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Abstract. A Coxeter link is a closure of a product of two braids, one being a quasi-
Coxeter element and the other being a product of partial full twists. This class of
links includes torus knots Tn,k and torus links Tn,nk. We identify the knot homology
of a Coxeter link with the space of sections of a particular line bundle on a natural
generalization of the punctual locus inside the flag Hilbert scheme of points in C2.

1. Introduction

In the seminal paper [Jon87] Jones introduced what would be later called the
HOMFLY-PT polynomial invariant P (L) of a link L in R3. Besides the definition,
the paper has many amazing results and computations. In particular, Section 9
of [Jon87] contains a proof of a formula for the HOMFLY-PT invariant of torus
knots Tm,n. Later, the HOMFLY-PT invariant was upgraded to the homology
theory [KR08a], [KR08b]. In this paper, we demonstrate that the Jones formula
has a natural generalization to the homology theory for a special class of torus
links.

Consider the plane C2 with the action of the group C∗ denoted as C∗q : λ·(x, y) =
(λ2x, λ−2y). This action extends to the Hilbert scheme Hilbn(C2) which is a variety
of ideals I ⊂ C[x, y] of codimension n. The tautological vector bundle B whose fiber
over I is the vector space dual to C[x, y]/I is naturally C∗q-equivariant. Combining
the localization formula of Atiyah and Bott [AB83] with the result of Haiman
[Hai02] we get an algebro-geometric version of the Jones formula:

P (T1+kn,n) =

n∑
i=0

dimq

(
H0
(
Hilbn(C2),OZ ⊗ Lk ⊗∧iB

))
ai,
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where Z ⊂ Hilbn(C2) is the punctial Hilbert scheme consisting of ideals I with
support at (0, 0) ∈ C2, and dimq is the dimension graded by C∗q-weights.

Many authors [AS12], [GN15], [GORS14], [ORS18] suggested that the Poincare
polynomial P(T1+kn,n) of the triply graded HOMFLY-PT homology [KR08a],
[KR08b] has a similar interpretation if one augments the action of C∗q to that of
Tsc = C∗q×C∗t , where C∗t : µ·(x, y) = (x, µ2y), and uses the C∗q,t-weighted dimension:

P(T1+kn,n) =

n∑
i=0

dimq,t

(
H0
(
Hilbn,OZ ⊗ Lk ⊗∧iB

))
ai. (1.1)

While we were finishing the preprint of this paper, M. Hogancamp published a
proof of the conjecture [Hog17], [Mel22]. He used the construction of the HOMF-
LYPT homology via Soergel bimodules and matched combinatorics of the comple-
xes of bimodules that appear in knot homology of torus knots with the combina-
torics of the generalized Catalan numbers, the latter related to the sections of Lk

by a combination of the results [CM18], [Mel21], [Hai02].
The paper [Hog17] is a real tour de force in combinatorics and homological

algebra, however it does not provide a natural explanation for the appearance
of Hilb(C2) in knot homology. When the conjecture (1.1) appeared, the available
constructions for triply graded homology had no obvious connections with coherent
sheaves on this variety.

A direct relation between the triply graded knot homology and C∗q,t-equivariant
coherent sheaves on Hilb(C2) was established by the authors [OR18b] (see also the
paper [GNR20] where a K-theoretic version of this relation is suggested). Recently,
it was also shown [OR20] by the authors that the link homology from [OR18b]
coincides with the Khovanov–Rozansky link homology [KR08a].

From the papers [OR18b], as well as [GN15], [GNR20], it is clear that the
natural home for the algebro-geometric version of the HOMFLY-PT homology is
the category of the quasi-coherent sheaves on the nested Hilbert scheme Hilb1,n

parameterizing chains of ideals I1 ⊃ I2 ⊃ · · · ⊃ In with support of Ii/Ii+1 being
a point on the line y = 0. There is a natural analog Z1,n of the punctual Hilbert
scheme Z in the nested case which consists of the chains of ideals with the support
of Ii/Ii+1 at (x, y) = (0, 0). However, the natural analogue of OZ turns to be the
Koszul complex of the defining equations for Z1,n which we denote by [OZ1,n ]vir and
define in Section 4. Finally, the weights of C∗t -action are combined with homological
degree which means that all differentials have C∗t -weight one and the variable y
has homological degree two.

The main result of this paper is the following.

Theorem 1.0.1. For any positive n, k we have

P(T1+kn,n) =

n∑
i=0

dimq,t

(
H∗
(
Hilb1,n, [OZ1,n ]vir ⊗ Lk ⊗∧iB)) ai,

where P is the Poincare polynomial for the triply graded homology1.

1In this paper we use the term “the triply graded homology” for the homology theory
from [OR18b]; it is shown in [OR20] that the homology from [OR18b] are isomorphic to
the triply-graded homology of [KR08a].



HOMFLY-PT HOMOLOGY OF COXETER LINKS

This paper is a natural continuation of our previous papers [OR17], [OR18b].
In the second paper we prove the relation between the homology of the closure

L(β) of β ∈ Brn and of closure of β · δ~k where δ
~k :=

∏n
i=1 δ

ki
i is the product of the

JM elements

δi := σiσi+1 · · ·σ2
n−1 · · ·σi+1σi, i = 1, . . . , n− 1,

where σi are the standard generators for the braid group Brn.The above mentioned
formula for the homology of T1+kn,n is obtained by applying result of [OR17] for
β = σ1 · · ·σn−1 and k1 = . . . = kn = k. To apply the result of [OR17] we need
to analyze the sheaf-theoretic object that the theory from [OR18b] assigns to the
braid β which we call the Coxeter braid.

More generally, we study the sheaf-theoretic object that is attached by the
theory from [OR18b] to the general quasi-Coxeter braid:

coxS :=
−→∏
i/∈S

σi,

where S ⊂ {1, . . . , n − 1} is a subset and the product is taken in the descending
order of the indices. In particular, we identify the homology of the closure of
element coxS · δk for any S and k. We call these closures Coxeter links. This is a
wide class of links which includes the torus links Tm,n, (m,n) = 1. The class also
contains the torus link Tn,kn.

The Khovanov–Rozansky homology of the links Tn,nk and knots Tn,k were
studied in [EH19] and in [Hog17], [Mel22], and it would be interesting to make
a connection between our results and technique of these papers.

The nested Hilbert scheme Hilb1,n carries a natural line bundle Li whose fiber
over I• is the quotient Ii/Ii+1. For any subset S ⊂ {1, . . . , n−1}, we define ZS1,n ⊂
Hilb1,n to be a subscheme defined by the condition supp(Ii−1/Ii) = supp(Ii/Ii+1))
for all i /∈ S. We prove the following.

Theorem 1.0.2. For any S ⊂ {1, . . . , n− 1} and ~k ∈ Zn−1,

P
(
L(coxS · δ

~k)
)

=

n∑
i=0

dimq,t

(
H∗
(
Hilb1,n, [OZS

1,n
]vir ⊗ L~k ⊗∧iB))ai.

We prove this theorem in Sections 3 and 4. We also provide some short overview
of the methods of [OR18b] in Section 2. If the vector ~k is sufficiently positive, we
can use Atiyah–Bott localization [AB83] to compute the graded dimensions in this
formula similar to the one from [GNR20], see Theorem 1.0.3 below.

It turns out that the localization approach only works under some vanishing
conditions on the sheaf homology like in [Hai02]. In Section 6 we show that the
easiest version of the vanishing condition [OR18a] implies the following.

Theorem 1.0.3. For ~k ∈ Z>0 such that k1 > k2 > · · · > kn−1, there is M such
that we have the following explicit formula for the knot invariant:

P
(
L(1 · δ~b)

)
=

∑
p∈HilbT

1,n

Ωp(Q,T, a)Q
~b·wx(p) T

~b·wy(p),
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where Q = q2/t2, T = t2, ~b = ~k + r~1, ~1 = (1, . . . , 1), r > M , and the weight Ω and
vectors w•(p) can be explicitly computed and depend only on p.

The formulas for Ωp(Q,T, a) and w•(p) are given in Section 6 and theorem
is proved at the end of Section 6.4. We conjecture that the theorem can be
strengthened in two direction: we can replace the Coxeter braid 1 = cox{1,...,n−1}

by any Coxeter braid coxS and we give a precise criterion for the vector ~k to be
sufficiently positive. We formulate these conjectures in Section 6.5 and provide
evidence in their support. Note that the weight Ωp appears to be equal to the
localization weight from the main formula of [GN15].

We do not expect a simple localization formula for the Poincare polynomials of
nonpositive links. The examples of such links are discussed in Sections 5 and 6.

The first author was lucky to have an advice of Jim Humphreys on multiple
subjects of mathematics. In particular, quasi-Coxeter braids were suggested by
Jim as a class of braids that tends to lead to more computable objects. This
suggestion was a starting point of this paper.

Acknowledgments We would like to thank Dmitry Arinkin, Eugene Gorsky,
Roman Bezrukavnikov, Andrei Neguţ for useful discussions. Also we would like
thank Eugene Gorsky and Andrei Neguţ for a careful reading of the first version of
this paper and suggestion that helped to improve the text. Finally, we would like
to thank an anonymous referee for very helpful suggestions and corrections. The
work of A.O. was supported in part by the NSF CAREER grant DMS-1352398
and NSF-FRG grant DMS-1760373. The work of L.R. was supported in part by
the NSF grant DMS-1760578.

2. Matrix factorizations and knot invariants

The construction of link invariants in [OR18b] is based on a homomorphism
from the braid group to a special monoidal category of matrix factorizations. The
main result of this paper follows from the explicit computation of the images of
Coxeter braids.

2.1. Matrix factorizations

Matrix factorizations were introduced by Eisenbud [Eis80] and further developed
by Orlov [Orl04], see [Dyc11] for a review. Here we present only the basic definitions
and omit proofs.

The category of matrix factorizations MF(Z,W ) is a triangulated category
based on an affine variety Z and a function W ∈ C[Z]. An object of this category
is a Z2-graded free C[Z]-module M = M0 ⊕M1 of finite rank equipped with a
degree one endomorphism D called a curved differential:

F = (M0 ⊕M1, D), D : Mi →Mi+1, D2 = W idM .

Given F = (M,D) and G = (N,D′), the linear space of morphisms Hom(F ,G)
consists of the homomorphisms of C[Z]-modules φ = φ0 ⊕ φ1, φi ∈ Hom(Mi, Ni)
such that φ◦D = D′ ◦φ. Two morphisms φ, ρ ∈ Hom(F ,G) are homotopic if there
is homomorphism of C[Z]-modules h = h0 ⊕ h1, hi ∈ Hom(Mi, Ni+1) such that
φ− ρ = D′ ◦ h− h ◦D.
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In the paper [OR18b], we introduced a notion of the equivariant matrix facto-
rizations which we explain below. First, recall the construction of the Chevalley–
Eilenberg complex.

2.2. Chevalley–Eilenberg complex

Suppose that h is a Lie algebra. Chevalley–Eilenberg complex CEh is the complex
(V•(h), d) with Vp(h) = U(h)⊗C ∧ph and differential dce = d1 + d2 where

d1(u⊗ x1∧ · · · ∧ xp) =

p∑
i=1

(−1)i+1uxi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xp,

d2(u⊗ x1 ∧ · · · ∧ xp) =
∑
i<j

(−1)i+ju⊗ [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xp.

Let us denote by ∆ the standard map h → h ⊗ h defined by x 7→ x ⊗ 1 +
1 ⊗ x. Suppose V and W are modules over the Lie algebra h. Then we use

notation V⊗
∆

W for the h-module which is isomorphic to V ⊗W as vector space,
the h-module structure being defined by ∆. Respectively, for a given h-equivariant

matrix factorization F = (M,D), we denote by CEh⊗
∆

F the h-equivariant matrix

factorization (CEh⊗
∆

F , D+dce). The h-equivariant structure on CEh⊗
∆

F originates
from the left action of U(h) that commutes with the right action of U(h) used in
the construction of CEh.

A slight modification of the standard fact that CEh is the resolution of the

trivial module implies that CEh⊗
∆

M is a free resolution of the h-module M .

2.3. Equivariant matrix factorizations

Let us assume that the Lie algebra h acts by derivations on the ring of regular
functions on Z and F is a function anihilated by h. Then we can construct the
following triangulated category MFh(Z,W ).

Definition 2.3.1. The objects of the category MFh(Z,W ) are the triples:

F = (M,D, ∂), (M,D) ∈ MF(Z,W )

where

M=M0⊕M1, M i=C[Z]⊗V i, V i∈ModH , ∂∈
⊕
i>j

HomC[Z](∧ih⊗M,∧jh⊗M),

and D is an odd endomorphism D ∈ HomC[Z](M,M) such that

D2 = W idM , D2
tot = W idM , Dtot = D + dce + ∂,

where the total differential Dtot is an endomorphism of CEh⊗
∆

M , that commutes
with the U(h)-action. The morphism ∂ is called correction differential.

Note that we do not impose the equivariance condition on the differential D
in our definition of matrix factorizations. On the other hand, if F = (M,D) ∈
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MF(Z,W ) is a matrix factorization with D that commutes with h-action on M ,
then (M,D, 0)∈MFh(Z,W ). We call such matrix factorization strictly equivariant.

Given two h-equivariant matrix factorizations F=(M,D, ∂) and F̃=(M̃, D̃, ∂̃),

the space of morphisms Hom(F , F̃) consists of homotopy equivalence classes of

elements Ψ ∈ HomC[Z]h(∧•h ⊗M,∧•h ⊗ M̃) such that Ψ ◦ Dtot = D̃tot ◦ Ψ and

Ψ commutes with U(h)-action on CEh⊗
∆

M . Two map Ψ,Ψ′ ∈ Hom(F , F̃) are
homotopy equivalent if there is

h ∈ HomC[Z](CEh⊗
∆

M,CEh⊗
∆

M̃)

such that Ψ − Ψ′ = D̃tot ◦ h + h ◦ Dtot and h commutes with U(h)-action on

CEh⊗
∆

M .
Given two h-equivariant matrix factorizations F = (M,D, ∂) ∈ MFh(Z,W )

and F̃ = (M̃, D̃, ∂̃) ∈ MFh(Z, W̃ ), we have F ⊗ F̃ ∈ MFh(Z,W + W̃ ) as the

equivariant matrix factorization (M ⊗ M̃,D + D̃, ∂ + ∂̃).

2.4. Push forwards, quotient by the group action

The technical part of [OR18b] is the construction of push-forwards of equivariant
matrix factorizations. Here we state the main results, the details may be found in
Section 3 of [OR18b]. We need push forwards along projections and embeddings.
We also use the functor of taking quotient by group action for our definition of the
convolution algebra.

The projection case is more elementary. Suppose Z = X × Y and h acts by
derivations on C[X ] and C[Y] and the projections π : Z → X respects these actions.
Then for any h-invariant element w ∈ C[X ]h there is a functor π∗ : MFh(Z, π∗(w))
→ MFh(X , w) which simply forgets the action of C[Y].

We define an embedding-related push-forward in the case when the subvariety

Z0
j
↪−→ Z is the common zero of an ideal I = (f1, . . . , fn) such that the functions

fi ∈ C[Z] form a regular sequence. We assume that the Lie algebra h acts on C[Z]
and I is h-invariant. Then there exists an h-equivariant Koszul complex K(I) =
(∧•Cn ⊗ C[Z], dK) over C[Z] which has nontrivial homology only in degree zero.
Then in Section 3 of [OR18b] we define the push-forward functor

j∗ : MFh(Z0,W |Z0) −→ MFh(Z,W ),

for any h-invariant element W ∈ C[Z]h.
Finally, let us discuss the quotient map. Let H be a group acting on Z such

that Lie(H) = h and C[Z]h is finitely generated. The complex CEh is a resolution
of the trivial h-module by free modules. Thus the correct derived version of taking
h-invariant part of the matrix factorization F = (M,D, ∂) ∈ MFh(Z,W ), W ∈
C[Z]h is

CEh(F) := (CEh(M), D + dce + ∂) ∈ MF(Z/H,W ),

where Z/H := Spec(C[Z]h) and use the general definition of h-module V :

CEh(V ) := Homh(CEh,CEh⊗
∆

V ).
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2.5. Convolutions on reduced spaces

Let us use notation B for the standard upper-triangular Borel subgroup of Gn =
GLn and T ⊂ B for the diagonal maximal torus. We treat B-modules as T -
equivariant n = Lie([B,B])-modules. For a space Z with B-action and for W ∈
C[Z]B , we define MFB(Z,W ) as a full subcategory of MFn(Z,W ) whose objects
are matrix factorizations (M,D, ∂), where M is a B-module and the differentials
D and ∂ are T -invariant. The category MFB`(Z,W ) has a similar definition.

Let Hi ⊂ Gn, i = 1, . . . , ` be the subsets preserved by the left and right B-
action. The backbone of the constructions of the knot invariant from [OR17] is the
study of the category of matrix factorizations on the spaces

X `(H1, . . . ,H`−1) := b×H1 × · · · ×H`−1 × n

with the following B`-action and potential W `:

(b1, . . . , b`) · (X, g1, . . . , g`−1, Y ) = (Adb1(X), b1g1b
−1
2 , b2g2b

−1
3 , . . . ,Adb`(Y )),

W `(X, g1, . . . , g`, Y ) = Tr(XAdgY ), g = g1 . . . g`.

If ` = 1 then W ` = 0. Also for brevity we use notation

X ` = X `(Gn, Gn, . . . , Gn), W = W 2.

The space X `(H1, . . . ,H`−1) carries a natural C∗q × C∗t = Tsc-action:

(λ, µ) · (X, g1, . . . , g`, Y ) = (λ2X, g1, . . . , λ
−2µ2Y ).

The categories that we use in [OR18b] are the subcategories MFTsc

B` (X `,W `)

⊂ MFB`(X `,W `) that consist of the matrix factorizations which are equivariant
with respect to the action of Tsc and G-invariant. In particular, the space X 2

has the B2-invariant potential: W (X, g, Y ) = Tr(XAdg(Y )), and the category

MFTsc

B2 (X 2,W ) has a structure of the convolution algebra [OR18b] that we outline
below.

There are the following maps πij : X 3 → X 2:

π12(X, g12, g13, Y ) = (X, g12,Adg23(Y )++),

π13(X, g12, g13, Y ) = (X, g12g23, Y ),
(2.1)

π23(X, g12, g13, Y ) = (Ad−1
g12(X)+, g23, Y ). (2.2)

Here and everywhere below X+ and X++ stand for the upper and strictly-upper
triangular parts of X. The map π12×π23 is B2-equivariant but not B3-equivariant.
However, in Section 5.4 of [OR18b] we show that for any F ,G ∈ MFTsc

B2 (X 2,W ),
there is a natural element

(π12 ⊗B π23)∗(F � G) ∈ MFTsc

B3 (X 3, π
∗
13(W )), (2.3)

such that we can define the following binary operation on MFTsc

B2 (X 2,W ):

F ? G := π13∗(CEn(2)((π12 ⊗B π23)∗(F � G))T
(2)

).

Instead of going into details of the construction of the convolution algebra let us
explain the induction functors [OR18b] that provide us with an effective method
of computing of the convolution product.
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2.6. Induction functors

The standard parabolic subgroup Pk has the Lie algebra generated by b is and
Ei+1,i, i 6= k. Let us define the space X 2(Pk) := b×Pk × n and let us also use the
notation X 2 for X 2(Gn). There are a natural embedding ik : X 2(Pk)→ X 2 and a
natural projection pk : X 2(Pk)→ X 2(Gk)×X 2(Gn−k). The embedding ik satisfies
the conditions for existence of the push-forward and we can define the induction
functor

indk := ik∗ ◦ p∗k : MFTsc

B2
k
(X 2(Gk),W )×MFTsc

B2
n−k

(X 2(Gn−k),W )

→MFTsc

B2
n
(X 2(Gn),W ).

Similarly we define the space X 2,fr(Pk) ⊂ b × Pk × n × V as an open subset
defined by the stability condition

C〈X,Ad−1
g (Y )〉u = V, (X, g, Y, u) ∈ b× Pk × n× V. (2.4)

The latter space has a natural projection map pk : X 2,fr(Pk) → X 2(Gk) ×
X 2,fr(Gn−k) and the embedding ik : X 2,fr(Pk)→ X 2,fr(Gn), and we can define the
induction functor

indk := ik∗ ◦ p∗k : MFTsc

B2
k
(X 2(Gk),W )×MFTsc

B2
n−k

(X 2,fr(Gn−k),W )

→ MFTsc

B2
n
(X 2,fr(Gn),W ).

It is shown in Section 6 (Proposition 6.2) of [OR18b] that the functor indk is
the homomorphism of the convolution algebras

indk(F1 � F2) ? indk(G1 � G2) = indk(F1 ?G2 � F2 ?G2).

Let us define B2-equivariant embedding

i : X 2(Bn)→ X 2, X 2(B) := b×B × n.

The pull-back of W along the map i vanishes and the embedding i satisfies the
conditions for existence of the push-forward

i∗ : MFTsc

B2 (X 2(Bn), 0)→ MFTsc

B2 (X 2(Gn),W ).

We denote by C[X 2(Bn)] ∈ MFTsc

B2 (X 2(Bn), 0) the matrix factorization with zero
differential with the support only in even homological degree. As it is shown in
[OR18b, Prop. 7.1] the push-forward

1n := i∗(C[X 2(Bn)])

is the unit in the convolution algebra.
Using the induction functor and the unit in the convolution algebra we define

the insertion functor that inserts matrix factorization of smaller rank inside the
higher rank one:

Indk,k+1 : MFTsc

B2
2
(X 2(G2),W )→ MFTsc

B2
n
(X 2(Gn),W ),

Indk,k+1(F) := indk+1(indk−1(1k−1 ×F)× 1n−k−1).
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2.7. Generators of the braid group

Let us first discuss the case of the braids on two strands. The key to construction of
the braid group action in [OR18b] is the following factorization in the case n = 2:

W (X, g, Y ) = y12

(
g11(x11 − x22) + g21x12

)
g21/ det,

where det = det(g) and

g =

[
g11 g12

g21 g22

]
, X =

[
x11 x12

0 x22

]
, Y =

[
0 y12

0 0

]
.

Thus we can define the following strongly equivariant Koszul matrix factorization:

C+ : = (C[X 2]⊗∧〈θ〉, D, 0, 0) ∈ MFTsc

B2
2
(X 2,W ),

D =
g12y12

det
θ + (g11(x11 − x22) + g21x12)

∂

∂θ
,

where ∧〈θ〉 is the exterior algebra with one generator.
This matrix factorization corresponds to the positive elementary braid on two

strands.
Using the insertion functor we can extend the previous definition on the case of

the arbitrary number of strands:

C(k)

+ := Indk,k+1(C+).

Section 11 of [OR18b] is devoted to the proof of the following braid relations
between these elements:

C(k+1)

+ ? C(k)

+ ? C(k+1)

+ = C(k)

+ ? C(k+1)

+ ? C(k)

+ ,

Let us now discuss the inversion of the elementary braid. In view of the inductive
definition of the braid group action, it is sufficient to understand the inversion in
the case n = 2.

Let us fix the notation for the characters of B2. For h ∈ Lie(B2), we define
εi(h) = hii where hii it the i-th diagonal of the upper-triangular matrix h. Let us
choose χl = aε1 + bε2 and χr = cε1 + dε2, then given B2 ×B2-equivariant module
M , we define M〈χl, χr〉 to be the module with the same underlying space and the
action of the first copy of B2 twisted by χl and the action of the second copy of
B2 twisted by χr. We use same convention for the matrix factorization: F〈χl, χ〉
is the matrix factorization F with the 〈χl, χr〉-twisted B2

2 -equivariant structure of
the even part of the underlying free module.

Thus we define

C− := C+〈−ε1, ε2〉 ∈ MFTsc

B2
2
(X 2(G2),W );

respectively, we define C(k)

− := Indk,k+1(C−). It is shown in [OR18b, Sect. 9] that

C(k)

− is inverse to C(k)

+ .
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2.8. Koszul matrix factorizations

The generators of the braid group from the previous subsection are examples of the
Koszul matrix factorizations. Let us remind a general definition of Koszul matrix
factorizations and elementary transformation of the Koszul matrix factorizations.
More details on Koszul matrix factorizations in the form relevant to the current
paper could be found in [OR18b].

Suppose Z is a variety with the action of a group G and F is a G-invariant
potential. An object of the category MFstr

B2(Z, F ) is a free B2-equivariant Z2-graded
C[Z]-module M with the odd G-invariant differential D such that D2 = F1M . In
particular, a free G-equivariant C[Z]-module V with two elements dl ∈ V , dr ∈ V ∗
such that (v, w) = F determines a Koszul matrix factorization K(V ; dl, dr) = ∧•V
with the differential Dv = dl ∧ v + dr · v for v ∈ ∧•V . We use a more detailed
notation by choosing a basis θ1, . . . , θn ∈ V and presenting dl and dr in terms of
components: dl = a1θ1 + · · ·+ anθn, dr = b1θ

∗
1 + · · ·+ bnθ

∗
n,

K(V ; dl, dr) =

a1 b1 θ1

...
...

...
an bn θn

 (2.5)

The structure of G-module is described by specifying the action of G on the basis
θ1, . . . , θn. In some cases when G-equivariant structure of the module M is clear
from the context we omit the last columns from the notation. We call a matrix
presenting Koszul matrix factorization Koszul matrix. For example, if we change
the basis θ1, . . . , θn to the basis θ1, . . . , θi + cθj , . . . , θj , . . . , θn the i-th and j-th
rows of the Koszul matrix will change as follows:[

ai bi θi
aj bj θj

]
7→
[
ai + caj bi θi + cθj
aj bj − cbi θj

]
.

Suppose a1, . . . , an ∈ C[Z] is a regular sequence and F ∈ (a1, . . . , an). We can
choose bi such that F =

∑
i aibi and dl and dr are as above: dl = a1θ1 + · · · anθn,

dr = b1θ
∗
1 +· · ·+bnθ∗n. In general, there is no unique choice for bi but all choices lead

to homotopy equivalent Koszul matrix factorizations (in the nonequivariant case
they would be simply isomorphic). In other words, if b′i is a another collection of
elements such that F =

∑
aib
′
i and d′r = b′1θ

∗
1 + · · ·+ b′nθ

∗
n, then [OR18b, Lem. 2.2]

implies that the complexes K(V ; dl, dr) and K(V ; dl, d
′
r) are homotopy equivalent.

Thus from now on we use notation KF (a1, . . . , an) for such matrix factorization.

3. Coxeter matrix factorization

In the previous section we outlined the definition of the convolution algebra
on the category of matrix factorizations. In particular we explained that for any
element β ∈ Brn we can associate a matrix factorization

Cβ := C(k1)

ε1 ? · · · ? C(kl)

εl
,

where β = σε1k1 · · · · · σ
εl
kl

is an expression for β is terms of elementary braids.
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We could not expect a simple formula for Cβ for a general element β ∈ Brn. In
particular, as one can see from the computations in [OR18b, Sect. 11] the matrix
factorizations Cβ is not always Koszul. Thus it is a bit surprising, at least for us,
that for the Coxeter braid matrix factorization, Cβ is Koszul and quite simple.
To describe the answer we need the following coordinates on the space X 2 =
bn ×Gn × nn:

X = (xij)i≤j , g = (gij), Y = (yij)i≤j .

Let us introduce i × i matrix Mi := [g
(i)
•,1, . . . , g

(i)
•,i−1, X̂

(i)
•,i ] where v(i) is an

abbreviation for the vector consisting of first i entries of v ∈ Cn and X̂ = X −
x11Idn. Respectively, we define functions Fi := det(Mi+1) ∈ C[b×G] and the ideal
IF ⊂ C[X 2] generated by these functions Fi, i = 1, . . . , n− 1.

Proposition 3.0.1. Consider the ideal Ig = ({gij}i−j>1) in C[X 2]. Then the ideal
Icox := Ig + IF contains W .

Proof. We show below that the above equations imply that

Ad−1
g (X) ∈ b.

Indeed, the ideal Ig defines the sublocus Hess of Hessenberg matrices of Gn. On
the other hand if g ∈ Hess then the condition Fi = 0 implies that the column
X̂•,i+1 is a linear combination of the columns g•,1, . . . , g•,i. Let us denote by K
the matrix of these coefficients. Then we have K is strictly upper-triangular and
X̂ = g ·K.

Hence, Ad−1
g (X̂) = K · g but the product of the Hessenberg matrix and strictly

upper-triangular matrix is upper-triangular. �

Proposition 3.0.2. The functions {gij}i−j>1, F1, . . . , Fn−1 form a regular se-
quence in C[b×G]

Proof. We proceed by induction. We assume that {gij}i−j>1, F1, . . . , Fn−2 form a
regular sequence. Then we observe that Gn is covered by the open sets Ui defined
by gi = det(∆in) 6= 0 where ∆in is the minor of Mn obtained by removal of the
in-th entry. It is enough to show regularity at every open chart. But in the chart
Ui we have Fn/gi = X̂in + . . . and Fi, i < n do not depend on X̂•,n. Hence the
regularity follows. �

Thus we can apply [OR18b, Lem. 2.2] to imply that there is a unique up to

homotopy Koszul matrix factorization KW ({gij}i−j>1, F1, . . . , Fn−1) and we show
the following.

Theorem 3.0.3. There is a strictly equivariant Koszul matrix factorization that
realizes Ccox:

Ccox = KW ({gij}i−j>1, F1, . . . , Fn−1).

The construction of the induction functors implies the following.
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Corollary 3.0.4. For any S ⊂ {1, . . . , n−1}, we have a strictly equivariant matrix
factorization

CcoxS
= KW ({gij}ij∈S′ , {Fi}i/∈S) ∈ MFTsc

B2 (X 2(Gn),W ),

where S′ = {(i, j)}i−j>1 ∪ {(i, i+ 1)}i∈S.

Before we proceed to the proof let us describe the most efficient method of
computation of the matrix factorization corresponding to the braid β = α · σεk
from already known Cα. The justification of the construction is given in [OR18b,
Sect. 8].

Indeed, consider F = (M,D1, ∂l, ∂r) ∈ MFTsc

B2 (X 2(Gn),W ) where ∂l, ∂r ∈
HomC[X 2(Gn)](∧∗n⊗M,M) are correcting differential for the equivariant structure;
∂l corrects equivariance for the first copy of B and ∂r for the second copy. Respecti-
vely, Cε = (R2

ε , D2, 0, 0) ∈ MFTsc

B2
2
(X (G2),W ) is the strongly equivariant matrix fac-

torization corresponding to the elementary braid σεk; here Rε is the ring C[X 2(G2)]
with the appropriately twisted B2

2 -structure.
The auxiliary space X 3(Gn, Gk,k+1) := bn×Gn×G2×nn is naturally embedded

into the convolution space X 3 via the map ik,k+1 := Id2 × i′k,k+1 × Id where
i′k,k+1 : G2 → Gn is the embedding of G2 as 2×2-block with entries at the positions
ij with i, j ∈ {k, k+ 1}. Hence we can restrict the maps πij on the auxiliary space
and we can also endow the auxiliary space with the Bn × B2 × Bn-equivariant
structure by restriction from the large space.

The maps πij are B2
n-equivariant but not B2-equivariant, thus a priori the tensor

product π∗12(F) ⊗ π∗23(Cε) has only B2
n-equivariant structure. But as explained in

[OR18b, Sect. 8] there is a natural Bn ×B2 ×Bn-equivariant matrix factorization
G that could be imposed on π∗12(F)⊗ π∗23(Cε):

G := (π∗12(M)⊗ π∗23(Rε), π
∗
12(D1) + π∗23(D2); ∂l, ∂

′
r + ∂′, 0)

where ∂′r ∈ HomR3
(n2 ⊗ M ′,M ′), M ′ = M ⊕ M = π∗12(M) ⊗ π∗23(Rε), R3 =

C[X 3(Gn, Gk,k+1)] is the restriction of the map ∂r on the subalgebra n2 and ∂′ ∈
HomR3

(n2 ⊗M ′,M ′) is defined by the formula

∂′ :=
∂π∗12(D1)

∂Ỹ 2
k,k+1

(
Ỹ 2
k+1,k+1 − Ỹ 2

kk

)
+

(
∂π∗23(D2)

∂X̃2
kk

− ∂π∗23(D2)

∂X̃2
k+1,k+1

)
,

where X̃2 = Adg12(X), Ỹ 2 := Adg12(Y ) and X, g12, g23, Y are the coordinates on
X 3(Gn, Gk,k+1).

The key observation about this matrix factorization is that up to homotopy we
have (see [OR18b, Sect. 8])

Cβ = π13∗(CEn2
(G)T2).

Thus we reduce the complexity of the computation of matrix factorization Cβ ; we
only need to analyze the rank one Chevalley–Eilenberg complex for n2 and we use
this method in our proof.
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Proof of Theorem 3.0.3. Let us first notice that the case n = 2 of the theorem
is a tautology. The case n = 3 was proven in [OR18b, Sect. 10]. For general n,
our inductive argument is essentially identical to the computation from [OR18b,
Sect. 10].

Let α = coxn−1. Then by the induction and the corollary we have a presentation
of Cα as a strongly equivariant Koszul matrix factorization. As induction step we
need to analyze the equivariant matrix factorization C12 := π∗12(Cα) ⊗ π∗23(C+)
(with the B2-equivariant structure discussed before this proof) on the auxiliary
space X 3(Gn, Gn−1,n).

We introduce coordinates on our auxiliary space X 3(Gn, Gn−1,n) as follows:
X 3(Gn, Gn−1,n) = {(X, g12, g23, Y )}. Since X 3(Gn, Gn−1,n) is a subspace of the
space X 3(Gn, Gn), we can define the maps π12, π13 : X 3(Gn, Gn−1,n)→ X 2(Gn) by
formulas (2.1). Respectively, we define the map π23 : X 3(Gn, Gn−1,n) → X 2(G2)
by composing the map from (2.2) with the projection bn×G2×nn → b2×G2×n2.

To simplify notations we set

g12 = a, g23 = b, g13 = g12g23 = c.

That is g12 = (aij)i,j∈[1,n], g23 = (bij)i,j∈[1,n], and bij = δij if i, j < n − 1.
Respectively, we have g13 := g12g23 = (cij)i,j∈[1,n] and

X̃2 := Ad−1
g12(X) = (x̃ij)i,j∈[1,n], Ỹ2 = Adg23(Y ) = (ỹi,j)i,j∈[1,n].

We also use shorthand notations ∆a = det(a),∆b = det(b),∆c = det(c).
The matrix factorization C12 is the Koszul matrix factorization

C12 = Kπ∗13(W )
(
{aij}ij∈S′ , {Fi(X, a)}i∈[1,n−2], f̃

)
where f̃ :=(x̃n−1,n−1−x̃nn)bn−1,n−1+x̃n−1,nbn,n−1 and S′={i−j>1}∪{(n, n−1)}.
Next let us notice that a•,i = c•,i, i ≤ n − 2 and since Fi(X, a) depends on a•,j ,
j ≤ i we obtain a presentation of the complex C12 as a tensor product

KW ′
(
{cij}i−j>1, {Fi(X, c)i∈[1,n−2]}

)
⊗KW ′′(an,n−1, f̃),

where W ′ +W ′′ = π∗13(W ) and we can assume that W ′ only depends on c,X but
not on b.

Let us denote the first term in the product by C ′12 and the second term by
C ′′12. The complex C ′12 is n2-invariant thus CEn2

(C12) = C ′12 ⊗ CEn2
(C ′′12) and

to complete our proof we need to analyze the last complex in the product. In
particular, we need to understand the n2-equivariant structure of the complex C ′′12.

Let h be an element of B2 ⊆ Bn, that is hij = 0 if (i, j) /∈ {(n, n), (n − 1, n −
1), (n−1, n)}. The action of h on the space X 2(Gn, Gn−1,n) is given by the formulas

g12 7→ g12h
−1, g23 7→ hg23, X̃2 7→ AdhX̃2.

We denote by δ the element of Lie(B2) corresponding to the (n − 1, n)-th entry
and below we investigate its action on the complex C ′′12.



A. OBLOMKOV, L. ROZANSKY

First, let us notice that the function an,n−1 is n2-invariant but the function f̃ is
not. Thus the complex C ′′12 is not strongly n-equivariant and correction differentials
will appear. In more detail, we have

C ′′12 =

[
an,n−1 ∗ θ1

f̃ ∗ θ2

]
,

where the action of n is given by

δ(θ1) = kθ2, δ(θ2) = 0

for some function k ∈ C[b×G] which we need to compute.
One way to approach the computation of k is to use differentials of the n2-equiva-

riant structure on C12 from the discussion before the proof and to derive a formula
for k by the careful analysis of the effects of the elementary transformations on
the differentials. However, we choose a different method: we follow the same path
as in the proof of [OR18b, Lem. 10.4]. Namely, the function k is uniquely defined

by the condition that an,n−1θ1 + f̃ θ2 is δ-invariant. Thus we only need to compute

δ(f̃).

Instead of computing δ(f̃) by brute force we use the following argument. First,

we present the matrix X̃2 as a sum of the upper-triangular and strictly lower-
triangular parts: X̃2 = X̃2,+ + X̃2,−−. Next, we observe that we have f̃ bn,n−1 =

−
(
Ad−1

g23X̃2,+

)
n,n−1

and since δ(bn,n−1) = 0 we obtain

δ(f̃) = −δ
(
Ad−1

g23(X̃2,+)
)
n,n−1

/bn,n−1.

On the other hand, Ad−1
g23(X̃2) is δ-invariant and thus we get

δ(f̃) = δ
(
Ad−1(X̃2,−−)

)
n,n−1

/bn,n−1.

A direct computation shows that Ad−1
g23(X̃2,−−)n,n−1 = b2n−1,n−1x̃n,n−1/∆b and

since x̃n,n−1 is δ-invariant while δbn−1,n−1 = bn,n−1, we obtain

δ(f̃) = 2x̃n,n−1bn−1,n−1/∆b.

Modulo relations from Ig, the matrix element (a−1)nk, k < n is divisible by

an,n−1: (a−1)nk = (−1)k+nan,n−1 det(Mn,k
n,n−1(a))/∆a where Mkl

ij (a) is the minor
of a obtained by removing i, j-th columns and k, l-th rows. By putting all formulas
together we finally obtain the following formula for k:

k=−2bn−1,n−1∆−1
b

(
(a−1)nnxnn +

n−1∑
k=1

(−1)k+n det(Mn,k
n,n−1(a))/∆a

n∑
l=k

xklal,n−1

)
.

Let us denote by εn−1, εn the generators for character group of B2: εk(h) = hk,k.
We use the same notation for the characters of the torus T (2) = (C∗)2 ⊂ B2. Now
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recall that the action of torus T (2) = (C∗)2 ⊂ B2 ⊂ B on an,n−1 and f̃ has
weights εn and εn−1 and respectively the weights of θ1, θ2 are −εn and −εn−1.
Thus T (2)-invariant part of the complex CEn2

(C ′′12) is of the shape

[θ1; 0] [1; εn−1]

[θ1θ2;−εn] [θ2; εn−1 − εn]

[θ1; εn − εn−1]⊗ e∗ [1; εn]⊗ e∗

[θ1θ2;−εn−1]⊗ e∗ [θ2; 0]⊗ e∗

where the expression [α; ρ] stands for HomT (2)(ρ,R)α, R = C[X (Gn, Gn,n−1)] and
ρ is a character of T (2); e∗ is a generator of n∗2 = Hom(n2,C) = 〈e∗〉. In the picture
the vertical dashed arrows are the Chevalley–Eilenberg differentials. The slanted
dashed arrow is the correction differential. Below we show that the left and right
dashed arrows are isomorphisms and can be contracted.

In the tensor product R=π∗13(C[X 2])⊗C[G2] the first term is B2-invariant. Hen-
ce the vertical arrows in the diagram above compute homology H∗(G2/B2,O(k))
for the corresponding value of k. The value of k could read from the bottom side
of cube in the diagram: the entry [?; εan−1ε

b
n]e∗ corresponds to k = a − b. After

contracting the vertical arrows we arrive to the diagram

H∗(P1,O(−2))⊗ C[X 2] H∗(P1,O(−1))⊗ C[X 2]

H∗(P1,O(−1))⊗ C[X 2] H∗(P1,O(0))C[X 2].

Since only two vertices of the last diagram are actually nonzero we only need
to compute the diagonal arrow. The target of this arrow is H1(P1,O(−2)) ⊗
π∗13(C[X2]) = H1

Lie (n, R[εn−1 − εn]), hence we can replace the coefficients of the
differential by the expressions that are homologous with respect to the differential
δ. Below we take advantage of this observation. Indeed, note that

δbn−1,n−1 = bn,n−1, δbn−1,n = bnn,

so, first, δ(b2n−1,n−1) = 2bn−1,n−1bn,n−1, hence bn−1,n−1bn,n−1 is exact and, second,

δ(bn−1,n−1bnn) = bn,n−1bn−1,n + bn−1,n−1bnn,

hence in view of bn−1,n−1bnn − bn,n−1bn−1,n = ∆b we find b22b33 ∼ 1
2∆b. Since

bn−1,n−1a = c · (bn−1,n−1b
−1) we obtain

2bn−1,n−1ai,n−1 ∼ ci,n−1.
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Next, let us notice that since a•,i = c•,i for i < n − 1, by expanding along the
(n− 2)-th column of the determinant in the definition of (a−1)nn, we can use the
above homotopy equivalence and get

2bn−1,n−1(a−1)nn ∼ ∆c∆
−1
a (c−1)nn = ∆b(c

−1)nn.

We can combine the last formula with the observation that Mn,k
n,n−1(a) = Mn,k

n,n−1(c)
to obtain

k ∼ (c−1)nnxnn +

n−1∑
k=1

(−1)k+n det(Mn,k
n,n−1(c))/∆c

n∑
l=k

xklcl,n−1.

Next, let us observe that if we collect all the terms in the last sum with l = n,
we obtain

n−1∑
k=1

(c−1)nkxkn = Fn−1(x, c)/∆c + (c−1)nn(−xnn + x11).

On the other hand, if we collect all the terms in the sum with l= s for s 6=n, we
get

cs,n−1∆−1
c

n−1∑
k=1

(−1)k+n det(Mn,k
n,n−1(c))xks

= (−1)s+n∆−1(c)cs,n−1 det(Mn,s
n,n−1(c)x11) mod (Fs−1).

Thus combination of the last two observations implies that modulo the ideal Ig +
(F1, . . . , Fn−2) we have the following homotopy

k ∼
(
(c−1)nnxnn

)
+
(
Fn−1(x, c)/∆c + (c−1)nn(−xnn + x11)

)
+
(

∆−1
c x11

n−1∑
s=1

(−1)n+scs,n−1 det(Mn,s
n,n−1(c))

)
= Fn−1(x, c)/∆−1

c .

Finally, let us remark that B2 preserves Fi and acts linearly on the generators

of Ig. Thus KW ({gij}i−j>1, F1, . . . , Fn−1) is strictly B2-equivariant. �

4. Link homology computation

4.1. Link homology

In this subsection, we remind our construction for link invariant from [OR18b] and
its connection with sheaves on the nested Hilbert scheme.

The free nested Hilbert scheme Hilbfree
1,n is a B × C∗-quotient of the sublocus

H̃ilbfree
1,n ⊂ bn × nn × Vn of the cyclic triples {(X,Y, v) | C〈X,Y 〉v = Vn}. In other

words, H̃ilbfree
1,n is the stable part of the product X 1(Gn)×Vn. Also notice that the

corresponding potential W1 vanishes on X1.
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The usual nested Hilbert scheme HilbL1,n is the subvariety of Hilbfree
1,n , it is defined

by the commutativity of the matrices X,Y . Thus we have the pull-back morphism

j∗e : MFTsc

B2 (X 2 × Vn,W )→ MFTsc

B (H̃ilbfree
1,n , 0).

In more detail, the morphism j∗e can be only applied to B-equivariant matrix
factorizations. Thus to define j∗e (F) we need to pass from B2-equivariant structure
to B-equivariant structure. For that, we use the auxiliary B2-equivariant map
jB : X 2(B)→ X 2(G), jB(X, b, Y ) = (X, b,Adb(Y )). Let us set B2 = B(1) × B(2).

The action of B(2) on X 2(B) is free, hence we define j∗e (F) = CEn(2)(j∗B(F))T
(2)

.
For a strongly-equivariant matrix factorization F the defined j∗e (F) is isomorphic
to the usual pull-back of F with the B2-equivariant structure restricted to the
B-equivariant structure.

The complex Sβ := j∗e (Cβ) is naturally an element of the derived category

Dper
Tsc

(Hilbfree
1,n ) of two-periodic complexes of coherent sheaves on Hilbfree

1,n . The hyper-
cohomology functor H is the functor Dper

Tsc
(Hilb1,n)→ Vectgr to the space of doubly-

graded vector spaces. There is an obvious analog of the vector bundle B over Hilbfree
1,n

and we define

Hk(β) := H
(

CEn

(
Sβ ⊗∧kB

)T )
.

The next theorem is the main result of [OR18b].

Theorem 4.1.1 ([OR18b]). For any β ∈ Brn, we have the following.

• The cohomology of the complex Sβ is supported on Hilb1,n ⊂ Hilbfree
1,n .

• The vector space H∗(β) is (up to an explicit grading shift) an isotopy inva-
riant of the closure L(β).

4.2. Koszul complex for link homology

Let S ⊂ {1, . . . , n − 1} be given. The virtual structure sheaf [OZS
1,n

]vir of the

subscheme ZS1,n ⊂ Hilb1,n is defined as Koszul complex of the equivariant coherent

sheaves on Hilbfree
1,n :

[OZS
1,n

]vir := K({xii − xi+1,i+1}i/∈S , {[X,Y ]ij}(ij)∈S̃),

where X = (xij), Y = (yij) are the coordinates on b and n respectively and

S̃ = {(ij)}i−j>1, {i+ 1, i}i∈S . (4.1)

The zero-th homology of [OSZ1,n
]vir is the structure sheaf of ZS1,n but the complex

has higher homology too. All homology are supported on Hilb1,n and we have the
following.

Proposition 4.2.1. If β = coxS, we have

Sβ = [OZS
1,n

]vir.
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Proof. We have shown that Cβ is the Koszul matrix factorization with the differen-
tial

D =
∑
ij∈S̃

(
gijθij + kij

∂

∂θij

)
+
∑
i/∈S)

(
Fiθi + hi

∂

∂θu

)
,

where θij and θi are odd variables. The functions hij and ki were not discussed
previously since the Koszul matrix factorization Cβ is uniquely up to homotopy
determined by the regular sequence {gij}ij∈S̃ , {Fi}i/∈S̃ . For concreteness, let us
construct these functions.

For that, let us order the elements of the sets S̃ and S = [1, n− 1] \S. Then we
define

kij = (W i′j′ −W ij)/gij , W ij := W i′j′ |gij=0,

where the element i′j′ immediately precedes the element ij, and if ij is the largest
element of S̃, then W i′j′ = W.

Providing the explicit formulas for hi is a bit harder but later we work with
our matrix factorization in the neighborhood of g = 1 hence we can assume that

di := det([g
(i)
1• , . . . , g

(i)
i,•]) 6= 0 and let us also assume that the order of S extends the

natural order. Then from the first assumption we obtain that Fi/di = (xi+1,i+1 −
x11) +Ri where Ri does not depend on variable xi+1,i+1. We define

hi = (W i′ −W i)/Fi, W i := W i′ |xi+1,i+1=x11+Ri ,

where i′ immediately precedes i, and if i is the largest element of S, then W i = W kl

where kl is the smallest element of S̃.
Finally, let us observe that from our formulas immediately follows that

kij |g=1 =
∂W

∂gij

∣∣∣∣
g=1

= [X,Y ]ij , Fi|g=1 = (xi+1,i+1 − x11).

Moreover, since W has linear dependence on X, we also get that

hi|g=1 = d−1
i

∂W

∂xi+1,i+1

∣∣∣∣
g=1

= 0. �

Let us also remark that the dg-scheme from [GNR20, Prop. 3.25] seems to be
closely related to the dg-scheme defined by the complex [OZS

1,n
]vir. We hope to

explore this relation in the future. For more explicit connections with [GNR20],
see the last section of this paper.

4.3. Proof of Theorem 1.0.2

Theorem 1.1.1. from [OR17] implies that

Sβ·δk = Sβ ⊗ L
~k.

If we apply this formula for β = coxS and combine it with the previous proposition,
we obtain the statement of the theorem.
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5. Explicit computations

In this subsection, we explain how the above geometric computations translate
into straightforward homological algebra. We discuss the subtleties of our const-
ruction of the knot homology that are related to the t-grading. We also discuss
how these subtleties prevent us from using localization techniques in a naive way.
All complexity of the situation could be seen in the case n = 2 which we discuss
at the end of the section.

5.1. Details on t-grading

Since degtW = 2, we need to explain how we assign the t-degree shifts in our
matrix factorizations. We fix convention for tk ·M , the shifted version of a module
M . For example, for 1 ∈ tkC[X 2], we have degt(1) = k.

Thus let us provide a clarification for the Tsc-equivariant elements of our cate-
gory MFTsc(X 2,W ). An element of MFTsc(X 2,W ) is the two-periodic complex

· · · d−1−−→M0
d0−→M1

d1−→M2
d2−→ · · · ,

where Mi are the free modules, Mi = Mi+2, di = di+2, and the differentials di
preserve q-degree and shift t-degree by 1. Let us call this property degree one
property. The category MFTsc

B2 (X 2,W ) is the appropriate equivariant enhancement
of the previous category.

For example, the element C+ ∈ MFTsc

B2 (X 2,W ) is the two-periodic complex

· · · d1−→ R
d0−→ tR

d1−→ R
d2−→ tR

d3−→ · · · ,

where R = C[X2(G2)] and di = (x11 − x22)g11 + x12g21 for odd i, and di = y12g21

for even i.
The elements in the ring C[X 2] have even t degrees thus the only source for the

elements of t-degree in Sβ are the shifts tk in our complexes. Since the convolution
needs to preserve the degree one property, we require that the degree t shifts in
the Chevalley–Eilenberg complex are defined by the condition that the Chevalley–
Eilenberg differentials shift t-degree by 1.

As a final step of the construction of Sβ we apply the pull-back j∗e to the complex

Cβ where je is the embedding of H̃ilbfree
1,n inside n× b. To construct j∗e (Cβ) we need

to choose an affine cover H̃ilbfree
1,n =

⋃
i Ui by the B-equivariant charts Ui, then the

pull-back j∗e (Cβ) is the Cech complex ČU•(Cβ). Moreover, since we would like to
preserve the degree one property, we shift t-degrees in the Cech complex so that
the Cech differentials are of t-degree 1.

Since we are working with Tsc-equivariant complexes of sheaves on the Hilbert
scheme, it is very tempting to use localization technique to obtain explicit formulas
for the super-polynomial for the links. However, the degree one property effectively
prevents us from doing this in most of the cases. We expand on this issue in Section
5.3 where we discuss the two-strand case but for now let us point out that formulas
obtained by localization could only produce super-polynomial that has only even
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powers of t because the elements C[X 2] have even t-degree. On the other hand,
there are many examples of the links with the knot homology that are not t-even.

To end the discussion on a positive note let us point out that HOMFLY-PT
polynomial is well suited for localization technique, exactly because of the degree
one property. Let us denote by χq(S) the C∗-equivariant Euler characteristics of a

two-periodic complex S ∈ Db
C∗(Hilbfree

1,n ) where C∗ acts with opposite weights on n
and b.

Theorem 5.1.1 ([OR18b]). For any β, we have

P (L(β)) =
∑
i

χq(Sβ ⊗∧iB).

5.2. Conjectures for Coxeter links

Let j∆ : b × n be the B-equivariant embedding inside X 2 and let bS ⊂ b be the
subspace defined by equations xii = xi+1,i+1 for i /∈ S. The results of the previous
section imply that we have the homotopy of the two-periodic complexes:

j∗∆(CcoxS
) ∼ KcoxS

⊗ObS×n, KcoxS
:=
⊗
ij∈S̃

[
R

[X,Y ]ij−−−−−→ t ·R
]
, (5.1)

where S̃ = {j−i > 1}∪S and R = C[X 2]. The tensor product above is a restriction
of the complex to the subvariety bS × n and to simplify notations we abbreviate
the restriction by KcoxS

.

Let us cover H̃ilbfree
1,n by the affine charts Ui. Then we have the following expres-

sion for the homology:

Hm(coxS · δ
~k) = CEn

(
ČU•(KcoxS

⊗∧mB ⊗ χ~k)
)T
,

where χ~k is the notation for the character of the torus T .
We slightly simplify the above formula by eliminating the Chevalley–Eilenberg

complex with the following trick. In the next section we describe the affine sub-

spaces A• ⊂ H̃ilbfree
1,n such that the affine varieties BA• form an affine cover of

H̃ilbfree
1,n and the B-stabilizer is trivial. Hence if we choose BA• as our Cech cover,

then because of the triviality of the stabilizers, the Chevalley–Eilenberg complex
is acyclic on every chart and extracting its zero-th homology on the chart BAS
corresponds to the restriction on the affine subvariety TAS which we denote by
TS . Thus we have the following least geometry rich statement.

Corollary 5.2.1. For any ~k and S, we have

Hm
(
coxS · δ

~k
)

=
(
ČA•(KcoxS

)⊗∧mB ⊗ χ~k
)T
.

Since the line bundle L~k is very ample for sufficiently positive ~k, for such ~k, the
Cech complex becomes acyclic a we have the following.
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Corollary 5.2.2. For sufficiently positive ~k, we have

Hi
(
coxS · δ

~k
)

=
(
H0
Č

(KcoxS
⊗∧iB ⊗ χ~k)

)T
.

In the last formula, we eliminated all possible sources of odd t-degree shifts
with exception of the shifts inside the complex KcoxS

. Thus as it is we still can not
apply localization methods to extract the explicit formulas. So let us correct the
complex KcoxS

to make it comply with the localization formula:

Keven
coxS

=
⊗
ij∈S̃

[
R

[X,Y ]ij−−−−−→ t2R
]
, (5.2)

and let us introduce the computationally friendly ‘invariant’

Peven(L(coxS · δ
~k)) =

∑
i,j

(−1)j dimq,t

(
Hj(ČA•(K

even
coxS
⊗∧iB ⊗ χ~k))

)
ai.

This invariant is the equivariant Euler characteristic of the complex and in the
next section we explain how one can obtain explicit localization formulas for this
Euler characteristic with the localization technique.

Several recent preprints [Hog17], [Mel22] suggest that at least for a sufficiently

positive ~k the sum above has nonzero terms only for j = 0. In other words, it is
reasonable to pose the following.

Conjecture 5.2.3. For sufficiently positive ~k, we have

Peven
(
L(coxS · δ

~k)
)

= P
(
L(coxS · δ

~k)
)
.

As we will see in the next subsection this conjecture is false without the assump-
tion of positivity. It is false for very negative ~k.

In the last section we discuss th following stronger and more geometric version
of the conjecture for β = cox.

Conjecture 5.2.4. If the vector ~k is sufficiently positive, then the higher degree
hyper-cohomology of the complex CEn(Sβ·δ~k ⊗∧•B)T vanishes.

5.3. Two strand case

In this subsection, we compute homology for the links obtained by closing braids
on two strands. This illustrates our computational technique; also one can compare
our computations with that in [GNR20, Sect. 5]. The results of computations in
[GNR20] and in our paper match and that provides yet another evidence for the
existence of a close relation between the theory outlined in [GNR20] and our.

First, let us describe the computation of the homology of T2,2n+1 = L(σ2n+1
1 ).

Since σ1 = coxS , S = ∅, in this case bS = n ⊕ C. Let us fix coordinates on it:
bS = {x12E12 +x(E11 +E22)}. Respectively, we fix the notation R = C[x, x12, y12]
for the coordinate ring on bS × n.
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In this case, KcoxS
is just R. Moreover, the intersection H̃ilbfree

1,n ∩ bS × n is
covered by two charts A1 = {x12 6= 0}, A2 = {y12 6= 0}. That is, the homology
Hk(T2,2n+1) is equal to the homology of the complex

(
(Rx12

⊕Ry12)⊗ χn−k → tRx12y12 ⊗ χn−k
)T
,

where χ : T → C∗ is the character (λ, µ) 7→ λ.
Thus the knot homology of T2,2n+1 is a triply graded vector space which is the

tensor product of C[x] and the space

H0(P1,O(n))⊕ tH1(P1,O(n))⊕ aH0(P1,O(n− 1))⊕ atH1(P1,O(n− 1))

shifted by (a/t)n. To compute the super-polynomial we just need the following
formulas for the dimensions of the homology of the line bundles:

dimq,t(H
0(P1,O(n))) =

n∑
i=0

q2i(t/q)2n−2i,

dimq,t(H
1(P1,O(n))) =

−n−2∑
i=0

(q)2i(t/q)−2n−2i−4.

The case of the torus link T2,2n is more involved. Since S = {1}, in this case
bS = b. Let us denote by R the ring of functions on b× n: R = C[x+, x−, x12, y12]
where x+ = x11 + x22, x− = x11 − x22. In this notation we have

KcoxS
= [R

y12x−−−−−→ tR].

The Cech cover in this case is basically the same as in the previous case: A1 =
{x12 6= 0} and A2 = {y12 6= 0}. Thus the homology of the torus link T2,2n is the
sum of vector spaces H0 ⊕ aH1 shifted by (a/t)n where Hi is homology of the
complex

tRx12y12 [n− i] t2Rx12y12 [n− i+ 1]

Ry12 [n− i]⊕Rx12
[n− i] tRy12 [n− i− 1]⊕ tRx12

[n− i− 1]

y12x−

y12x−

, (5.3)

and R[m] stands for the degree m part of the ring R with the following degrees of
the generators:

deg x12 = deg y12 = 1, degx− = degx+
= 0.

The complex above is the tensor product of C[x+] and the complex with x+

set to zero. Thus to make our computations easier we work modulo ideal (x+),
R′ = R/(x+).
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Geometrically the homology of the last complex could be interpreted as homo-
logy of the line bundle O(n− i) on the union of a projective line and an affine line
that intersect transversally at a single point. But for illustration of our methods
we proceed algebraically.

First, let us observe that the horizontal differential is injective and we can
contract the complex in this direction. For that, we need to describe the cokernel
of the map. Since we have

R′y12 [m] = C[x12/y12, x−]ym12,

R′x12
[m] = C[y12/x12, x−]xm12.

the cokernel of the map on R′y12 [m] is C[x12/y12]ym12, and the cokernel on R′x12
[m]

is the sum
C[y12/x12]xm12 ⊕ x−C[x−]xm12.

Finally, R′x12y12 [m] = C[x−, (x12/y12)±1]xm12 and the cokernel of the map on this
space is C[(x12/y12)±1]ym12 There is the induced Cech differential dC on the co-
kernels

C[x12/y12]ym12 ⊕ C[y12/x12]xm12 ⊕ x−C[x−]xm12
dC−−→ C[(x12/y12)±1]ym12.

If m ≥ 0 this induced differential is surjective and the kernel spanned by

〈ym12, x12y
m−1
12 , . . . , xm12〉 ⊕ x−C[x−]xm12.

Let us denote the last vector space by Vm.
On other hand, if m is negative, then the kernel and cokernel of the induced

differentials are the vector spaces

x−C[x−]xm12, 〈y−m−2
12 , y−m−1

12 x12, . . . , x
−m−2
12 〉.

Let us denote the first vector space by V ′m and the second by V ′′m.
Thus for n ≥ 0, the knot homology of T2,2n is triply graded vector space

a/t
n · (tVn ⊕ atVn−1)⊗ C[x+],

and for negative n the knot homology of T2,2n is the vector space

a/t
n · (tV ′n ⊕ t2V ′′n ⊕ atV ′n−1 ⊕ at2V ′′n−1)⊗ C[x+].

To convert the last formula into super-polynomial we only need to remember that

degq,t x12 = degq,t x− = degq,t x+ = q2, degq,t y12 = t2/q2.

We would like to point out that the case of the links T2,2n is more complex than
the case of the knots T2,2n+1. For example, in the case of knots, elements of the
knot homology of T2,2n+1 for any n have the same parity of t-degree. It is no longer
true for the links: the homology of T2,2n for negative n contains elements of odd
and even t-degree. Thus it seems to be very unlikely that there is some localization
type formula that produces the super-polynomial of T2,2n for (very) negative n.
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6. Localization and explicit formulas for homology

In this section, we present an explicit formulas for the graded dimension of the
homology of the Coxeter links under the assumption that the corresponding braid
is sufficiently positive. First, we discuss the geometry of Hilbfree

1,n since that is the
space where we perform our localization computation.

6.1. Local charts

It is shown in [OR18b] that the free Hilbert scheme Hilbfree
1,n could be covered by

affine charts. In this subsection, we remind this construction. First, we describe
the combinatorial data used for labeling of the charts.

Let us denote by NSn the set of the nested pairs of sets with the following
properties. An element S ∈ NSn is a pair of nested sets

S1
x ⊃ S2

x ⊃ · · · ⊃ Sn−1
x ⊃ Snx = ∅,

S1
y ⊃ S2

y ⊃ · · · ⊃ Sn−1
y ⊃ Sny = ∅,

such that
Skx,S

k
y ⊂ {k + 1, . . . , n}, |Six|+ |Siy| = n− i.

Let us define the sets of pivots of S as the sets Px(S), Py(S) consisting of the
pairs

Px(S) = {(ij) | j ∈ Six \ Si+1
x }, Py(S) = {(ij) | j ∈ Siy \ Si+1

y }.

To an element S ∈ NSn we attach the following affine space AS ⊂ n× n:

(X,Y ) ∈ AS if xij = 1, ij ∈ Px(S), yij = 1, ij ∈ Py(S), and

xi,j = 0 if j ∈ Six, yi,j = 0 if j ∈ Siy.

For a given S, we denote by Nx(S) and Ny(S) the indices (ij) such that xij ,
respectively yij are not constant on AS. From the construction, we see that |N(S)|
= n(n− 1)/2.

Let us denote by h the subspace of the diagonal matrices inside b. The sum
h + AS is an affine subspace inside b× n and we show in [OR18b] the following.

Proposition 6.1.1. The space H̃ilbfree
1,n ⊂ b × n is covered by the orbits of affine

spaces B(h+AS), S ∈ NSn. Moreover, the points in h+AS have trivial stabilizers.

Thus the proposition implies that the affine subspaces h+AS provide an affine
cover for the quotient Hilbfree

1,n . As our system for labeling of the charts might look a
bit artificial for the people studying Hilbert schemes, let us introduce an equivalent
but somewhat more familiar system.

6.2. Combinatorics of the cover

Also it is probably a good place to enrich our notation to make it more compatible
with the notation in [GNR20]. The free Hilbert scheme has a natural map
ρ : Hilbfree

1,n → h given by the eigenvalues of the first matrix. Respectively, we

define Hilbfree
1,n (Z) to be the preimage ρ−1(Z).
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Now recall another definition of the free Hilbert scheme as the space of the
nested chains of the left ideals

Hilbfree
1,n = {In ⊂ · · · ⊂ I1 ⊂ I0 = C〈X,Y 〉|C〈X,Y 〉/Ii = Ci〉}.

Given a sequence of noncommutative monomials ~m = (m1, . . . ,mn), we define the
following sublocus of the free Hilbert scheme:

A~m = {I• | C〈X,Y 〉/Ik = 〈m1, . . . ,mk〉}.

Now let us explain how one could produce a vector of monomials ~m(S) from
the element of S ∈ NSn. Essentially, we just retrace the definition of the free
Hilbert scheme. We construct the vector inductively starting with m1(S) which is
X if (n − 1, n) ∈ Px(S) and is Y if (n − 1, n) ∈ Py(S). The inductive step is the
following:

mk(S) =

{
Xmn−j(S) if (k, j) ∈ Px(S),

Y mn−j(S) if (k, j) ∈ Py(S).

In the case of the usual nested Hilbert scheme it is convenient to label the
torus fixed points by the standard Young tableaux (SYT). By analogy with the
commutative case we also introduce an analog of the SYT for noncommutative
case. The generalized SYT, abbreviated GYTn, are labelings L of Z≥0 × Z≥0 by
the subsets of [1, n] such that every element appears once in the labeling sets. That
is, an element of GYTn is a map

L : Z≥0 × Z≥0 → subsets of [1, n]

with the above mentioned properties.
It is natural to think about the labels as the labels on 1×1 squares that pave the

first quadrant. We also require that the set of squares with nonempty labeling is
connected, in other words, all our generalized tableaux are connected. The standard
Young tableaux are examples of generalized Young tableaux but obviously there
are many GYT which are not SYT.

There is a natural map GYT : NSn → GYTn that could be described by the
condition k ∈ L(GYT(S))(ij) if degX(mk(S)) = i and degY (mk(S)) = j. Since the
noncommutative Hilbert scheme contains the commutative one, the image of the
above map contains the set SYTn. But we do not understand the combinatorics
well. For example, we do not understand the image of this map, the answer to the
following question is probably known to the experts:

Question. What is the image of the map NSn → GYTn? Is this map injective?

We checked on computer the injectivity for small n. Let us also give a few
examples of GYT’s that are not SYT and appear in the image:

1 2
3 4 5
6

,
1 2
4 ∗ ,

1 2 6
3 7
4 5

,
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where ∗ = {3, 5}.
Finally, let us observe that size of the set NSn is n!. We expect that there is

a natural correspondence between this set and the group Sn of all permutations
of [1, n]. On the other hand, the RS algorithm assigns to an element of Sn a
pair of SYT of the same shape. Thus we expect the existence of a modification of
the map GYT that has as the target the set of the pairs from the RS algorithm.
We leave this problem for the future publications where we plan to study the
connection between the geometry of the noncommutative Hilbert scheme and the
Young projectors in C[Sn].

6.3. Geometry of the torus fixed locus

Given a element S ∈ NSn, we denote by Mx(S) and My(S) the corresponding pair

of matrices from H̃ilbfree
1,n . The entries xij , ij ∈ Nx(S) and yij , ij ∈ Ny(S) together

with the coordinates along h provide local coordinates in the neighborhood of the
point Mx(S),My(S). Below we provide a formula for the weights of the Tsc-action
on these coordinates.

First, let us define the pair of vectors of the weights wx(S) and wy(S). We define
them inductively, starting with wnx (S) = 0 and wny (S) = 0. The inductive step is
provided by

wjx(S) =

{
wkx(S) + 1 if (jk) ∈ Px(S),

wkx(S) if (jk) ∈ Py(S),
wjy(S) =

{
wky(S) + 1 if (jk) ∈ Py(S),

wky(S) if (jk) ∈ Px(S).

The weights above are defines in such a way that

t−1Adtx(X) ∈ AS, Adtx(Y ) ∈ AS,

Adty (Y ) ∈ AS, t−1Adty (Y ) ∈ AS,

for any (X,Y ) ∈ AS and tx = diag(tw
1
x , . . . , tw

n
x ), ty = diag(tw

1
y , . . . , tw

n
y ).

From the discussion it is immediate that the weights of the action are given by
the formula

dx(ij) = wix − wjx + 1, dy(ij) = wiy − wjy, ij ∈ Nx(S),

dx(ij) = wix − wjx, dy(ij) = wiy − wjy + 1, ij ∈ Ny(S).

Now let us write the localization formula for χ(Keven
coxS

⊗ L~k ⊗ ∧a(B)). For
the localization formula, we need the weights of the differentials in the complex.
Informally, we call these weights weights of obstruction space:

ox(ij) = wix − wjx + 1, oy(ij) = wiy − wjy + 1.

We denote by TS the tangent space at (Mx(S),Mx(S)) and by ObS the ‘obstruc-
tion’ space spanned by the vectors with the weights o(ij), i− j > 0.

Armed with the above formulas we can write the localization formula for the
sum

∑
i χ(Keven

cox ⊗ L
~k ⊗∧iB)ai as
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∑
S∈NSn

Q
~k·wxT

~k·wyΩS(Q,T, a; coxS),

ΩS(Q,T, a; coxS) =
(1−Q)n−|S|

∏
ij∈S̃(1−QoxT oy )∏

ij∈Nx(S)(1−QdxT dy )
∏
ij∈Ny(S)(1−QdxT dy )

·
n−1∏
i=1

(1− aQw
i
xTw

i
y )

where S̃ is given by (4.1), ox = ox(ij), oy = oy(ij), dx = dx(ij), dy = dy(ij), and
Q,T variables are related to the standard variables q, t by

Q = q2, T = t2/q2.

Unfortunately, the sum above is not well-defined because for some S the vector

(dx, dy) vanishes. It is a manifestation of the fact that the scheme
(
Hilbfree

1,n

)Tsc
is

not zero-dimensional. For example, the family of the matrices

X =


0 u 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 , Y =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,
where u is any, lies inside AS for S with Sx = {4, 3} ⊃ {3} ⊃ {∅} ⊃ {∅} and
Sy = {4} ⊃ {4} ⊃ {4} ⊃ {∅}. It is also fixed by the torus Tsc.

Remark 6.3.1. As we see above the torus fixed locus is not discrete in general
but we expect the locus to have virtual dimension zero. Indeed, the computer
experiment suggests that for any S ∈ NSn, we have the inequality

dim (ObS)
Tsc ≥ dim (TS)

Tsc .

However, on the commutative Hilbert scheme the torus fixed locus is zero-
dimensional and the torus fixed points are labeled by the SYTn. Let us identify
the corresponding subset NSn:

[Mx(S),My(S)] = 0 iff S ∈ NSsyt
n ,

where NSsytn ⊂ NSn consists of S such that GYT(S) is a standard Young tableaux.
We propose the following.

Proposition 6.3.2. For sufficiently positive ~k, we have the following localization
formula

Peven(L(coxS · δ
~k)) =

∑
S∈NSsyt

n

Q
~k·wxT

~k·wyΩS(Q,T, a; coxS).
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Proof. Let β = cox · δ~k. Since the complex Sβ is supported on the commutative
Hilbert scheme, the complex Sβ is contractible in the affine neighborhood of
(Mx(S),My(S)) if S /∈ SY Tn. The union Hilb′1,n :=

⋃
S∈NSsyt

n
AS is an open

subset inside Hilbfree
1,n and by the previous remark the restriction on this open

subset does not change the total homology. Since Tsc-fixed locus inside Hilb′1,n
is zero-dimensional, the formula in the proposition is the standard localization
formula. �

The above formula is equivalent to the formula from [GNR20, Cor. 1.3]: the
formula in [GNR20] is also a sum over SYT’s and the corresponding terms in
[GNR20] and in our formula coincide after we cancel the matching factors in the
numerator and denominator.

Besides the similarity to the previous conjectures there are other observations
that support the conjecture. For example, it is elementary to show that

[Mx(S),My(S)] = 0 iff S ∈ SYTn.

Hence since the complex Cβ is supported on the commutative Hilbert scheme,
the complex Cβ is contractible in some affine neighborhood of (Mx(S),My(S)) if
S /∈ SYTn.

6.4. Fourth grading and localization

In this section, we provide an explanation for the even super-polynomial Peven as
well as some conjectures for the cases when the even super-polynomials coincide
with the usual super-polynomial. As we explain below, both Peven and P are
specializations of a conjectural richer invariant.

As it is explained in [OR18b] and outlined in Section 5.2, for a braid β ∈ Br,
one can construct an element Cβ ∈ MFTsc

B2 (X 2,W ). To compute the triply-graded

homology of the link closure L(β), we need to work with Sβ = j∗e (Cβ).

Two periodic complex Sβ ∈ MFstr
B (H̃ilb1,n, 0) has differential of degree t with

respect to the Tsc-action. It is shown in [OR18a] that Cβ is isomorphic to a strictly

B2-equivariant matrix factorization; thus we can assume that Sβ∈MFstr
B (H̃ilb1,n,0)

= Dper
Tsc

(Hilbfree
1,n ).

The objects of the derived category Dper
Tsc

(Hilbfree
1,n ) are two periodic complexes of

coherent Tsc-equivariant sheaves with differentials of degree t with respect to Tsc.
It is more natural to consider the category Db

Tsc
(Hilbfree

1,n ) of bounded complexes of
Tsc-equivariant coherent sheaves with differentials of degree t. There is a folding
functor that relates these categories:

Fold: Db
Tsc

(Hilbfree
1,n )→ Dper

Tsc
(Hilbfree

1,n ), C 7→
⊕

n∈ZC[2n],

where [n] is the notation for the homological shift and C is the complex of locally-
free sheaves.

Clearly, not all objects in Dper
Tsc

(Hilbfree
1,n ) are foldings of bounded complexes.

However, as explained in the previous sections ScoxS
= Fold(KcoxS

), where formula
(5.1) for KcoxS

is interpreted as a tensor product of bounded complexes. Let us
call the two-periodic complexes in the image of Fold unrollable.
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It is an interesting question for which β ∈ Brn the corresponding two-periodic
complex Sβ is unrollable. For example, a two-periodic complex for the half-twist
on three strands β = σ1 · σ2 · σ1, the two-periodic complex Sβ does not appear to
be unrollable, see [OR18b].

Let us define Db
Tsc

(Hilbfree
1,n )even to be the derived category of bounded complexes

of Tsc-equivariant complexes of coherent sheaves with Tsc-invariant differentials.
There is a shifting functor that relates the last two categories:

Sheven : Db
Tsc

(Hilbfree
1,n )→ Db

Tsc
(Hilbfree

1,n )even,
⊕

iCi 7→
⊕

it
i · Ci,

where C = (
⊕
Ci, D), D : Ci → Ci+1.

In the context of the paper, the relevant example is Sheven(KcoxS
) = Keven

coxS

where we interpret formula (5.2) for Keven
coxS

as tensor product of bounded complexes.
That motivates us to define a super-polynomial of four-variables. Suppose Sβ =

Fold(Ŝβ), Ŝβ ∈ Db
Tsc

(Hilbfree
1,n ) for some β ∈ Brn then we define

P(β) =
∑
i,j

hj dimq,t Hj(Sheven(Ŝβ ⊗∧iB)).

Thus P(β) is a common generalization of P(L(coxS ·δ
~k)) and of Peven(L(coxS ·

δ
~k)):

P(L(coxS · δ
~k)) = P(coxS · δ

~k)|h=t−1 ,

Peven(L(coxS · δ
~k)) = P(coxS · δ

~k)|h=−1

(6.1)

Proposition 6.4.1. The following statements are equivalent:

(1) Peven(L(β)) = P(L(β)),
(2) P(β) = P(L(β)),
(3) P(β) = Peven(L(β)),

(4) Hj(Sheven(Ŝβ ⊗∧iB)) = 0 for j 6= 0 for all i.

Proof. The last three conditions are formally equivalent. Also the last condition
implies the first one. Let us show that the first condition implies the last one. In-
deed, Peven(L(β))|t=1 = P(L(β))|t=1 implies vanishing of Hj(Sheven(Ŝβ ⊗ ∧iB))
for odd j. Thus both Peven(L(β)) and P(L(β)) are the sums of monomials of q
and t with positive coefficients. Hence formula (6.1) implies the statement. �

As explained above, the super-polynomial Peven(L(coxS ·δ
~k)) can be computed

by localization technique. Moreover, using different methods we show in [OR18a]
the following.

Proposition 6.4.2 ([OR18a]). For any ~k ∈ Z>0 such that k1 > k2 > · · · > kn−1,
there is M such that for any m > M , we have

P(δ
~k · FTm) = Peven(δ

~k · FTm).

Thus the combination of the last proposition and Proposition 6.3.2 implies
Theorem 1.0.3.
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6.5. Conjectures

Motivated by the previous section we state some vanishing conjectures for super-

polynomial P(cox · δ~k).

The structure sheaf of H̃ilb
free

1,n twisted by a B-character χ descend to a line

bundle on Hilbfree
1,n . Let us denote this line bundle by L~k. The line bundle L~1

corresponds to FT . Based on the discussion in [GNR20] and constructions in
[OR18a] we propose the following.

Conjecture 6.5.1. For any ~k ∈ Zn−1
>0 such that ki ≥ ki+1 − 1, i = 1, . . . , n − 2,

there is M such that Hj(Sheven(L~k+r~1 ⊗ Ŝcox) ⊗ ∧iB)) = 0 for any i, j 6= 0 and
r > M .

As we mentioned before, for any m,n, (m,n) = 1, there is ~k such that L(cox ·
δ
~k) = Tm,n is an m,n torus knot. Previous studies of the homology of torus

knots and the related combinatorics allow us to provide an evidence for the above
conjecture.

Proposition 6.5.2. Suppose L(cox · δ~k) = Tm,n, then Conjecture 6.5.1 holds.

Proof. It was shown in [OR20] that for any β ∈ Brn, P(L(β)) is equal to the
super-polynomial for the Khovanov–Rozansky homology. On the other hand, the
Khovanov–Rozansky super-polynomial for Tm,n was computed in [HM19] and it
is shown in [Mel21] that this super-polynomial is equal to the super-polynomial
from Proposition 6.3.2.

Finally, let us notice that L(cox · δ~k+r~1) = Tm+rn,n Thus we have the equality

P(L(cox · δ~k+r~1)) = Peven(L(cox · δ~k+r~1))

for all r ≥ 0 and the statement follows from Proposition 6.4.1. �
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[GNR20] E. Gorsky, A. Neguţ, J. Rasmussen, Flag Hilbert schemes, colored projectors
and Khovanov–Rozansky homology, Adv. Math. 378 (2020), 52–163.

[GORS14] E. Gorsky, A. Oblomkov, J. Rasmussen, V. Shende, Torus knots and the
rational DAHA, Duke Math. J. 163 (2014), 2709–2794.

[Hai02] M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme
of points in the plane, Invent. Math. 149 (2002), 371–407.

[HM19] M. Hogancamp, A. Mellit, Torus link homology, arXiv:1909.00418 (2019).

[Hog17] M. Hogancamp, Khovanov–Rozansky homology and higher Catalan sequences,
arXiv:1704.01562 (2017).

[Jon87] V. Jones, Hecke algebra representations of braid groups and link polynomials,
Ann. of Math. 126 (1987), 335–388.

[KR08a] M. Khovanov, L. Rozansky, Matrix factorizations and link homology, Funda-
menta Math. 199 (2008), 1–91.

[KR08b] M. Khovanov, L. Rozansky, Matrix factorizations and link homology II, Geom.
Topol. 12 (2008), 1387–1425.

[Mel21] A. Mellit, Toric braids and (m,n)-parking functions, Duke Math. J. 170
(2021), 4123–4169.

[Mel22] A. Mellit, Homology of torus knots, Geom. Topol. 26 (2022), 47–70.

[OR17] A. Oblomkov, L. Rozansky, Affine braid group, JM elements and knot homo-
logy, Transform. Groups 24 (2017), 531–544.

[OR18a] A. Oblomkov, L. Rozansky, Categorical Chern character and braid groups,
arXiv:1811.03257 (2018).

[OR18b] A. Oblomkov, L. Rozansky, Knot homology amd sheaves on the Hilbert scheme
of points on the plane, Selecta Math. 24 (2018), 2351–2454.

[OR20] A. Oblomkov, L. Rozansky, Soergel bimodules and matrix factorizations,
arXiv:2010.14546 (2020).

[Orl04] D. O. Orlov, Triangulirovannye kategorii osobennoste� i D-brany v
model�h Landau–Ginzburga, Trudy Matem. inst. im. V. A. Steklova
246 (2004), 240–262. Engl. transl.: D. O Orlov, Triangulated categories of
singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst.
Math. 246 (2004), 227–248.

[ORS18] A. Oblomkov, J. Rasmussen, V. Shende, The Hilbert scheme of a plane curve
singularity and the HOMFLY homology of its link, Geom. Topol. 22 (2018),
645– 691.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.


