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Abstract. A Coxeter link is a closure of a product of two braids, one being a quasi-
Coxeter element and the other being a product of partial full twists. This class of
links includes torus knots T, j, and torus links T}, ;. We identify the knot homology
of a Coxeter link with the space of sections of a particular line bundle on a natural
generalization of the punctual locus inside the flag Hilbert scheme of points in 2.

1. Introduction

In the seminal paper [Jon87] Jones introduced what would be later called the
HOMFLY-PT polynomial invariant P(L) of a link L in R3. Besides the definition,
the paper has many amazing results and computations. In particular, Section 9
of [Jon87] contains a proof of a formula for the HOMFLY-PT invariant of torus
knots Ty, . Later, the HOMFLY-PT invariant was upgraded to the homology
theory [KRO8a], [KRO8b]. In this paper, we demonstrate that the Jones formula
has a natural generalization to the homology theory for a special class of torus
links.

Consider the plane C? with the action of the group C* denoted as Coi A (z,y) =
(A2, \~2y). This action extends to the Hilbert scheme Hilb,,(C?) which is a variety
of ideals I C Clz, y] of codimension n. The tautological vector bundle B whose fiber
over [ is the vector space dual to C[z,y]/I is naturally C;-equivariant. Combining
the localization formula of Atiyah and Bott [AB83] with the result of Haiman
[Hai02] we get an algebro-geometric version of the Jones formula:

P(Tysknn) = »_ dim, (H(Hilb,(C?), 0z ® LF @ \'B)) o,
=0
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where Z C Hilb,(C?) is the punctial Hilbert scheme consisting of ideals I with
support at (0,0) € C2, and dim, is the dimension graded by C,-weights.

Many authors [AS12], [GN15], [GORS14], [ORS18] suggested that the Poincare
polynomial & (T14kn,n) of the triply graded HOMFLY-PT homology [KRO08al,
[KRO8b] has a similar interpretation if one augments the action of C; to that of
Ty = C; xCy, where Cy: p- (2, y) = (, u2y), and uses the C; i-weighted dimension:

P (Tiknn) Zdlmqt *(Hilb,, 0z ® L* ® N'B)) a’ (1.1)

While we were finishing the preprint of this paper, M. Hogancamp published a
proof of the conjecture [Hogl7], [Mel22]. He used the construction of the HOMF-
LYPT homology via Soergel bimodules and matched combinatorics of the comple-
xes of bimodules that appear in knot homology of torus knots with the combina-
torics of the generalized Catalan numbers, the latter related to the sections of L*
by a combination of the results [CM18], [Mel21], [Hai02].

The paper [Hogl7] is a real tour de force in combinatorics and homological
algebra, however it does not provide a natural explanation for the appearance
of Hilb(C?) in knot homology. When the conjecture (1.1) appeared, the available
constructions for triply graded homology had no obvious connections with coherent
sheaves on this variety.

A direct relation between the triply graded knot homology and Cj ;-equivariant
coherent sheaves on Hilb(C?) was established by the authors [ORle] (see also the
paper [GNR20] where a K-theoretic version of this relation is suggested). Recently,
it was also shown [OR20] by the authors that the link homology from [OR18b]
coincides with the Khovanov—Rozansky link homology [KR08a].

From the papers [OR18b], as well as [GN15], [GNR20], it is clear that the
natural home for the algebro-geometric version of the HOMFLY-PT homology is
the category of the quasi-coherent sheaves on the nested Hilbert scheme Hilb, ,,
parameterizing chains of ideals Iy D Iy D --- D I, with support of I;/I;11 being
a point on the line y = 0. There is a natural analog Z; , of the punctual Hilbert
scheme Z in the nested case which consists of the chains of ideals with the support
of I;/I;41 at (z,y) = (0,0). However, the natural analogue of Oz turns to be the
Koszul complex of the defining equations for Z; ,, which we denote by [0z, , |¥'* and
define in Section 4. Finally, the weights of Cj-action are combined with homological
degree which means that all differentials have Cj-weight one and the variable y
has homological degree two.

The main result of this paper is the following.

Theorem 1.0.1. For any positive n, k we have
P (T 1knn) Z dimg ¢ (H* (Hilby 0, [0z, ,]'" @ LF @ A'B)) o'

where & is the Poincare polynomial for the triply graded homology*.

n this paper we use the term “the triply graded homology” for the homology theory
from [OR18b]; it is shown in [OR20] that the homology from [OR18b] are isomorphic to
the triply-graded homology of [KR08a].
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This paper is a natural continuation of our previous papers [OR17], [OR18b].
In the second paper we prove the relgtion betxiveen the homology of the closure
L(B) of B € Br,, and of closure of 3-8* where 6* := []_, 6/ is the product of the
JM elements

— 2 ;o
(Si = 0044101044104, ’L—L...,n—l,

where o; are the standard generators for the braid group Bt,,. The above mentioned
formula for the homology of Tiyyy ., is obtained by applying result of [OR17] for
B =01 0n-1 and ky =... =k, = k. To apply the result of [OR17] we need
to analyze the sheaf-theoretic object that the theory from [OR18b] assigns to the
braid g which we call the Coxeter braid.

More generally, we study the sheaf-theoretic object that is attached by the
theory from [OR18b] to the general quasi-Coxeter braid:

H
COXg 1= HU“

igs
where S C {1,...,n — 1} is a subset and the product is taken in the descending
order of the indices. In particular, we identify the homology of the closure of
element coxg - 0% for any S and k. We call these closures Coxeter links. This is a
wide class of links which includes the torus links T, ,,, (m,n) = 1. The class also
contains the torus link T}, gy

The Khovanov-Rozansky homology of the links 7, ,; and knots T, ; were
studied in [EH19] and in [Hogl7], [Mel22], and it would be interesting to make
a connection between our results and technique of these papers.

The nested Hilbert scheme Hilb; ;, carries a natural line bundle £; whose ﬁber
over I, is the quotient I;/I; 1. For any subset S C {1,...,n— 1}, we define Z n
Hilb; ,, to be a subscheme defined by the condition supp( Z,l/I ) = supp({, /Iz+1))
for all i ¢ S. We prove the following.

Theorem 1.0.2. For any S C {1,...,n—1} and k € Z",
2 (L(coxs - 6%) Zdlmq . ( (Hilby , [0z [ @ L5 @ Al B))

We prove this theorem in Sections 3 and 4. We also provide some short overview
of the methods of [OR18b] in Section 2. If the vector k is sufficiently positive, we
can use Atiyah—Bott localization [AB83] to compute the graded dimensions in this
formula similar to the one from [GNR20], see Theorem 1.0.3 below.

It turns out that the localization approach only works under some vanishing
conditions on the sheaf homology like in [Hai02]. In Section 6 we show that the
casiest version of the vanishing condition [OR18a] implies the following.

Theorem 1.0.3. For k € Z~q such that k1 > kg > --- > k,_1, there is M such
that we have the following explicit formula for the knot invariant:

L0 = Y 0QT,a) Q-0 Tu®)

peHilbT

1,n
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where Q = ¢?/t2,T = t2, b= E+TT, = (1,...,1), r > M, and the weight  and
vectors we(p) can be explicitly computed and depend only on p.

The formulas for Q,(Q,T,a) and we(p) are given in Section 6 and theorem
is proved at the end of Section 6.4. We conjecture that the theorem can be
strengthened in two direction: we can replace the Coxeter braid 1 = COX{1,...n—1}

by any Coxeter braid coxg and we give a precise criterion for the vector k to be
sufficiently positive. We formulate these conjectures in Section 6.5 and provide
evidence in their support. Note that the weight €2, appears to be equal to the
localization weight from the main formula of [GN15].

We do not expect a simple localization formula for the Poincare polynomials of
nonpositive links. The examples of such links are discussed in Sections 5 and 6.

The first author was lucky to have an advice of Jim Humphreys on multiple
subjects of mathematics. In particular, quasi-Coxeter braids were suggested by
Jim as a class of braids that tends to lead to more computable objects. This
suggestion was a starting point of this paper.
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2. Matrix factorizations and knot invariants

The construction of link invariants in [OR18b] is based on a homomorphism
from the braid group to a special monoidal category of matrix factorizations. The
main result of this paper follows from the explicit computation of the images of
Coxeter braids.

2.1. Matrix factorizations

Matrix factorizations were introduced by Eisenbud [Eis80] and further developed
by Orlov [Orl04], see [Dyc11] for a review. Here we present only the basic definitions
and omit proofs.

The category of matrix factorizations MF(Z, W) is a triangulated category
based on an affine variety Z and a function W € C[Z]. An object of this category
is a Zo-graded free C[Z]-module M = My & M, of finite rank equipped with a
degree one endomorphism D called a curved differential:

F=(My®M,,D), D:M;— My, D?=Widyy.

Given F = (M, D) and G = (N, D’), the linear space of morphisms Hom(F, G)
consists of the homomorphisms of C[Z]-modules ¢ = ¢¢ B ¢1, ¢; € Hom(M;, N;)
such that ¢o D = D’ o ¢. Two morphisms ¢, p € Hom(F,G) are homotopic if there
is homomorphism of C[Z]-modules h = hg ® hy, h; € Hom(M;, N;;+1) such that
¢p—p=D'oh—hoD.
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In the paper [OR18b], we introduced a notion of the equivariant matrix facto-
rizations which we explain below. First, recall the construction of the Chevalley—
Eilenberg complex.

2.2. Chevalley—Eilenberg complex
Suppose that b is a Lie algebra. Chevalley-Eilenberg complex CEjy is the complex
(Va(h),d) with V,(h) = U(h) ®c APh and differential dce = di + d2 where

P
di(u®@ 1A - ANxp) :Z(fl)iﬂum@xl/\~~~/\§c\i/\~~/\xp,
i=1
dy(u@my A Aap) = (1) u@ i) Awy A AT A AT A Ay
i<j
Let us denote by A the standard map h — h ® b defined by z — z® 1 +
1 ® x. Suppose V and W are modules over the Lie algebra §. Then we use
A

notation VW for the h-module which is isomorphic to V ® W as vector space,
the h-module structure being defined by A. Respectively, for a given h-equivariant
A

matrix factorization F = (M, D), we denote by CEy®F the h-equivariant matrix

factorization (CE;,(%]: , D+d.c). The h-equivariant structure on CE;](%J—' originates
from the left action of U(h) that commutes with the right action of U(h) used in
the construction of CEj.

A slight modification of the standard fact that CEj is the resolution of the

A
trivial module implies that CE,®M is a free resolution of the h-module M.

2.3. Equivariant matrix factorizations

Let us assume that the Lie algebra h acts by derivations on the ring of regular
functions on Z and F is a function anihilated by h. Then we can construct the
following triangulated category MFy(Z, W).

Definition 2.3.1. The objects of the category MF(Z, W) are the triples:
F=(M,D,0), (M,D)eMF(Z,W)
where

M=M°eM', M'=C[Z]@ V", V'eMody, d€ @) Home(z(A'h ® M, N'h @ M),
i>]

and D is an odd endomorphism D € Homg(z](M, M) such that

D? =Widy, D2, =Widy, Dioy =D +de+ 0,

A
where the total differential Dy is an endomorphism of CE,®M, that commutes
with the U(h)-action. The morphism 0 is called correction differential.

Note that we do not impose the equivariance condition on the differential D
in our definition of matrix factorizations. On the other hand, if ¥ = (M, D) €
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MF(Z,W) is a matrix factorization with D that commutes with h-action on M,
then (M, D,0) e MF(Z, W). We call such matrix factorization strictly equivariant.

Given two h-equivariant matrix factorizations F= (M, D, d) and F= (1\7 D 5)
the space of morphisms Hom(F, F ) consists of homotopy equlvalence classes of
elements W € Homg(z)s (A*h @ M, A*h ® M) such that W o Dyo; = Dios 0 ¥ and

¥ commutes with U(h)-action on CE;,®M. Two map ¥, ¥’ € Hom(F,F) are
homotopy equivalent if there is

h e HOIIl(C (CEb®M CEI’J@M)

such that ¥ — ¥/ = f)tot o h+ ho Dy and h commutes with U(h)-action on

CEy&M.

Given two b-equivariant matrix factorizations 7 = (M, D,0) € MFy(Z,W)
and F = (M,D,0) € MFy(Z, W), we have F @ F € MFy(Z, W + W) as the
equivariant matrix factorization (M @ M, D + D,d + ).

2.4. Push forwards, quotient by the group action

The technical part of [OR18b] is the construction of push-forwards of equivariant
matrix factorizations. Here we state the main results, the details may be found in
Section 3 of [OR18b]. We need push forwards along projections and embeddings.
We also use the functor of taking quotient by group action for our definition of the
convolution algebra.

The projection case is more elementary. Suppose Z = X x ) and b acts by
derivations on C[X] and C[Y] and the projections 7 : Z — X respects these actions.
Then for any h-invariant element w € C[X]" there is a functor 7.: MFy(Z, 7*(w))
— MFy (X, w) which simply forgets the action of C[Y].

We define an embedding-related push-forward in the case when the subvariety

Zy <% Z is the common zero of an ideal I = (f1,-.-, fn) such that the functions
fi € C[Z] form a regular sequence. We assume that the Lie algebra h acts on C[Z]
and [ is h-invariant. Then there exists an h-equivariant Koszul complex K(I) =
(A*C™ ® C[Z],dk) over C[Z] which has nontrivial homology only in degree zero.
Then in Section 3 of [OR18b] we define the push-forward functor

ju: MFy(Z0, W|z,) — MFy(Z, W),

for any h-invariant element W € C[Z]".

Finally, let us discuss the quotient map. Let H be a group acting on Z such
that Lie(H) = h and C[Z]Y is finitely generated. The complex CEy is a resolution
of the trivial h-module by free modules. Thus the correct derived version of taking
h-invariant part of the matrix factorization F = (M, D,9d) € MFy(Z,W), W €
C[Z]Y is

CEy(F) := (CEy(M), D + dee + 0) € MF(Z/H, W),

where Z/H := Spec(C[Z]") and use the general definition of h-module V:

A
CE{,(V) = Homh(CEh, CEU(X)V)
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2.5. Convolutions on reduced spaces

Let us use notation B for the standard upper-triangular Borel subgroup of G,, =
GL,, and T C B for the diagonal maximal torus. We treat B-modules as T-
equivariant n = Lie([B, B])-modules. For a space Z with B-action and for W €
C[Z]B, we define MFg(Z, W) as a full subcategory of MF,(Z, W) whose objects
are matrix factorizations (M, D, ), where M is a B-module and the differentials
D and 0 are T-invariant. The category MF g.(Z, W) has a similar definition.

Let H; C Gy, i = 1,...,¢ be the subsets preserved by the left and right B-
action. The backbone of the constructions of the knot invariant from [OR17] is the
study of the category of matrix factorizations on the spaces

Xo(Hy,...,Hy 1) :=bx Hy x---xHy_y Xn
with the following B‘-action and potential W:
(b1, b0) - (X, 91,901, Y) = (Ady, (X), brgiby ', bagoby ', ..., Ady, (Y)),
WX, 91,..-,90,Y) = Tr(XAdY), g=g1...9¢
If £ =1 then W, = 0. Also for brevity we use notation
o= TG, Gy C), T =TV,
The space X;(Hq, ..., Hy_1) carries a natural C; x Cf = Tyc-action:
AR (X, g1,.90Y) = (N2X, g1,..., AT2R2Y).

The categories that we use in [OR18b] are the subcategories MF?; (X, W)
C MF g (X, W,) that consist of the matrix factorizations which are equivariant
with respect to the action of Ty, and G-invariant. In particular, the space X
has the BZinvariant potential: W(X,g,Y) = Tr(XAd,(Y)), and the category
MF s (X5, W) has a structure of the convolution algebra [OR18b] that we outline
below.

There are the following maps 7;; : X3 — X

T12(X, g12, 913, Y) = (X, 912, Adgyy (Y)+4),

m13(X, 912,913, Y) = (X, 912923, Y),

Ta3(X, 912,913, Y) = (Ad, L (X) 4, g2s,Y). (2.2)
Here and everywhere below X, and X, stand for the upper and strictly-upper
triangular parts of X. The map 712 X a3 is B2-equivariant but not B3-equivariant.

However, in Section 5.4 of [OR18b] we show that for any F,G € MF%;S (X2, W),
there is a natural element

(T12 ®©p Ts)" (F K G) € MF g5 (X3, 735(W)), (2.3)

(2.1)

such that we can define the following binary operation on MFIB;SZC (Xa, W):

F %G :=T13:(CEq2) ((T12 ®p Ta3)" (F X g))T(Z)).

Instead of going into details of the construction of the convolution algebra let us
explain the induction functors [OR18b] that provide us with an effective method
of computing of the convolution product.
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2.6. Induction functors

The standard parabolic subgroup Py has the Lie algebra generated by b is and
Eiir1., 1 # k. Let us define the space X2(Py) := b x Py x n and let us also use the
notation Xy for X5 (G, ) There are a natural embedding i : Xo(Py) — Xg and a
natural projection p, : Xo(Py) — X2(Gr) X X2(Gp_k). The embedding iy, satisfies
the conditions for existence of the push-forward and we can define the induction
functor

indy, ;=i 0P} MFTw(XQ(Gk) W) x MFTs (X3(Gnoy), W)
n—k
—MFLs (Xo(Gy), W).

Similarly we define the space X5 (Pr) C b x P, x n x V as an open subset
defined by the stability condition

C(X,Ad'(Y)u=V, (X,9,Y,u)€bxP,xnxV. (2.4)

The latter space has a natural projection map p,, : jg’fr(Pk) — EQ(G;@) X
X2 6:(Gn—r) and the embedding iy, : Xo g (Px) — X2.#(Gr), and we can define the
induction functor

indy =i 07} : MFT“(XQ(Gk) W) x Mnggik(Tg t(Gri), W)

— MFT“(XQ (Gn), W).

It is shown in Section 6 (Proposition 6.2) of [OR18b] that the functor indy is
the homomorphism of the convolution algebras

mk(}] X fg);mk(gl X gg) = mk(]:.l * Gy X fg;gg).
Let us define B2-equivariant embedding
) TQ(Bn) — ?27 ?2(3) =bx B xn.

The pull-back of W along the map 4 vanishes and the embedding i satisfies the
conditions for existence of the push-forward

« t MF L5 (X2(B,,),0) — MF L5 (X2(G), W).

We denote by C[X5(B,)] € MF L5 (X2(B,),0) the matrix factorization with zero
differential with the support only in even homological degree. As it is shown in
[OR18b, Prop. 7.1] the push-forward

1, = i(C[X2(Bx)])

is the unit in the convolution algebra.

Using the induction functor and the unit in the convolution algebra we define
the insertion functor that inserts matrix factorization of smaller rank inside the
higher rank one:

Indj 41 : MFL, 5 (X2(Ga), W) — MFT“ (X2(G), W),
mhkﬂ(}") = indk+1(indk_1(]lk_1 X f) X in—k—l)-
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2.7. Generators of the braid group

Let us first discuss the case of the braids on two strands. The key to construction of
the braid group action in [OR18b] is the following factorization in the case n = 2:

W(X,9,Y) = y12(g11 (w11 — T22) + g21712) g1/ det,

where det = det(g) and

g1 912 T11  T12 0 w12
g {921 922] ’ [ 0 x22] ’ {0 0 ]

Thus we can define the following strongly equivariant Koszul matrix factorization:

E"1‘ P ((C[Yz] ® /\<6>’Da070) € MFEEC(?27W))

D= g12Y12

0
dot 0+ (g11(z11 — 22) + g21%12) =

09’
where A(f) is the exterior algebra with one generator.

This matrix factorization corresponds to the positive elementary braid on two
strands.

Using the insertion functor we can extend the previous definition on the case of
the arbitrary number of strands:

Ci) = Indk7k+1(C+).

Section 11 of [OR18b] is devoted to the proof of the following braid relations
between these elements:

e ze

e e sett e,

Let us now discuss the inversion of the elementary braid. In view of the inductive
definition of the braid group action, it is sufficient to understand the inversion in
the case n = 2.

Let us fix the notation for the characters of By. For h € Lie(Bs), we define
€;(h) = h;; where h;; it the i-th diagonal of the upper-triangular matrix h. Let us
choose x; = ae; + bey and x,- = cey + deg, then given By X Bs-equivariant module
M, we define M {x;, x») to be the module with the same underlying space and the
action of the first copy of Bs twisted by x; and the action of the second copy of
B twisted by x,. We use same convention for the matrix factorization: F{x;, x)
is the matrix factorization F with the (x;, x,)-twisted B3-equivariant structure of
the even part of the underlying free module.

Thus we define

C_ = 6+<—61, €2> c MFEEC (?2(G2),W),

respectively, we define 6(_16) := Indj, 1+1(C-). It is shown in [OR18b, Sect. 9] that

@(_k) is inverse to Ef).
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2.8. Koszul matrix factorizations

The generators of the braid group from the previous subsection are examples of the
Koszul matrix factorizations. Let us remind a general definition of Koszul matrix
factorizations and elementary transformation of the Koszul matrix factorizations.
More details on Koszul matrix factorizations in the form relevant to the current
paper could be found in [OR18b].

Suppose Z is a variety with the action of a group G and F is a G-invariant
potential. An object of the category MFss (2, F) is a free B?-equivariant Zy-graded
C[Z]-module M with the odd G-invariant differential D such that D? = F1,,. In
particular, a free G-equivariant C[Z]-module V' with two elements d; € V, d, € V*
such that (v, w) = F' determines a Koszul matrix factorization K(V;d, d;) = A*V
with the differential Dv = diy Av 4+ d; - v for v € A*V. We use a more detailed
notation by choosing a basis 64,...,0, € V and presenting d; and d, in terms of
components: dj = a1ty + -+ anby, dr = 0107 +--- + 5,05,

ay b1 91
K(Vidide)= |+ ¢ (2.5)

Gy bn gn

The structure of G-module is described by specifying the action of G on the basis
01,...,0,. In some cases when G-equivariant structure of the module M is clear
from the context we omit the last columns from the notation. We call a matrix
presenting Koszul matrix factorization Koszul matrix. For example, if we change
the basis 01,...,0, to the basis 6i,...,0; +cl;,...,0;,...,0, the i-th and j-th
rows of the Koszul matrix will change as follows:

a; bl 97 ey a; + ca; bl 97 + ct9j
i a; bj — Cbi Hj

Suppose ay,...,a, € C[Z] is a regular sequence and F € (ay,...,a,). We can
choose b; such that F = ZZ a;b; and d) and d, are as above: dj = a1601 + - - - anby,
dy = 0107 +- - -+b,07 . In general, there is no unique choice for b; but all choices lead
to homotopy equivalent Koszul matrix factorizations (in the nonequivariant case
they would be simply isomorphic). In other words, if b} is a another collection of
elements such that F' = > a;b; and d. = 0,07 4 -- - + 0,07, then [OR18b, Lem. 2.2]

implies that the complexes K(V;dj,d,) and K(V;d),d.) are homotopy equivalent.
Thus from now on we use notation K¥ (ay, ..., a,) for such matrix factorization.

3. Coxeter matrix factorization

In the previous section we outlined the definition of the convolution algebra
on the category of matrix factorizations. In particular we explained that for any
element § € Bt,, we can associate a matrix factorization

Co=C 5. x0™)

where 8 =o}! .-+ -0}l is an expression for 3 is terms of elementary braids.
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We could not expect a simple formula for Cs for a general element 3 € Bt,,. In
particular, as one can see from the computations in [OR18b, Sect. 11] the matrix
factorizations Cp is not always Koszul. Thus it is a bit surprising, at least for us,
that for the Coxeter braid matrix factorization, Cg is Koszul and quite simple.
To describe the answer we need the following coordinates on the space Xy =
b, x G, X n,:

X = (zij)i<is 9="(955), Y = (¥ij)i<;-
: S ; o 1,0 (4) (1) (i) ;

Let us introduce i x i matrix M; := [g,' Qs--29ei 15 Xe;] Where v') is an
abbreviation for the vector consisting of first ¢ entries of v € C™ and X=X-
x111d,,. Respectively, we define functions F; := det(M;11) € C[b x G] and the ideal
Ir C C[X5] generated by these functions F;, i =1,...,n — 1.

Proposition 3.0.1. Consider the ideal Iy = ({gs;}i—j>1) in C[X2]. Then the ideal
Ieox := Ig + Ip contains W.

Proof. We show below that the above equations imply that

Indeed, the ideal I, defines the sublocus Hess of Hessenberg matrices of G,. On
the other hand if g € Hess then the condition F; = 0 implies that the column
X.7H_1 is a linear combination of the columns ge 1,...,¢e:. Let us denote by K
the matrix of these coefficients. Then we have K is strictly upper-triangular and
X=9 K.

Hence, Adg_l()? ) = K - g but the product of the Hessenberg matrix and strictly
upper-triangular matrix is upper-triangular. [

Proposition 3.0.2. The functions {gij}i—j>1,F1,...,Fn_1 form a regular se-
quence in C[b x G]

Proof. We proceed by induction. We assume that {g;;}i—j>1, Fi,..., Fh_2 form a
regular sequence. Then we observe that G, is covered by the open sets U; defined
by g; = det(A;,) # 0 where A;;, is the minor of M,, obtained by removal of the
in-th entry. It is enough to show regularity at every open chart. But in the chart
U; we have F,/g; = Xin + ... and F;, i < n do not depend on X, n- Hence the
regularity follows. O

Thus we can apply [OR18b, Lem. 2.2Lto imply that there is a unique up to

homotopy Koszul matrix factorization K" ({g;;}i—j>1, F1,- ., Fn—1) and we show
the following.

Theorem 3.0.3. There is a strictly equivariant Koszul matriz factorization that
realizes Ceox -

Ecox = KW({gij}ifj>1aFla ceey Fn71)~

The construction of the induction functors implies the following.
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Corollary 3.0.4. ForanyS C {1,...,n—1}, we have a strictly equivariant matriz
factorization

Coors = K" ({915 }ijess {Fi}igs) € MFEs (X2(G,), W),

where S" = {(i,7) }i—j>1 U{(i,i + 1) bies.

Before we proceed to the proof let us describe the most efficient method of
computation of the matrix factorization corresponding to the braid 8 = a - oy,
from already known C,. The justification of the construction is given in [ORI18b,
Sect. 8].

Indeed, consider F = (M,D;,0,,0,) € MFTSC( 2(Gp), W) where 0,0, €
Homc[fz(Gn)] (A*n®@M, M) are correcting differential for the equivariant structure;
0, corrects equivariance for the first copy of B and 9, for the second copy. Respecti-
vely, C. = (R?, D5,0,0) € MFT“C( (G3), W) is the strongly equivariant matrix fac-

torization corresponding to the elementary braid of; here R, is the ring C[X'5(G2)]
with the appropriately twisted B3-structure.

The auxiliary space Xg(Gn, Gik+1) = by X G X Ga X0y, is naturally embedded
into the convolution space X5 via the map U1 = 1d% x i, kg1 X Id where
ik ki1 * Ga2 = Gy is the embedding of G as 2x 2-block with entries at the positions
ij with 4, j € {k,k+1}. Hence we can restrict the maps 7,; on the auxiliary space
and we can also endow the auxiliary space with the B, x Bs X B,-equivariant
structure by restriction from the large space.

The maps 7;; are B2-equivariant but not Ba-equivariant, thus a priori the tensor
product 755 (F) @ 7a5(Ce) has only B2-equivariant structure. But as explained in
[OR18b, Sect. 8] there is a natural B,, x By X Bjp-equivariant matrix factorization
G that could be imposed on 5 (F) ® Tas(Ce):

G = (T12(M) @ T53(R.), T12(D1) + Ta3(D2); 91, 0, + ', 0)
where 8. € Homp, (ne © M/, M"), M’ = M & M = 75y(M) ® Tis(R.), Ry =

C[X3(Gy, Gk k41)] is the restriction of the map 9, on the subalgebra ny and 9’ €
Hompg, (ny ® M’, M’) is defined by the formula

omis(D1) = ~ omas (D omss(D
R LIV ( io(D2) _ Ois(D2) ) |
Iy ey OX ik OXj 1 k41
where X2 = Adg,, (X ), Y2 = = Ady,,(Y) and X, g12, g23,Y are the coordinates on
X3(Gr, G t1)-
The key observation about this matrix factorization is that up to homotopy we
have (see [OR18b, Sect. 8])

Cp = T13+(CEn, (G)").

Thus we reduce the complexity of the computation of matrix factorization Cg; we
only need to analyze the rank one Chevalley—Eilenberg complex for ny and we use
this method in our proof.



HOMFLY-PT HOMOLOGY OF COXETER LINKS

Proof of Theorem 3.0.3. Let us first notice that the case n = 2 of the theorem
is a tautology. The case n = 3 was proven in [OR18b, Sect.10]. For general n,
our inductive argument is essentially identical to the computation from [OR18b,
Sect. 10].

Let a = cox,,—1. Then by the induction and the corollary we have a presentation
of Cq as a strongly equivariant Koszul matrix factorization. As induction step we
need to analyze the equivariant matrix factorization Cia := 755(Co) ® Ta3(Cy)
(with the Bs-equivariant structure discussed before this proof) on the auxiliary
space X3(Gp, Gn-1n)- B

We introduce coordinates on our auxiliary space X3(Gp,Gr—1,) as follows:
X3(Gn,Gro1n) = {(X, 912,923, Y)}. Since X3(Gp,Gn_1,) is a subspace of the
space X3(Gp, G,,), we can define the maps 712, 713 : X3(G, Gn-1n) = X5 (Gr) by
formulas (2.1). Respectively, we define the map a3 : X3(Gp, Gn1.,) — X2(G2)
by composing the map from (2.2) with the projection b,, X G3 X n,, — ba X G3 X na.

To simplify notations we set

g12 = a, go3 = b, 913 = g12923 = C.

That is g12 = (aij)ijenns 923 = (bijijenn), and by = & if i, < n — 1.
Respectively, we have g13 := g12923 = (¢ij)i jeq1,n] and

5{:2 = Adg_ll2 (X) = (iij)i,je[l,nb 5}2 = Adg23 (Y) = (gi,j)i,je[l,n]-

We also use shorthand notations A, = det(a), Ap = det(b), A, = det(c).
The matrix factorization C4s is the Koszul matrix factorization

Cyp = KTizW) ({aij}ijes”7 {Fi(X, a)}ie[l,nfﬂaf))

where f:=(Zn—1,n-1—Tnn)bn—1n-1+Tn—1nbnn-1 and S’ ={i—j>1}U{(n,n-1)}.
Next let us notice that ae; = Ce i, © < n — 2 and since F;(X,a) depends on Qe js
j <1 we obtain a presentation of the complex C45 as a tensor product

K" ({eijtizis1 AF(X, Qicpn—2}) ® K" (ann-1,f),

where W’/ +W" = 755(W) and we can assume that W’ only depends on ¢, X but
not on b.

Let us denote the first term in the product by C}, and the second term by
C75. The complex Cfy is ng-invariant thus CE,,(C12) = Cls ® CE,,(Cl,) and
to complete our proof we need to analyze the last complex in the product. In
particular, we need to understand the ng-equivariant structure of the complex C15.

Let h be an element of By C B, that is h;; = 0 if (i,5) ¢ {(n,n),(n —1,n —
1), (n—1,n)}. The action of h on the space X(Gy, Gp—1,,) is given by the formulas

g2 — G12h™, gas > hgas,  Xo — AdpXo.

We denote by ¢ the element of Lie(Bs) corresponding to the (n — 1,n)-th entry
and below we investigate its action on the complex C75.
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First, let us notice that the function a,, ,,—1 is ne-invariant but the function fis
not. Thus the complex C7,, is not strongly n-equivariant and correction differentials
will appear. In more detail, we have

7 |:an,n—1 * 01:|
b)

12 = f % 92

where the action of n is given by
0(01) = kb3, 6(02) =0

for some function & € C[b x G] which we need to compute.

One way to approach the computation of k is to use differentials of the ns-equiva-
riant structure on C15 from the discussion before the proof and to derive a formula
for k by the careful analysis of the effects of the elementary transformations on
the differentials. However, we choose a different method: we follow the same path
as in the proof of [OR18b, Lem. 10.4]. Namely, the function k is uniquely defined
by the condition that a, ,—161 + f@g is d-invariant. Thus we only need to compute
o(f)- _

Instead of computing §(f) by brute force we use the following argument. First,
we present the matrix )j{2 as a_sum of the upper-triangular and strictly lower-
triangular parts: Xo = X5y + X5 __. Next, we observe that we have fb,,—1 =
_(Adg;e,;(%r)n,nfl and since §(by,,,—1) = 0 we obtain

3(f) = —0(Ady (Xo1),, oy /Ban.
On the other hand, Adg_;5 (X5) is d-invariant and thus we get
5(f) = 6(Ad™ (X)), oy /b1

A direct computation shows that AdgzS (X2 -1 = b2 1n-1Zn,n—1/8p and
since T, p—1 is 6-invariant while 6by_1 -1 = by p—1, We obtain

6(}7) = 2En,nflbnfl,nfl/Alr

Modulo relations from I, the matrix element (a™'),x, k < n is divisible by
ann-1: (@ V) = (=) "ay, 1 det(M:,’f 1(a))/A, where Mi’“jl(a) is the minor
of a obtained by removing i, j-th columns and k, l-th rows. By putting all formulas

together we finally obtain the following formula for k:
h==2bn-1n18, (( JunTnn + Z 1)F7 det Mg: 1(0))/Aa kalal7n—1)~
1=k

Let us denote by €,,—1, €, the generators for character group of Ba: €, (h) = hy .
We use the same notation for the characters of the torus T() = (C*)? C B,. Now
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recall that the action of torus 7® = (C*)2 ¢ B, C B on apn—1 and ]""V has

weights €, and €, 1 and respectively the weights of 6,0y are —e, and —e€,_1.
1

Thus 7®-invariant part of the complex CE,,(C7,) is of the shape

\,
\

[0102; —€n_1] @ €* [02;0] @ e*

where the expression [«; p] stands for Homp) (p, R)a, R = C[X (G, Gy n—1)] and
p is a character of T?); e* is a generator of nj = Hom(ny, C) = (e*). In the picture
the vertical dashed arrows are the Chevalley—Eilenberg differentials. The slanted
dashed arrow is the correction differential. Below we show that the left and right
dashed arrows are isomorphisms and can be contracted.

In the tensor product R=7}3(C[X3])®C[G2] the first term is By-invariant. Hen-
ce the vertical arrows in the diagram above compute homology H*(G2/Ba, O(k))
for the corresponding value of k. The value of k could read from the bottom side
of cube in the diagram: the entry [x; €2  €’]e* corresponds to k = a — b. After
contracting the vertical arrows we arrive to the diagram

H* (P, O(=2)) ® C[X,] == H*(P',0(~1)) @ C[Xy]

I 1

H* (P!, O(~1)) ® C[X] == H*(P", 0(0))C[X2].

Since only two vertices of the last diagram are actually nonzero we only need
to compute the diagonal arrow. The target of this arrow is H'(P',O(-2)) ®
7i3(C[AXs]) = Hiy (n, R[e,_1 — €,]), hence we can replace the coefficients of the
differential by the expressions that are homologous with respect to the differential
0. Below we take advantage of this observation. Indeed, note that

5bn71,n71 = bn,nfly 6bn71,n = bnn7
so, first, 5(b%_17n_1) = 2bp—1,n—1bn,n—1, hence b, _1 5,—1by, n_1 is exact and, second,
6(bn717n71bnn) = bnmflbnfl,n + bnfl,nflbn’ru

hence in view of by,—1,n—1bnn — bpn—1bn—1,n = Ap we find bagbzz ~ %Ab. Since
bu—1n-1a=c- (by_1,-1b71) we obtain

2bn—1,n—1ai,n—1 ~ Cin—1-
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Next, let us notice that since ae; = co,; for ¢ < n — 1, by expanding along the
(n — 2)-th column of the determinant in the definition of (a=!),,, we can use the
above homotopy equivalence and get

2bn—1,n—1(a71)nn ~ AcAgl(Cil)nn = Ab(cil)nnn

We can combine the last formula with the observation that M:Z,’k 1(a) = M::f 1(¢)
to obtain

E~ (Y nntnn + Z k+” det M;L k (c))/ACZxklclm,l.

Next, let us observe that if we collect all the terms in the last sum with | = n,
we obtain

n—1

D (e nk@rn = Fuoi(@,0)/Ac + (€ n(—2nn + 211)-

k=1

On the other hand, if we collect all the terms in the sum with [=s for s#n, we
get

CGn 1A 12 k+ndet n: 1( ))xk?
= (=1)*T" A7 (¢)cs,n—1 det(M, n_; (c)z11) mod (Fy_y).

Thus combination of the last two observations implies that modulo the ideal I, +
(Fy,...,F,_2) we have the following homotopy

k ~ ((Cil)nnxnn) + (Fn—l(xyc)/Ac + (Cil)nn(*xnn + 1’11))

n—1
+ (A tan ;(_1)%8087%1 det(M;72_1(0))) = Fuoi(w,0)/A .

Finally, let us remark that B? preserves F; and acts linearly on the generators
of I,. Thus KW ({gi;}i—j>1, F1, ..., Fn_1) is strictly B%-equivariant. [

4. Link homology computation

4.1. Link homology

In this subsection, we remind our construction for link invariant from [OR18b] and
its connection with sheaves on the nested Hilbert scheme.
The free nested Hilbert scheme Hilb?ree is a B x C*-quotient of the sublocus

n
—~—

Hllbfree C by, x n, x V, of the cyclic triples {(X,Y,v) | C(X,Y)v = V,,}. In other

—_~—

words, Hllbfree is the stable part of the product X';(G,,) x V,,. Also notice that the
correspondlng potential W7 vanishes on Xj.
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The usual nested Hilbert scheme Hilbfn is the subvariety of Hllbﬁrff, it is defined
by the commutativity of the matrices X, Y. Thus we have the pull- back morphism

—~

5 MFLs (Xa x Vi, W) — MF 5 (Hilb{'?, 0).

In more detail, the morphism j} can be only applied to B-equivariant matrix
factorizations. Thus to define j*(F) we need to pass from B2-equivariant structure
to B-equivariant structure. For that, we use the auxiliary B2-equivariant map
jB : Xao(B) = Xa(G), jp(X,b,Y) = (X,b, Ady(Y)). Let us set B2 = BM) x B(2),
The action of B(®) on X5(B) is free, hence we define j*(F) = CE e (jg(]—'))T(Q).
For a strongly-equivariant matrix factorization F the defined j}(F) is isomorphic
to the usual pull-back of F with the B?-equivariant structure restricted to the
B-equivariant structure.

The complex S := j*(Cp) is naturally an element of the derived category
Dy (Hilbﬁ{iﬁ) of two-periodic complexes of coherent sheaves on Hllbﬁree The hyper-
cohomology functor H is the functor D7y (Hilby ,,) — Vectg, to the space of doubly-

graded vector spaces. There is an obvious analog of the vector bundle B over Hllbf’ree
and we define

H* () := H(CEn (Ss @ A*B)" )
The next theorem is the main result of [OR18b].

Theorem 4.1.1 ([OR18b]). For any S € B, we have the following.

o The cohomology of the complex Sg is supported on Hilby ,, C Hllbfree.
e The vector space H*(B) is (up to an explicit grading shzft) an zsotopy inva-
riant of the closure L(().

4.2. Koszul complex for link homology

Let S C {1,...,n — 1} be given. The virtual structure sheaf [Ozfm}"ir of the
subscheme Zﬁ » C Hilby ,, is defined as Koszul complex of the equivariant coherent
sheaves on Hilbirﬁle:

[Ozin]"ir = K{zi — zipriv1bigs {[X. Y]ij } i )es)s
where X = (2;5), Y = (y;;) are the coordinates on b and n respectively and
8 = (i) }iogors (i + L ibies. (4.1
The zero-th homology of [OS ]"“ is the structure sheaf of Z7 2 but the complex

has higher homology too. All homology are supported on H11b1 n and we have the
following.

Proposition 4.2.1. If § = coxg, we have

Sp =[0z5 1"

1,n
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Proof. We have shown that @5 is the Koszul matrix factorization with the differen-

tial
p=%" (gwﬁw—kk”ag )+ S (Fa +h 82 )
i¢S)

ijesS

where 60;; and 6; are odd variables. The functions h;; and k; were not discussed
previously since the Koszul matrix factorization Cg is uniquely up to homotopy
determined by the regular sequence {g”}” e 1F }Z¢ g- For concreteness, let us
construct these functions. _

For that, let us order the elements of the sets S and S = [1,n — 1]\ S. Then we
define

kij = Wigr =Wij)/9i5, Wij = Wirjrlg, =0,
where the element 7’5 immediately precedes the element ij, and if ij is the largest
element of S then W ;0 = W.

Providing the explicit formulas for h; is a bit harder but later we work with
our matrix factorization in the neighborhood of g = 1 hence we can assume that
d; = det([gﬁ) s G .]) # 0 and let us also assume that the order of S extends the
natural order. Then from the first assumption we obtain that F;/d; = (41,41 —
x11) + R; where R; does not depend on variable z;41 ;41. We define

h; = (Wz’ _Wi)/Fi, WZ = Wi’

Tit1,i+1=T11+Ri»

where ¢ immediately precedes i, and if 7 is the largest element of S, then W, = Wy
where kl is the smallest element of S.
Finally, let us observe that from our formulas immediately follows that

oW
kijlg=1 = B =[X,Y]ij, Filg=1 = (Tit1,i+1 — Z11)-
ij | g=1

Moreover, since W has linear dependence on X, we also get that

oW

hilg—1 = d; -0. O

8zi+1,i+1 g=1

Let us also remark that the dg-scheme from [GNR20, Prop. 3.25] seems to be
closely related to the dg-scheme defined by the complex [Oys }Vir We hope to

explore this relation in the future. For more explicit connectlons with [GNR20],
see the last section of this paper.

4.3. Proof of Theorem 1.0.2
Theorem 1.1.1. from [OR17] implies that

Sg.sr = Sp @ LF.

If we apply this formula for 8 = coxg and combine it with the previous proposition,
we obtain the statement of the theorem.
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5. Explicit computations

In this subsection, we explain how the above geometric computations translate
into straightforward homological algebra. We discuss the subtleties of our const-
ruction of the knot homology that are related to the ¢-grading. We also discuss
how these subtleties prevent us from using localization techniques in a naive way.
All complexity of the situation could be seen in the case n = 2 which we discuss
at the end of the section.

5.1. Details on t-grading

Since deg, W = 2, we need to explain how we assign the t-degree shifts in our
matrix factorizations. We fix convention for t* - M, the shifted version of a module
M. For example, for 1 € t*C[X3], we have deg,(1) = k.

Thus let us provide a clarification for the Ty.-equivariant elements of our cate-
gory MF”= (X5, W). An element of MF”= (X5, W) is the two-periodic complex

d_ d d d
con N My 2 My S My, B

where M; are the free modules, M; = M,;12, d; = d;y2, and the differentials d;
preserve g-degree and shift ¢-degree by 1. Let us call this property degree one
property. The category MFE; (X3, W) is the appropriate equivariant enhancement
of the previous category.

For example, the element C, € MFgg (X2, W) is the two-periodic complex

B R tR I R B tR B

where R = C[X2(G2)] and d; = (211 — ®22)g11 + 12921 for odd 4, and d; = y12921
for even .

The elements in the ring C[X'3] have even t degrees thus the only source for the
elements of t-degree in Sg are the shifts t* in our complexes. Since the convolution
needs to preserve the degree one property, we require that the degree ¢ shifts in
the Chevalley—Eilenberg complex are defined by the condition that the Chevalley—
Eilenberg differentials shift ¢-degree by 1.

As a final step of the construction of Sg we apply the pull-back j* to the complex

Cy where j, is the embedding of Hilb®® inside n x b. To construct j*(Cs) we need

1,n

to choose an affine cover Hilbiif = J,; Ui by the B-equivariant charts U;, then the
pull-back j*(Cp) is the Cech complex Cy, (Cs). Moreover, since we would like to
preserve the degree one property, we shift t-degrees in the Cech complex so that
the Cech differentials are of t-degree 1.

Since we are working with Ty -equivariant complexes of sheaves on the Hilbert
scheme, it is very tempting to use localization technique to obtain explicit formulas
for the super-polynomial for the links. However, the degree one property effectively
prevents us from doing this in most of the cases. We expand on this issue in Section
5.3 where we discuss the two-strand case but for now let us point out that formulas
obtained by localization could only produce super-polynomial that has only even
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powers of ¢ because the elements C[X;] have even t-degree. On the other hand,
there are many examples of the links with the knot homology that are not t-even.

To end the discussion on a positive note let us point out that HOMFLY-PT
polynomial is well suited for localization technique, exactly because of the degree
one property. Let us denote by x,4(S) the C*-equivariant Euler characteristics of a
two-periodic complex S € DE. (Hllbff‘”;e) where C* acts with opposite weights on n
and b.

Theorem 5.1.1 ([OR18b]). For any 3, we have

PL(8) = 3" %485 @ NB).

5.2. Conjectures for Coxeter links

Let ja : b x n be the B-equivariant embedding inside X5 and let bg C b be the
subspace defined by equations ;; = ;4+1,i+1 for ¢ ¢ S. The results of the previous
section imply that we have the homotopy of the two-periodic complexes:

(T [X, Y],
]A(Ccoxs) ~ Kcoxs ® Obs)(\’ﬁ Kcoxs = ® |:R —t- R:|7 (51)
ijes

where § = {j—i > 1}US and R = C[X'5]. The tensor product above is a restriction
of the complex to the subvariety bg x n and to simplify notations we abbreviate
the restriction by Kcoxg-

free

Let us cover Hilby,,” by the affine charts U;. Then we have the following expres-
sion for the homology:

H™ (coxs - 67) = CEy (Cu, (Keoxs @ A"B @ xz)) ",

where x;: is the notation for the character of the torus 7'
We slightly simplify the above formula by eliminating the Chevalley—Eilenberg
complex with the following trick. In the next section we describe the affine sub-

—_~—

spaces A, C Hilb%ff such that the affine varieties BA, form an affine cover of

—_~—

Hilbgr;e and the B-stabilizer is trivial. Hence if we choose BA, as our Cech cover,
then because of the triviality of the stabilizers, the Chevalley—Eilenberg complex
is acyclic on every chart and extracting its zero-th homology on the chart BAg
corresponds to the restriction on the affine subvariety T'Ag which we denote by
Ts. Thus we have the following least geometry rich statement.

Corollary 5.2.1. For any k and S, we have
H™ (coxs - 0F) = (Ciu, (Keoxs) ® A™B@ xz) "

Since the line bundle £F is very ample for sufficiently positive E, for such l;/:, the
Cech complex becomes acyclic a we have the following.
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Corollary 5.2.2. For sufficiently positive IZ, we have
. e . T
H* (COXS . (Sk) - (Hg(Kcoxs 29 /\ZB ® XE))

In the last formula, we eliminated all possible sources of odd t-degree shifts
with exception of the shifts inside the complex K.oxg. Thus as it is we still can not
apply localization methods to extract the explicit formulas. So let us correct the
complex Koxs to make it comply with the localization formula:

K= Q) [k Y, ¢R|, (5.2)
ijeS

and let us introduce the computationally friendly ‘invariant’

PV (L(coxg - (5’;)) = Z(—l)j dimg (Hj(C'A_ (K& @ N'B® xz)) at.

coxg
0,J

This invariant is the equivariant Euler characteristic of the complex and in the
next section we explain how one can obtain explicit localization formulas for this
Euler characteristic with the localization technique.

Several recent preprints [Hogl7], [Mel22] suggest that at least for a sufficiently
positive k the sum above has nonzero terms only for 7 = 0. In other words, it is
reasonable to pose the following.

Conjecture 5.2.3. For sufficiently positive E, we have
2" (L(coxg - 5E)) = P (L(coxs - (5’;))

As we will see in the next subsection this conjecture is false without the assump-
tion of positivity. It is false for very negative k.

In the last section we discuss th following stronger and more geometric version
of the conjecture for 8 = cox.

Conjecture 5.2.4. If the vector k is sufficiently positive, then the higher degree
hyper-cohomology of the complex CEn(Sﬁlég ® A*B)T vanishes.

5.3. Two strand case

In this subsection, we compute homology for the links obtained by closing braids
on two strands. This illustrates our computational technique; also one can compare
our computations with that in [GNR20, Sect.5]. The results of computations in
[GNR20] and in our paper match and that provides yet another evidence for the
existence of a close relation between the theory outlined in [GNR20] and our.

First, let us describe the computation of the homology of T5 2,41 = L(Uf”“).
Since 01 = coxg, S = &, in this case bg = n ® C. Let us fix coordinates on it:
bs = {z12F12 + 2(F11 + Ea2) }. Respectively, we fix the notation R = Clz, z12, y12]
for the coordinate ring on bg x n.
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—_—

In this case, Kcoxs is just R. Moreover, the intersection Hilbgr‘;e Nbg X nis

covered by two charts Ay = {x12 # 0}, Ay = {y12 # 0}. That is, the homology
H*(T5 2,41) is equal to the homology of the complex

— n—k T
((R:vm D Ryu) ®x" b tRy 5y, @ X k) )

where x : T'— C* is the character (A, p) — A.
Thus the knot homology of 15 2,41 is a triply graded vector space which is the
tensor product of C[z] and the space

HO(P!, O(n)) @ tH' (P, O(n)) @ aH’(P', O(n — 1)) @ atH' (P*, O(n — 1))

shifted by (a/t)™. To compute the super-polynomial we just need the following
formulas for the dimensions of the homology of the line bundles:

dimg,, (HO(P', O(n))) = Y ¢ (t/q)*"
=0
dimgq (H' (P, O(m)) = 3 (@) (¢/9) 7>~

=0

The case of the torus link T5 o, is more involved. Since S = {1}, in this case
bs = b. Let us denote by R the ring of functions on b x n: R = Clz4,x_, z12, y12]
where x4 = x11 + 22, x— = 11 — T22. In this notation we have

Y127 —

Keoxs = [R —— tR].

The Cech cover in this case is basically the same as in the previous case: A; =
{z12 # 0} and Ay = {y12 # 0}. Thus the homology of the torus link Tb o, is the
sum of vector spaces H® & aH!' shifted by (a/t)" where H’ is homology of the
complex

. Y12 — .
tRIlzylz [n - Z] t2RﬂE12y12 [n -1+ 1]

I I ,(53)

Y12 —

Ryn[n - Z} ® RI12 [TL - Z] B tRym[n —i— 1] @thm[n —i— 1]

and R[m| stands for the degree m part of the ring R with the following degrees of
the generators:

degwip = degyiz =1, deg, =deg, =0.
The complex above is the tensor product of C[z] and the complex with x4

set to zero. Thus to make our computations easier we work modulo ideal (x4 ),
R = R/(z4).
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Geometrically the homology of the last complex could be interpreted as homo-
logy of the line bundle O(n — i) on the union of a projective line and an affine line
that intersect transversally at a single point. But for illustration of our methods
we proceed algebraically.

First, let us observe that the horizontal differential is injective and we can
contract the complex in this direction. For that, we need to describe the cokernel
of the map. Since we have

R, ,[m] = Clz12/y12, 2 yi5,
R}, . [m] = Cly12/x12, 2 _]xTs.

12

the cokernel of the map on R;  [m] is Clr12/y12]y]3, and the cokernel on R, [m]
is the sum

Clyr2/x12]2Ty @ v_Clz_]xT5.

Finally, R! [m] = Clz_, (z12/y12) ]2 and the cokernel of the map on this

T12Y12

space is C[(z12/y12)*']y% There is the induced Cech differential dc on the co-
kernels

d 7
Clz12/y12]y7 @ Clyia/z12])2Ts ® 2_Clz_]2Ty 2% Cl(w12/y12) Tyl
If m > 0 this induced differential is surjective and the kernel spanned by
(yi3, 212975 Lo 2lh) © 2 Cla_ |z

Let us denote the last vector space by Vi,.
On other hand, if m is negative, then the kernel and cokernel of the induced
differentials are the vector spaces

x_Clz_]z1s, <yf2m72, yﬁm71x12, . ,xﬁm*z).

Let us denote the first vector space by V,,, and the second by V.
Thus for n > 0, the knot homology of T oy, is triply graded vector space

a/t" - (tV, ® atV,_1) ® Clzy],
and for negative n the knot homology of T5 o, is the vector space
a/t" - (tV! @ t*V) @ atV]_, ®at?V) ) @ Clry].
To convert the last formula into super-polynomial we only need to remember that
deg, 12 = deg, , v =deg, ;v =¢*, deg,,y1 =17/q".

We would like to point out that the case of the links 75 g, is more complex than
the case of the knots T 25,41. For example, in the case of knots, elements of the
knot homology of T5 2,41 for any n have the same parity of ¢t-degree. It is no longer
true for the links: the homology of 75 2, for negative n contains elements of odd
and even t-degree. Thus it seems to be very unlikely that there is some localization
type formula that produces the super-polynomial of Tb o, for (very) negative n.
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6. Localization and explicit formulas for homology

In this section, we present an explicit formulas for the graded dimension of the
homology of the Coxeter links under the assumption that the corresponding braid
is sufficiently positive. First, we discuss the geometry of Hilbgrﬁf since that is the
space where we perform our localization computation.

6.1. Local charts
It is shown in [OR18b] that the free Hilbert scheme Hilbf® could be covered by

1,n
affine charts. In this subsection, we remind this construction. First, we describe
the combinatorial data used for labeling of the charts.
Let us denote by N.S,, the set of the nested pairs of sets with the following

properties. An element S € NS, is a pair of nested sets

1 2 —1
S;D>S;>---D>8, " DS, =0,
1 2 n—1 n __
S,2>8,>---28; " DS, =0,

such that ‘ .
Sh.Shc{k+1,....n}, [SL+|S||=n—i.

Let us define the sets of pivots of S as the sets P,(S), P,(S) consisting of the
pairs

Py(S) ={(ij) | € S \ S5}, Py(S) = {(is) | 7 € S, \ 8,7}
To an element S € N.S,, we attach the following affine space Ag C n x n:

(X,Y) e Ag if x;; = 1,ij € Py(S), yi; = 1,ij € Py(S), and
zi;=0ifj€S,, yi; =0if j €S}

For a given S, we denote by N,(S) and Ny(S) the indices (ij) such that x;j,
respectively y;; are not constant on Ag. From the construction, we see that | N (S)|
=n(n—1)/2.

Let us denote by b the subspace of the diagonal matrices inside b. The sum
b + Ag is an affine subspace inside b x n and we show in [OR18b] the following.

—_—

Proposition 6.1.1. The space Hilb™® < b x n is covered by the orbits of affine

1,n

spaces B(h+Ag), S € NS,,. Moreover, the points in h+ Ag have trivial stabilizers.

Thus the proposition implies that the affine subspaces h + Ag provide an affine
cover for the quotient Hilbi‘f. As our system for labeling of the charts might look a
bit artificial for the people studying Hilbert schemes, let us introduce an equivalent

but somewhat more familiar system.

6.2. Combinatorics of the cover

Also it is probably a good place to enrich our notation to make it more compatible
with the notation in [GNR20]. The free Hilbert scheme has a natural map
p : Hilbl™ — h given by the eigenvalues of the first matrix. Respectively, we

1,n

define Hilbf®(Z) to be the preimage p~1(Z).

1n
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Now recall another definition of the free Hilbert scheme as the space of the
nested chains of the left ideals

Hilby%* = {I, C .- C I; C Iy = C(X,Y)|C(X,Y)/I, = C")}.

Given a sequence of noncommutative monomials m = (m,...,m,), we define the
following sublocus of the free Hilbert scheme:

Am = {I. ‘ C<X7Y>/Ik = <m1,...,mk>}.

Now let us explain how one could produce a vector of monomials 7i(S) from
the element of S € N.S,. Essentially, we just retrace the definition of the free
Hilbert scheme. We construct the vector inductively starting with m4(S) which is
X if (n—1,n) € P,(S) and is Y if (n — 1,n) € P,(S). The inductive step is the
following:

mu(S) = Xmy—;(S) if (k,j) € Pu(S),
' Ym,—;(S) if (k,j) € Py(8S).

In the case of the usual nested Hilbert scheme it is convenient to label the
torus fixed points by the standard Young tableaux (SYT). By analogy with the
commutative case we also introduce an analog of the SYT for noncommutative
case. The generalized SYT, abbreviated GYT,,, are labelings L of Z>o x Z>¢ by
the subsets of [1, n] such that every element appears once in the labeling sets. That
is, an element of GYT,, is a map

L : Z> x Z>p — subsets of [1,n]

with the above mentioned properties.

It is natural to think about the labels as the labels on 1 x 1 squares that pave the
first quadrant. We also require that the set of squares with nonempty labeling is
connected, in other words, all our generalized tableaux are connected. The standard
Young tableaux are examples of generalized Young tableaux but obviously there
are many GYT which are not SYT.

There is a natural map GYT : NS,, - GYT,, that could be described by the
condition k € L(GYT(S))(ij) if degx (m(S)) = i and degy (my(S)) = j. Since the
noncommutative Hilbert scheme contains the commutative one, the image of the
above map contains the set SYT,,. But we do not understand the combinatorics
well. For example, we do not understand the image of this map, the answer to the
following question is probably known to the experts:

Question. What is the image of the map N.S,, - GYT,? Is this map injective?

We checked on computer the injectivity for small n. Let us also give a few
examples of GY'T’s that are not SYT and appear in the image:

2

* DN

2 6
4 5, 7,

D W =
N

1
, 3
45
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where * = {3, 5}.

Finally, let us observe that size of the set N.S,, is n!. We expect that there is
a natural correspondence between this set and the group &,, of all permutations
of [1,n]. On the other hand, the RS algorithm assigns to an element of &, a
pair of SYT of the same shape. Thus we expect the existence of a modification of
the map GYT that has as the target the set of the pairs from the RS algorithm.
We leave this problem for the future publications where we plan to study the
connection between the geometry of the noncommutative Hilbert scheme and the
Young projectors in C[&,,].

6.3. Geometry of the torus fixed locus

Given a element S € N.S,,, we denote by M, (S) and M, (S) the corresponding pair
of matrices from Hilb™®. The entries Z;j, 1j € Ny(8S) and y,5, ij € Ny (S) together

1,n
with the coordinates a7long b provide local coordinates in the neighborhood of the
point M (S), M,(S). Below we provide a formula for the weights of the Ty -action
on these coordinates.
First, let us define the pair of vectors of the weights w,(S) and w, (S). We define
them inductively, starting with wj(S) = 0 and wy; (S) = 0. The inductive step is

provided by

wk i . X , ] wk i . 3 ,
w;(S)—{ 2(S)H i (jk) € Pu(8) w;(s)_{ %(S)H it (k) € Py(8)

The weights above are defines in such a way that

t7tAd;, (X) € Ag, Ad;, (V) € Ag,
Ad;, (Y) € Ag, t'Ad;, (V) € Ag,

for any (X,Y) € Ag and ¢, = diag(twi, V)t = diag(tw;, L)
From the discussion it is immediate that the weights of the action are given by
the formula

Now let us write the localization formula for x(Ket ® Y No(B)). For
the localization formula, we need the weights of the differentials in the complex.

Informally, we call these weights weights of obstruction space:
0,(ij) = wl, —wl + 1, o,(ij) = w, — w] + 1.

We denote by T the tangent space at (M (S), M,(S)) and by Obg the ‘obstruc-
tion’ space spanned by the vectors with the weights o(ij), i — j > 0.

Armed with the above formulas we can write the localization formula for the
sum Y, X (K& @ £F @ A'B)a® as

Ccox
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ST QR 0g(Q, T, a; coxs),
SENS,

(- @I, 501 - @)
[Ljen,s)(1 = Q4=T%) [;jen, (s) (1 — Q4=T%)

Qs(Q, T, a;coxg) =

n—1

I - a@ueTe)

i=1

where S is given by (4.1), 0, = 02(17), 0y = 0y(ij), dy = dy(ij),dy = dy(ij), and
Q, T variables are related to the standard variables g, t by

Q=4q* T=t*/¢

Unfortunately, the sum above is not well-defined because for some S the vector

(dg,d,) vanishes. It is a manifestation of the fact that the scheme (Hilbi’if)Tsc is
not zero-dimensional. For example, the family of the matrices

<

I
coc oo
cococre
oo~ o

h<

I
cocoo
cooo
cocoo
o~ oo

where v is any, lies inside Ag for S with S, = {4,3} D {3} D {@} D {o} and
S, = {4} D {4} D {4} > {@}. It is also fixed by the torus Ty.

Remark 6.5.1. As we see above the torus fixed locus is not discrete in general
but we expect the locus to have virtual dimension zero. Indeed, the computer
experiment suggests that for any S € NS,,, we have the inequality

dim (Obg)™ > dim (Tg)"™ .

However, on the commutative Hilbert scheme the torus fixed locus is zero-
dimensional and the torus fixed points are labeled by the SYT,,. Let us identify
the corresponding subset N.S,,:

[M,(S), M,(S)] =0iff S € NS,

where NS5v* C NS, consists of S such that GYT(S) is a standard Young tableaux.
We propose the following.

Proposition 6.3.2. For sufficiently positive IZ, we have the following localization
formula

Peven(L(COXS . 5/;)) _ Z Ql?szE‘waS(Q,T,a;Coxs),
SenNsYt
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Proof. Let B = cox - 6*. Since the complex Sp is supported on the commutative
Hilbert scheme, the complex Sg is contractible in the affine neighborhood of
(M. (S), My(S)) if S ¢ SYT,. The union Hilb} , := Usengst As is an open
subset inside Hilbgrﬁf and by the previous remark the restriction on this open
subset does not change the total homology. Since Ti.-fixed locus inside Hilb'l’n
is zero-dimensional, the formula in the proposition is the standard localization

formula. 0O

The above formula is equivalent to the formula from [GNR20, Cor.1.3]: the
formula in [GNR20] is also a sum over SYT’s and the corresponding terms in
[GNR20] and in our formula coincide after we cancel the matching factors in the
numerator and denominator.

Besides the similarity to the previous conjectures there are other observations
that support the conjecture. For example, it is elementary to show that

[M,(S), M, (S)] = 0 iff S € SYT,,.

Hence since the complex Cg is supported on the commutative Hilbert scheme,
the complex Cg is contractible in some affine neighborhood of (M,(S), M,(S)) if
S ¢SYT,.

6.4. Fourth grading and localization

In this section, we provide an explanation for the even super-polynomial &2°Ve" as
well as some conjectures for the cases when the even super-polynomials coincide
with the usual super-polynomial. As we explain below, both &7°V°" and & are
specializations of a conjectural richer invariant.

As it is explained in [OR18b] and outlined in Section 5.2, for a braid 8 € B,
one can construct an element Cg € MFT”c (X3, W). To compute the triply-graded
homology of the link closure L(3), we need to work with Sg = j*(Cp).

Two periodic complex Sg € MFgr(I-m?n, 0) has differential of degree t with
respect to the Tyc-action. It is shown in [OR18a] that Cg is isomorphic to a strictly

B?-equivariant matrix factorization; thus we can assume that Sg € MF%r(ﬁﬁELn,O)
— Dper (H lbfree)

The objects of the derived category Dper(Hilbfree) are two periodic complexes of
coherent Ti.-equivariant sheaves with differentials of degree t with respect to Tgc.
It is more natural to consider the category D5, (Hllbfree) of bounded complexes of
Tsc-equivariant coherent sheaves with differentlalb of degree t. There is a folding
functor that relates these categories:

Fold: DY (Hilby"*) — DET(Hilby'Sr), € @,,;Cl2n],

where [n] is the notation for the homological shift and C is the complex of locally-
free sheaves.

Clearly, not all objects in D%‘::(Hilb?f) are foldings of bounded complexes.
However, as explained in the previous sections Scoxs = Fold(Kcox ), where formula
(5.1) for Keox, is interpreted as a tensor product of bounded complexes. Let us
call the two-periodic complexes in the image of Fold unrollable.
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It is an interesting question for which § € Bv, the corresponding two-periodic
complex Sg is unrollable. For example, a two-periodic complex for the half-twist
on three strands 8 = o7 - 02 - 01, the two-periodic complex Sg does not appear to
be unrollable, see [ORle‘J.

Let us define D}, (Hilby'S;)even to be the derived category of bounded complexes
of Ti.-equivariant complexes of coherent sheaves with Ty.-invariant differentials.
There is a shifting functor that relates the last two categories:

Sheven : D}, (Hilby"S?) — Db, (Hilb")even, €D;Ci — D,t" - Cs,
where C = (@CZ,D), D:C;— Ci+1.
In the context of the paper, the relevant example is Sheven(Keoxy) = Kyen

COXg
where we interpret formula (5.2) for K&V as tensor product of bounded complexes.

That motivates us to define a super—polsynomial of four-variables. Suppose Sg =
Fold(Sg), Sg € DY, (Hilb?ﬁf) for some S € Br,, then we define
P(B) = h dimyy H/ (Sheven (Sp ® A'B)).
(2]
Thus B(5) is a common generalization of &?(L(coxg 6’;)) and of &2°V°*(L(coxg-
§F)):
P (L(coxs - ) = Pleoxs - 6)|r 1,

) B} (6.1)
PV (L(coxg - 67)) = P(coxg - 6F)|p=_1

Proposition 6.4.1. The following statements are equivalent:

(1) e (L(B)) = Z(L(B)),

(2) B(B) = 2(L(B)),

(3) B(B) = PN (L()),

(4) H (Sheyen(Sg ® A'B)) =0 for j # 0 for all 4.

Proof. The last three conditions are formally equivalent. Also the last condition
implies the first one. Let us show that the first condition implies the last one. In-
deed, 2V (L(B))|i=1 = P(L(B))|¢=1 implies vanishing of H7 (Sheyen(Sp ® A'B))
for odd j. Thus both &2*v**(L(f)) and £ (L(p)) are the sums of monomials of ¢
and ¢ with positive coefficients. Hence formula (6.1) implies the statement. [

As explained above, the super-polynomial &2V (L(coxg - oF )) can be computed
by localization technique. Moreover, using different methods we show in [OR18a]
the following.

Proposition 6.4.2 ([OR18a)). For any k € Zsq such that ky > ko > -+ > ky_1,
there is M such that for any m > M, we have

P(5F . FT™) = goven(sF . FT™).

Thus the combination of the last proposition and Proposition 6.3.2 implies
Theorem 1.0.3.
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6.5. Conjectures
Motivated by the previous section we state some vanishing conjectures for super-
polynomial Y(cox - §%).
—f

The structure sheaf of Hilblr’ie twisted by a B-character x descend to a line
bundle on Hilb?ﬁf. Let us denote this line bundle by £F. The line bundle £
corresponds to FT. Based on the discussion in [GNR20] and constructions in
[OR18a] we propose the following.

Conjecture 6.5.1. For any ke Z’;al such that k; > kiy1 —1,i=1,...,n—2,
there is M such that H’ (Sheyen (LT @ gcox) ®@ A'B)) = 0 for any i, j # 0 and
r>M.

As we mentioned before, for any m,n, (m,n) = 1, there is k such that L(cox -

5E) = T,n is an m,n torus knot. Previous studies of the homology of torus
knots and the related combinatorics allow us to provide an evidence for the above
conjecture.

Proposition 6.5.2. Suppose L(cox - 5E) = T.n, then Conjecture 6.5.1 holds.

Proof. Tt was shown in [OR20] that for any 5 € Bt,, P(L(f)) is equal to the
super-polynomial for the Khovanov—Rozansky homology. On the other hand, the
Khovanov—Rozansky super-polynomial for T, , was computed in [HM19] and it
is shown in [Mel21] that this super-polynomial is equal to the super-polynomial
from Proposition 6.3.2.

Finally, let us notice that L(cox - §E+TT) = Tptrn,n Thus we have the equality
P (L(cox - 5F17T)) = 2°ven (L (cox - 6F+T))

for all 7 > 0 and the statement follows from Proposition 6.4.1. [
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