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Abstract—Due to the intrinsic properties of Solid-State Drives
(SSDs), invalid data remain in SSDs before erased by a garbage
collection process, which increases the risk of being attacked by
adversaries. Previous studies use erase and cryptography based
schemes to purposely delete target data but face extremely large
overhead. In this paper, we propose a Workload-Aware Secure
Deletion scheme, called WAS-Deletion, to reduce the overhead
of secure deletion by three major components. First, the WAS-
Deletion scheme efficiently splits invalid and valid data into
different blocks based on workload characteristics. Second, the
WAS-Deletion scheme uses a new encryption allocation scheme,
making the encryption follow the same direction as the write
on multiple blocks and vertically encrypts pages with the same
key in one block. Finally, a new adaptive scheduling scheme
can dynamically change the configurations of different regions
to further reduce secure deletion overhead based on the current
workload. The experimental results indicate that the newly
proposed WAS-Deletion scheme can reduce the secure deletion
cost by about 1.2x to 12.9x compared to previous studies.

I. INTRODUCTION

In the era of big data, digital information must be stored

in non-volatile storage media. Many technologies have been

investigated in Solid State Drive (SSD) [1]–[3]. However, as

increasing security concern of sensitive data, how to store

data with privacy and security has become more and more

critical [1], [4], [5].

Techniques for SSD secure deletion can be categorized into

two groups including 1) delete target and invalid data with

a command [6], [7], and 2) periodically delete all invalid

data [1], [8], [9]. For the first method, when a secure deletion

command is issued to delete target data, SSDs need to delete

the target valid data and all their corresponding invalid data

(old versions of the target data). However, this method faces a

large overhead of tracking and deleting all those invalid pages

associated with the target data in the past. The other method

periodically deletes all the invalid data or invalid encryption

keys [1], [8], [9] to protect the invalid pages from unveiling to

attackers. When a secure deletion is issued for the target data,

SSDs first invalidate the target data and then securely delete

all invalid pages to guarantee 100% protection for the target

data and all existing invalid data. In this paper, we mainly

focus on the periodical secure deletion scheme to reduce the

secure deletion overhead.

To periodically delete invalid data in SSDs, some previous

studies [1], [8]–[10] used erase the blocks and delete encryp-

tion keys to make target data inaccessible. More details of

those schemes are discussed in Section II. The disadvantages

of all those existing studies is that they did not consider the

effect of workload access patterns. As a result, the mixture of

invalid and valid pages in the same blocks (a block is a unit

of erasure in SSD) or in the same chunk during the secure

deletion may induce a large overhead of migration and erase.

In this paper, a new Workload Aware Secure Deletion

scheme called WAS-Deletion is proposed to reduce the over-

head of secure deletion for SSDs. The WAS-Deletion scheme

efficiently splits invalid and valid pages into different blocks

or chunks according to their historically accumulated update

frequencies and update request sizes. Consequently, the pages

likely to be in the same states (either invalid or valid) are

mostly located in the same chunks, mitigating the overhead

of migration and erase during secure deletion. Moreover, we

propose a vertically encrypted allocation that follows the same

write direction of pages in blocks. As a result, this vertically

encrypted allocation can further reduce the fragments of in-

valid and valid pages in one chunk. Finally, several regions of

different configurations of data chunks are used. The chunks in

different regions have different sizes and each region is applied

with an individual deletion scheme. An adaptive scheme is

also applied by the WAS-Deletion scheme to dynamically

schedule incoming requests in different regions based on their

access patterns. This adaptation further reduces the overhead

of secure deletion compared with previous studies.

The structure of the paper is as follows. Section II describes

the background of SSD and related work of secure deletion.

The proposed WAS-Deletion scheme is introduced in Sec-

tion III. Section IV shows the experimental results compared

to previous studies. Finally, some conclusions are presented in

Section V.

II. BACKGROUND AND RELATED WORK

Secure deletion in SSDs is responsible for deleting both

target data pages and their associated invalid pages to protect

data privacy and security. The periodic secure deletion is

to periodically delete all invalid data [1], [8], [9] to make

identifying or searching associated invalid pages of target data

easier when a secure deletion is issued. Compared to direct

deletion, the advantage of the periodical secure deletion is

to provide a mechanism to protect all invalid data on SSDs

periodically. Moreover, the periodical deletion can delete target
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files and then their associated invalid data accumulated in the

current period.

To periodically delete invalid pages in SSDs, two basic

schemes, erase-based and cryptography-based schemes, were

proposed. For the erase-based scheme, the idea is to pe-

riodically erase all invalid data for secure deletion. In the

cryptography-based scheme [10], data pages are encrypted

with security keys before being written to the flash memory.

Meanwhile, the keys used in the encryption are also stored in

flash memory. During secure deletion, the SSD only needs

to delete/erase the keys of invalid data pages. To reduce

the key space, pages across multiple blocks can share the

same key. These multiple chunks comprise one chunk. The

number of blocks in a chunk is called chunk size (Cz). Liu et
al. [1] proposed ErasuCrypto, which combines both erase-

based and cryptography-based schemes to find a minimum

secure deletion cost (as seen in Eq. (1)) by applying either

cryptography-based or erase-based scheme.

cost = #Mgr + k ×#Era (1)

where #Mgr and #Era indicate the numbers of migrations

and erases, respectively for secure deletion. k is the coefficient

to indicate the ratio between erase cost and migration cost.

Overall, previous studies [1], [9], [11] passively address the

periodical secure deletion issue with little intent to optimize

data scheduling and management. Therefore, there is an op-

portunity to further reduce the overhead of secure deletion

by scheduling and managing incoming data according to the

access patterns of workloads.

III. ADAPTIVE WAS-DELETION SCHEME

We propose an adaptive WAS-Deletion scheme involving

the optimization of those factors. There are two major steps

in the WAS-Deletion scheme. The first step is the classification

process based on historical update frequencies and write

request sizes to classify data into different categories (regions).

The second step is to apply different deletion schemes to

different regions.

Different regions use different chunk sizes. To satisfy the

constraint of the capacity number of key blocks, each region’s

number needs to follow Eq. (2).

N−1∑

i=0

Bi ≤ Bmax

N−1∑

i=0

Bi ∗ Czi = Cap

(2)

where N is the number of regions. Bi indicates the number

of key blocks in the ith region. Czi is the chunk size for the

ith region. Cap is the total number of data blocks in a SSD.

Bmax is the maximum number of key blocks limited by the

SSD capacity. In this paper, Cap = 250GB and Bmax = 250
by default. The ErasuCrypto scheme is one special case under

Eq. (2) with N=1, B0 = 250 and Cz0 = 8.

In the first step of the WAS-Deletion scheme, the SSD

keeps accumulating historical access pattern information and

the default unit size is block size (512KB). First, the numbers

of updates and write request sizes for each block are recorded

in Freq TBL and Size TBL. Supposing we use N regions, N

centroids are computed as the representative values for each

region category. Once obtaining the centroids, a new coming

request in the next period can be classified based on those

centroids. The Euclidean distance is computed between the

block number (S) of the request and each centroid value.

Then, the request should be assigned to a temporary region of

which centroid and its S value achieve the minimum Euclidean

distance.

After that, the second layer classification will re-classify the

request based on the write request sizes. Using the vertical

encryption allocation, a large request size can reduce the mi-

gration overhead because the large-size updates will invalidate

several consecutive pages in one chunk encrypted with the

same key. So, in our algorithm, if the average write request size

is two times larger than the chunk size, the temporary region

classified by the first layer classification will be shifted to one

left (i.e., the region with a larger chunk size). In contrast, if

the average request size is too small (such as smaller than

two pages), the region of the block will be degraded to the

region with a smaller chunk size. Finally, to satisfy Eq. (2)

an inspection function is used to check the current state of

regions. If the current state of regions violates Eq. (2), the

inspector starts from the largest region (Region#N-1) to adjust

regions to a nearby region (Region#N-2) until the capacities

of all regions satisfy Eq. (2).

Algorithm 1 WAS-Deletion

1: procedure SECURE DELETION

2: if Region#0 then
3: Erase-based deletion for the region#0
4: else if Region#N-1 then
5: Cryptography-based deletion for the region#N-1
6: else
7: for each block do
8: Compute costerase by searching the whole block
9: Compute costcry by searching multiple rows in the block

10: if costerase < costcry then
11: Cryptography-based deletion for this chunk
12: else
13: Erase-based deletion for this chunk

In the second step, the WAS-Deletion scheme as shown

in Algorithm 1 applies different secure deletion schemes to

different regions. Moreover, different regions have different

chunk sizes to limit the key block overhead. In WAS-Deletion,

the blocks in the coldest region (access frequencies of requests

are low) contain the least number of updates. Thus, we can use

the erase-based scheme with little migration overhead for the

coldest region (Lines 2-3 of Algorithm 1) and no encryption

is needed in this region. There are two advantages. The first

one is that without encryption and decryption processes data

access latency will be reduced. The other is that no key block

is needed and thus it saves key block spaces for other regions.

In contrast, the hottest region (Region#N-1) contains the data

with the most frequent updates. Although the data are highly

frequently updated in this region, these data may not keep the
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Fig. 1: A data-flow of the WAS-Deletion classification.

TABLE I: SSD configuration.

Parameter Value Parameter Value
SSD capacity 250GB Read latency 20us

Page Size 4KB Program Latency 200us
Block size 512KB Erase latency 1.5ms

# of pages/block 128 # of key blocks 250

same pace to be updated due to the small number of categories.

Thus, the cryptography-based scheme is used in the hottest

region (Lines 4-5). Since the number of invalid data pages

varies in the hottest region, the smaller numbers (chunk size)

of pages that share the same key will help reduce the migration

and erase overheads. Thus, we set the chunk size of 1 for this

region, which means that one encryption key only encrypts

one page. For the other regions with the middle level of update

frequencies, their data are hotter than the coldest region and

have data colder than the hottest region. Therefore, since the

direction of encryption and write is the same, we can search

each block to compute the overhead of erase and crypto based

schemes (Lines 8-9) based on Eq. (1). Then, the corresponding

scheme will be used to minimize the secure deletion overhead

(Lines 10 - 13). The chunk sizes of those regions are set to 4

and 8, respectively.

Figure 1 indicates an example of WAS-Deletion dynamic

classification with four regions. First, the I/O monitor collects

the I/O update frequencies and I/O request sizes for each

block. Then, four centroids can be computed based on the

accumulated I/O update frequencies. The minimum Euclidean

distance determines in which region the corresponding block

initially resides. After that, the algorithm needs to check the

average request size of each block. If the request size is too

small, the block’s region should be shifted right by one. If the

request size is too large, the region will be shifted left by one.

Otherwise, the block keeps in the current region. The last step

is that the inspector checks whether the current configuration

of regions satisfies the requirement of Eq. (2). If not, some

blocks will be re-arranged until the requirement of Eq. (2) is

satisfied. Finally, a classifier is built. Once an update request

is coming to SSD, we first compute the block number of the

request. Then the classifier will tell which region the request

should be scheduled to.

IV. EVALUATION

In this section, we make comparisons between different

secure deletion schemes.

TABLE II: MSR Cambridge trace configurations [12].

Number of IOs (Millions) Total request size (GB)
Write Read Write Read

prn 0 4.98 0.602 45.96 13.12
prn 1 2.77 8.46 30.78 181.35
proj 1 2.50 21.14 25.58 750.36
usr 1 3.86 41.43 56.13 2079.23
usr 2 1.99 8.58 26.47 415.28
hm 0 2.58 1.42 20.47 9.96

rsrch 0 1.30 0.13 10.82 1.39
stg 1 0.80 1.40 5.99 79.52

prxy 0 12.14 0.38 53.80 3.05
ts 0 1.49 0.32 11.34 4.13
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Fig. 2: Normalized secure time comparison between four

schemes.

A. Evaluation Environment Setup

The SSD configuration is listed in Table I. The SSD

capacity is 250GB. The number of key blocks is set to 250.

It means that the chunk size is 8 for the ErasuCrypto scheme.

The encryption algorithm uses the AES algorithm with 128

bits (AES-128). The real traces used are Cambridge MSR

traces [12]. The experimental results are obtained based on

the SSDsim simulator [13]. We assume that the secure deletion

command is triggered after replaying each 168-hour trace.

Five schemes are compared: erase-based, cryptography-

based, ErasuCrypto [1], HOTIS [2], and WAS-Delete (WAS)

schemes. The erase-based, cryptography-based and Erasu-

Crypto as introduced in Section II are three most relevant

secure deletion works. HOTIS is a classic hot/cold data classi-

fication scheme in SSDs. The WAS-Delete (WAS) scheme uses

four regions and it adaptively changes the region configuration

based on workload access patterns. Moreover, the total number

of key blocks for ErasuCrypto, Cryptography-based, and WAS

schemes is 250. Three metrics, normalized secure deletion

execution time (secure time), number of page migrations,

and number of block erases, are used to indicate the overhead

during the secure deletion process.

B. Overall Performance Comparison

Figure 2, Figure 3, and Figure 4 indicate the normalized

secure time, number of page migrations, and number of

block erases between erase-based, cryptography-based, Era-

suCrypto [1], WAS-Delete schemes, respectively. The secure

time of the ErasuCrypto scheme is normalized to one. As

seen in Figure 2, the erase-based scheme obtains the worse

secure time and the cryptography-based scheme is the second

worse secure deletion scheme. The proposed WAS scheme

achieves the lowest secure time, which achieves about 3.8x -

12.9x, 1.3x - 10.1x, 1.2x - 8.3x, and 1.2x - 6.9x secure time
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Fig. 3: Number of migrations between four schemes (y-axis

is log-scale).
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Fig. 4: Number of erases between four schemes (y-axis is log-

scale).

reduction compared to erase, cryptography, ErasuCrypto, and

HOTIS schemes, respectively. In summary, the proposed WAS-

Deletion scheme obtains on average about 2.89x - 7.25x secure

time reduction compared to the other four schemes among

different workloads.

The details of secure deletion cost are provided based on

page migrations and block erases. For the number of page

migrations as seen in Figure 3, the WAS-Deletion scheme

largely reduces the page migration overhead compared to the

other four schemes. For the number of block erases as seen

in Figure 4, the cryptography-based scheme achieves the least

number of erases because there is no data block erase and the

erases only happen on the key blocks. However, the data pages

associated with the deleted keys become invalid and need to

be garbage collected later. Though the proposed WAS-Deletion

scheme achieves the second least number of erases, the total

secure deletion time of the WAS-Deletion scheme is much

smaller than the cryptography-based scheme.

There are three main reasons that the WAS-Deletion reduces

both erase and migration overheads. First, the WAS-Deletion

scheme distinguishes the data ‘hotness’ and separates them

into different regions. The second reason is that the write

and encryption follow the same direction and the large I/O

write requests can invalidate several pages in one chunk

at the same. As a result, during the secure deletion, the

number of valid pages to be migrated is reduced and so the

migration overhead is decreased. Finally, the adaptive scheme

selects more efficient region configurations and achieves more

accurate classification so that the data are efficiently separated

to obtain less migration and erase overheads.

V. CONCLUSION

In this paper, a Workload-Aware Secure deletion scheme

called WAS-Deletion is proposed. First, the WAS-Deletion

scheme efficiently splits invalid and valid pages into different

blocks or chunks according to the historical accumulated

update frequency and update request size. Second, a vertical

encryption scheme is applied to the scheme which reduces

the migration overhead. Third, the request size is used as a

‘hotness’ factor to cluster similar data in the same region

associated with the write request size. Finally, an adaptive

scheme is used to adjust the region configuration according

to the workload access patterns. In the experimental results,

the newly proposed WAS-Deletion scheme is capable of re-

ducing the secure deletion time about 1.2x to 12.9x compared

to previous studies. Moreover, the breakdown analysis and

investigation about different design parameters are provided

and contribute to a deeper understanding of the trade-offs in

the secure deletion of SSDs.
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