) are the coordinates on two copies of T∗GLn and X , X ′ are
the coordinates on two copies of gln . By setting g

′ = 1, we take slice to the GLn-orbits.
On the slice, the second term in the formula for W becomes Trφ′(X − X ′). Thus, the
Knorrer periodicity implies that the restriction on the locus X = X ′, φ′ = 0 is the
equivalence of the corresponding categories of matrix factorizations. ��

We can linearize the potential W •
Dr by introducing a new variable U = Yg−1:

Wlin(X ,U , g) = Tr(X [g,U ]),
W f

lin(X , v,U , u, g) = Wlin(X ,U , g) + u∗ · v − u∗ · gv.

The group G naturally embeds inside its lie algebra g, jG : G → g. Induced by this
embedding we have the localization functor:

loc• : MF•
Dr → MF•

Dr = MFG
(

(g• × g• × g)st,W •
lin

)

.

It turns out that in the framed case, the localization functor is an isomorphism:

Proposition 5.3 [37, Proposition 5.5.2] The localization functor locf is an isomor-
phism.

Since the potential W lin is linear along the last copy of g, the Koszul duality (see
for example [1] or [37]) provides an equivalence:

KSZ : MFfDr −→ Dper(Hilbn(C
2)). (5.5)
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Fig. 4 Decomposition of S2β on
two discs

Thus, we have completed proof of Theorem 1.3.
The second type of a closed curve is the line that intersects our braid transversally.

The line goes through the regions with the marks 0, 1, . . . , n − 1, n, n − 1, . . . , 0.
Figure2gives an example.

We denote such a line compactified by a point at infinity as S10↑1↑...↑n↓n−1↓...↓0.
The value Z• follows immediately from the Proposition 5.1:

Zf(S•
0↑1↑...↑n↓...↓0) = MFstGn

(gl•n × T∗Fln × T∗Fln, w1 − w2), (5.6)

where “st” indicate that we restrict to the GIT stable locus of the corresponding space.
The categories (5.6) are closely related to the main categories of [38]. Recall that

in [38], we worked with Gn × B × B-equivariant categories of matrix factorizations
on the space

X• := gl•n × (Gn × nn) × (Gn × nn)

with the equivariant structure preserving the potential

W (X , g1,Y1, g2,Y2) = Tr X(Adg1X1 − Adg2X2),

where X is the coordinate in gln and gi ,Yi are the coordinates in G and n.

5.4 Values on discs

As a final step of our construction, we need to discuss the values of TQFT on discs. The
first type of disc is the disc D∅ that bounds S1n and does not contain tautological defect
point. The category Z•(S2) = Hom(Ln

id,L
n
id) is monoidal and Z•(D∅) represents the

identity object in it. Hence, we set

Zf(D∅) := O ∈ Dper(Hilbn(C
2)).
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If the disc contains the point of tautological defect then we set

Zf(Dtaut) := �•B ∈ Coh(Hilbn(C
2)),

where B is the tautological vector bundle.
The other important type of a disc is a half-plane H bordered by the line

S10↑1↑...↑n↓n−1↓...↓0. Its object Z•(H) lies in the monoidal category

Z•(S10↑1↑...↑n↓n−1↓...↓0) = End( �I0↑1↑···↑n−1↑n). (5.7)

and it depends on the configuration of defects inside H . Denote by H1 the simplest
configuration which is the collection of non-intersecting curves connecting the points
of the same type as in the right half-plane in Fig. 3. In this situation, Z• is the identity
object:

Z•(H1) = C1 ∈ MF•
n .

More generally, denote by Hβ the half-plane containing a braid β as in the left
of Fig. 3. The value of Z(Hβ) for more complicated configurations of defects can be
computed by using the monoidal structure of the category (5.7) through cutting Hβ

into the union:

Hβ =
⋃

k

S
σ

εk
jk

,

where β = σ
ε1
j1

. . . σ
εl
jl
and S

σ
εk
jk
is the disc with the boundary S10↑1↑...↑n↓n−1↓...↓0 and

defects inside the strip form an elementary braid on the jk th and ( jk + 1)st stands, see
the figure below for the case β = σ 3

1 . Since

Z•(Hβ) = Z•(S
σ

ε1
j1

)� . . . �Z•(S
σ

εl
jl
),

it is enough to define Z•(S
σ±1
k

) ∈ MF•
n , as in [38]:

Z•(S
σ±1
k

) := C(k)
± ∈ MF•,

It is shown in [38] that the element Z(Hβ) only depends on the braid β but not on the
braid presentation, thus our disc assignment indeed is a well-defined partition function
of TQFT.

Finally, we define the value of Zf on the half-plane H taut
1 containing the unit braid

and the tautological point defect as

Zf(H taut
1 ) := C1 ⊗ �•B.

We leave the following statement as conjecture and will provide a proof in the
forthcoming publication.
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Conjecture 5.2 The above assignments of the values of Z are the part of the data of a
well-defined 3D TQFT.

5.5 Value onR
2
ˇ

There are two ways to cut the plane with a closed braid defect R
2
β into two pieces. As

a result, the TQFT formalism implies two presentations of the corresponding vector
space Zf(R2

β) as the space of morphisms between two objects in the category of the
cutting line.

The first cut splits R
2
β in two half-planes H taut

1 and Hβ , and the corresponding
presentation is

Zf(R2
β) = Hom

(

Zf(H taut
1 ),Zf(Hβ)

) = (Hom(Cβ, C1) ⊗ �•B
)B2×G

.

The vector space Zf(R2
β) is triply-graded and the main result of [38] could be restated

as

Theorem 5.1 [38, Theorem 13.3] The triply-graded vector space Zf(R2
β) is an isotopy

invariant of the closure of the braid β after a special shift of the grading.

The second cut (see Fig. 4) splits R
2
β into the inner disc Dtaut (containing the tauto-

logical bundle defect) and its complement D∞
β which contains the closed braid defect.

The cut goes over a circle that lies in the region marked by n and does not intersect
defect lines, hence its category is

Zf(S1n) = MFfDr ∼= Dper(Hilbn(C
2)) (5.8)

of (5.4) and (5.5). The object of Dtaut is just the defect bundle: Zf(Dtaut) = �•B. The
object of D∞

β is determined by the categorical Chern character functor

CHfs
loc : MFfn → Zf(S1n),

that is, Zf(D∞
β ) = CHfs(Zf(Hβ)

)

. Thus, we get the second presentation of the vector

space Zf(R2
β) as the Ext space between two complexes of sheaves within the derived

category of 2-periodic sheaves on the Hilbert scheme Hilbn(C2):

Zf(R2
β) = Hom

(

CHfs(Zf(Hβ)
)

,�•B
)

(5.9)

The isomorphism between the vector spaces (5.8) and (5.9) is one of the key properties
of the functor CHfs

loc (one may call it a simple case of the categorical Riemann-Roch
formula):

Theorem 5.2 [37, Theorem 6.0.4] For any C ∈ MFn, we have:

Hom(�•B,CHfs
loc(C))

G = Hom(C1 ⊗ �•B, C)B2×G .
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Thus, we constructed a complex of sheaves Sβ := CHfs
loc(Cβ) such that its global

sections are the knot homology. In the language of TQFT the categorical Riemann–
Roch and our main theorem is just a gluing property of TQFT: the Figs. 3 and 4 present
two different ways of computing the same partition sum Zf(R2

β).

6 Categorification of traces

In this section, we expand on the table from the introduction. The first column of
the table is a summary of the previous sections. The second column is a physical
interpretation of the results of [40] where a fully-faithful functor from the category
of Soergel bimodules to the category of stable matrix factorizations was constructed.
The last column is closely related to the work [2, 32] and forthcoming preprint of the
authors [41].

6.1 Soergel bimodules

A slight modification of the computation in the proof of Proposition 5.1 shows that:

˜Fn = ̂�1 ̂�1 · · ·̂�1
︸ ︷︷ ︸

n−1

O, ˜Fn = ((˜gln × Vn)
st, ˜Wn),

where ˜gln = GLn × b/B is the Grothendieck-Springer alteration with the moment
map μ : ˜gln → gln and ˜Wn(X , z) = Tr(Xμ(z)). The stability condition is given by
requiring C[μ(z)]v = Vn .

Indeed, the computation in the Proposition 5.1 shows that the composition results
into the object the B-equivariant object (gln × gln × GLn × n × Vn,W ′′) where
W ′′(Y ′, g, X ,Y , v) = Tr(Y ′X) + Tr(XAdgY ). The last potential has a quadratic
term:

W ′′(Y ′, g, X ,Y , v) = Tr((Ad−1
g X)−−(Y + Ad−1

g Y ′)) + Tr((Ad−1
g X)+Ad−1

g Y ).

where the sub-indices −− and + stand for the strictly lower-triangular and the
upper-triangular parts of the matrices. Thus, the Knörrer reduced object has potential
Tr(X ′Ad−1

g Y ), X ′ = (Ad−1
g X)+ and it is isomorphic to the object ˜Fn .

The algebra of the MOY graphs [27] has an algebraic incarnation in terms of the
algebraBr

	
n of flat braids. The last algebra can be realized bymeans of endomorphisms

of ˜Fn

Proposition 6.1 [40, Theorem 1.0.1] For any n, there is a monoidal functor

�	
n : Brn → Hom(˜Fn,˜Fn).

To connect the previous discussion with the second column of the table from the
introduction, we examine the picture (1.11) for case when the region B contains the
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circular defect of type NS5(n). In this case, the ray Irad that starts at the center of the
circle from the picture (1.11) intersects the domains with labels 0, n, n − 1, . . . , 1, 0
and the corresponding category of morphisms Zf(Irad) = ̂�−n(˜F) is computed in

Proposition 6.2 For any n, we have

̂�−n(˜Fn) = Mod(C[y1, . . . , yn]).

Proof The functor ̂�−n corresponds to the object Ĩ0|n = (gln,Tr(Z X)) ∈
Hom(n f , 0 f ). Respectively, the composition with the object ˜Fn = ((g̃ln ×
Vn)st , ˜Wn) ∈ Hom(0 f ,n f ) is by the G × B-equivariant object:

̂�−n(˜Fn) = Ĩ0|n ◦˜Fn = (gln × g̃ln × Vn,Tr(Z X) + Tr(XAdgY )). (6.1)

The potential of the last object is quadratic in Z and X thus after the Knörrer reduction
we obtain the G× B equivariant object G× B-equivariant object (G×n×Vn)st . The
action of G × B on this object is free and a slice to the orbits of the action is defined
by the triple (1, K (y), v0), where K (y)i j =∑n

i=1 yiδi,i +∑n−1
i=1 δi, j−1, v0i = δi,n . ��

The category of endomorphism of Mod(Rn), Rn = C[y1, . . . , yn] is the category
of two-periodic complexes of Rn-bimodules Bimn . Respectively, the formula (6.1)
implies that there is a monoidal functor:

B : Hom(˜Fn,˜Fn) : → Bimn .

Combining the last functor with �	, we obtain a realization of the algebra Br
	
n

inside Bimn . Thus if we have two radial segments Irad , I ′
rad with defects between

the rays forming β ∈ Br
	
n , the value of the partition function Z f on the segment is

B ◦ �	(β).
The bimodule realization of Br

	
n inside Bim used for HHHalg is due to Soergel

[43]:

�S : Br	n → Sbimn ⊂ Bimn, HHHalg(β) := HH∗(�S(β)),

where HH∗ = TorR is functor of Hochschild homology. The Hochschild homology
functor is an trace functor HHHalg(α · β) = HHHalg(β · α)

We show in [40] that two realizations of Br
	
n actually match and there is a natural

isomorphism between the corresponding trace functors:

Theorem 6.1 [40, Theorem 1.3.1] For any n we have a commuting diagram of
monoidal functors:

Br
	
n Sbimn

Hom(˜Fn,˜Fn) Bimn

�S

�	

B
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Moreover, the functors intertwine the trace functors:

HH∗(�S(β)) = Hom(�	(β),�	(1) ⊗ �∗Vn).

6.2 Annular homology

In this section, we explain the relations between the objects in the last column of the
table from the introduction. The column has a natural physical explanation in terms of
NS5 and D5 branes as we explained before, see Sects. 1.2 and 2.5.3. The mathematical
side of the story is mostly contained in the work of Nakajima–Takayma [31, 32] and
Anno-Nandakumar [2].

The work of Nakajima–Takayama [32] explains realization of the GLn-Slodowy
slices and their resolutions in terms of Cherkis quivers. These quiver varieties are
related to the objects we study by the linear Koszul duality. We provide more details
below.

Let is also point out that the relation between the Slodowy slices has a long history.
Indeed, a quiver realization of the GLn-Slodowy slices was conjectured by Nakajima
[13] and proven byMaffei [26].Onother hand, the relation between theSlodowy slices,
quiver varieties and slices in the Beilenson–Drinfeld Grassmannian were studied by
Mirkovic and Vybornov [28, 29].

The quiver realization of the Slodowy slices from the above-mentioned work is
related to Nakajima–Takayama realization [32] by the Hannany–Witten transitions
[16]. The mathematical theory of Hannany–Witten transitions was developed by
Nakajima–Takayma [32].

Let us denote by Flμ, μn � μn−1 � . . .,
∑m

i=1 μi = n the partial flag variety
consisting of nested subspaces of dimension M1 = μ1, M2 = μ1 + μ2, M3 = μ1 +
μ2 + μ3, . . .. Similarly, we denote by Gμ the product of the groups GLM1 ×GLM2 ×
· · ·×GLMm−1 . Respectively,N(μ) ⊂ gln is the nilpotent orbit with the Jordan blocks
of size μi and S(μ) is a transversal slice to the the orbit N(μ).

Proposition 6.3 [32, Theorem 7.11] The Gλ × GLn × Gμ-quotient of the quiver
Qbow(λ, μ) pictured below

C C . . . C

C
L1 C

L3 . . . C
Ll−1 C

n
C

Mm−1 . . . C
M2 C

M1

is isomorphic toN(μ)∩S(λ) and the quotient of the stable locus is the simultaneous
resolution Rλ,μ = p−1(N(μ) ∩ S(λ)) ⊂ T ∗Flμ with p : T ∗Fl(μ) → g being the
Springer resolution map.

The relevant object in the TQFT setting discussed in our paper is a segment I λ,μ

with ends in the regions marked with 0 and such that the list of defects it traverses
is NS5λ1 ,NS5λ2 , . . . ,NS5λl ,D5μm , . . . ,D5μ1 . As we explained in Sect. 2.5.3, the
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value Z(I λ,μ) of partition function is given by composition of morphisms

Z(I λ,μ) = q�λ1 ◦ q�λ2 ◦ . . . q�λl ◦ ̂�μm ◦ · · · ◦ ̂�μ2 ◦ ̂�μ1 .

Thus, the previous proposition gives a geometric description of the morphism

Z(I λ,μ) = (Qbow × Lie(Gλ × GLn × Gμ),W λ,μ(z, x) = Tr(μ(z)x)).

To specialize to the case treated in the table in the introduction, we need to set
μ = (1n) and λ = (k, n−k). Since the braid groupBrn acts on ̂�n

1, there is monoidal
functor

�λ : Brn → Hom(Z(I λ,1n ), Z(I λ,1n )).

In the setting of the last column of the table from the introduction, the radial rays in
the picture (1.11) are the homotopic to the interval I (k,n−k),(1n). Thus, the last column
of the table is equivalent to the following conjecture that we plan to address in the
forthcoming paper [41]:

Conjecture 6.1 For any n, a trace functor Tr : Brn → 2 − grVect

Trk,n−k(β) = Hom(�(k,n−k)(β),�(k,n−k)(1n))

categorifies the trace Tr(β)[Hλ
1n ,λ+k].

The space Hλ
1n ,λ+k is the weight k part of L⊗n

1 , it is of dimension
(n
k

)

. To provide
an evidence to the conjecture, we compute the Euler characteristic of the trace for the
identity.

Proposition 6.4 For any n, k, we have:

χ(Trk,n−k(1n)) =
(

n

k

)

.

Proof First, let us observe that by the linear Koszul duality for thematrix factorizations
and by the Proposition 6.3, the category ofmorphismHom(Z(I λ,μ),Z(I λ,μ)) is equiv-
alent to the dg category two-periodic complexes Dper

C
∗×C

∗(Rλ,μ×Rλ,μ). Respectively,
�λ(1n) is the structure sheaf of the diagonal � ⊂ Rλ,1n × Rλ,1n .

Thus, Tr(1n) is the homology self-intersection of the diagonal and since Rλ,1n is
smooth we get Tr(1n) = H∗(⊕i�

i
Rλ,1n

). Since the C
∗ × C

∗-fixed locus in Rλ,1n is

zero-dimensional, the localization formula implies thatEuler characteristicsχ(Tr(1n))
are equal to the number of torus fixed points.

The 3Dmirror partner ofR(k,n−k),1n is theGrassmannianT∗Gr(k, n) [32]. Themir-
ror symmetric partners have the same number of the torus fixed points and T∗Gr(k, n)

has
(n
k

)

fixed points. ��
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Finally, let us remark that in the work [2], the category of coherent sheaves on
R(k,k),(12k ) was used to construct the invariants of the affine tangles and relate this
invariant to the annular Khovanov homology [3]. The under/over-crossing the genera-
tors of the affine tangles in [2] match with the braid generators used in this paper. The
cap/cup of the affine tangle monoid from [2] have a natural interpretation in terms of
NS5 defects. Thus, in the forthcoming paper [41], we also address the

Conjecture 6.2 The construction of the trace functor Tr(k,k) can be extended to affine
tangles and the corresponding invariant provides a realization of the sl2 annular
Khovanov homology.
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