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general time consuming as it requires the inspection of multiple data bases for the correct
interpretation of the observed crystal structures. This task is especially demanding in microscopy
video analysis involving a vast amount of image data. The recent development of deep learning
(DL) algorithms has paved the way for cutting-edge microscopy studies in materials science, often
outperforming conventional image analysis methods. This paper reviews the state-of-the-art in
DL-based synthetic data generation, materials structure identification, three-dimensional struc-
tural reconstruction, and physical properties evaluation for different types of microscopy images.
First, the fundamental concepts of DL relevant to materials science applications are reviewed.
Subsequently, the combined experimental measurements and numerical simulations for preparing
dedicated microscopy image for DL analysis are discussed. Then, the review concentrates on the
core topic of the paper, that is the critical assessment of DL advances in materials’ structural and
physical properties evaluation. We believe that the future development and deployment of DL for
practical microscopy data analysis will rely on the progress and improvement of advanced al-
gorithms and innovative methods for training data generation.

1. Introduction

Revealing the structure-property relationship of materials is a fundamental objective in materials science. The knowledge of
features such as atomic structure, morphology, phase, chemical compositions, and presence of defects allows one to control the
material’s physical properties for improving engineering applications of energy storage and conversion devices, catalysis, nano-
electronics, biomedicine, etc. Microscopy imaging is an established methodology of materials visualization at different length scales,
allowing for an in-depth structure investigation and physical properties evaluation. In recent years, the analysis of microscopy images
has been boosted by deep learning (DL), a class of machine learning (ML) algorithms including advanced techniques dedicated to
image processing applications. This review focuses on the usage of DL techniques in specific areas of microscopy and materials science
with the aim of guiding a researcher on the choice of a method for a targeted application.

Different microscopy techniques are appropriate depending on the specific application of interest. For example, optical microscopy
is used to study materials in images at the micron-scale resolution [1]. Scanning probe microscopy (SPM) techniques, including atomic
force microscopy (AFM), and scanning tunneling microscopy (STM), are instead considered for the inspection of atomic structure and
electronic states of complex surfaces in the scale range from nanometers to millimeters [2]. In applications requiring a characterization
at the atomic scale, transmission electron microscopy (TEM), and in particular high-resolution transmission electron microscopy
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(HRTEM), allow observing features such as the positions of atoms and atomic columns, and also the presence and local transformation
of defects [3,4]. Scanning transmission electron microscopy (STEM) is another high-resolution microscopy technique, typically
adopted in the high-angle annular dark-field (HAADF) mode, to investigate the morphology of materials and their chemical
composition from the resulting Z-contrast [5].

The analysis of microscopy images for predicting the material’s structural properties involves non-trivial challenges in practical
applications. The main effort is the acquisition of “high-quality” microscopy images to ease the interpretation of the signal contrast and
encoding information of the material’s structural properties. This is a complex task, because of practical challenges such as the sen-
sitive calibration of the microscope parameters used for tuning the lenses aberration and adjusting the eventual presence of noise due
to the sample’s contamination. A further challenge is the utilization of the signal contrast to identify the material’s structural prop-
erties of interest, a task performed experimentally or algorithmically. Then another cumbersome task is the estimation of the physical
properties from the structural features extracted from microscopy images. Finally, with the continued development of in situ and
operando microscopy techniques producing tera bytes of image data, it is paramount to integrate the microscopes with advanced tools
to evaluate materials properties, allowing for fast and real-time analysis.

In recent years, computer vision algorithms built upon DL have been established as state-of-the-art techniques for image processing.
Convolutional neural network (CNN), a class of DL models with superior capability of feature extraction from images, has been
adopted in image recognition problems such as classification [6], object detection [7-10], and semantic segmentation [11,12]. The
progress in these methods has grown the attraction for their application to microscopy images representing 2D and 3D materials, to
solve problems such as the identification of atoms [13], atomic column heights estimation [14], localization of defects, and chemical
composition evaluation [15]. The main advantage of learning algorithms is the ability to unpin in real time the correlations between
the intensity of the image signal contrast generated by the microscope, and the structural and physical properties of materials, by
exploring hidden patterns among data [16].

In materials science, data-driven algorithms have been considered not only for DL applications to microscopy images, but also for
high-throughput screening of materials. In these studies, DL models applied to materials’ metadata rather than microscopy images, and
other general ML techniques such as support vector machine (SVM), random forest (RF), and k-nearest neighbor (kNN), have been
applied to experimentally acquired and simulated datasets of materials. These datasets have been collected from publicly available
resources, for example, the Materials Project Database [17], Automatic Flow for Materials Discovery (AFLOWLIB) [18], Polymer
Genome [19], Citrination [20], and Materials Platform for Data Science (MPDS) [21]. For instance, data-driven algorithms have been
successfully used in Li-ion battery (LIB) research for screening solid-state electrolyte candidates [22-24], for predicting the crystal
structure of cathode materials [25], and for estimating the redox potential of molecular electrode materials [26,27]. Another appli-
cation of interest is high entropy alloys (HEAs) exploration, where ML and DL models have shown exceptional performance in the
prediction of the configuration energy [28], phase formation [29-31], crystal structure [32], and mechanical and thermal properties
[331.

The research field of data-driven algorithms applied to materials science is also known as materials informatics [34-36], with
various reviews published in the prior literature about the high-throughput screening of materials [37-40], as well as applications of
DL to microscopy images representing materials [41-45]. Kalinin et al. summarized the progress of DL in STEM [41], while Azuri and
co-workers discussed the role of CNNs in SPM [43]. Ge et al. prepared a more comprehensive review, describing the applications to
different microscopy techniques such as scanning electron microscopy (SEM), STEM, and SPM [42]. Furthermore, Xu et al. [44] and
Zheng et al. [45] focused on the applications of DL to microscopy images of Li-ion batteries materials and materials for energy storage
technologies, respectively. Despite the useful literature’s categorization on the class of microscopy images and targeted materials, the
previously published reviews do not provide a clear distinction on the utilization of different DL methods for addressing specific
materials science problems. However, describing how DL techniques can be employed for resolving a particular materials science
challenge is of primary importance for microscopists interested in advancing their experimental findings using methods belonging to
this innovative class of image processing algorithms.

With the continued advancements in materials informatics, a wide area of microscopy imaging problems has been explored using DL
models in recent years and expanding these methods to new cutting-edge applications is attractive research on a structure-property
relationship. For this reason, it is essential to track the development of DL in microscopy images with respect to the investigated
materials science applications. Herein, we present a review of DL in microscopy imaging, classified on the main materials science
problems targeted in the literature, i.e., synthetic image generation, structure identification, 3D reconstruction, and physical prop-
erties estimation. In this review, we discuss each topic with a characterization of their corresponding microscopy imaging studies and
related challenges and most importantly, the description of how they have been addressed with DL. The main objective of this paper is
not only to provide a more consistent approach to categorize the literature compared to the previous reviews, but most importantly, to
point the reader to the most appropriate choice of DL method to be combined with microscopy analysis in the investigation of a
particular materials science problem of interest. The review begins with a description of the fundamental concepts of DL algorithms as
related to microscopy image analysis, then it discusses the technical aspects of different DL techniques from the viewpoint of the
summarized material science applications, which is an important characterization not reported in previous reviews. In addition, we
also provide a detailed explanation of essential steps for preparing appropriate datasets of microscopy images. The in-depth description
of the preparation of microscopy images datasets is another contribution of our review, whose goal is to guide a researcher to un-
derstand how images should be appropriately collected and pre-processed for their successive application in DL workflows. After
reviewing the literature, we conclude with our perspective on the future development and opportunities of DL modeling in microscopy
imaging for innovative solutions in materials science applications.
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2. Overview of deep learning techniques

Herein, the fundamental concepts of DL techniques suitable for microscopy applications are presented. Deep learning is defined by
the pioneering work of LeCun et al. [46], as a class of ML algorithms with the multi-level representation of input data, transformed
through the composition of non-linear layered modules with increasing levels of abstraction and complexity. At subsequent levels of
representation, a DL model is capable of learning features of the input data, with the objective of inferring a prediction of interest. In
general, the prediction of a DL model is a continuous value or a probability score in regression and classification problems, respec-
tively. The desired prediction is called label or ground truth, and if it is available in the dataset, the learning problem is supervised,
while if it is not provided, the learning problem is unsupervised.

The combination of layers is built in a complex structure called a neural network, a term describing the capability of DL algorithms
to model the human brain’s behavior. In a fully connected (FC) neural network, or artificial neural network (ANN), a layer represents a
collection of neurons connected through a network of synapsis responsible for the transferring of data information, modeled with

algebraic operations z,(lkxkl) = G(WTT;IXHZSJ:LI ). In such an operation, zf:f)xl and zilkfi are one-dimensional arrays representing the layers k and
kk, with m and n neurons, respectively, while wp,, is a matrix representing the network of synapsis connecting the two layers, whose
components are called weights. In Fig. 1, such an operation is performed in the ANN part of the neural network. The first, intermediate,
and final layers of a neural network are called the input, hidden, and output or score layer, respectively, and ¢ is the activation
function, modulating the neurons with non-linearities. The most widely used activation function for the hidden layers is the rectified
linear unit (ReLU) [47]. On the other hand, the choice of activation functions for the output layer depends on the specific task to
perform: in regression problems with continuous targets, ReLU or Linear activations are typically used, while Sigmoid or Softmax
activations are adopted to predict probability scores in binary and multi-class classification schemes, respectively [48]. The ANNs are
typically employed with numerical metadata, fed to the model as one-dimensional arrays of features. In materials science applications,
a set of features could be the structural properties, with a target physical property or material’s class as output. The term “deep
learning” refers to the concept of building a deep neural network (DNN) with many stacked layers for learning complex and non-linear
data patterns.

More advanced architectures are the CNNs for image, video, audio, and volumetric data processing [49-51], and the recurrent
neural networks (RNNs) for time series analysis [52]. In the case of CNNs for images applications, the input data are image arrays with
shape W x H x N, where W and H are the width and height of the images, and N, is the image’s number of channels. In RGB images,
N, = 3 corresponds to the red, green, and blue primary colors, while in grayscale representations such as microscopy images, N, = 1
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Fig. 1. Schematic of classification neural network comprising CNN for feature extraction and ANN for final inference. The input image representing
an atomic structure with GB is forwardly propagated in the network, and probabilities of GB and no GB structural classes are predicted by the score
layer. The GB class has the highest predicted probability of 0.8, meaning that the network can estimate the class correctly, as the STEM image
represents a GB structure. The loss calculated between the predicted probability and the ground truth is back propagated in the network to update
the weights of the convolutional and FC layers to further improve the predicted probability of GB class in the next training epoch.
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corresponds to the gray channel. The relationship describing a CNN’s layer can be formulated as z%’?m N = f (zyf,)x HxNog ) , where f is

a convolution correlation, defined by filters called kernels, sliding throughout the image while performing algebraic operations
depending on the specific layer. There are four main types of layers in CNNs, i.e., convolutional layers, pooling layers, upsampling
layers, and batch normalization layers. Convolutional layers are responsible for the extraction of relevant features of the images for

inferring a  prediction. The correlation f has the following mathematical expression: Z%I;)HXNc(kk) (i,j) =

o(Kmxn*zgnyquk) (i:i+m,j:j+n)), with 0 <i< W and 0 <j<H. The value of a pixel in position (i,j) in the output image
z(v’f,l;)Hqum, is equal to the inner product between the kernel Ky, with width m and height n, and the portion of the image zglj)xHx New
defined by the pixel’s coordinates (i,j), (i + m,j), (i + m,j + n), and (i,j + n). The kernels K« represent the CNN’s layers parameters,
and they have the analogous role of the matrix of weights wy,., in ANNs. Within the convolution, the image size W x H is usually
preserved between the input and output image, while N, depends on the number of filters carried by the convolutional layers. The
number of filters is progressively doubled while flowing deeply within the network, as the image size W x H is halved by the pooling
layers. The objective of the pooling layers is to extract smaller portions of the image representing highly detailed objects [53]. On the
other hand, upsampling layers reverse this operation by progressively restoring the original image size if required. Upsampling layers
are used in fully convolutional networks (FCNs) for semantic segmentation tasks [12]. Finally, batch normalization layers are
introduced in the network to address the distribution’s variation of the layer’s inputs, a problem known as covariate shift [54]. As the
images are being processed through these layers, the CNN learns to extract the necessary features to infer a prediction.InFig. 1, such
operations are performed in the CNN part of the neural network. In typical applications, a CNN and an ANN are combined in a single
network: the CNN is responsible for feature extraction, while the ANN is responsible for the final inference. The connection between a
CNN and an ANN is performed with a Flatten layer reshaping 2D image arrays from the last convolutional layer of the CNN, into a 1D
array used as input to the first FC layer of the ANN. In Fig. 1, such operation is performed between the ANN and CNN parts of the neural
network, where the flatten layer is represented in gray.

Learning is performed through an iterative optimization process defined as training. At each training iteration (i.e., epoch), batches
of data are forwardly propagated through the network, and a loss function calculates the divergence between the estimate and the
ground truth. In regression problems, the mean squared error (MSE) loss function is typically used, while binary cross-entropy and
categorical cross-entropy are considered for binary and multiclass classification, respectively [55]. The computed loss is back-
propagated through the network to update the layer’s parameters, with the objective of minimizing the loss in the next training epoch.
The backpropagation is implemented with the gradient descent algorithm, involving the computation of the partial derivatives of the
loss with respect to the layer’s parameters in the update’s correlation. The most efficient gradient descent algorithm is the stochastic
gradient descent [56], where the updates are performed on batches of data randomly sampled from the dataset. Widely used stochastic
gradient descent algorithms are Adam, RMSProp, and Momentum [56,57]. A representation of a neural network for the classification
of an STEM image into grain boundary (GB) and no GB structural classes, together with forward and backpropagation workflow, is
illustrated in Fig. 1.

A popular training technique is “transfer learning” with fine-tuning. Transfer learning involves applying a pre-trained DL model to a
target dataset of interest [58]. VGG16 [59], Inception Net [60], ResNet [61], AlexNet [6], and DenseNet [62], are state-of-the-art DL
classifiers, pre-trained on the ImageNet dataset. Similarly, RCNN [63], Fast-RCNN [64], Faster RCNN [65], Mask-RCNN [7], SSD [8],
YOLO [9], and RetinaNet [10], are widely used object detection networks pre-trained on the COCO and PASCAL VOC datasets. The
advantage of transfer learning is that a pre-trained model benefits in general of satisfactory performance, as it has been already trained
on a large dataset comprising images representing a variety of object categories. However, since a pre-trained model must be applied
on the dataset of interest, fine-tuning is typically considered for re-training the inference layers of the neural network on such a dataset,
with fewer iterations required to achieve the desired performance compared to a “from scratch” training.

While a DL model learns to predict a target on a set of training data, it is paramount to verify its generalization capability of correct
predictions on a diverse set of data. Such a task is called a test, and it is performed on test data not seen by the network during training.
The model should be trained and tested on the same data distribution, for this reason, the training set is usually randomly sampled from
80% of the entire dataset, while the remaining 20% is used for the test set. Overfitting is the problem of an accurate prediction on the
training set, with a less accurate performance on the test set. Overfitting could be prevented with methods such as early stopping,
network reduction, expansion of the number of training data, and regularization [66]. On the contrary, underfitting is the issue of non-
accurate training and validation performance, and it could be addressed by training for more epochs, increasing network complexity,
or the amount of data. In general, the calibration of the modeling settings to prevent overfitting and underfitting is a necessary
parametric study in ML and DL analysis called the bias-variance trade-off.

The performance of a DL model is evaluated with metrics dedicated to the problem of interest. In regression tasks, the R? score is
generally used to estimate the similarity between the predictions and the continuous ground truth values. In materials science ap-
plications, the R? score could be used for tasks such as physical properties estimation or 3D reconstruction, where the model infers
continuous values such as the Young’s modulus or material’s thickness. On the other hand, accuracy, precision, and recall are
considered in classification problems. For a specific class, the accuracy is the proportion of the correctly predicted samples, the true
positive TP (i.e., class samples correctly predicted in the class), and the true negative TN (i.e., non-class samples correctly predicted not
in the class). Precision is instead the proportion of the TP with respect to the sum of the TP and the false positive FP (i.e., non-class
samples incorrectly predicted in the class). Finally, recall is the fraction of the TP and the sum of the TP and the false negative FN
(i.e., class samples incorrectly predicted not in the class). In materials science applications, accuracy, precision, and recall could be
suitable metrics in the evaluation of the model’s performance in structure classification problems, where phases, structural forms, type
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of defects, rotational states, and crystal structures represent classes of interest. In object detection and semantic segmentation prob-
lems, where object bounding boxes and image masks are respectively predicted, the intersection over union (IoU) metric is adopted.
The IoU is calculated as the proportion of the number of overlapping pixels between the predicted and the ground truth box or mask
and the total number of pixels between the predicted and ground truth box or mask. IoU is analogous to accuracy, where the over-
lapping pixels represent the TPs, while the pixels in the predicted box or mask not belonging to the ground truth are the FPs, and the
missed pixels in the ground truth box or masks are the FNs. In materials science applications, IoU could be used in structure detection
and structure segmentation problems, where bounding boxes or masks are used to identify atoms, defects, nanoparticles, crystals, or
phases.

DL models can be built with a variety of libraries, including TensorFlow [67], PyTorch [68], MXNet [69], and Caffe [70], usually
implemented in the Python programming language. Due to the significant computational cost and high memory requirements,
especially in image processing applications, GPUs are more suitable hardware compared to CPUs for running DL models. NVIDIA’s
GPUs are widely used because of their standard cuDNN library, designed to efficiently process DL frameworks in the CUDA envi-
ronment [71]. For instance, Tesla V100 and Tesla A100 are efficient NVIDIA GPUs for accelerating DL training due to the Tensor core-
based data center and high-performance computing (HPC) capabilities. GPU servers are usually accessed by creating dedicated Docker
containers, typically in cloud computing platforms like EC2 Amazon Web Service (AWS) [72], and Google Cloud Platform (GCP) [73].
GPUs offer parallelization capability through dedicated implementations within the DL libraries [74]. The data parallelization tech-
nique consists in spreading batches of the data to different GPUs, on which training is performed simultaneously [75]. On the other
hand, the model parallelization method implemented with the Horovod module [76], allows to train a neural network’s components
on different GPUs. Finally, GPUs with advanced computing capabilities can benefit from techniques like mixed precision [77], and
accelerated linear algebra (XLA) [78], to speed up the algebraic operations within a neural network.

CNNs for properties regression and structures classification

(a) CNN for crystal properties Regression (b) CNN for crystal structure classification
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Fig. 2. (a) Schematics of CNNs architectures for crystal properties prediction (regression) proposed by Dong et al. [79], (b) crystal structure
identification (classification) developed by Kaufmann et al. [80], and (c) carbon steel microstructure segmentation built by De Cost et al. [81].
Reproduced from References [80,79], and [81].
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3. Deep learning techniques for microscopy imaging in materials science applications

The present section discusses different DL techniques adopted in the reviewed microscopy imaging and materials science appli-
cations. First, DL techniques related to different categories of neural networks are reported. Then, the section is concluded with a
description of the transfer learning technique and its applications in this review. The reviewed neural network’s architectures have
been developed for more general tasks such as image classification, object detection, semantic segmentation, and generative modeling.
In materials science applications, they have been adapted to address tasks as structure identification, 3D reconstruction, physical
properties estimation, and synthetic image generation. It should be noted that each of these problems is not related to a specific
category of neural network architecture. On the contrary, the same type of DL model could be suitable for different applications, from
properties estimation to structure classification. Although a general architecture category can be flexible to a different scenario, each
problem involves an original implementation and network design.

3.1. Convolutional neural networks for properties estimation and structures classification

A widely used architecture is the state-of-the-art CNN comprising convolutional layers for feature extraction in the model’s initial
stages, and FC layers for the final predictions, which could be continuous values for physical and structural properties estimation or
probability scores for materials or microstructure classification. For instance, Dong and co-workers developed a regression CNN called
Parameter Quantification Network (PQ-Net) for predicting crystal properties such as scale factor, crystallite size, and lattice parameter
of multi-phase Ni-Pd/CeO2-ZrO,/Al,03 catalytic materials detected with X-ray diffraction images [79]. On the other hand, Kaufmann
et al. built a CNN applied to electron backscatter diffraction (EBSD) patterns for the classification of crystal structures [80]. A pixel-
wise classifier built on the PixelNet architecture has been also proposed by De Cost et al. for segmenting carbon steel microstructures,
where a phase class was predicted for each pixel in the images [81]. The schematics of the CNNs incorporating convolutional and FC
layers are represented in Fig. 2.

3.2. Convolutional neural networks for structures detection

Another class of DL architectures adopted in materials science is the object detection neural network for performing tasks such as
the detection of nanoparticles and crystals. In these types of DL models, the detection relies on the prediction of bounding boxes around
the objects of interest, together with a probability score of the object’s class. In architectures such as Mask-RCNN, object masks are also
predicted in addition to the bounding boxes. For instance, Masubuchi et al. used a Mask-RCNN for the detection of 2D graphene, hBN,
MoS,, and WTe; crystals represented in optical microscopy images [82]. A representation of the Mask-RCNN architecture and the
inferred detections from the input images is shown in Fig. 3.

3.3. Fully convolutional neural networks for structures segmentation
The FCN is instead designed for semantic segmentation tasks [11]. Segmentation refers to the FCN’s pixel-wise predictions of

objects class masks, which are generally more precise than bounding boxes methods. The pioneering FCN architecture is the U-Net,
introduced by Ronneberger et al., for the segmentation of biomedical electron microscopy images, winning the International

Mask-RCNN for structure detection

motorized Microscope | [ Deep-Learning Inference | \

Fig. 3. Schematic of Mask-RCNN architecture adopted by Masubuchi et al. [82] for the detection of 2D graphene, hBN, WTe,, and MoS; crystals.
Reproduced from Reference [82].
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FCNs for structures segmentation

(a) FCN for defects segmentation

Input
mini-batch
S512=512x=1

S12=512=4

Output
probability map
512=512=1

256=256=16,

128=128=32

B convolutionai3=3 RELU[[] Convolution Transpose 2x2
- Max Pooling 2=2

Convolutional 3=3 Sigmoid
S12x512 (=8)(=4)

(b) FCN for microstructure segmentation

\w

Ixw Hx H/2x H/4x H/8x  H/16x H/32x H/16x H/8x HxXx HxW
Cropped Wx W/2XxW/4x W/8x W/16x W/32x W/16x W/8x Wx
Patch 64 128 256 512 512 409 512 256 5

A&D
convolution
o

- =
=

forward/inference

—_— Max-voting
backward/learning .

policy in each
object

Skip
drop out
(training phase)

® maxpooling @@ upsampling @ ® softmax

+ RelU

(c) FCN for atomic column heights estimation

e

Exit wave

(10) y = A + Bi
(A1) W = FT(y)

Amphitude of exit wave

B

Phase of exst wave

PR S ——

(caption on next page)



M. Ragone et al. Progress in Materials Science 138 (2023) 101165
Fig. 4. Examples of FCNs for structure segmentation. (a) FCN adopted for segmentation of defects by Roberts et al. [84]: the input of the FCN is an
DCI STEM image of structural steel alloy, and the output is a defects segmentation map. (b) Segmentation of phases by Azimi et al. [85]: the input of
the FCN is an SEM image of low carbon steel matrix, and the output is a microstructure segmentation map. (c) Segmentation of atomic CHs by
Ragone et al. [14]: the input of the FCN is an HRTEM image of gold nanoparticles, and the output is a segmentation map reporting the values of the
atomic column heights. (d) Exit wave’s CTF’s amplitude and phase reconstruction by Lee et al. [86]: the input of the FCN is a TEM image of 2D
graphene and the output is a segmentation map representing the amplitude and the phase of exit wave’s CTF. Reproduced from References
£84,85,14] and [86].

GANSs for synthetic images and structures generation
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Fig. 5. Examples of GANs adopted for images and structure generations. (a) GAN adopted for enhancing the resolution of SEM images of gold
nanoparticles on a carbon substrate [96]: the input of the generator is a low resolution SEM image, and the output is a corresponding high resolution
image. (b) Denoising HAADF STEM image of Pt atomic structures [97]: the input of the generator is noisy STEM image, and the output is a cor-
responding noise-free image. (c) Generation of the 3D microstructure of solid oxide fuel cell electrodes [98]: the input of the generator is a set of
random numbers sampled from a Gaussian distribution and the output is a random but realistic 3D synthetic structure. Reproduced from References
[96,97] and [98].
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Symposiums on Biomedical Imaging (ISBI) cell tracking challenge in 2015 [12]. The U-Net architecture is characterized by a sym-
metrical structure of convolutional layers, where the image size, halved by pooling layers in the encoder side of the network, is
progressively restored in the decoder side by upsampling layers, and segmentation masks with the same size of the input image are
predicted. The original U-Net architecture has received modifications through the years, for example, with the addition of residual
blocks in the fully residual encoder-decoder network (FRED-Net) proposed by Arsalan et al. for the Iris dataset segmentation [83].

In materials science, the FCN architecture has been the most popular architecture in different applications, from structure seg-
mentation to 3D reconstruction and synthetic image generation problems. For instance, Roberts et al. proposed an encoder-decoder
model called DefectSegNet, for the segmentation of dislocation lines, precipitates, and voids crystallographic defects of structural
steel alloys represented in diffraction contrast imaging (DCI) STEM images [84]. A model built on the state-of-the-art FCN architecture
developed by Long et al. [11] was also applied to SEM images by Azimi et al., for the segmentation of microstructural phases in low-
carbon steel matrix [85]. In the 3D reconstruction application, Ragone et al. adopted a regression FCN for the estimation of the atomic
CHs in metallic nanoparticles [14]. In their application, the pixel-wise predictions are continuous values representing the atomic CHs,
rather than probability scores representing objects class probabilities as in standard semantic segmentation methods. In the context of
synthetic image generation, Lee et al. have proposed a convolutional dual-decoder autoencoder (CDDAE) for the reconstruction of the
amplitude and phase of the exit wave’s contrast transfer function (CTF) for the generation of denoised TEM images of 2D graphene
[86]. The model’s architectures employed in these applications are illustrated in Fig. 4.

3.4. Generative adversarial networks for images and structures generation

The generative adversarial network (GAN) is another class of neural network architectures adopted in materials science for syn-
thetic image generation applications. GAN is a generative DL model introduced by Goodfellow et al., built as a combination of a
generator neural network for producing artifact synthetic images, and a discriminator (i.e., critic) neural network whose task is to
discriminate between real-life images (data distribution) and the synthetic images computed by the generator (model distribution), in
an adversarial feedback loop [87]. Goodfellow et al. demonstrated that GAN could be used to generate new plausible images for the
MNIST digit dataset, the CIFAR-10 small object photograph dataset, and the Toronto Face Database. The original GAN has been
improved with the introduction of more advanced models such as Conditional GAN [88], Stack GAN [89], and Cycle GAN [90]. In
particular, deep convolutional GAN (DC-GAN) is the class of GANs employing convolutional layers for image processing applications
[91].

The GANs have been used for various applications, among whose super-resolution [92], image denoising [93], and 3D structures
generation [94,95] have received the greatest attention in materials science research. For instance, Haan et al. proposed a GAN for
enhancing the resolution of SEM images representing gold nanoparticles on a carbon substrate [96]. Similarly, Wang and co-workers
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developed a GAN for denoising HAADF STEM images of Pt atomic structures [97]. In both cases, the generator is an FCN built on the U-
Net architecture [12], with the input a low-resolution or noisy image, and the output a synthetic high-resolution or noise-free image,
respectively. Within the field of 3D structure generation, Hsu et al. developed a GAN for generating random but realistic 3D micro-
structures of solid oxide fuel cell electrodes [98], where the input of the generator is a set of random values sampled from a Gaussian
distribution called a latent vector. The schematics of the GANs frameworks are reported in Fig. 5.

3.5. Transfer learning in microscopy imaging for materials science applications

This section presents some examples of transfer learning methods in materials microscopy imaging analysis. Transfer learning is a
DL technique that is applicable to all the categories of neural networks described in the previous sections. Transfer learning has been
demonstrated as a powerful method in various DL problems involving different types of architecture, and relevant applications have
also been reported in materials science, where pre-trained CNNs, RCNNs, FCNs, and GANs have been used.

The most widely used pre-trained model is the VGG16, one of the most accurate architectures for classification tasks developed in
the literature. Azimi et al. adopted transfer learning with fine tuning of VGG16 architecture for the classification of advanced steel’s
microstructures in the martensite, tempered martensite, bainite, and perlite phases represented in SEM images [85]. For this purpose,
the last layer of VGG16 architecture comprising 1000 neurons for classifying 1000 categories in the ImageNet dataset, was replaced
with a four-neuron layer for predicting class probabilities of the microstructure phases. Fig. 6 illustrates the fine-tuned VGG16 model
for the prediction of the phase class probabilities proposed by Azimi et al. [85].

A pre-trained VGG16 has been also adopted by De Cost and co-workers for building the feature extraction part of their model for
phase classification and segmentation of carbon steel microstructures [81,99]. Transfer learning with fine tuning using VGG16 ar-
chitecture was also considered by Luo and co-workers for the classification of carbon nanotubes/nanofibers (CNTs/CNFs) [100]. In
their proposed method, the last layer of VGG16 was replaced with five neurons layers for predicting structural classes such as a cluster
of loosely packed fibers, single fibers, condensed matrix structures with embedded CNT/CNF, oversized mixed structures with CNT or
CNFs on surfaces and non-CNT structures.

Zhang et al. also applied a pre-trained VGG16 for the estimation of the local thickness from convergent beam diffraction (CBED)
patterns of SrTiO3 samples represented in STEM images at atomic resolutions [101]. In their 3D reconstruction application, Zhang and
co-workers proposed both classification CNN and regression CNN for thickness estimation. In the classification scheme, the authors
built the output layer with 50 neurons to predict class thickness incrementing from 2 nm to 100 nm, while in the regression scheme,
one neuron was considered to predict the continuous thickness value from 0.5 nm to 35 nm. Modarres et al. compared the performance
of Inception-v3, Inception-v4 [60], and ResNet [61] pre-trained on the ImageNet dataset, for the classification of materials represented
in SEM images into ten structural classes, i.e., OD particles, 1D nanowires and fibers, 2D films and coated surfaces, and 3D patterned
surfaces such as pillars [102]. Furthermore, pre-trained object detection networks based on RCNN were applied respectively by
Okunev et al. [103,104] and Zhang et al. [105] for the detection of metallic nanoparticles in STM and TEM images. In general, in all the
aforementioned methods and all the reports where transfer learning was applied, the desired performance was achieved by training the
pre-trained model for a relatively small number of epochs on the microscopy dataset for the materials science application of interest.

4. Microscopy images dataset preparation

The preparation of an appropriate dataset of microscopy images is a fundamental step for training and testing a neural network in
materials science applications. As microscopy images have unique features compared to natural scene images, the construction of a
dedicated dataset is not straightforward, and it requires special preliminary considerations. In some applications, datasets of real-life
experimental images can be used, while in other cases, microscopy image simulations are required. The following sections describe the
acquisition of microscopy images datasets following these two approaches.

4.1. Experimental microscopy images datasets

Training DL models require a vast number of images, usually in the thousands. The in-house acquisition of a sufficiently large
database of microscopy images with desired conditions for training DL models is generally time-consuming and challenging in many
applications. Typical issues are the cumbersome calibration of the microscope parameters to acquire noise-free images and the
minimization of signal drift and distortion typically present in microscopy analysis [106]. Then, the quality of experimental micro-
scopy images is also influenced by the sample’s stability and contamination during the microscope’s acquisition. In addition, it is
important to ensure a sufficient pixel signal variation in a DL dataset. In microscopy images, the signal is dictated by the imaging and
microscope conditions, as well as by the structural content and the physical properties of the represented materials. While the variation
of the former could be relatively straightforward, the latter requires experimentalists to analyze an infeasible number of samples and
structures. For these reasons, it is often prohibitive to collect a large database of microscopy images from in-house experiments.
Exceptions could be video analysis, where large datasets could be built from sequences of image frames, but these cases are limited to
specific DL time series applications. On the contrary, experimental microscopy images are more suited for on-the-fly inference stages to
demonstrate the applicability of a trained neural network to real-life applications.

Nevertheless, some publicly available datasets of experimental microscopy images have been collected by different research
groups, and they are suitable for training DL models. For instance, the Ultrahigh Carbon Steel DataBase (UHCSDB) [107] comprises
961 SEM images of Ultrahigh Carbon Steel (UHCS), acquired under varying heat treatments and magnifications, and labeled with the
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microconstituents of UHCS [108,109]. The UHCSDB was adopted by DeCost et al. for the classification and segmentation of UHCS
phases such as spheroidite, proeutectoid cementite network, and perlite [81,99]. Examples of SEM images from the UHCSDB belonging
to the three classes are illustrated in Fig. 7.

A further example of a microscopy images database is the steel image dataset developed by the Material Engineering Center
Saarland (MECS) in Saarbriicken, Germany [110]. The dataset contains 21 light optical microscopy (LOM) and SEM image of steel
structures in the martensitic, tempered martensitic, bainitic, and pearlitic microconstituents. As the average image size is 7000 x 8000
pixels, the dataset can be enlarged by cropping sub-images of smaller size. The MECS dataset was used by Azimi and co-workers for the
classification and segmentation of such steel microconstituents [85]. Another publicly available database is the SEM images dataset
from CNR Istituto di Officina dei Materiali (CNR-IOM) in Trieste. The dataset comprises more than 150,000 SEM images of material

(a) SEM images of carbon steel microstructures from UHCS database
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Fig. 7. Databases of experimentally acquired SEM images used for training DL models. (a) Examples of SEM images from the UHCS database
representing the spheroidized cementite, proeutectoid cementite network, and pearlite classes considered by De Cost et al. [99]. The yellow frames
in the first image represent four cropped sub-images for expanding the dataset. (b) Example of SEM images from the MECS steel database used by
Azimi and co-workers for the classification and segmentation of steel microconstituents [85]. (c) Examples of SEM images from the CNR-IOM
databases adopted by Modarres et al. for structural forms classification [102]. Reproduced from References [99,85] and [102]. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web version of this article.)
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structures such as particles, 1D nanowires and fibers, 2D films and coated etc., resulting from more than five years of experiments
performed by many researchers [111]. The CNR-IOM dataset was adopted by Modarres et al. for structural forms classification [102].

In general, the pre-processing of datasets of real-life images involves a variety of challenges in many DL applications. A typical
problem is the so-called class imbalance, meaning that certain classes count a larger number of images compared to other classes. This
problem could be addressed by collecting more images until a balanced image distribution is obtained. However, the acquisition of
more images of certain materials or structures could be time-consuming and infeasible, especially if materials categories are rare to
observe. For instance, the UHCSDB has a strong class imbalance of the spheroidite and proeutectoid cementite network with 374 and
212 images, respectively, compared to the uncommon pearlite + widmanstatten and martensite/baininite with 27 and 36 images,
respectively [99]. Data augmentation is an effective technique to address problems related to a shortage of images in a dataset [112].
Data augmentation is a method for generating new synthetic images from an initial distribution, using geometric operations such as
random rotation, mirroring, cropping, and zooming and with the random variation of brightness, contrast, blur, etc. For instance,
Badmos et al. adopted data augmentation to artificially increase the number of images representing Lithium-ion battery materials with
defects to balance the more populated non-defective distribution [113]. Similarly, data augmentation was used by Azimi et al. to
address the class imbalance of the MECS database, with 11 martensitic, 4 pearlitic, 4 bainitic, and 2 tempered martensitic samples, and
to further increase the number of images in the dataset [85]. Generative DL models such as GANs are also useful methods for data
augmentation. This review includes a description of the utilization of GANs as data augmentation technique in summarized micro-
scopy imaging and materials science applications. In general, data augmentation is an essential step of any DL study, and most of the
works reported in this review adopted data augmentation to enlarge the datasets of microscopy images.

Another non-trivial task is the images annotation for generating the necessary ground truth for supervised DL studies. As it has been
discussed in sections 2 and 3, the images ground truth depends on the specific DL task. In the examples provided in Fig. 2, the ground
truth is represented by crystal properties (regression), crystal structures (classification), and phases masks (segmentation), while in the
application reported in Fig. 3 and Fig. 4, the ground truth consists in object masks with bounding box coordinates (object detection
with segmentation) and object masks (segmentation), respectively. In the case of experimentally acquired microscopy image datasets,
the annotation is usually performed by expert materials scientists, whose task is to manually assign the ground truth with high

Images of structural steel and phase masks

SEM image SEM image SEM image SEM image

Martensite Tempered martensite Bainite Pearlite
mask mask mask mask

Fig. 8. Mask annotation of martensite, tempered martensite, bainite and pearlite phases for the segmentation-based DL model proposed by Azimi
et al. [85], applied to SEM and LOM images of structural steel. The annotation has been manually performed by materials science experts and
metallographers. Reproduced from Reference [85].
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precision to not bias the DL model to learn incorrect labels. The correct ground truth assignment is a posed problem of data annotation
in many DL analyses, and a variety of methods exist in the literature to search for “mislabeled” data originating from involuntary
human mistakes in the labeling process [114,115]. The likelihood of wrong annotation is generally higher in images of difficult
interpretation, as it could be the case of microscopy images representing complex materials. In addition, the manual annotations of
materials ground truth could be a laborious and time-consuming process, and in some applications, it is not available directly from the
dataset, and it must be performed in-house according to the target of interest. Fig. 8 shows the annotations of pixel-wise masks for
segmenting martensite, tempered martensite, bainite, and pearlite phases of structural steel in SEM images adopted by Azimi et al.,
executed by materials science experts and metallographers [85].

Due to the complications involved in the collection and preparation of experimental microscopy images, it is often preferable, and
sometimes mandatory, to perform images simulations to construct an appropriate dataset for DL analysis. In the following section, the
process of microscopy images simulations and its advantages in DL modeling are discussed.

4.2. Simulated microscopy images datasets

Microscopy simulation is an efficient tool for the interpretation of images acquired in experimental measurements, where the
extraction of quantitative sample information requires to reproduce the process of the signal contrast formation. Some of these ap-
plications are the investigation of atoms and defects arrangement [116,117], the evaluation of samples thickness and tilt [118,119],
and the determination of the chemical composition of atomic columns [120]. Dedicated algorithms have been developed in the
literature for the simulation of different categories of microscopy images [121,122]. For instance, the multislice algorithm, which
involves modeling the traveling of an electron beam through the matter, is a wide-spread technique for the simulation of electron
microscopy images [123].

With the advent of materials data mining, microscopy images simulations have received growing interest for building datasets for
training DL models. Compared to experimental microscopy images, simulated images have several advantages. First, there is no bound
on the dataset’s size, assuming a reasonable computational cost of the images’ simulations. This is a crucial aspect for DL, where
datasets comprising thousands of images are required. Then, within the simulations, the microscope parameters can be controlled to
obtain images with varying imaging conditions, being beneficial for the generalization capabilities of DL models. In addition, since the
microscope imaging conditions leverage the performance of learning algorithms, as demonstrated by Zhong et al. [124], the precise
knowledge of the microscope parameters allows to monitor the reliability of predictions under varying signal distributions. For
instance, Madsen et al. demonstrated that the defocus and electron dose values in HRTEM images simulations are the most sensitive
parameters influencing the accuracy of their DL model in the estimation of the atomic column heights of gold nanoparticles [13].
Another relevant advantage of image simulations is the algorithmic annotations of images’ ground truth. The process of microscopy
simulations is always associated with a prior model’s construction of the materials represented in the simulated images. In materials
models, features such as physical and structural properties, microstructure classes, and atoms and defects’ locations can be algo-
rithmically evaluated and then used to generate labels for training a neural network. A further benefit of this approach is the precise
inspection of the correlation between the pixels’ signal of simulated images and the corresponding ground truth. This is an important
stage for DL analysis since it allows one to inspect the data patterns to be learned by the neural network. Finally, the generation of
materials models with varying features such as size, zone axis, exposure, chemical composition etc., allows to construct a dataset with a
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Fig. 9. Schematic of the workflow for the generation of simulated microscopy images dataset for training DL model to be successively applied to
experimentally acquired microscopy images. DFT and MD are used to generate realistic materials models, adopted for the generation of training and
test datasets with microscopy images simulations and ground truth annotation (i.e., structural properties and/or physical properties). The DL model

trained on the simulated dataset to learn the structure-property relationship is then applied to predict microscopy images acquired in experimental
measurements.
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broad distribution of materials-induced signal in the simulated images.

Nevertheless, the simulation of materials models is a delicate step of algorithmic dataset generation. First, it is paramount to
generate realistic materials models in terms of thermodynamic stability and structure optimization. Density functional theory (DFT)
[125] and ab initio molecular dynamics (MD) [126] are widely used computational methods for the simulation and screening of
realistic materials models. Then, it is imperative to build materials models with properties in agreement with the samples observed in
experimental measurements for a successful application of a DL model to real-life microscopy images. This task is not straightforward
to address in the cases of complicated interpretation of the properties of the materials analyzed in experiments. Fig. 9 shows the
schematic of the workflow for the construction of a modeling dataset. Materials models could be computed with DFT and MD, and then
adopted for generating the corresponding simulated microscopy images. Once a neural network is trained on simulated images to learn
a desired target, then it could be applied to experimental microscopy images representing real-life materials.

The algorithmic generation of datasets, comprising materials modeling and microscopy images simulation, is a widely used
approach in many DL applications in materials science. Herein, some examples of the simulated dataset’s utilization are reported.
Ziatdinov et al. trained an FCN model with theoretical STEM images of the atomic lattice of graphene and MoSe2 doped with tungsten

(a) Different access planes Ground truth Simulated TEM
[111]

WAulff construction
of Au cluster

(b)

Fig. 10. Examples of modeling workflows for the generation of datasets of simulated images. (a) Ragone et al. [14] presented a method for the
construction of a simulated dataset for training a DL model to predict atomic column heights of gold (Au) nanoparticles. The Wulff construction
method has been adopted for generating realistic Au clusters. The modeling’s nanoparticles have been exposed to different access planes to generate
column heights with a varying arrangements using a semantic segmentation approach. (b) Madsen et al. [13] proposed a framework to build a
simulated dataset for training a DL model to locate C atoms in graphene structures. Graphene structures computed using Voronoi tessellation have
been used to obtain the corresponding simulated HRTEM images. In both cases, image simulations have been performed using the multislice al-
gorithm. Reproduced from References [13,14].

14



M. Ragone et al. Progress in Materials Science 138 (2023) 101165

(Mo;.xWSey) for the identification of defects such as vacancies and dopants [15]. Similarly, Lee and co-workers adopted annular dark
field (ADF) STEM image simulations for generating a dataset for training an FCN to detect defects in a monolayer 2D transition metal
dichalcogenide WSej o5Teox [127]. Madsen et al. [13] and Ragone et al. [14] developed atomic models of gold (Au) nanoparticles to
simulate HRTEM images for building a dataset for atomic column height estimation. In their modeling approach, Ragone et al. adopted
the Wulff construction method to generate realistic gold (Au) cluster, rotated to different zone axes, e.g. [111,100] and [110] to in-
crease the variability of the structure-induced signal in the simulated TEM images. The column heights ground truth was generated
algorithmically via a semantic segmentation approach [14]. In addition, Madsen et al. [13] designed a framework including modeling
of graphene structures using Voronoi tessellation and HRTEM images simulation for training a DL model to locate the position of
carbon atoms in a graphene lattice. The modeling workflows for the generation of a simulated dataset of TEM images representing gold
nanoparticles and graphene structure proposed by Madsen et al. [13] and Ragone et al. [14] are represented in Fig. 10(a) and (b),
respectively.

Fig. 11. Literature review of the most important DL applications in microscopy imaging problems in materials science research: synthetic data
generation, structure identification, 3D reconstruction, and physical properties estimation. Each of these applications comprises different types of
tasks. Synthetic data generation has been used for generating super-resolution, denoised and refocused, and augmented images. Likewise, structure
identification has been addressed with a classification of crystal structure, rotational states, defects, structural forms, and phases, with the detection
of nanoparticles and crystals, and with the segmentation of atoms, atomic columns, defects, nanoparticles, and phases. Similarly, 3D reconstruction
has been performed with CHs and thickness estimation or tomograph and hologram reconstruction. Finally, crystal properties, compliance tensor,
and mechanical properties are the material’s physical properties estimated via DL.
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Nanoparticle models and simulated images generated using Beer’s law, Gaussian noise, and transfer function modulation were used
by Yao and co-workers for training a DL model to identify nanoparticles’ dynamics in liquid phase TEM videos [128]. Forster et al.
employed MD to compute carbon nanotube (CNT) structures, serving as input to multislice HRTEM images simulation to develop a
dataset for training a neural network for chirality estimation [129]. Ziatdinov et al. trained a CNN on STM images simulated via
Markov chain Monte Carlo sampler to classify rotational states of complex molecular assemblies on surfaces, modeled with DFT
calculations [130]. Yeom and co-workers adopted phase field (PF) simulations to generate images of Al-Zn for training a SegNet model
for the alloys segmentation task [131]. Simulated diffraction patterns [79,80,101,132,133], and simulated tomographs [134] in
alternative to microscopy images were also used for DL analysis of 3D reconstruction, structure classification, and physical properties
estimation.

In summary, the algorithmic generation of microscopy images datasets is a convenient and popular approach in many DL appli-
cations in materials science. The workflow of this method is characterized by an initial simulation of materials models, typically with
DFT and MD calculations, followed by simulations of microscopy images of the corresponding materials models, as illustrated in
Fig. 11. Within this modeling workflow, DFT and MD calculations are typically implemented with software/codes such as the Vienna
Ab Initio Simulation Package (VASP) [135], Atomistic Tool Kit (ATK) [136], LAMMPS, etc. [137]. Alternately, the atomic simulation
environment (ASE) [138] is an open-source library for atomistic simulations implemented in the Python programming language.
Similarly, a variety of computational packages are available for microscopy image simulations, such as Computem [139], QSTEM
[140], Dr. Probe [141], PRISM [142], etc. PyQSTEM is a Python version of QSTEM with a dedicated interface to ASE, providing a
convenient platform for dataset simulations in DL analysis [143].

5. Review of deep learning application in microscopy imaging in materials science

In this section, a general overview of the identified applications of DL in microscopy imaging and materials science, including
synthetic image generation, structure identification, 3D reconstruction, and physical properties estimation, is provided. Each of these
applications plays a central role in the study of the structure—property relationship of materials. Synthetic image generation is crucial
to expand the number of images for materials inspection, allowing for the analysis of the broad distribution of structures and prop-
erties, and improving imaging quality by refocusing and denoising. Then, structure identification is essential for extracting the relevant
structural information necessary for physical properties predictions. In this context, 3D reconstruction is fundamental in applications
where the physical properties depend mainly on 3D structural arrangements. Finally, properties estimation is important in linking the
structural properties observed in microscopy images to the physical behavior of materials. In all these materials science fields, the
development of innovative and cutting-edge DL methods has advanced the state-of-the-art, opening a new frontier in the investigation
of structure-properties relationships. This review presents a summary of the methods followed by a description of their advantages and
limitations. A quantitative comparison between the performance of DL methods with a conventional microscopy imaging techniques is
also provided. A schematic of the reviewed applications and related tasks is illustrated in Fig. 11.

5.1. Deep learning applications for synthetic image generation

In this section, the methods for the generation of synthetic images via DL are presented. Synthetic image generation refers to the
ability of DL models to produce artificial images with desired characteristics. There are three distinct tasks in this area of application, i.
e., super-resolution image generation, image denoising and refocusing, and data augmentation. The aim of these applications is the
enhancement of the dataset’s quality by improving imaging conditions (i.e., super-resolution, image denoising, and refocusing) and
increasing the amount of data with artifact materials structures or synthetic microscopy images (i.e., data augmentation).

5.1.1. Super-resolution

A typical shortcoming of the traditional electron microscopy imaging analysis is the inherently destructive nature of the electron
beam-inducing charging effects and sample deformation, especially for dielectric and soft materials. For this reason, shorter exposure
times or low electron doses are typically considered to minimize the beam damage during image acquisition, resulting in the lack of
high-resolution representations. Computational techniques such as multi-resolution data fusion [144], and image deconvolution for
spatial blur reduction [145], and cumbersome experimental methods as electron ptychography [146], are often used for enhancing the
resolution of electron microscopy images, however, they have their own limitations in practical applications.

In recent years, Dong et al. demonstrated that CNNs could be used for efficiently predicting super-resolution images from the
corresponding low-resolution images as input [147]. In materials science, Haan et al. adopted a similar method and developed a
convolutional GAN for generating high-resolution SEM images of gold nanoparticles and hydrogels [96]. Their approach outperforms
the former conventional methods, as it applies to a wider range of samples and requires a single SEM image as an input exclusively.
Their GAN comprises a U-Net generator responsible for high-resolution image estimation and a VGG16 discriminator distinguishing
between low-resolution and high-resolution images. The GAN was trained on pairs of low-resolution images acquired with 14.2 nm
pixel size (10000 x magnification) and high-resolution images with 7.1 nm pixel size (20000 x magnification). The performance of the
model was evaluated by comparing the percentage of detected gaps between nanoparticles, since more gaps could be detected with a
refined image representation. For instance, in a low-resolution image, 13.9% of gaps between nanoparticles were not detectible, while
in the GAN-enhanced resolution image, only 3.7% of gaps could not be identified. Although the method developed by Haan and co-
workers was demonstrated to be successful for SEM images, it could be applied to enhance the image resolution in other areas of
microcopy such as TEM, STEM, etc. Such flexibility is due to the versatile nature of learning algorithms, as they are not bounded to a
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specific physical problem, but they can be adapted to different scenarios by simply changing the dataset of interest. Despite the method
proposed by Haan et al. has the advantage of generating on-the-fly super-resolution microscopy images with a versatile nature, a
shortcoming is the lower performance of the GAN on images representing samples susceptible to electron beam damage, or cases
affected by the movement of the samples during the images acquisition.

5.1.2. Refocusing and denoising

A common problem affecting the quality of microscopy images is a noised, out-of-focus, or blurred acquisition, resulting from an
incorrect manual adjustment of microscope parameters, improper hardware settings, and imaging automation errors. Deblurring,
autofocusing, and denoising techniques have been developed in the literature, but they have restrictions in practical applications. For
instance, deconvolution techniques based on local linear and non-linear filters [148,149], non-local self-similarity filters [150],
manifold representation [151], and Bayesian restoration [152], have been developed to restore microscopy images by removing blur
and recovering sharpness. However, these approaches are limited to “non-blind” restoration, where the deblurring kernel must be
known a priori, while in most real-world scenarios, such deblurring kernels are usually unknown. Similarly, autofocus methods based
on image quality metrics as image variance, image entropy, and image gradient [153], have been proposed to improve microscopy
image’s sharpness [154,155]. Although these metrics are widely used to assess image quality in general, their high dependence on the
image’s contrast and brightness makes them inappropriate for focusing evaluations on microscopy analysis. In TEM, image denoising
can be achieved by reconstructing the electron beam exit-wave function, as the latter incorporates the sample’s information before
being distorted by the lens’ aberrations. Nevertheless, standard exit-wave function reconstruction methods require a cumbersome
acquisition of images at varying defocus values (i.e., focal series). These challenges motivate the development of novel approaches for
refocusing and denoising microscopy images, and DL based techniques have demonstrated efficient capability to achieve these goals.

In recent years, CNNs have been established as innovative refocusing and de-blurring methods in different applications of natural
scene images [156]. The success of these methods has paved the way for their application also in microscopy imaging studies. Lee et al.
proposed an autofocus method for SEM images built on a dual DL network, including an autofocusing-evaluation network (AEnet) and
an autofocusing-control network (ACnet), working together in an iterative process [157]. The AEnet was used to evaluate the focus
quality of an input image, while the ACnet was employed for online control of the working distance (WD) microscope parameter to
optimize the acquisition of in-focus SEM images to be given as the input to the AEnet. Lee et al. concluded that their developed DL
method is efficient in finding WD values allowing for the experimental acquisition in-focus SEM images.

Similarly, Na et al. developed a multi-scale refocusing network (MRN) to restore defocused SEM images representing martensitic
steel and precipitation-hardened alloys using the filters of their trained CNN [158]. In their proposed framework, data augmentation
was also used to build a non-uniformly defocused dataset to allow the MRN to restore images affected by varying defocusing distri-
bution. The most important contribution of this work was the successful refocusing in complicated “blind” settings, with no a-priori
knowledge of deblurring filters. However, Na et al. have not demonstrated the applicability of the method on out-of-distributions cases,
such as images with varying focus blur levels or representing other classes of microstructures. On the other hand, Lee and co-workers
developed a convolutional dual-decoder autoencoder (CDDAE) for reconstructing the phase and the amplitude of the exit-wave
function of input microscopy images, applied subsequently to the corresponding contrast transfer function (CTF) for the restoration
of denoised images[86]. The authors applied their innovative method to a dataset of TEM images representing graphene structures. By
evaluating the denoising performance of the CDDAE with metrics such as signal-to-noise ratio (SNR), peak-signal-to-noise ratio
(PSNR), and structural similarity index map (SSIM), Lee et al. demonstrated that their framework outperformed conventional
denoising methods such as Wiener filtering [159]. For instance, the SNR, PSNR, and SSIM of the CDDAE compared to the conventional
Wiener filtering were respectively 18.3390 and 16.7880, 26.7727 and 25.2226, and 0.9440 and 0.9229, indicating the higher quality
of the image reconstruction provided by the CDDAE. Nonetheless, the proposed method struggles in cases where impurities like Cu and
Si are present in the graphene structure, whose identification requires the comparison of the phase and amplitude derived with the
CDDAE with the ones obtained with the conventional microscopy methods.

In all the reported applications, DL represents an efficient and accurate method for improving microscopy images quality. Also, in
this application, the aforementioned refocusing and denoising techniques could be applied to broader areas of microscopy images and
analyzed materials.

5.1.3. Dataset augmentation

The acquisition of a broad dataset of structures or microscopy images could be prohibitive in applications where costly and time-
consuming experimental measurements or intensive computation are required. For this reason, generative DL models such as GANs
and variational autoencoders (VAEs) have been proposed to generate both artifact materials samples as well as synthetic microscopy
images. The main advantage of these methods is the negligible effort and on-the-fly generation of datasets with desired characteristics.
The success of these DL-based generative models relies on the ability of reproducing the realistic morphological features of materials,
as well as authentic imaging microscopic conditions. Here, we first review the application of DL for artifact microstructure generation,
then we discuss the synthetic microscopy image’s formation.

The availability of a broad ensemble of materials is essential for structure-property relationship studies based on materials data
mining. Standard methods to generate simulated but realistic microstructures include statistical function-based [160] and physical
descriptor-based numerical models [161]. Statistical methods have disadvantages such as information loss in the dimensionality
reduction process and computational intractability of high-order correlation functions, while physical models require a time-
consuming comparison of the probability density functions (PDFs) of the real and artifact microstructure characteristics. To address
these shortcomings, DL-based approaches have been developed to generate synthetic microstructures through a volumetric
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representation using generative convolutional neural networks, e.g., VAEs and GANs. The main advantage of generative DL models is
that they do not need an a priori explicit knowledge of the PDF of the distribution of the synthetic microstructures, as it is implicitly
learned by a neural network during training.

Cang and co-workers proposed a generative VAE model with morphological constraints to create a dataset of artificial sandstone
microstructures from a limited set of realistic samples [162]. The generated microstructures were further used to train a ResNet for
predicting mechanical properties such as Young’s modulus, diffusion coefficient, and permeability coefficient. With this analysis, Cang
et al. [162] demonstrated that the VAE’s generation of artifact samples leads to a more accurate performance in physical properties
prediction compared to the generation via the state-of-the-art generative Markov Random Field (MRF) model. In fact, for all the
predicted physical properties, the R? score close to 0.95 was achieved using input microstructures generated by the proposed VAE,
while a lower value of 0.85 was obtained using MRF. Similarly, Li et al. designed a transfer learning encoder-decoder deep con-
volutional network based on VGG19 [59] to generate microstructures for a wide range of materials with varying geometrical features
and complexity, requiring a single target microstructure as input [163]. By comparing the difference between the real and recon-
structed microstructure, Li and co-workers demonstrated that their approach outperforms conventional statistical and physical
modeling methods. For example, the error rates of the proposed DL method in comparison to the two-point correlation approach in
reconstructing structures like carbonate, ceramics, sandstone, and polymer composites were respectively 7.63% and 45.59%, 1.31%
and 37.92%, 3.61% and 24.19%, 3.58%, and 30.65%. Thus, the DL approach results in a more precise microstructure reconstruction
compared to the two-point correlation. However, a limitation of their method is the applicability solely to stochastic microstructures,
while the effectiveness on deterministic microstructures like period crystallography structures could require further model refinement.
In addition, the demonstration of the proposed approach is limited only to 2D microstructures. Another application was demonstrated
by Gayon-Lombardo et al., who developed a DC-GAN for the reconstruction of arbitrarily large three-phase microstructures for LIB
cathodes and solid oxide fuel cell (SOFC) anodes applications [164]. An innovative contribution of their work is the capability to
generate microstructures with periodic boundaries, allowing for the utilization of periodic boundary conditions for accelerating
multiphysics simulations required for microstructure optimization and physical properties estimation. A similar GAN-based method
for the generation of a synthetic ensemble of heterogeneous energetic (HE) materials was presented by Chun and co-workers [165].
The performance of the designed GAN was tested by comparing the distribution of morphological metrics of voids (i.e., void diameter,
aspect ratio, and concentration), crystal phases, and shock response of the real and generated microstructures. A benefit introduced by
Chun et al. is the potential generation of novel morphologies, simply controlling the spatial distribution of the generated micro-
structures. Lastly, Yang et al. advanced the aforementioned methods by proposing a Stack GAN for the generation of high resolution,
highly variable, periodic, and highly controllable microstructures [166]. Compared to the state-of-the-art architectures, the Stack GAN
allows to capture more information from conditional latent variables adopted in GANs, leading to create microstructures with a higher
level of detail in their structural information. Yang and co-workers applied their framework for the generation of barium titanate
oxygen (BTO) piezoceramic microstructure, demonstrating the capability of their Stack GAN to successfully reproduce with high fi-
delity morphological features such as micropores and grain boundaries. For instance, the proposed GAN was capable to generate
synthetic structures with an average pores volume fraction of 5.52%, close to the 5.89% of the real microstructures. In addition, the
authors showed that by manipulating the GAN’s input noise vectors they can control the grain’s size, orientation, volume fraction, and
permittivity and thus creating a broad distribution of microstructures for inspecting the correlation with physical properties such as
piezoelectricity.

In general, in all of the reviewed works, it was demonstrated that generative DL models are useful techniques for creating an
ensemble of materials microstructure with morphological features as grain boundaries and voids or physical properties such as
Young’s modulus and diffusivity, in agreement with the structures observed in experimental measurements. These capabilities of
generative DL models resolve the issue of analyzing an infeasible number of materials samples for collecting a sufficiently large dataset.
In the following sections, it is discussed how similar approaches could be used to generate synthetic microscopy images, lifting the
requirement of acquiring a large dataset of images through time-consuming experimental measurements and laborious human
annotation.

Image segmentation for microstructure investigation is a cumbersome labeling process, as it requires a highly precise and expert
pixel-wise annotation, which hinders the collection of sufficiently large datasets for materials exploration. In section 4.2, it was dis-
cussed how the challenges of images annotation could be addressed by constructing simulated datasets, where the ground truth is
obtained from materials models computed with DFT or MD. However, in some applications, certain theoretical approximations and
simplifications prevent the simulation of realistic materials models, resulting in unrealistic images and ground truth. To address this
problem, Ma et al. developed an image-to-image conversion model based on a GAN architecture to predict realistic images by cor-
responding simulated and theoretical images [167]. For this purpose, the authors adopted a dataset optical image of polycrystalline
iron labeled, while the corresponding simulated images were computed by slicing 3D models of polycrystalline materials simulated
with the Monte Carlo Potts algorithm and labeled with grain’s semantic masks. The authors demonstrated that training a U-net
segmentation model on a dataset constructed by mixing real images and the synthetic images generated by the GAN could lead to a
value of 0.504 of the mean average precision (MAP) metric, whereas lower values between 0.2 and 0.4 were obtained using con-
ventional segmentation methods.

As previously discussed, the materials radiation damage induced by the electron beam is a limiting factor of electron microscopy,
and consequently, reduced exposure acquisitions result in lower-resolution images. An alternative method to prevent the sample’s
damage is the sampling of a sparse random subset of pixels (i.e., partial scans), followed by the image’s reconstruction using an
inpainting [168] or compressed sensing [ 169] algorithm. Spiral [170] and jittered grid-like [171] partial scans are typically adopted in
microscopy applications; however, their completion is not straightforward using conventional methods. In recent years, DL algorithms
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have been successfully applied to image infilling problems, including image completion [172] and irregular gap infilling [173]. Thus,
these models could be adapted for the completion of partial scans in electron microscopy. For this purpose, Ede et al. developed a GAN
to complete realistic STEM images from partial scans, such as spirals and jittered grids, by training on a dataset of pairs of STEM raster
scans and partial scans extracted by the authors [174]. By comparing the image reconstruction obtained with the proposed GAN and
with the conventional method, Ede and co-workers showed that their approach reconstructs more realistic images. For example, the
GAN-reconstructed images had realistic noise and structural characteristics, whereas the images obtained with standard methods
exhibit more blurred representation. In addition, the authors demonstrated that GAN’s performance is robust when varying the
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Fig. 12. Examples of synthetic images and structures generation using GANSs. In (a), the resolution enhancement application demonstrated by Haan
et al. [96]. A low-resolution SEM image cannot show gaps between nanoparticles, resulting in weak signal variation between nanoparticles. On the
other hand, the high-resolution image generated by the GAN can capture the gaps, and a signal drop emerges in correspondence to the background.
In (b), synthetic microstructures generated by the Stack GAN developed by Yang and co-workers [166]. Linear interpolations between the GAN’s
input noise vectors allow to create microstructure with varying values of permittivity ¢. In (c), image completion from partial scans proposed by Ede
et al. [174]. Spiral partial scans from the upper left corner of the global scan giving a smaller portion of the structure represented in the image, are
given in input to the GAN to reconstruct the image representing the structure corresponding to the global scan. The blue arrows point to the partial
scan in input and the reconstructed image representing the global structure in output, while the red arrow suggests the correspondence between the
partial spiral scan and the image representing a portion of the structure. Reproduced from References [96,166], and [174]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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coverage of the partial scans. Thus, the model developed by Ede et al. allows for a high-fidelity reconstruction of partial scans in
microscopy images, which are necessary to investigate beam-sensitive materials such as organic crystals, nanotubes, or nanoparticle
dispersions. However, the authors did not demonstrate the applicability of the proposed GAN to a different scenario like SEM images or
other scan systems. A successful application of synthetic images of cracked surfaces and grain boundaries, and x-ray tomographic
synthetic images of Li-ion battery electrode structures, in enhancing neural network performance was also demonstrated by Trampert
etal. [176] and Miiller et al. [177]. In the application of Miiller et al., the synthetic images generated via a style-transfer Cycle GAN
were combined with realistic images to construct the training dataset. In general, the aforementioned methods not only offer a strategy
to augment the datasets of microscopy images for training DL models, but they also demonstrate that synthetic images allow for
accurate model performance. For example, Trampert et al. showed that combining synthetic images with real images for training a
surface crack detection model provided an MSE of 0.205, whereas a higher value of 0.273 was obtained by training exclusively on real
images. Examples of GAN’s applications in synthetic images and structure generation are provided in Fig. 12.

5.2. Deep learning applications to structure identification

In this section, the applications of DL modeling for structure identification are described. With structure identification, we refer to
the capability of DL models to identify atoms, atomic columns, defects, chemical species, nanoparticles, crystals, and phases within
microscopy images. Structure identification plays a central role in the microscopy analysis of materials, as it allows for an automated
and accelerated extraction or classification of structural features, preventing a time-consuming human inspection. The demonstrated
success of DL models in various image processing problems broke the ground for their application to multiscale structural visual
recognition in microscopy images. In this review, the description of structure identification is categorized in structure segmentation,
structure detection and structure classification. Each of these approaches involves different categories of DL techniques, as well as
different analyzed structures at varying physical scales.

5.2.1. Structure segmentation

Structure segmentation is a crucial analysis in materials science, allowing for the identification of different categories of structures
within microscopy images through a pixel-wise prediction of structure masks. The structure masks could represent atoms and atomic
columns [13,15], defects and chemical species at the atomic scales [15,84,127,175], nanoparticles at the nano scale
[128,131,176,177], and microstructural phases at the micro scale [81,85,178]. Structure segmentation is the most common DL
application in materials science, and it involves the training of FCNs, usually built on the U-Net architecture.

The groundbreaking demonstrations of structure segmentation at the atomic scale were introduced by Ziatdinov et al. [15] and

(a) Semantic segmentation of Si defects
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Fig. 13. Examples of defects segmentation using FCNs. (a) Segmentation of C atoms and Si point defects atoms in a graphene structure performed by
Ziatdinov et al. [15], and (b) segmentation of dislocation lines defects in steel with DefectSegNet proposed by Roberts et al. [84]. Reproduced from
References [15] and [84].
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Madsen et al. [13], with application to STEM and HRTEM images, respectively. In both works, the authors introduced the innovative
idea of labeling the pixels of atomically resolved images with segmentation masks of atoms, atomic columns, defects like dopants and
vacancies, and atoms of different chemical species. Ziatdinov and co-workers employed blobs for the atomic defects and chemical
species labeling, while Madsen et al. adopted atomic masks computed with a spatial Gaussian distribution, peaked in the pixels
corresponding to the centers of atoms or atomic column representations. Ziatdinov and co-workers applied their framework for the
identification of silicon atoms implanted into graphene vacancies, including tracking of the local transformation of such defects during
a chemical reaction. Most importantly, their method can detect the structural changes of the chemical bonding of a molecular rotor
formed by the Si dopant and the graphene atoms. The authors proved that the Si-C bond length derived by their atom’s identification
method was ~172 pm, in agreement with the 177-179 pm value obtained with DFT calculations for planar SiC structures. On the other
hand, Madsen et al. demonstrated that their proposed method is successful in identifying atomic columns of metallic nanoparticles, and
under desired imaging conditions, it could also estimate the number of atoms in such columns, a structural feature known as column
height. Furthermore, the authors showed that their DL model is capable to capture the positions of atoms diffusing on the surface of the
nanoparticles in a gaseous atmosphere.

The success of the aforementioned methods led the way for further in-depth development of DL algorithms for defect detection in
microscopy images. Building on the framework proposed by Ziatdinov et al. [15], Maksov and co-workers developed an FCN to identify
lattice defect and phase evolution in WS2, subjected to structural transformations induced by the electron beam in STEM [175]. Their
method also incorporates an unsupervised clustering method to classify the identified defects and quantification of dynamics and
reactions of sulfur vacancies and Mo dopants. However, a limitation of such a technique is the physics-agnostic nature of the model, as
the structural transformations are identified with a pure visual method without incorporating information related to the involved
physical processes. In a more recent report, Lee et al. demonstrated a similar approach to locate and classify point defects with sub-
picometer precision in a monolayer 2D transition metal dichalcogenide (WSez 2, Tea,). The analysis proposed by Lee et al. revealed that
Se vacancies determine oscillating and complex strain fields in the lattice, causing the alternation of expansion and contraction of the
lattice’s rings. Roberts et al. introduced DefectSegNet, an FCN for the segmentation of crystallographic defects in structural steel alloys
such as dislocation lines, precipitates, and voids [84]. Comparing the detection performance of the neural network with human ex-
perts, Roberts et al. showed that their DL model is more efficient, as well as more accurate, in the high-throughput quantifications of
the investigated defects. For instance, the FP error in identifying defects like dislocation was 4% for DefectSegNet, whereas the higher
20% was obtained by human analysis. Furthermore, in the determination of precipitates size, an error of 2% was reported for
DefectSegNet, while a worst 13% by a human expert. In addition, the computational time required by the neural network to identify
defects was reported as ~ 2 s, while approximately 30 min were required for the human inspection. Examples of defects segmentations
of Si impurities in graphene matrix (Ziatdinov et al. [15]) and dislocation lines in steel (Roberts et al. [84]) are reported in Fig. 13.

The identification of metallic nanoparticles and the inspection of their dynamics is another important field of study in materials
science. In fact, metallic nanoparticles are promising candidates for industrial catalysis and energy storage applications, as they benefit
from exceptional catalytic activity due to their high surface energy. For this reason, it is of great interest to precisely quantify the
nanoparticles’ size and tracking their location during the dynamic evolution process. Semantic segmentation of microscopy images via
DL has been demonstrated as an efficient technique to achieve these goals. Compared to the previously reviewed applications where
atomic scale segmentation masks are assigned, in this case, the pixel labeling is performed for nanoscale objects. Oktay et al. developed
a multi-output CNN (MO-CNN) for simultaneously estimating nanoparticles locations, shape, and size via segmentation of TEM images
[179]. Horwath et al. trained a U-Net-type model to segment metallic nanoparticles represented in high-resolution environmental
transmission electron microscopy (ETEM), performing a parametric study of the network’s hyperparameters to achieve optimal
performance [177]. Similarly, Yao and co-workers implemented a segmentation model built on the U-Net architecture to investigate
the diffusion, interaction, reaction kinetics, and assembly dynamics in the liquid phase of colloidal nanoparticles from TEM videos
[128]. Furthermore, Yeom et al. applied a SegNet-based CNN to x-ray computed tomography (XCT) images to segment Al-Zn alloys
synthesized from in-situ solidification experiments. The authors demonstrated that the most accurate nanoparticle detection perfor-
mance was achieved by training on images representing microstructural and imaging features such as diffusive particle-background
interfaces, presence of noise, and absence of nanoparticles at the images’ edges. Ma et al. proposed a similar approach for the seg-
mentation of Al-La alloys, demonstrating that their DL model outperformed conventional segmentation methods in the identification
of dendrites along the alloys’ boundaries [176]. Indeed, Ma and co-workers showed that their proposed technique could achieve an IoU
around 93%, while lower values of 87%, 65%, and 56% were achieved by other segmentation methods like Watershed, Otsu, and
Adaptive Gaussian, respectively. Within the framework, a method for the rectification of the predicted segmentation masks was also
developed to potentially eliminate from the images the noise resulting from the contamination formed during the sample preparation
process. However, a limitation of this method is the lower performance in segmenting close dendrite structures, a task that could
require incorporating 3D information within the proposed framework.

Semantic segmentation has been also adopted for structure identification tasks at the microscale. In sections 3.1 and 3.3, we have
illustrated the pioneering microstructure segmentation methods proposed by DeCost et al. [81] and Azimi et al. [85]. In both works,
the authors demonstrated that neural networks are robust and effective tools for determining the distribution, size, and grain
boundaries of microstructures, e.g., martensite, bainite, pearlite, and spheroidite. Azimi and co-workers [85] demonstrated that their
proposed FCN was capable of detecting different microstructures with a precision of 99.08%, 91.78%, 84.19%, and 97.23% for the
martensite, tempered martensite, bainite, and pearlite respectively. DeCost et al. [81], adopting a similar method but with a different
neural network architecture, reported a precision of 81.8% on ferritic matrix, 94.9% on spheroidite, and 72.2% on Widmanstatten. The
different values of precision on distinct microstructures are due to the class imbalance in the adopted dataset, where the most
populated microstructure class is more favorable to be correctly predicted. DeCost et al. [81] also reported that their Pixelnet exhibited
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IoU values of 90.0% and 54.8% in predicting ferritic matrix and spheroidite, while the Otsu method was limited to 86.2% and 53.7% on
the same dataset. In a recent publication, Miiller et al. applied microstructure segmentation to graphite-silicon composite electrodes of
Li-ion batteries [178]. The authors trained a 3D U-Net model to segment x-ray tomographic microscopy images in pore space, graphite,
silicon particles and carbon black-binder domain classes. In particular, it was illustrated how the performed segmentation provides
insights on the evolution of the microstructure of composite anodes during the battery’s cycling, by revealing that morphological
changes are more likely to occur around the silicon particles rather than the graphite particles. However, a drawback of their method is
the segmentation of pore space and graphite, due to the low contrast between these two phases within the microscopy images. Ex-
amples of the structure segmentation at the micro, nano and atomic scales are shown in Fig. 14.

5.2.2. Structure detection

Structure detection is a similar application to structure segmentation, however, it relies on object detection, a widespread tech-
nique in computer vision for the identification of object categories using bounding boxes. Object detection has been applied in ma-
terials science to identify nanoparticles [103-105], and crystals [82] within microscopy images, using state-of-the-art models such as
Cascade RCNN and Mask RCNN. It should be noted that Mask RCNN predicts a segmentation mask in addition to the bounding boxes,
but since it is built on the RCNN object detection model, we have decided to include its applications in the structure detection section
rather than structure segmentation, where pure segmentation models based on the U-Net are adopted. The main objective of these
applications is the identification of nanoparticles and crystals to estimate their shape and size, which are morphological features of
vital importance in the structure-property relationship analysis of these materials.

Okunev et al. proposed a pre-trained Cascade RCNN applied to STM images for an automated localization of platinum nanoparticles
deposited on highly oriented pyrolytic graphite (HOPG), with the further objective of determining their size and height [103]. Within
their framework, the detection was performed with the estimation of contour boundaries around the nanoparticles, labeled by a
material science expert in the ground truth formation stage. Although the network was not capable of detecting nanoparticles in
images with poor imaging quality, it could automatically identify 175 out of 254 nanoparticles marked by an operator, resulting in a
detection accuracy of 68%, however, with a significant increase in the detection process speedup. In a subsequent publication, Okunev
et al. adopted Cascade Mask-RCNN and introduced a further boundary contour refinement with a 2D Gaussian fit algorithm
approximating the nanoparticles shapes, with the objective of providing a more precise nanoparticles detection [104]. The method was
demonstrated on a “rough” dataset, where greater attention was given in labeling a high number of nanoparticles rather than defining
contour boundaries with precise size and shape. Then, the model was applied on a “precise” dataset, where a lower number of
nanoparticles were labeled compared to the previous study, but with more careful attention to the definition of the nanoparticle’s
borders. While in the first analysis, the network showed high accuracy in nanoparticles detection but poor performance in size
evaluation, in the second study, the nanoparticles’ shape and size were predicted with enhanced precision. A similar method of
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Fig. 14. Examples of multiscale structure segmentation. (a) Segmentation at the micro scale of cementite, ferritic, and spheroidite phases of carbon
steel performed by De Cost et al. [81]. (b) Segmentation at the nano scale of Al-La alloys demonstrated by Ma et al. [176]. (c) Segmentation at the
atomic scale of atomic columns of gold nanoparticles developed by Madsen et al. [13]. Reproduced from References [81,176] and [13].
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nanoparticle shape and size evaluation based on Mask-RCNN detection and edge fitting was proposed by Zhang and co-workers [105].
The authors showed that the model is accurate even in the complex scenario of agglomerated and adhered nanoparticles. In addition,
the proposed edge fitting algorithm allowed for a contour boundary reconstruction for incomplete representation of nanoparticles at
the edge of the image or joint nanoparticles after adhesion. The authors reported an IoU of 0.92 computed on 630 analyzed
nanoparticles.

The Mask RCNN was also used by Masubuchi et al. for searching exfoliated 2D crystals sparsely distributed over SiO2/Si substrates
represented in optical microscopy images and classifying them into graphene, hBN, MoS,, and WTe; materials classes [82]. The
authors demonstrated that their detection method is robust under variation of microscopy conditions such as color balance and
illumination and has satisfactory generalization capability in predicting exfoliated 2D crystals not included in the training set. For
instance, the model trained on WTe; could accurately detect flakes like WSe, and MoTe; with different signal contrast in the images.
Satisfactory precision and recall values of 0.95 and 0.97 were reported by the authors. Furthermore, their main contribution was the
integration of the DL algorithm in a motorized optical microscope through a dedicated software pipeline implemented by the authors
in the C++ and Python programming languages. Thus, Masubuchi et al. developed one the first practical demonstration of the
integration of DL models with a microscope for automated and real-time in situ searching of materials structures. Fig. 15 illustrates
examples of the reviewed crystals and nanoparticles detection studies.

5.2.3. Structure classification

Structure classification is another important objective of structure identification in materials science. A comprehensive variety of
materials’ structures exists in nature, and each structural class has unique physical properties. Intelligible examples are the classifi-
cation of crystal into structural classes such as cubic, trigonal, hexagonal, etc., or the classification of microstructures into pearlite,
spheroidite, martensite, etc. As it is often a demanding task to categorize materials based on their structural features, DL methods have
been extensively adopted in the literature as an alternative to a more laborious and time-consuming manual classification. In the
applications reported in this review, materials have been classified according to crystal structure [80,132,180-182], rotational classes
[130], defects [113,183,184], at the atomic scale, structural forms at the nanoscale [100,102], and microstructural phases at the micro
scale [85,99]. Comparing to structure segmentation and structure detection, where structures are identified and classified within the
images, in structure classification, the class is assigned at the image level, meaning that each image represents a different category of
structures.

Crystal’s classification is the most targeted application of structure classification using DL models, and prominent methods have
been published in the literature. In most of the applications, diffraction patterns have been used since they are more directly correlated
to crystal symmetry information than microscopy images. Ziletti et al. developed a pioneering framework based on CNN to efficiently
classify crystal structures, including structures with defects, impurities, or experimental noise, outperforming conventional methods
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Fig. 15. Structure detection using Mask-RCNN. (a) Detection of 2D crystals sparsely distributed over SiO,/Si substrates represented in optical
microscopy images reported by Masubuchi et al. [82]. (b) Edge and shape detection of nanoparticles presented by Okunev et al. and Zhang et al.
[104,105]. Reproduced from References [82] and [104,105].
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based on space groups, relying on the symmetry of idealized crystal structures [181]. The proposed method was demonstrated on
algorithmically computed diffraction fingerprints images of simulated body-centered tetragonal 139 and 141, rhombohedral 166,
hexagonal 194, diamond, simple cubic, face-centered cubic, and body-centered cubic crystal structures, including cases with a con-
centration of defects up to 60%. The authors demonstrated that their model could achieve an accuracy of 100%, providing a perfect
prediction even in the case of highly defective crystal structures. Kaufmann and co-workers proposed a similar method for Bravais
lattice classification but applied to simulated electron backscatter diffraction images [80]. In the developed framework, the crystal
structures were successfully classified with an accuracy higher than 90% using ResNet and Xception architectures. A Bravais lattice
classification approach applied to a 2D fast Fourier transform of simulated and experimental STM and STEM images was developed by
Vasudevan et al. [180]. The neural network was also applied to Mo-doped WS, structures subjected to electron beam-induced
transformations to determine its phase transformation kinetics. However, a limitation of the proposed method is that it is not appli-
cable to non-centrometric crystals. Crystal structure classification applied to simulated diffraction patterns images representing
crystals belonging to seven lattice families and 32-point symmetry groups used as class labels was developed by Aguiar et al. [182].
Similar to previous reports, an exceptional accuracy over 90% was achieved for most of the classes, with a peak of 99.24% for
hexagonal-trapezohedral and the lowest value of 65.80% for tetragonal-pyramidal crystals. A related work was published by Tiong
et al., where 72 space groups (SGs) (out of the 230 SGs formed by the combination of 32-point groups and 14 Bravais lattices) were
considered for crystal classification. Comparing to previous methods where few high-level categories were considered by classifying
crystals into symmetry classes, Bravais latices, or point groups, the SGs-based model introduced by Tiong et al. allowed for a classi-
fication of crystals with a superior level of complexity. The authors implemented an advanced DL model named multistream DenseNet
(MSDN), achieving a satisfactory accuracy around 80% in classifying crystals into the considered 72 SGs.

The knowledge of structural and rotational configurations of individual molecules in a lattice substrate is fundamental for
investigating the kinetics of such molecules and related short-range orders phenomena leading to conformational changes reactions.
For this purpose, Ziatdinov et al. introduced a machine vision approach to classify structural and rotational states of individual
building blocks of sumanene molecules assembled on gold lattice surfaces represented in STM images [130]. In this method, blow-up
and blown-down structural states and three rotational states on a [2,2,2] gold surface plus a rotation class corresponding to eventual
imperfections of the molecular film or underlying substrate were considered. The authors demonstrated that the proposed technique
could be employed for a precise reconstruction of the pair density function to analyze the disorder-property relationship of the system
and retrieving reaction pathways involving molecular conformation transformations.

Defect identification is a crucial analysis in materials science, and defect classification approaches have been proposed in the
literature in addition to the reported defect segmentation methods. For instance, Cheon et al. applied a CNN to SEM images for
classifying wafer surface defects into the spot, rock-shaped particles, ring-shaped particles, misalignment, and scratch defect classes
[183]. The authors illustrated that the developed CNN could outperform other learning algorithms such as multi-layer perceptron
(MLP), support vector machine (SVM), and stacked autoencoder (SAE). For instance, their CNN achieved a defects classification of
96.2%, while MLP, SVM, and SAE were limited to 92.8%, 92.5%, and 91.8%. Similarly, Imoto and co-workers adopted transfer
learning with fine-tuning of the Inception CNN [60], for an automatic defect classification of semiconductor manufacturing materials
represented in SEM images [184]. Comparing with conventional automated defect classification methods achieving an accuracy of
77.2%, their method provides superior accuracy of 87.3%, as well as significantly reduced time in manual image inspection. Similarly,
Badmos et al. used a transfer learning with a fined tuning-based approach for the automated detection of microstructural defects in
Lithium-ion batteries electrodes’ materials reported in light microscopy images of sectioned battery cells [113]. The model was
implemented to perform a binary classification into the “presence of defects” such as layer contamination, metal particle contaminant,
non-uniform coating, and “without defects” classes. The authors demonstrated first that transfer learning benefits of superior accuracy
compared to a CNN trained purely on battery electrodes images; then, they showed that fine-tuned VGG19 [59] leads to more accurate
estimation compared to fine-tuned Inception [60] and Xception CNNs [185]. Although, a limitation of their approach is the difficulty
in the acquisition of sufficiently high-resolution experimental images required for accurately training the model. A further downside of
the proposed method is the bias of the preparation process and imaging conditions on the pixel’s intensities of the collected experi-
mental images.

At the nano-scale, structure classification has been applied to categorize structural forms of objects such as particles, nanowires,
films, and pillars [102], carbon nanotubes (CNTs)/nanofibers (CNFs) [100]. Modarres et al. proposed an original transfer learning of
Inception and ResNet models to classify nanomaterials represented in SEM image into the following ten classes: tips, particles,
patterned surfaces, MEMS devices and electrodes, nanowires, porous sponge, biological, powder, films and coated surfaces, and fibers
[102]. With an in-depth analysis of the performance achieved in each class, it was concluded that classes with the most representative
features as patterned surfaces, MEMS, particles, nanowires, and tips could achieve accuracies higher than 90%, while the other classes
were predicted with lower but still satisfactory accuracies. In a later report, Luo et al. performed a classification of TEM images
covering all the major categories of airborne carbon nanostructures employed in the manufacturing of CNT and CNF materials [100].
The authors initially partitioned the images in five classes corresponding to the most observed structural forms of CNTs and CNFs,
namely cluster, fiber, matrix, matrix-surface, and non-CNT, originated for example, by the stacking arrangements of graphene sheets,
inter-fiber interaction, and aggregation and structural mixing. In a further step, the classification was refined with the introduction of
five additional classes to categorize the non-CNT structures in graphene sheets, soot particles, high-density particles, polymer re-
siduals, and others. By applying transfer learning of VGG16 and data augmentation, the authors showed that their approach leads to a
classification accuracy of 90.9% and 84.5% in the two cases. However, a drawback of the presented methodology is the lower per-
formance in classifying images from structural classes with high similarity, like matrix and matrix-surface.

The classification of microstructural phases has particular importance since it represents one of the pioneering demonstrations of
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the application of DL to microscopy images for materials classification. Azimi et al. were the first in the field to present a framework
based on a pre-trained VGG16 model applied to SEM images to classify the microstructure of low-carbon steel into martensitic,
tempered martensitic, bainitic, and pearlitic phases [85]. The innovative method proposed by Azimi et al. could achieve a high ac-
curacy of 93.94%, outperforming an earlier non-DL technique limited to 48.89%. Additionally, the authors reported individual
structural classes accuracies of 99.08%, 91.78%, 84.19%, and 92.23% for martensitic, tempered martensitic, bainitic, and pearlitic
phases, respectively. As mentioned in section 4.1, the MECS [110] publicly available database of experimental SEM images labeled by
materials science experts was used, and image augmentation was adopted to address the problem of imbalance among the micro-
structural classes. A similar and cutting-edge method for low-carbon steels’ microstructure classification using DL applied to the SEM
images in the UHCS database [108] was introduced by DeCost et al. [99]. Similar as in the work developed by Azimi et al. [85], the
transfer-learning of VGG16 was adopted; however, additional microstructural classes were considered, including spheroidite, pro-
eutecoid cementite network, pearlite, pearlite + spheroidite, Widmanstétten cementite, pearlite + Widmanstatten and Martensite/
Bainite. A classification accuracy higher than 95% was reported. One of the most important contributions of their work was the
exploration of the images’ features using a vector of locally aggregated descriptors (VLAD) [186] applied to the hidden features maps
of the VGG16, fed to the t-distributed stochastic neighbor embedding (t-SNE) algorithm for projecting in a 2D space the obtained
images’ high dimension features vectors. The method was employed to visualize the distributions and relationships of the images’
extracted high-dimensional microstructural features by clustering their projections in the 2D t-SNE microstructure maps. For instance,
the authors showed that spheroidite, pearlite, and network images tend to form distinct and extended clusters, while martensitic
images are agglomerated in a cluster close to pearlite due to their similar morphologies. The proposed approach is a useful technique to
visualize the structural features learned by a DL model in materials classification and to analyze microscopy images of materials in
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Fig. 16. Examples of multiscale structure classification using CNNs. In (a), DeCost et al. adopted transfer learning of the VGG16 model to classify
SEM images of steel into microstructural classes such as spheroidite, (blue) proeutecoid cementite network, (purple) martensite, (red) and pearlite
+ spheroidite. (yellow) For illustration purposes, the classified images have been projected in to the t-SNE scatter plot map [99]. In (b), Luo et al.
used a pre-trained VGG16 to classify the structural forms of the major categories of airborne carbon nanostructures employed in the manufacturing
of CNT and CNF material [100]. As in (a), the t-SNE diagram has been used to project the images into the condensed matrix structures, (Ma, light
blue) oversized mixed structures, (MS, purple) clusters of packed fibers, (Cl, brown), and single fibers (Fi, green). In (c), Ziletti et al. trained a CNN
on computed diffraction fingerprints images to classify crystal structures into classes, e.g., simple cubic, diamond, face-centered-cubic, and body-
centered-cubic [181]. Reproduced from References [99,100], and [181]. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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general. In Fig. 16, examples of microstructures, structural forms and crystal structures classification, are illustrated.
5.3. Deep learning applications to 3D reconstruction

The 3D reconstruction of materials’ structure is another field of study of high interest for the determination of structure-property
relationships of materials with complex morphology. In this section, the applications of DL for the 3D reconstruction of materials are
categorized into nanoparticle’s atomic column heights estimation, thickness evaluation, and tomography reconstruction.

5.3.1. Atomic column heights estimation

As mentioned in earlier sections, the estimation of structural characteristics of nanoparticles plays a central role in the evaluation of
their physical properties, such as surface energy in catalysis applications, and DL methods have proven effective capabilities in
determining size and shape by predicting segmentation masks or bounding boxes. However, these approaches offer a coarse char-
acterization of nanoparticles’ structure limited to 2D representations, while a more in-depth analysis of their atomic arrangements
could reveal more precise morphological features in the 3D space. Within nanoparticles, atoms are aligned in ordinate columns along
different crystallographic directions depending on their crystal structure. The number of atoms in the atomic columns is referred in
materials science as column height, and its evaluation is the typical objective for the 3D reconstruction of nanoparticles. Techniques
based on linear interpolation, parameter estimation theory, and least square estimator applied to STEM images have demonstrated the
capability to accurately predict the column heights of single chemical element nanoparticles of different sizes [187-189]. In general,
these methods assume that in STEM images, the pixel intensity is linearly correlated with the number of atoms distributed in the atomic
columns. On the other hand, the relationship between the pixel intensities in the HRTEM image and the column heights is highly non-
linear and sensitive to many microscope parameters as defocus, electron dose, etc. The state-of-the-art techniques for extracting the
features of the crystal structures from the experimentally acquired HRTEM images include the cumbersome installment of a dedicated
image corrector and the extraction of the exit wave function from a focal series [190-192]. The determination of the 3D configuration
of metallic nanoparticles from HRTEM images has been performed in several attempts presented in the literature; however, these
studies are limited to restricted areas of application, such as simulated images, single surface orientation, and liquid type of substrate
[193-195].

As previously reviewed, Madsen et al. introduced a novel DL framework based on semantic segmentation for local atomic structure
identification in HRTEM images, with the potential of estimating the atomic column heights of metallic nanoparticles [13]. The
proposed neural network segments the atomic columns and classifies them according to their height by training on simulated HRTEM
images computed with varying values of the microscope parameters to ensure a sufficient model’s robustness with respect to the
microscopy imaging conditions. For each nanoparticle, a focal series with defocus values randomly picked within a defined range was
given as input to the network to mimic the prediction of the column heights from a focal series. The authors demonstrated that with
their technique, the column heights could be predicted with an error up to two atoms in simulated images. Although a successful
model’s performance was demonstrated on simulated images representing samples perfectly aligned with the electron beam, a lim-
itation of the proposed method is that its application was not demonstrated on experimental images, and larger column height errors
were obtained for samples with a slightly tilted zone axis. This innovative DL approach was further extended by Ragone and co-
workers, who developed a regression-based neural network version of the original model designed by Madsen et al. [14]. The most
significant contribution was the application of the trained DL model to experimental HRTEM images to predict the column heights in
real-life nanoparticles with different sizes and zone axes. Furthermore, Ragone et al. demonstrated that the same technique could be
successfully applied in the prediction of the atomic column heights of chemically complex nanoparticles, e.g., HEAs [196]. The neural
network trained on simulated STEM images was then adopted to predict the atomic column heights in experimental images of a
Ptg.oNig 2Pdg 2Cog oFeg 2 HEA for each of the five chemical elements with an error up to one atom in most of the columns. However, a
disadvantage of the proposed method is that the trained network is restricted to only such class of HEA and composition, whereas the
application to other HEA involving other chemical elements in a different ratio requires additional model training and evaluation.

5.3.2. Thickness estimation

A further method for retrieving 3D structural information of materials is the estimation of the sample’s thickness. Position-averaged
convergent beam electron diffraction (PACBED) patterns obtained with STEM can be used to evaluate the local thickness and tilt of
analyzed materials [197], usually by comparing experimental PACBED patterns with the numerical simulation through least square
fitting (LSF) [198] or human perspective. A faster method of thickness and tilt estimation using DL applied to PACBED patterns was
introduced by Xu and LeBeau[133]. A transfer learning CNN based on AlexNet architecture [6] was trained on SrTiO3 and
PbMgp.33Nbg 6603 crystals to predict thickness ranging from 6 to 120 nm and from 8 nm to 70 nm in PACBED acquired with a 13.6
mrad and 19.1 mrad probes respectively. By comparing the predictions of the CNN and LSF, the authors demonstrated the optimal
performance of the DL model for thickness below 60 nm with an error up to 2 nm, while for higher thickness, special treatments in
PACBED patterns preprocessing were required to minimize discrepancy and blurring effects. For instance, 96.5% of the CNN’s pre-
dictions matched with LSF within an error just up to 3 nm for 13.6 mrad patterns, while a 94.2% match within 3 nm was reported for
19.1 mrad patterns. A limitation of the method developed by Xu and LeBeau is the reduction of thickness agreement between CNN and
LSF for samples with a size larger than 60 nm, with the lowest performance reported for sizes between 100 and 120 nm. The technique
proposed by Xu and LeBeau was advanced in a later publication by Zhang and co-workers, with the development of classification and
regression CNNs built on the VGG16 architecture for thickness estimation of atomic columns of SrTiO3 crystals from PACBED patterns
of HAADF STEM images [101]. While the classification CNN categorizes crystals with thickness classes ranging from 2 nm to 100 nm
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with 2 nm increment, the regression CNN provides a refined estimation by predicting continuous values between 0.5 nm and 35 nm.
Comparing the CNNs’ predictions with sample thickness extracted from HAADF STEM images corresponding to the PACBED patterns,
Zhang et al. showed that the regression CNN yields a more accurate prediction for thickness below 35 nm, with an error up to 1 nm for
70% of the cases and up to 2 nm for 94% of the cases. On the other hand, the classification CNN estimates the thickness with an error up
to 2 nm only for 66% of the samples.

5.3.3. Tomograph reconstruction

Tomography is another state-of-the-art technique widely adopted in microscopy to investigate the volumetric distribution of
materials’ structure, consisting of the acquisition of a tilt series of image projections by rotating a sample along a crystallographic axis
to varying exposed orientations [199]. Such a series of stacked 2D projection images representing a material’s volume is referred to as a
3D tomographic image dataset. For instance, Chen et al. [200] and Miao et al. [201] presented pioneering studies based on atomic
electron tomography (AET) to reconstruct the 3D structure of metallic nanoparticles, allowing for precise localization of atomic
displacement, grain boundaries, dislocation, and evaluation of physical properties such as the strain tensor. Although AET is an
advanced method for the 3D reconstruction of materials, it involves a cumbersome and challenging reconstruction of the materials
volume from the corresponding series of 2D projections, usually performed with complicated algorithms such as the simultaneous
iterative reconstruction technique (SIRT) [202], and equal slope tomography (EST) [203]. In addition, the quantification of the
material’s structure from tomography imaging datasets requires an appropriate segmentation of features in the scanned material’s

(a) Atomic column heights estimation

Experimental HRTEM image CNN predictions

£

|

WhieH suwniod

(SRR ]
(b) Thickness prediction

HAADF STEM Atomic column Atomic column
image PACBED pattern estimated thickness

(c) Tomograph reconstruction

X-ray Material distribution Reconstructed
tomography image segmentation 3D tomograph

Fig. 17. Examples of 3D reconstruction of materials structure. In (a), Ragone et al. trained a DL model to segment HRTEM images representing gold
nanoparticles to estimate the number of atoms in their atomic columns [14]. In (b), Zhang and co-workers trained a CNN on PACBEC patterns to
predict the thickness of atomic columns SrTiO3 crystals represented in corresponding HAADF STEM images (in the figure, the predicted thickness is
expressed in a unit cell, but the CNN estimates nm values) [101]. In (c), Kodama et al. trained an FCN on X-ray tomography images to segment 2D
slices of NMC, SE, and void distribution of cathode materials of Li-ion batteries. The 3D tomograph is then reconstructed by combining the 2D
segmented slices predicted by the DL model [205]. Reproduced from References [14,101], and [205].
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volume.

Recently, DL algorithms have been demonstrated to be alternative and promising approaches for post-processing tomography
image data for the reconstruction of 3D morphological features of materials [134,204,205]. Li and co-workers used CNN to reveal the
3D distribution of L1»-type &'-Al3(LiMg) nanoparticles with face-centered cubic crystal structure from spatial distribution maps (SDMs)
obtained with atom probe tomography (APT) [134]. The model was first trained to classify simulated APT-SDMs reporting Al-Li-Mg
FCC bulk or L1, precipitate’s structure categories, achieving a classification accuracy of 100%. Then, the authors demonstrated that
the L1, precipitates could be successfully identified also in experimentally acquired APT-SDMs, considering crystal structure infor-
mation such as occupancy sites and atoms positions and its effect on SDM’s signal contras, outperforming traditional methods based
solely on composition difference evaluation. Alternatively, Kaira et al. adopted a CNN for the segmentation of the volumetric stack of
nanotomography images of an AlCu alloy acquired with transmission X-ray microscopy (TXM), coupled with post-scanning SEM
imaging to retrieve 3D morphological parameters [204]. With this method, the 3D tomograph is reconstructed by combining the
predicted segmented images of 2D slices. The authors illustrated that the automated segmentation based on DL could accurately
quantify the 3D morphology of nanoscale precipitates, coarse ¢ precipitates nucleating heterogeneously in high energy sites of grain
boundaries, and plate-like ¢ precipitates. A similar method was proposed by Kodama et al., for the segmentation of 3D images from X-
ray nanotomography of cathode materials such as LiCoO; or LiNigsMng 3C00.202 (NMC), with sulfide solid electrolyte (SE) for all-
solid-state Li-ion battery applications [205]. A U-Net was trained to automatically segment the NMC, SE and void components of
the cathode assembly, obtaining volumetric fractions of 37%, 43% and 19% respectively, matching the values obtained with exper-
imental measurements. Examples of 3D reconstruction applications are shown in Fig. 17.

5.4. Deep learning applications to physical properties estimation

Physical properties estimation is the ultimate and most important task in the workflow of structure-properties relationship analysis.
In previous sections, we have reviewed how DL algorithms have contributed to improve the state-of-knowledge on different steps of a
such workflow, from the pre-processing of microscopy images to the identification and reconstruction of structural features of ma-
terials. While the summarized reports were more focused on the “structure” side, the actual prediction of the physical properties of the
investigated structures was not included. Herein, we complete the review with a description of the methods related to the “properties™
side, where DL models were employed for the estimation of physical properties, e.g., crystal [79,129] and mechanical properties
[162,206].

5.4.1. Crystal properties evaluation

Crystal properties such as scale factors, lattice parameters, and crystallite sizes are the most important to characterize the operating
conditions of materials, and tomographic diffraction imaging are usually used to reconstruct 3D mapping of such properties [207]. In
the previous section, we described how DL models have been successfully applied to tomographic image data for 3D structure
reconstruction purposes. Dong et al. proposed a similar approach and developed a regression CNN applied to simulated and experi-
mental X-ray diffraction (XRD) computed tomography patterns representing single phase Ni FCC structure and multi-phase Ni-Pd/
CeO2-Zr0Oy/Al»03 catalytic materials, for the prediction of scale factor, lattice parameters, and crystallite size volumetric mapping
[79,129]. Comparing the model’s predictions with the ground truth in the simulated XRD tomography dataset, the authors showed that
the crystal properties mapping could be estimated accurately for both the simpler single phase Ni structure as well as the more complex
multiphase Ni-Pd/CeO3-ZrOy/Al;03 system. Then, the predictions for the experimental XRD images were validated by measuring the
difference with respect to the properties mapping obtained with conventional Rietveld analysis [208], revealing an optimal agreement
achieved by the DL model. While a slight difference of 2% was measured between the two methods the advantage provided by DL was
the much faster processing time of 10 s compared to the 4.4 h required by the Rietveld method. Another application of crystal
properties estimation was presented by Forster and co-workers, with the development of CNN for the prediction of chiral indices of
carbon nanotubes (CNTs) represented in HRTEM images|[129]. The importance of chiral indices lies in their determination of CNT’s
structure and influence on metallic and semiconducting properties; however, their evaluation using conventional methods, e.g.,
analysis of electron diffraction patterns from TEM [209], or comparison of experimental and simulated HRTEM images [210], is
usually tedious and time-consuming. On the other hand, Forster et al. showed that their network, trained first on a simulated HRTEM
dataset, is capable to predict on the fly the chirality of CNTs, with a 71% agreement with a manual and longer evaluation based on the
aforementioned conventional methods. In addition, the authors claimed that in the case of disagreement, the error committed by their
automated DL method is minimal, and an agreement of 100% could be achieved, when removing from the dataset the most challenging
nanotubes.

5.4.2. Mechanical properties evaluation

Among different physical properties, mechanical properties are the most sensitive to the structural features of materials. For
instance, the Young’s modulus is strongly correlated with the atomic bond strength, while the diffusivity and fluid permeability of
porous materials is mainly dictated by the local pores’ size distribution and degree of connectivity. Cang et al. demonstrated that
mechanical properties, such as the Young’s modulus, diffusivity, and fluid permeability of geological porous materials such as
sandstones, could be predicted using a regression ResNet trained on corresponding microstructure mapping [162]. The main objective
of the proposed method is to use DL to link the sandstone’s microstructure represented in the input mapping, to the mechanical
properties of interest, without developing an explicit physical model. In their innovative framework, the model’s inputs consist of
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synthetic microstructural mapping derived with a generative VAE and DCGAN, while the ground truth of the mechanical properties
values is computed with effective medium theory [211]. The effectiveness of the method was outlined by the superior R? in the
mechanical properties’ prediction obtained with the developed DL method, compared to a conventional approach-based Markov
Random Field algorithm, especially for a large number of analyzed samples. For example, an R? of 0.95 was achieved by the proposed
DL methods in evaluating the Young’s modulus on 1000 samples, while the Markov Random Field algorithm was limited to 0.85, and
similar metrics were reported for the diffusion and permeability coefficients. A similar framework combining synthetic microstructural
mapping generation using DCGAN and CNN for the prediction of mechanical properties was developed in a later report by Tan and co-
workers [206]. The DCGAN was employed to generate images of a porous microstructure with geometrical constraints, such as
elliptical holes with random size and location, and the CNN was trained on these images to predict the corresponding compliance
tensor of the microscopic stress field, computed with FEM simulations in the algorithmic ground truth generation step. The authors
showed that with the proposed method, the compliance tensor could be predicted with a small error up to 5%, with a four-order of
magnitude reduction in the computational time compared to standard FEM-based calculations. In addition, the model exhibited
satisfactory performance on a dataset of microstructure with more complex topology compared to the ones used for training, proving
the robustness of the developed DL method in the prediction of structure-property relationships. Fig. 18 shows examples of the
reviewed applications related to physical properties estimation.

6. Advantages and limitations of deep learning in microscopy imaging and materials science

The applications of reviewed DL techniques to various microscopy imaging problems have demonstrated several advantages,
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Fig. 18. Examples of material’s physical properties estimation. In (a), prediction maps of crystal properties such as scale factor, crystal size, and
lattice parameters of multiphase Ni-Pd catalytic materials are represented in X-ray diffraction computed tomography patterns presented by Dong
et al. [79,129]. In (b), the classification of chiral indices of CNTs represented in HRTEM images performed by Forster and co-workers[129]. The
image-chirality mapping illustrated the number of images predicted in a certain chirality class. In (c), Tan et al. developed a DCGAN for the
generation of synthetic images of microstructures, used to train a CNN for the prediction of the corresponding compliance tensor [206]. Reproduced
from References [207,129], and [206].
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significantly improving materials science research. At the same time, some drawbacks and limitations were revealed depending on the
application area. This section summarizes the advantages and disadvantages of the reported DL methods.

The main advantage of the reported DL techniques is the fast and automated processing of large databases of microscopy images,
where the material’s features can be detected on-the-fly, compared to more time-consuming conventional image processing techniques
or human analysis. Another significant DL advantage is the ability to provide quantitative measures via superior image processing
metrics, such as accuracy, precision, IoU, MSE, SNR, PSNR, and SSIM, in predicting materials’ features of interest, compared to more
standard methods used in electron microscopy. The DL-boosted performance in predicting various material features such as defect
types and morphology, atoms and nanoparticle location, or 3D structural configurations significantly surpasses conventional methods.
Furthermore, DL algorithms can provide remarkable improvement to the quality of microscopy images by enhancing their resolution,
removing noise, and restoring focus. In the reviewed papers, improving image quality has allowed, for example, to identify more
precise gaps between nanoparticles or to provide insights into a graphene structure by reconstructing the phase and amplitude of
refocused images. Additionally, DL algorithms can be used to augment limited databases of materials’ microstructures or microscopy
images acquired in the experiments; this tool is beneficial to not only a more precise model training but also a broader area of ap-
plications in materials analysis. Finally, being data-driven models, DL methods can be used to link microscopy images directly to
materials’ properties. This capability is imperative for studying structure-property relationships of materials, where DL methods
significantly accelerate the process of relating structure to an appropriate property.

However, DL algorithms also have their own limitations and challenges in the analysis of microscopy images and materials. The
main drawback of these methods is their limited applicability only to a data domain similar to the one adopted in the training process.
A weaker model’s performance is commonly encountered when microscopy images or material structures are different from the ones
learned by a model. For example, a model trained on STEM images is expected to perform poorly when applied to HRTEM images. This
is due to the different types of correlation between the signal encoded in the pixels of a microscopy image and the material’s features
for distinct categories of microscopy techniques. In such a case, new training on images acquired with the target microscopy technique
is required. In some cases, even if the category of microscopy images is the same, the value of microscope parameters adopted in the
images acquisition covers different ranges. In such cases, the error of the model’s prediction is expected to be higher compared to the
error of the prediction based on the same or similar parameters range. A similar diminishing performance arises when a model is
applied to images representing materials with structural features diverging from those used in the training domain. For example, if a
model is trained to identify platinum atoms within specific crystal structure(s), it is expected to have a similar performance in
identifying gold atoms but poor performance in detecting iron atoms due to atom size and property difference. Similarly, a neural
network trained to predict the 3D structures of nanoparticles with sizes up to 5 nm will not accurately predict nanoparticles with a
larger size of 20 nm. It should be noted that the restricted applicability to data distribution close to the training set is a general problem
of learning algorithms in almost all scientific and industrial applications. For this reason, it is extremely important to focus the research
efforts on the collection of broad datasets and to perform parametric studies to gain insights into the performance of data-driven
models on different data distributions and to expand their generalization ability. In this survey, summaries of such studies
described in the reviewed articles have been reported.

In this regard, a further challenge of DL applications in microcopy and materials science is the acquisition and preparation of
datasets suitable for training and evaluating a neural network. In Section 4, the demanding process of assembling a dataset of mi-
croscopy images through experimental measurements or simulation methods has been described. While different approaches have
been adopted in the literature, as described in this review, this step still requires careful and time-consuming analyses. While DL
models can perform fast and on-the-fly predictions, another issue concerning these methods is the computational time required to
properly train a model. Being computationally time-dependent on the size of the input images, such a problem is particularly critical in
materials science, where high-resolution microscopy images are adopted to analyze materials’ features. Finally, a further limitation of
DL is that it does not provide any insights on the physics characterizing a material represented in a microscopy image. Indeed, DL relies
exclusively on data patterns between materials’ features and pixel intensities of the images as a “black box,” thus, they cannot provide,
for example, a physical law describing a specific material and its behavior. In a more general sense, the reviewed DL techniques do not
guarantee satisfaction of laws of physics.

In conclusion, this novel class of DL techniques has demonstrated the potential to be superior for image analysis for various ap-
plications in materials science. Although less mature than traditional methods, such as the geometric phase analysis (GPA) [212,213],
finding local intensity extrema [214,215], direct comparison with a template [216], the paraboloid method (PAM) or the maximum
likelihood (MAL) method [217], there is undoubtedly a promising future for DL techniques. Broadly speaking, the challenges include
finding ways to improve prediction on untrained data set within the same class of problems, reduce training time, simplifying the
training data preparation and relating prediction to underlying physics.

7. Future directions

The reviewed reports represent the dawn of a new pathway in the research of materials’ structure-properties relationships, paved
by the rising artificial intelligence and materials informatics methods combined with advanced microscopy techniques. Within this
innovative field of materials research, new opportunities and challenges are emerging. In general, there are two main areas that
necessitate being explored and where novel contributions could be proposed. First, it is important to pose future attention to the
dataset’s development stage. As it was reviewed, experimental measurements and numerical simulations are used to collect micro-
scopy images. From the experimental measurements’ perspective, the effort of microscopists should be focused on the accurate
identification of structural features of materials and microscopy imaging conditions, allowing for appropriate input parameters for
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simulations in agreement with real-life cases. Such work requires particular attention in in-situ TEM analysis, where terabytes of image
data are usually collected. An opportunity in the data development stage is represented by the 4D-STEM field [218], an emerging new
direction in TEM research. On the other hand, computational scientists should deeply investigate the data patterns linking the signal
contrast of microscopy images with the structure or properties of materials, using, for example, the computed materials models.
Although the algorithmic generation of microscopy images’ datasets is a well-established approach, exploring such data patterns
requires more investigation in future reports to elucidate the physics-based correlations learned by DL models.

Even though most of the DL methods have been applied to a structure-related component of the structure-properties relationships
analysis, there are few reports associated with the actual properties’ estimation constituent. In other words, synthetic images gen-
eration, structure identification, and 3D structure reconstruction were mainly focused on extracting images and structural content. In
only a few applications reviewed in section 5.4, the retrieved information has been used to estimate the structure’s physical properties.
Coupled with this, these analyses have been limited mainly to the predictions of crystal and mechanical properties. Future contri-
butions could be proposed to fill the gap with the actual estimation of materials’ properties. For instance, a potential development of
synthetic image generation could demonstrate how high-quality synthetic images lead to an improved interpretation of the observed
structures and the prediction of their physical properties. Similarly, a promising direction of defects identification is represented by the
prediction of the change in the physical properties of materials in the presence of the identified defects. On the other hand, the 3D
reconstruction application could be extended to innovative studies for the evaluation of material properties based on the complexity of
their estimated 3D geometry. Finally, physical properties like thermal, magnetic, and electric properties could be the target of DL-
based predictions in forthcoming analysis. These prospective research contributions could be performed by advancing the current
state-of-the-art reviewed in this paper, with findings from combined experimental measurements and numerical simulations, as well as
further DL investigations. The future directions of the DL applications in microscopy imaging and materials science for the four ap-
plications reviewed in this paper are summarized in Fig. 19.

8. Conclusions

Using advanced DL techniques for direct analysis of experimentally acquired microscopy images of materials has the potential to be
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Fig. 19. Summary of future directions of DL in microscopy imaging and materials science for each of the reviewed applications. Synthetic images
generation could be advanced by improving the predictions of physical properties from synthetic high-resolution images. In structure identification,
a potential study is represented by the analysis of the effect of the identified Si dopants on the graphene structure. Then, the predicted NPs’ CHs in
the 3D reconstruction study could be used to evaluate NPs’ physical properties of interest. Finally, thermal, magnetic, and electric properties are
other physical properties of interest that could be predicted using DL models in future contributions.
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substantially more efficient than conventional visual imaging methods by using advanced DL techniques. There is an inherent in-
efficiency associated with conventional visual imaging methods, such as biased by prior knowledge or analogy-driven assumptions.
Direct analysis of experimental images using DL algorithms is yet less mature than the conventional visual methods. However, they
certainly carry a great promise to excel traditional methods for a fast or on-the-fly analysis, interpretation, and feature extraction from
experimentally acquired microscopy images.

In this review, we have summarized the DL methodologies reported in the literature to address four categories of applications in
microscopy imaging and materials science: synthetic dataset generation, structure identification, 3D structures reconstruction, and
physical properties evaluation. First, the description of the main DL concepts has been introduced. Then, we have presented a
description of the categories of neural network architectures adopted for various tasks like materials classification, detection, and
segmentation. Furthermore, we have reviewed the workflow and related challenges of the preparation of microscopy image datasets
through experimental measurements or numerical simulations and how these two approaches have been followed in prior published
reports. Then, the paper concentrates on the most relevant sections about the DL applications to the four identified microscopy imaging
and materials science problems.

Synthetic image generation mainly focused on generative DL algorithms for resolution enhancement, denoising/refocusing, and
dataset augmentation. Structure identification methods such as structure segmentation, structure detection, and structure classifica-
tion were the most explored applications in the prior literature. Different types of structures and elements at different physical scales,
such as atoms and defects at the atomic scale, nanoparticles at the nanoscale, and microconstituents at the microscale, were identified.
On the other hand, in 3D structural reconstruction problems, DL was used for atomic column heights estimation of metallic nano-
particles, materials’ thickness prediction, and analysis of 3D tomographic data. Finally, in physical properties evaluation, DL models
were used to predict crystal properties, for example, scale factor, lattice parameters, chiral indices, and microstructures’ mechanical
properties (e.g., Young’s modulus and microscopic stress field). One of the objectives of this paper is to review how DL algorithms
outperformed the existing traditional methods in addressing these complicated tasks, opening innovative solutions for images gen-
eration, structure classification and detection, 3D reconstruction, and physical properties estimation.

As evidenced by the over two hundred papers cited in this review, DL algorithms have proven exceptional potential in various
microscopy imaging applications in materials science, creating new paradigms in structure-properties relationship studies. Through a
quantitative comparison of the performance of the developed DL frameworks with respect to conventional image processing tech-
niques, the review elucidates how these novel approaches, based on properly trained neural networks, can offer superior capabilities in
extracting the physical properties of materials from microscopy images. Despite the promising horizon depicted by DL, learning-based
algorithm present their own limitations. The most common challenge in all the articles summarized in this review is the difficulty in
correctly predicting out-of-domain cases, where materials or microscopy images are characterized by features not included in a
training set distribution. Examples reported in this review could be the identification of atoms of different chemical species from the
ones used to train a model, or the application of a neural network trained to a certain class of microscopy image, to images acquired
with a different microscopy technique.

At the same time, it is also evident that there is not yet any direct automatic procedure for a fast or on-the-fly analysis of exper-
imental microscopy images. Thus, building on the revolution of artificial intelligence and the continued advancements of microscopy
techniques, experimental and computational scientists have the opportunity to work together to improve the state-of-knowledge of
materials at different physical scales by exploring microscopy images with innovative data-driven methods. This growing scientific
field will impact not only the way we study materials nowadays but also their design and integration into current and new techno-
logical applications.
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