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Abstract Soils store the largest amount of carbon (C) in the biosphere, and the C pool in soil is critical to
the global C balance. Numerous microbial models have been developed over the last few decades to represent
microbial processes that regulate the responses of soil organic carbon (SOC) to climate change. However, the
representation of microbial processes varies, and how microbial processes are incorporated into SOC models
has not been well explored. Here, we reviewed 71 microbial models to characterize the microbial processes
incorporated into SOC models and analyzed variations in mechanistic complexity. We revealed that (a) four
processes (microbial-mediated decomposition, mineral interaction, microbial necromass recycling, and active
and dormant microbial dynamics) are commonly incorporated in microbial models, (b) ~48% of models
simulate only one microbial process (i.e., microbial-mediated decomposition) and 35% of models simulate
two microbial processes: for example, microbial-mediated decomposition and mineral interaction, (c) more
than 80% microbial models use nonlinear equations, such as forward Michaelis-Menten kinetics, to represent
SOC decomposition, (d) the concept of persistence of SOC due to its intrinsic properties has been replaced by
organo-mineral interaction (~39% of microbial models) that protects SOC from decomposition, and (e) various
temperature and moisture modifiers and pH effects have been used to explain the environmental effect on
microbial processes. In the future, to realistically incorporate microbial processes into Earth System Models, it
is imperative to identify experimental evidence on rate limitation processes and firmly ground model structure
on the field and laboratory data.

Plain Language Summary Soil stores the largest amount of carbon (C) in land ecosystems and,
thus, has the potential to regulate climate change. To understand soil C processes under climate change,
researchers have developed numerous microbial models that focus on the role of microorganisms in soil organic
carbon (SOC) decomposition. In this study, we reviewed 71 microbial models on how microbial processes are
represented for their regulation of SOC dynamics. These models commonly include four processes: microbially
mediated decomposition, mineral interaction, microbial necromass recycling, and dormancy of microbial
activity. More than three-fourths of the models use nonlinear equations to describe the decomposition of SOC.
The concept of SOC stability has shifted from chemical-based properties of SOC to interactions between

SOC and minerals. Our review also revealed that microbial models vary greatly in representing environmental
effects, such as temperature, soil moisture, and soil pH, on microbial processes. Finally, we recommend the use
of data in guiding the future development of microbial models.

1. Introduction

Soils store the largest amount of organic carbon (C) in terrestrial ecosystems (Lehmann & Kleber, 2015). Thus,
even a small change in soil C turnover could have significant consequences for atmospheric CO, concentrations
and the stability of the global climate system (Luo et al., 2016; Schmidt et al., 2011). It is estimated that the
global soil organic carbon (SOC) pool size at a depth of 1 m is 1,417-1,469 PgC (Hiederer & Kochy, 2011),
which is nearly three times the amount of C stored in plant biomass (Schlesinger & Bernhardt, 2013) and two
times the amount of C in the atmosphere (Schmidt et al., 2011). Therefore, it is crucial to understand and simu-
late the critical processes underlying the dynamics of SOC to accurately forecast its responses to future changes
in climate and land management (Amelung et al., 2020). However, the current process-based models have very
high uncertainty in estimating the response of global SOC to climate change (Fan et al., 2021; Todd-Brown
et al., 2013; Wieder et al., 2013). These uncertainties result partly from inadequate representations of ecosystem
processes that control the exchanges of water, energy, and C between land ecosystems and the atmosphere (Hao
et al., 2015; Wieder et al., 2013) and partly from the uncertainties in estimating the SOC model parameters
(Abramoff et al., 2022; Luo et al., 2016; Luo & Schuur, 2020).
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Developing models that accurately simulate belowground processes is challenging for soil, environmental, and
earth sciences (Hinckley et al., 2014; Todd-Brown et al., 2013; Wieder, Allison, et al., 2015). Currently, SOC
dynamics in Earth System Models (ESMs) are mostly represented by conventional SOC models that do not
explicitly simulate microbial activity or soil microbial communities. Instead, these models strongly emphasize
the relationship between SOC chemical recalcitrance and soil C storage (Wieder et al., 2014; Zeng et al., 2006),
assuming that respired CO, is proportional to the soil C pool size (Davidson et al., 2014; Wieder, Allison,
et al., 2015). These conventional SOC models implicitly represent microbial activities under the assumptions
that (a) microbes respond so quickly to changes in substrate availability that their abundance never limits the
decomposition rate (Schimel, 2001), (b) microbial and other ecosystem properties as expressed by parameters in
models are invariant across wide environmental and edaphic conditions and through time (Luo & Schuur, 2020),
and (c) microbial communities have functional equivalence allowing them to optimally process the available SOC
(Bradford & Fierer, 2012; Wieder, Allison, et al., 2015).

Theoretically, it is known that microbial processes fundamentally regulate the decomposition and stabilization
of SOC (Davidson et al., 2014). Therefore, in the past few decades, researchers have incorporated various micro-
bial processes to improve the simulation of future C-cycle-climate feedback (Wieder et al., 2013). As a result,
numerous microbial models have been developed to simulate microbial regulation on the response of SOC to
climate change. Here, we define a microbial model as a soil biogeochemical model that simulates at least one
discrete microbial biomass pool. The microbial biomass pool is either represented as a decomposer of SOC
or as a SOC substrate pool. Studies to date indicate large variations among microbial models in the capacity
to simulate and predict SOC dynamics, possibly due to their variations in model structure and representations
of various processes in models. Since the 1970s, many microbial models have been developed, for example,
Parnas (Parnas, 1975), the Schimel model (Schimel & Weintraub, 2003), the enzyme-driven model (Allison
etal., 2010), ReSOM (Tang & Riley, 2015), and MIND (Fan et al., 2021). Several studies have reported contrast-
ing findings when SOC dynamics were compared between conventional and microbial models. For example, one
study compared a conventional SOC model (similar to the CENTURY model) with microbial models (EC1 and
EC2) to simulate soil respiration from a laboratory-based pulsed drying-rewetting experiment, and revealed that
incorporation of microbial controls on SOC decomposition improved the model's ability to capture the observed
pulsed soil respiration (Lawrence et al., 2009). However, other studies reported similar or amplified uncertainty
in SOC responses to climate change when incorporating microbial control on SOC decomposition, which might
be due to complex mechanisms in microbial processes and the challenges of parametrization (Z. Shi et al., 2018;
Sulman et al., 2018). For example, by selecting suitable environmental response functions and an improved
parameterization method, conventional SOC models could also capture the pulse dynamics of soil heterotrophic
respiration similarly well with microbial models (Zhou et al., 2021). In addition, the uncertainty of the MIMICS
microbial model in projecting long-term SOC was >10 times greater than that in the conventional Century-type
model, possibly because the complex model structure and a large number of parameters increased uncertainty due
to feedback in the model dynamics (Z. Shi et al., 2018).

Although several studies have reviewed SOC models (Chertov et al., 2007; Frissel & Van Veen, 1981; Le Nog
et al., 2023; Manzoni & Porporato, 2009; McGill, 1996; Molina & Smith, 1997; Paustian, 1994; Paustian
et al., 1997; Smith et al., 1998; Wieder, Allison, et al., 2015; X. Xu et al., 2016), a comprehensive synthesis and
analysis of microbial processes incorporated into SOC models is lacking. Microbial models vary a lot in terms of
representations of microbial processes and their incorporations into SOC models. To provide an overview of the
status of microbial models, in this study, we reviewed 71 microbial models developed over the last few decades
(Table 1). To gather these models, we conducted a synthesis of published microbial models that simulate SOC
decomposition, and we collected publications by searching keywords “SOC microbial model,” “SOC model,”
“SOC decomposition model,” and “litter decomposition” in ISI Web of Science and Google Scholar. In addition,
we also used previously reviewed literature on the SOC models; for example, Manzoni and Porporato (2009)
reviewed ~250 biogeochemical models developed for C and nitrogen (N) cycling from 1933 to 2009, including
both microbial and nonmicrobial models. Finally, all the collected models were thoroughly examined, and we
selected those models for our study if they met the following two criteria: (a) models should simulate the C cycle
in the soil (or coupled with other nutrients such as N), and (b) models should simulate at least one microbial
biomass pool. If multiple versions of a microbial model are available with distinct formulations, we treated each
version as a separate model. In the following sections, we first examine the history of microbial model develop-
ment and the trend of the microbial processes incorporated. Then, we provide a comprehensive overview on each
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e Table 1

% Microbial Models for SOC Decomposition and the Four Processes Incorporated Along With the Decomposition Formulation %’g J,

Ej Active and §§ G,

; dormant Microbial % g -

- Decomposition Extracellular Microbial-mediated microbial Mineral necromass oI Ymm

? Microbial model mechanism enzyme pool decomposition dynamics interaction recycling References

. DNDC 70 No No No No No Lietal. (1994)
FOND Z0O No No No Yes Yes Fan et al. (2021) —
GENDEC 70 No No No No Yes Moorhead and Reynolds (1991) g
LIDEL 70 No No No No Yes Campbell et al. (2016) g
MEMS v1.0 70 No No No Yes No Robertson et al. (2019) a
MOMOS 70 No No No No Yes Pansu et al. (2010) %
MySCaN 70 No No No No No Orwin et al. (2011) Cj
RothC Z0 No No No No No Coleman and Jenkinson (1996) g
SOCRATES 70 No No No No No Grace et al. (2006) -g-
VERBERNE 70 No No No Yes No Verberne et al. (1990) {ﬁ
Barot model FO No Yes No No No Fontaine and Barot (2005) é.
Blagodastsky model FO No Yes No No No Blagodatsky et al. (2010) -
SYMPHONY FO No Yes No No No Perveen et al. (2014) (m?
CLM-Microbe FMM No Yes No No No Wieder et al. (2013) g
DecoBio v1.0 FMM No Yes No No No Xenakis and Williams (2014) ('-5!
DEMENT FMM Yes Yes No No No Allison (2012) .':-:'
DORMANCY FMM Yes Yes Yes No No He et al. (2015) E?-
DORMANCY 2.0 FMM No Yes Yes No No Liu et al. (2019) U%
Ecosys FMM No Yes No No No Grant et al. (1993) g
Enzyme driven model FMM Yes Yes No No No Allison et al. (2010) E.
Fatichi FMM Yes Yes No No No Fatichi et al. (2019) g
GDM FMM No Yes No No No Moorhead and Sinsabaugh (2006) 8
German FMM Yes Yes No No No German et al. (2012) @
Hagerty FMM Yes Yes No No No Hagerty et al. (2018)
He model FMM Yes Yes No No No He et al. (2014)
Kaiser FMM Yes Yes No No Yes Kaiser et al. (2014) _
MEND FMM Yes Yes No Yes No G. S. Wang et al. (2013) S
MEND_dor FMM Yes Yes Yes Yes No G. S. Wang et al. (2015) §
MESDM FMM Yes Yes Yes No No X. Zhang et al. (2022) g
MIC-TEM-dormancy FMM Yes Yes Yes No No Zha and Zhuang (2020) §
MIC-TEM_Hao FMM Yes Yes No No No Hao et al. (2015) g

o MIC-TEM_Zha FMM Yes Yes No No No Zha and Zhuang (2018) -l%

% Millennial model FMM No Yes No Yes No Abramoff et al. (2018) g

~
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Table 1
Continued
Active and
dormant Microbial
Decomposition Extracellular Microbial-mediated microbial Mineral necromass
Microbial model mechanism enzyme pool decomposition dynamics interaction recycling References
MIMICS FMM No Yes No Yes No Wieder et al. (2014)
MIMICS_D FMM No Yes No Yes No H. Zhang et al. (2020)
MIMICS-CN v1.0 FMM No Yes No Yes No Kyker-Snowman et al. (2020)
MIMICS-DB FMM No Yes No Yes No H. Zhang et al. (2020)
MIMICS-DBT FMM No Yes No Yes No H. Zhang et al. (2020)
MIND FMM No Yes No Yes Yes Fan et al. (2021)
ORCHIMIC v2.0 FMM Yes Yes Yes Yes No Y. Huang et al. (2021)
Parnas FMM No Yes No No No Parnas (1975)
Resat FMM Yes Yes No No No Resat et al. (2012)
SCAMPS FMM Yes Yes No No No Sistla et al. (2014)
TRIPLEX_MICROBE FMM Yes Yes Yes Yes No K. Wang et al. (2017)
Averill model RMM Yes Yes No No No Averill (2014)
CMAX framework RMM No Yes No No No X. Xu et al. (2014)
COMISSION RMM No Yes No Yes No Ahrens et al. (2015)
EC1 RMM Yes Yes No No No Lawrence et al. (2009)
EC2 RMM Yes Yes No No No Lawrence et al. (2009)
EcoSMMARTS RMM Yes Yes Yes No Yes Brangari et al. (2020)
EEZY RMM Yes Yes No No No Moorhead et al. (2012)
ISM RMM No Yes No Yes Yes Yu et al. (2020)
Manzoni RMM No Yes No No No Manzoni et al. (2021)
Millennial V2.0 RMM No Yes No Yes No Abramoff et al. (2022)
MIMICS-2 RMM No Yes No Yes No Wieder et al. (2019)
NCSOIL RMM No Yes No No No Hadas et al. (1998)
Schimel model RMM Yes Yes No No No Schimel and Weintraub (2003)
SOMic v1.0 RMM No Yes No Yes No Woolf and Lehmann (2019)
DAMM-MCNiP ECA Yes Yes No No No Abramoff et al. (2017)
ORCHIMIC v1.0 ECA Yes Yes Yes Yes No Y. Huang et al. (2018)
RESOM ECA Yes Yes No Yes No Tang and Riley (2015)
ReSom vNN ECA Yes Yes No Yes No Abramoff et al. (2019)
ReSom vID ECA Yes Yes No Yes No Abramoff et al. (2019)
ReSom vTI ECA Yes Yes No Yes No Abramoff et al. (2019)
ReSom vIN ECA Yes Yes No Yes No Abramoff et al. (2019)
C-STABILITY Multiplicative No Yes No No No Sainte-Marie et al. (2021)
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of the microbial processes that substantially overlap across microbial models and their mechanis-
tic representations into SOC models. For each process, we include the mathematical equations
adopted in the models and the environmental factors that influence them. Finally, we finish the
review with the challenges associated with microbial models and some recommendations that

o O
=3
= -
518 -~ _ = |32 - o :
= = St would be beneficial for better model development in estimating SOC dynamics.
g2 8§88 g5k
5] o — ° - ol =S .2
“lp 33 g 8|3 N Co
28 5 o 438 2. Historical Development of Microbial Models
2T § % 38 8|3 :
%‘ S Q & g g s Studies on the responses of organic matter (OM) decomposition to environmental factors have
@ s =0 A g %‘" a long history, starting in the early 1930s (Manzoni & Porporato, 2009; Salter & Green, 1933;
2 g Wang & Allison, 2019), and SOC decomposition has been modeled as a first-order decay process
.E § %" g g since 1945 (Hénin & Dupuis, 1945). However, the integration of microbial biomass into the
g § 3 2 > 2 2 § g SOC model did not exist until the 1970s (Figure 1a), and one of the first SOC microbial models
20 9
= g 8 E § was developed in 1975 (Parnas, 1975). This model calculated litter decomposition as an explicit
£ % function of microbial biomass under the assumption that the decomposition of SOC is propor-
g f tional to the growth rate of the soil microbial community. This approach dynamically linked
= 8 4= microbial and litter pools. The development of microbial models was slow during the late 20th
= B o = . . . .
282 2 S 2 century. Only eight microbial models were developed during the last 25 years of the 20th century
= £ s é (Figure 1b), and the treatment of microbial biomass was often indistinguishable from the active
n =
% g pool of conventional SOC models, such as in VERBERNE, GENDEC, DNDC, and RothC
£ & microbial models. Microbial models started to receive more attention, mainly after Schimel and
DI
= e =3 ° f Weintraub (2003) proposed the Reverse Michaelis-Menten kinetics derived from the Langmuir
< B o= 19}
Q£ @ g 2 2 £ £ g S sorption isotherm theory and explicitly represented the extracellular enzyme (ENZ) pool in their
5 3 é 5 E § model. Subsequently, several studies explored additional ecological interactions between micro-
£y organisms and SOC. For example, it was previously thought that the long-term persistence of
S 2 SOC was because of the recalcitrant chemical property of SOC, such as humic substances that
3 z g were considered large, complex macromolecules and the most stable component of SOC (Liitzow
Z § N g et al., 2006). However, recent studies suggested that the recalcitrant components account for only
g §. E] 2 a small fraction of total OM, and the molecular property alone does not control the persistence
£ g g2 of SOC (Kleber & Johnson, 2010; Sutton & Sposito, 2005). Instead, mineral surfaces predom-
_g § g % inantly influence the decomposition of SOC by altering SOC concentration and its mobilities
= E E (Greenland, 1965). Mineral particles in soil adsorb SOC onto its surfaces by forming various
E f chemical bonds that prevent SOC accessibility from microbes (McGill et al., 1981; McLaren
~§ 5., & Peterson, 1965), resulting in explicit consideration of the mineral interaction process in the
§ g 23 models.
% oo o o o o] ¢ 8 . . . . . . .
gE|IZ & & 2 72 2 E Likewise, relatively recent advances in microbiology and genomics uncovered that under natu-
5 g S! § ral environmental conditions, soil microbes exist in three physiological states: dead, alive, and
E § dormant microbes (Gignoux et al., 2001; Mason et al., 1986; G. S. Wang et al., 2014). Thus, a
5 % significant increase in the trends of both the number of microbial models (Figures 1a and 1b) and
° = . . . e .
- 8 B E S o the microbial processes controlling SOC decomposition was observed (Figure 1c). For example,
2 = E 2 2 B § 3 22 and 36 microbial models were developed during the periods of 2007-2014 and 2015-2022,
= © o o 9| @ P g p
Z2 24| s = ] . . . . . . . .
8 &= _u§* _@ _§ ,‘?‘0 S § E respectively (Figure 1a). Microbial processes such as microbial necromass recycling and dynamic
o 0 T T . . . . . . .
§ f‘i Z &2 & 8% =z active-dormant microbial states are relatively less studied than the microbial processes related to
S22 § € £ 2 =55% y p
] = § § § 25 = decomposition and mineral association because of our recent but still developing understanding
Q Q
= e 8 = § E of microbial physiological states and the limitation in the measurement of microbial necromass
2 = & . . . L .
'72 =g and its physiological states in situ (Figure 1c).
23§ 3. Model Representation of Microbial Processes
= E5 %
-%; L %‘ 8 Early on, empirical fitting of a first-order model to SOC decomposition required multiple pools
~ E = ‘Eo _% so that fractions of SOC decayed with different turnover rates (Minderman, 1968; Woolf &
59 o4z . . ..
> § '_:.5 E e =z a E <) '@ Lehmann, 2019). Such multipool models, derived from empirical results, reflect a conceptual
_ = = ;9 . . . .
= 5 S| & % é’ % & £< 3 paradigm that different types of SOC have different representative turnover rates. Although many
(=
e 2|20 R o= En microbial processes are suggested to be essential for controlling SOC cycling in the literature
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decomposition interaction recycling microbial dynamics
Figure 1. Historic development of microbial models since 1975 (a) and (b) and percentage of microbial models with
consideration of major microbial processes (c). The percentage was calculated as the number of models considering each
process divided by the total number of published models in each time period.
(Lehmann et al., 2020; Schmidt et al., 2011), there is less agreement about the best mathematical formulations to
represent these processes (Table 2; Sulman et al., 2018; Wieder, Allison, et al., 2015).
Our review of the 71 microbial models revealed that four microbial processes are widely incorporated into SOC
models: microbial-mediated decomposition, mineral interaction, microbial necromass recycling, and active and
dormant microbial dynamics (Figure 2a; Table 1). Among the 71 microbial models, 61 models consider microbial
CHANDEL ET AL. 6 of 27
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Ej Table 2 E% G,
[_: Mathematical Formulations of the Four Processes: Microbial-Mediated Decomposition (Equations 1-18), Mineral Interaction (Equations 19-34), Microbial Necromass Recycling (Equations 35—41), %E -
— and Active and Dormant Microbial Dynamics (Equations 42—46) 87 Sm
>
o Equations Ecological description Models
1.D. =k M A function of microbial biomass (M) Barot model; BLAGODATSKY; SYMPHONY
2.D. = Viypax * M % KS = The function of microbial biomass (M) and substrate (S) Parnas; MIND; GDM; German; CLM-Microbe; o
mE MIMICS; MIMICS-CN v1.0; MIMICS-D, g
MIMICS-DB, MIMICS-DBT; Ecosys; DecoBio -
v1.0 I~
=3
3. D = Viypax * E * = ] Function of Extracellular enzyme (E) and substrate (S) Enzyme-driven model; Fatichi; Hagerty; He model; o
B Kaiser; MEND_dor; MESDM; MEND; MIC-TEM; =3
Resat; SCAMPS; TRIPLEX_Microbe; DEMENT; Q
ORCHIMIC v2.0 g
,mﬁ;ls i DORMANCY; MIC-TEM-dormancy =
4. De = Viyax * Qg * E Xoas (120 — CNyoir) 5
5.D; = Vipax * —— % —2_ & f(T, W) Double Michaelis-Menten kinetics Millennial model Z.
K+S Kp+M ’ ()
6.D. =k %« M % % ¥ % Function of DOC and O, (dissolved oxygen concentration in water) DORMANCY v2.0; DAMM; MIC-TEM_Hao a
Kc+C Ko, +0;
7.D. = Vypax % S % #E” % f(pH, W, T, clay) Function of S, E, clay content, soil pH, temperature (T), and ORCHIMIC v1.0 ?
AR moisture (W) ?)D
8 D.=k xS * — Reverse Michaelis-Menten.Millennial V2 includes moisture CMAX framework; NCSOIL; COMISSION; Millennial a
L modifier function, f(W) V2 g
9. D. = Viypax % S % — A function of S and E JSM; Schimel model; EEZY; Averill model; Manzoni; o
" SOMic v1.0 o
10. D; = Vypay % S * m 4 = x f(T,W) A function of S and E, T, and W ECl1, EC2, MIMICS-2 0%
+
(o)
1L.De = [1+m(1 =Tl % %V 58 — M, is coefficient of aggregate disruption; y, and I, are two moisture EcoSMMARTS =
" coefficients %
| d
12.D. =k % S x M5« f(W) Function of S and ratio of M and S CORPSE g
Km+?
(o]
13. Dy = Vg % —S2E ECA DAMM-MCNiP ®
i’ Ky +S+E 7]
14. D, = Vipay % S % ﬁ A function of S, E, and mineral particle (Min) ReSOM; ReSOM vNN, ReSOM vTN, ReSOM vTD,
Ko (14 25+ ) ReSOM vTI
15.D. = k * T) * M % f(T,W) Microbial density-dependent SOC decomposition Phoenix
14K (% ) K2
16.D, = <1 . e_k% )S Exponentially related to microbial biomass (M) SOMKO ’é
S
17.D. =k« M % S C-STABILITY; MiCNiT NS
)
18.D. = % 0,,0,,0, are maximum rate, growth rate and lag phase MiFe 8
14¢7%20% W
19. Sorption = K45 * DOC * (gmax — Cmaom) The availability of sorption sites limits the sorption rate COMISSION a
. S
Desorption = Kges * Cumaom Langmuir isotherm N
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Continued

Equations Ecological description Models
20. Chet_sorption = SOC * f(clay) — Cp The rate of protected C formation is proportional to the amount of CORPSE

21. Sorption = K5 * SOCye
Desorption = Kges * SOCiy,
22. Cyiaom = (1 = fanp) * kp * M
+k & CDN—R £ KNp % CMAOM

—Ea( 1 1 w
23. Sorption = Kyg; * DOC % ¢ * (T T~'/> 3 O

~Ea( 11 ) W
—Eaf1_ .4
. RN\T T ) 4z
Desorption = Kges * e el /% % Cyiaom

K#Qmax *DOC
K0usDOC) ) om
Omax

24. Net Sorption = DOC ( IHK~DOC)

25.Sorption = Kygs * (1 - QQ ) % DOC

‘max

Desorption = Kges * (QQ )

Kim *Qmax *DOC

—CvaoM
26. Sorption = DOC * (%)ﬂﬁ W)

+knx M x f(T,W)+kyx f(T,W)(l—p,) *
L CMAOM _ Caggregate
Desorption = V,,, * o (1 B — )f(T, w)
Ky = 10(-0-1869H-0216)

Omax = BD lo(cl log(%logelay)+c; )
max —

unprotected C pool. 7 is the residence time of protected C.

SOC,. and SOC; are accessible and inaccessible SOC

k is the decomposition rate of microbes derived DOC (Cp,y)

R is the ratio of decomposition rate of Cy;,qy, to fast pool of
microbial necromass

dz is soil depth

Langmuir isotherm

Sorption and desorption are not simulated separately, Q,, ..
maximum sorption capacity,

Langmuir isotherm
Q is adsorbed phase of DOC

K, and K, are sorption and desorption rate

des

K, is binding affinity

0 1ax 1S Maximum sorption capacity
BD is bulk density
Lis LMWC

A, . 1s the maximum capacity of C in soil aggregates k,, is sorption
rate of microbial biomass

k,, is rate of breakdown

Langmuir isotherm

C-Stability

FOND

JISM

MEMS v1.0

MEND; MEND_dor; TRIPLEX_Microbe

Millennial
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Table 2

Continued

Equations Ecological description Models
K, is the binding affinity Millennial V2

27.Sorption = Ky, * DOC * (1 - %‘ﬂ)f(W)
+ Pokoa # M2 + (1 = p)ks * Caggregare * F(W)
Desorption = Ky CZ;I“% + (1 = pa)kmaCrraom f(W)
Kim = e PPH-2K

Omax = depth * BD %claysilt * p,

28. Sorption = f; * Input + f> * M

Desorption = 1.5 107 % ky % e~ '*/elay
29.Sorption = f; * Input + f> * M

Desorption = 1.5 % 107> % kg % e™'5*/cay 5 ekap*Cyaom
30. Sorption = f; * Input + f» * M

Desorption = 1.5 % 107 % kg % e "7*/ely 5 ekap*CMaoM 5 gkbs*BS

Vinax *M #C;
31. Cne&_sorp(ion = (1 — fonp) * kp * M — R % -m&x MAOM
Ky +Cyvaom

~Eages ( 1 1 )
i G
Desorption = Kges % e X \T Tres /) 4 ( MAOM)

33.0mx = > =k xC\/n

m

34.Sorption = feor, * k x* DOC

Desorption = fyesorb * Cmaom

35. Vs * Cy % —LN_ s f(W)
Kntey
36. kR % y, = CR

Vinax N *M*Cy
K+Cy

37.
38 kN]: * CNF

%claysilt is the clay and silt content in percent and a coefficient (p,)
K4 is desorption coefficient

Depth is site-level sampling depth in m &, is the aggregate
formation rate from MAOM

P, is the proportion of aggregate C allocated to POM
Langmuir isotherm

k, is the coefficient of desorption rate

K, iss the coefficient for tuning the relationship between the
desorption and C,, pool.

ki, is the coefficient of soil base saturation impact on desorption

Janr 18 proportion of fast pool in microbial biomass, k, is average
mortality rate, M is microbial biomass

R is the ratio of decomposition rate of Cy;,y to fast pool of
microbial necromass

Function of temperature

Arrhenius equation

X is grams of OM adsorbed, m is weight of soil, & is sorption
constant, C is DOC

fiom 18 the sorption coefficient, k is the rate constant for the
combined processes of microbial uptake and sorption

C, is microbal necromass C

kR is decay rate of cell residue (CR)

V wax, N 1S Maximum assimilation rate

m;

kyr 1s the decomposition rate of microbial necromass (Cyy)

MIMICS, MIMICS-2
MIMICS-CN v1.0
MIMICS-D

MIMICS-DB

MIND

ORCHIMIC v1.0; ORCHIMIC v2.0

Phoenix

SOMic v1.0

CORPSE

EcoSMMARTS
MIND

FOND, MOMOS
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Figure 2. Number of microbial models (a) with major processes incorporated into microbial models; (b) simulating the
number of microbial processes.

biomass as a decomposer of SOC (Figure 2a). However, it should be noted that our study is not solely centered
on the microbial models that represent microbial biomass as a decomposer of SOC. As a result, in the remaining
10 models, although they simulate a distinct microbial biomass pool, the microbial biomass is not explicitly
represented as a decomposer; instead, it functions as a substrate pool (see Section 3.1.1). Among the 71 microbial
models, 28 models regulate the availability of SOC for decomposition by explicitly simulating SOC interaction
with the mineral surface (mineral interaction). Herein, microbial necromass recycling, simulated by 9 out of 71
models, refers to the formation of a microbial necromass pool resulting from the death of microbes. This pool
follows a decomposition rate different from those other SOC pools. On the other hand, active-dormant dynamics
(simulated by 10 out of 71 models) describe simultaneous changes in the physiology of microbial biomass in
response to environmental stress (Figure 2a).

We noted that an individual model may not simulate all these four microbial processes. Instead, almost half of
the models (48%) simulate only one microbial process, with microbial-mediated decomposition being the most
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a . e4b commonly simulated process, followed by microbial necromass recycling
@ %’ 2 58 and mineral interaction (see Table 1). About 35% of models simulate two
31 g icrobial imul ly, and th binations of
o = ® microbial processes simultaneously, and the most common combinations o
“ § S the processes simulated are microbial-mediated decomposition paired with
7] ui R either mineral interaction or active-dormant microbial dynamics (Figure 2b;
5 8 13 Table 1). In this section, we focus on the detailed analyses of these four
&1 Z§ - microbial processes incorporated into most microbial models.

Number of microbial models

Figure 3. Number of microbial models (a) adopted various SOC
decomposition reaction mechanisms; (b) representing linear and nonlinear

decomposition kinetics.

RMM
SOC decomposition reaction mechanisms

Zero-order

Linear model Nonlinear model

3.1. Microbial-Mediated Decomposition of SOC

Microbial-mediated decomposition is a critical process in the soil C cycle
because it is the primary pathway through which CO, fixed by plants is
returned to the atmosphere (X. Zhang et al., 2022). Therefore, micro-
ECA  Firstorder  Others bial models have taken diverse approaches to represent the decomposition
process (Figure 1c Table 2). There is a consensus among microbial models
that microbes produce ENZ to degrade complex SOC into dissolved organic
carbon (DOC) through catalysis, take up DOC, convert the assimilated C
into microbial biomass for growth, and release CO, through respiration
(Sinsabaugh et al., 2008; X. Zhang et al., 2022). Two pathways are used to
represent the decomposition of SOC: enzymatic-mediated and microbial
biomass-mediated decomposition (Figure 2a; Table 1). The major difference between these two pathways is
that enzymatic-mediated decomposition models simulate an explicit ENZ pool, assuming ENZ production is
controlled by both substrate concentration and microbial community structure (Sistla et al., 2014) and directly
couple SOC decomposition to the ENZ activity instead of microbial biomass (Table 2).

In contrast, there is no such an ENZ pool in microbial biomass-mediated decomposition models. Instead, they
implicitly assume the enzymatic catalysis of SOC to drive the rate of SOC decomposition. We consider these
pathways to be separate processes in our analyses to preserve the uniqueness of the model structures and the
process representations (Figure 2a).

Further, we classified the microbial-mediated decomposition of SOC into six types based on the equations used:
(a) zero-order, (b) first-order, (c) Forward Michaelis-Menten (FMM), (d) Reverse Michaelis-Menten (RMM)), (e)
Equilibrium Chemistry Approximation (ECA), or (f) Other (Figure 3a). Types 1 and 2 are linear-type, whereas
types 36 are nonlinear models. These formulations differ functionally with different fundamental assumptions
on whether the decomposition of SOC is limited by substrate availability, microbial biomass (or ENZ), or both,
and on how these components are linked with decomposition. For example, formulations 1 (i.e., zero-order)
and 2 (i.e., first-order) are represented by simple mathematical equations (consisting of only one parameter). In
contrast, the nonlinear microbial model family (i.e., formulations 3-6) is represented by various complex math-
ematical equations with a large number of parameters. It is worth to note that more than 80% of the microbial
models used nonlinear kinetics (formulations 3-6) to represent SOC decomposition (Figure 3b; Table 1).

3.1.1. Zero-Order Microbial Model

In the zero-order microbial model, SOC decomposition is not a function of microbial biomass, although the
model simulates a discrete microbial biomass pool. Instead, microbial biomass is only incorporated in the
model to represent a highly decomposable C pool that has a fast turnover rate. Hence, the formulation is termed
zero-order with respect to microbial biomass, emphasizing the independence of SOC decomposition from micro-
bial biomass. SOC decomposition may be a function of the substrate as:

D. = kS M
where D, is the rate of decomposition of C, §'is the substrate of SOC, and k is the coefficient of the decomposition
rate.

Of the 71 models we reviewed, 10 models simulate microbial biomass as one (e.g., FOND, GENDEC, LIDEL,
MEMS v1.0, MOMOS, RothC, and VERBERNE) or more components (e.g., bacteria and fungi pools in
MySCaN, protected and unprotected microbial C in SOCRATES, labile and resistant microbial C in the DNDC
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model) of the SOC pool (Figure 3a). However, the microbial component is only taken as a substrate of decompo-
sition rather than as a decomposer that could modify the rates of decomposition in these models. Thus, the SOC
decomposition reaction rate becomes zero-order with respect to microbial biomass (Equation 1). This formula-
tion is similar to the conventional SOC models in which each substrate with specific quality has its own microbial
community associated with it, and the microbial community is presumably in equilibrium with the substrate
most of the time. Therefore, decomposition is only limited by substrate (S) (McGill & Myers, 1987; Wutzler &
Reichstein, 2008). Furthermore, the contribution of soil microbes to SOC decomposition is implicitly included in
decomposition coefficients of difference C pools that determine the apparent decomposition rate (McGill, 1996;
Paustian, 1994) when a model is parameterized. Due to this treatment of soil microbes, models are independent
of temporal and spatial variations in the soil microbial community and may lack the flexibility to simulate the
effects of land-use or climate change that impact soil microbial biomass and activities, which may alter SOC
decomposition (Fang et al., 2005).

3.1.2. First-Order Microbial Model

In the first-order microbial models, the decomposition of SOC depends linearly on the size of the micro-
bial biomass pool (Equation 1 in Table 2). Only 3 of the 71 microbial models (Barot, Blagodastsky, and
SYMPHONY models) used first-order kinetics for microbial biomass (Figure 3a), as the assumption of this
type of model, that is, the substrate is the only limiting factor for SOC decomposition was questioned in the
Barot model and later was adopted in Blagodastsky and SYMPHONY models (Blagodatsky et al., 2010;
Fontaine & Barot, 2005; Perveen et al., 2014). These models consider that the decomposition of recalcitrant
SOC is limited by the ENZs instead of the quantity of substrate and assume that the quantity of ENZ is
proportional to the size of the microbial biomass pool. The SOC decomposition increases linearly with the
size of the microbial pool (Equation 1 in Table 2), resulting in first-order kinetics with respect to the microbial
biomass.

3.1.3. Forward Michaelis-Menten

The first-order (linear) models have been challenged on the grounds that SOC breakdown depends on the amount
of SOC as well as on microbial components (Fang et al., 2005; Schimel & Weintraub, 2003), thus resulting in
nonlinear decomposition rates. The tight coupling between the substrate and biological processes is necessary, in
particular, when modeling short-term C and N dynamics (Blagodatsky et al., 1998), even it might also be relevant
in medium-term (Whitmore, 1996) and long-term analyses (Smith et al., 1998). Based on the assumption that
the decomposition rate of SOC is limited by the substrate or the microbial pool (or the enzyme pool), various
mathematical equations were used to describe the decomposition of SOC (Table 2).

The FMM kinetics assumes that substrate availability is the rate-limiting factor in decomposition, that is, the
decomposition rate saturates as the substrate available for decomposition rises (Wieder, Allison, et al., 2015).
In FMM kinetics, the SOC decomposition rate varies linearly with the microbial biomass (or enzyme pool) and
nonlinearly with the substrate. Currently, the representation of SOC decomposition in microbial models is domi-
nated by FMM Kkinetics: 31 out of 71 microbial models (~44%) used the FMM kinetics for SOC decomposition
(Equations 2-6 in Table 2).

3.1.4. Reverse Michaelis-Menten

In contrast to FMM kinetics, in RMM kinetics, the decomposition reaction rate changes linearly with the amount
of substrate and saturates with the enzyme pool (or microbial biomass) (Schimel & Weintraub, 2003). The
assumptions underlying the RMM kinetics are (a) the size of the SOC pool is sufficiently large such that the
amount of ENZ (or microbial biomass), rather than the substrate, is the rate-limiting factor for SOC decomposi-
tion, (b) the maximum binding capacity of enzymes is proportional to the concentration of the substrate, and (c)
the resulting decomposition rate is proportional to the amount of bound enzyme (Moorhead & Weintraub, 2018;
Schimel & Weintraub, 2003). The Averill model, CMAX framework, COMISSION, EC1, EC2, EcoOSMMARTS,
EEZY, JSM, Manzoni, Millennial v2.0, MIMICS-2, NCSOIL, Schimel model, and SOMic v1.0 models have
all adopted RMM kinetics for the SOC decomposition (Tables 2). However, some of these models, such as the
CMAX framework, COMISSION, CORPSE, JSM, Manzoni, Millennial v2.0, MIMICS-2, NCSOIL, and SOMic
v1.0, do not separately simulate the ENZ pool but instead assume that ENZ production linearly depends on
microbial biomass because it is challenging to measure ENZ production and these models focus on simulating C
pools that are measurable.
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3.1.5. Equilibrium Chemistry Approximation

ECA is a relatively new decomposition mechanism proposed by Tang and Riley (2013). It was derived from the
first-order approximation of the full equilibrium chemistry formulation of a consumer-substrate network that can
account for multiple consumers (i.e., microbes and minerals) and multiple substrates as:

Viax % S * E

D = Z2 T2
km+ S+ E @

where V, is the maximum decomposition rate, k,, is the half-saturation constant, S is the substrate, and E is the

> m

ENZ concentration.

The assumptions underlying the ECA kinetics are (a) there is no binding between substrates or between consum-
ers, and (b) once an enzyme-substrate complex is formed, it will not bind with another substrate or consumer to
form new complexes (Tang & Riley, 2013). Equation 2 demonstrates a reaction that has only one enzyme inter-
acting with one substrate.

It should be noted that the decomposition rate in Equation 2 becomes FMM when the substrate changes signifi-
cantly while the enzyme concentration is much lower than the substrate, such that k,, + E is almost constant. On
the other hand, when the substrate concentration is much higher than the enzyme concentration, such that the
microbial process barely changes the total substrate concentration in the temporal window of interest, k, + S is

almost constant, and Equation 2 is reduced to RMM (Tang & Riley, 2013). ReSOM and its subsequent versions,
DAMM-MCNiP and ORCHIMIC v1.0, used the ECA mechanism (Equations 7, 13—14 in Table 2).

3.1.6. Other Mechanisms

Although the mechanisms mentioned above are the most commonly used in microbial models, some alterna-
tive mechanisms have been used in some instances. For example, CORPSE, Phoenix, and SOMKO models use
microbial density-dependent SOC decomposition and assume that the high ratio of microbial C to structural C
slows down the activity of microbes because of increased competition among microbes for nutrients and space
(Gignoux et al., 2001; McGill et al., 1981) or that decomposition rate does not increase with further increase in
microbial biomass due to substrate limitation (Sulman et al., 2014) (Equations 12, 15-16 in Table 2). Subse-
quently, to avoid such a heavy nonlinear model parameterization and also assuming the low concentrations of
SOC, some models (e.g., C-Stability and MiCNiT) use a multiplicative expression that still couples microbes and
SOC, and with the decomposition of SOC varying linearly with both microbial biomass and substrate (Equation
17 in Table 2) (Manzoni & Porporato, 2007). Furthermore, a recent study (Liao et al., 2022) was conducted to
understand the most probable mechanisms behind the observed nonlinear patterns of lignin decomposition. The
study reported that neither the conventional nor FMM nonlinear models could capture the observed nonlinear
patterns of lignin decomposition (W. Huang et al., 2019) well. Instead, the data-driven approach revealed that
time-dependent growth and mortality functions expressed by logistic equations in the microbial-iron (MiFe)
model better represented the observed CO, release from lignin decomposition than models assuming either
first-order or FMM (Equation 18 in Table 2).

3.2. Mineral Interaction

SOC interaction with mineral surfaces is a critical process for the stabilization of SOC because plant-derived and
microbially derived SOC can be protected from decomposition through the formation of complex organo-mineral
interactions (Abramoff et al., 2019). Sorption and desorption are the two processes that regulate the amount of
DOC available to microbes for decomposition (Y. Huang et al., 2018). The majority of SOC models simulate
the mineral interaction implicitly by modifying the SOC decomposition rate with an empirical factor based on
the clay fraction (Abramoff et al., 2019; Coleman & Jenkinson, 1996; Sulman et al., 2014; Wieder et al., 2013).
However, it is becoming increasingly clear that the persistence and decomposition of SOC are interconnected
with the physical environment, organic-mineral interactions, and both local biotic and abiotic factors (Newcomb
et al., 2017). In addition, a significant proportion of stable SOC is derived from simple C rather than chemically
resistant compounds (Cotrufo et al., 2013), suggesting molecular structure alone does not control the long-term
stability of SOC (Schmidt et al., 2011). Sorption is a rapid process that occurs within seconds to minutes and thus
occurs more rapidly than microbial-mediated decomposition (Kothawala et al., 2008; Qualls & Haines, 1992).
Therefore, the long residence time or the stabilization of SOC are commonly attributed to an interaction between
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DOC, microbially derived C, or intact plant compounds with mineral surfaces, which provide reactive sites
for physical and chemical stabilization, thus preventing degradation of SOC by microbes (Grant et al., 2022;
Kleber et al., 2007, 2015; Lehmann & Kleber, 2015; Schmidt et al., 2011). Factors influencing the formation and
stability of protected C include the chemistry of OM, texture, and structure of soils, physicochemical properties
and abundance of soil minerals, pH, the ionic strength of the soil water, temperature, and moisture (Abramoff
et al., 2018; Feng et al., 2016).

In our analysis, 28 out of 71 microbial models explicitly represent the mineral interaction with SOC (Figure 2a;
Table 1). However, not all of these 28 models explicitly simulate the sorption and desorption processes simultane-
ously. For example, CORPSE, FOND, MEMS, MIND, and VERBERNE do not explicitly represent desorption;
instead, they simulate the net sorption of C to mineral surfaces, meaning that when the mineral-associated organic
matter (MAOM) pool reaches saturation, the net transfer of C from DOC to MAOM can be negative, that is, C is
transferred from MAOM to DOC (Equations 20, 22, 24, 31 in Table 2).

Environmental and biotic controls on sorption vary greatly among models. Factors considered that could influ-
ence the sorption process include DOC (or SOC), MAOM, maximum sorption capacity (Q, .., depending on
clay and silt content), soil temperature and moisture, and microbial necromass (i.e., mass from microbial death
and subsequent lysis and fragmentation of microbes). In most microbial models, the maximum sorption of SOC
depends on the amount of DOC available, the availability of sorption sites, and the sorption capacity (Equations
19-34 in Table 2). Thus, the rate of SOC sorption increases when the DOC content is higher and the sorption
sites are unoccupied. In addition, models such as JSM, Millennial, and ORCHIMIC (v1.0 and v2.0) introduced
temperature modifiers for the sorption process (Equations 23, 26, 32 in Table 2). Only JSM and Millennial (both
versions) models simulated the effect of soil moisture on the sorption process (Equations 23, 26-27 in Table 2).
In most of the microbial models that simulate mineral interaction, particulate organic carbon (POC) and DOC
compete for the mineral surfaces. However, in some microbial models, such as FOND, Millennial (both versions),
MIMICS (v1-4), and MIND, microbial necromass also competes for the mineral surfaces (Equations 22, 26-31
in Table 2).

Environmental and biotic controls on desorption also vary among models but in less complex ways than their
controls on sorption. Microbial models such as COMISSION, JSM, MEND, MEND_dor, Millennial (both
versions), MIMICS(v1-v6), MIND, ORCHIMIC (v1.0 and v2.0), and SOMic v1.0 explicitly represented the
desorption process (Equations 19, 23, 25-30, 32, 34 in Table 2). The desorption mainly depends on the amount
of C sorbed to the mineral surfaces and Q. However, some models modulate the desorption process by adding
temperature (JSM, Millennial, and ORCHIMIC (v1.0 and v2.0) or moisture functions (JSM, Millennial, and
Millennial v2.0).

3.3. Microbial Necromass Recycling

Although the microbial models reviewed in this study consider the carbon pool of microbial biomass separately
and simulate microbial decay (mortality) as a first-order process, most microbial models reviewed do not explic-
itly represent the microbial necromass pool with a different decomposition rate from plant residue.

The microbial necromass pool mainly consists of microbially derived SOC, such as dead microbes and extracel-
lular compounds released from the dead microbes, that has a faster decomposition rate than the plant residues (Y.
Huang et al., 2018). For example, in the MIND model, a separate microbial necromass pool is simulated with a
different decomposition rate from plant residue. In contrast, in a model such as the Millennial model, a fraction
of microbial necromass and plant residues (such as root exudates and leaf leachate) enter into the same C pool,
that is, low molecular weight carbon, which follows the same decomposition pattern (Abramoff et al., 2018).
Several studies reported that soil microbes have different structural and chemical compositions from plant litter,
which could result in their different decomposition rates (Kogel-Knabner, 2002; Liang et al., 2017). For example,
the global mean C:N ratio of microbial biomass (~7) (X. Xu et al., 2013) is much lower than that of plant litter
(~53) (Yuan & Chen, 2009), which may cause decoupling of C and N if microbes prioritize SOC with high
N content to meet their demands. Consequently, the microbial assimilation of high N-containing SOC for the
growth of microbial biomass may lead to different decomposition rates between microbial necromass and plant
residues because of varying chemical structures and characteristics of microbially derived and plant-derived
SOC (Kogel-Knabner, 2002; Liang et al., 2017). For example, in the GENDEC model, the decomposition rate
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of microbial necromass is higher than that of the plant residues because the N-content of microbial necromass is
relatively higher than that of the plant residues (Moorhead & Reynolds, 1991).

Although the C pool size of active microbial biomass in the soil is minimal (<5% of total SOC, Dalal, 1998),
microbial necromass may accumulate over a long period of time, and it can contribute to a significant proportion
of SOC if (a) the turnover rate of microbial biomass is higher than the input rate of plant litter (Liang et al., 2011;
Simpson et al., 2007; Zhu et al., 2020), (b) the chemical composition of microbial necromass is not labile, (c)
mineral matrix of the soil protects microbially derived SOC (Dwivedi et al., 2017; Mikutta et al., 2006; Miltner
etal., 2012; Torn et al., 1997). According to previous studies, the contribution of microbial necromass to SOC can
range from 24% to 80% of SOC (Khan et al., 2016; Liang & Balser, 2011; Liang et al., 2019; Miltner et al., 2012).
Therefore, the role of microbial necromass in the formation of SOC cannot be ignored when considering micro-
bial biomass as a decomposer in microbial models (Fan et al., 2021; Kdgel-Knabner, 2002).

It is widely known that different microbial groups differ in their chemical composition. For instance, the cell
walls of fungi are composed of a high proportion of recalcitrant polymers (e.g., protein and melanin), whereas
bacterial cell walls are made up of carbohydrates (Kogel-Knabner, 2002). However, despite the differences in the
cell wall composition of microbial groups, the decomposition rates of necromass of different microbial groups in
the soil have been found to be similar (Throckmorton et al., 2012). In our review, we found 9 out of 71 microbial
models, including CORPSE, EcoOSMMARTS, FOND, GENDEC, JSM, Kaiser, LIDEL, MIND, and MOMOS,
explicitly represent a separate microbial necromass pool under the assumption that the decomposition of micro-
bial necromass is similar among different microbial groups, but different from that of plant residues. However,
the mechanistic representation of microbial necromass in a microbial model still poses some challenges discussed
in Section 5.2.

3.4. Active and Dormant Microbial Dynamics

In a given environment, at any given time, microorganisms can be in any physiological state: active, dormant,
or dead (Mason et al., 1986). Therefore, distinguishing these states in the microbial models may be important
to modeling SOC accurately. The active fraction of microbial communities play a significant role in ecologi-
cally important processes like SOC decomposition and nutrient cycling (Blagodatsky et al., 2000). However,
when environmental conditions are unfavorable for growth, for example, when there is not enough substrate,
microbes may reduce metabolic activities from low to zero to prevent biomass loss and may enter into dormant
states (Lennon & Jones, 2011; Stolpovsky et al., 2011). The dormant microbes do not play the same roles as
those active microbes, and dormancy is considered an evolutionary strategy that preserves genotypes until condi-
tions improve to allow replication (Price & Sowers, 2004). The maintenance cost of C in dormant microbes
can be two to three orders of magnitude lower than that of metabolically active microorganisms (Anderson &
Domsch, 1985a, 1985b).

It is important to represent active versus dormant microbes in microbial models to accurately simulate SOC
dynamics, given the variations in substrate and environmental conditions over time and space. With seasonal vari-
ations in substrate availability, temperature, and moisture, many soils have slow SOC turnover rates. Even when
some resources are abundant at a time, the spatial and temporal complexity of soils may lead to disproportionate
distributions of other potentially limited resources, which can dramatically increase the dormancy rates. High
dormancy rates may be a defining characteristic of soil systems when spatial and temporal complexity is paired
with various resource distributions across species within a community. Therefore, an understanding of dormancy
could improve the prediction on how active microbes contribute to ecosystem processes like decomposition and
nutrient cycling (Blagodatsky et al., 2000; G. S. Wang et al., 2014).

Despite the potential importance, it is challenging to study microbial dormancy because there is no single method
available to measure individual microbial physiological states: active, dormant, or dead simultaneously; instead,
a combination of various techniques has been used to quantify microbial states (G. S. Wang et al., 2014). In
microbial models, generally, there are two methods used to depict physiological states (G. S. Wang et al., 2014):
one is to separate total live microbial biomass into two pools: active and dormant (Table 1), and another is
to directly regard the active fraction (i.e., a ratio of active to total live microbial biomass) as a state variable
(Blagodatsky et al., 1998). However, despite the limited ability to distinguish between active, dormant, and dead
microbial biomass, a wealth of studies suggest that in a given microbial community, the majority of microbes
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may be dormant under natural circumstances (Blagodatsky et al., 2000; Yarwood et al., 2013). For example,
in a Typic Argiudoll soil from Argentinean Pampa, only 3.8%—9.7% of total microbial biomass is in the active
state (Alvarez et al., 1998). Similarly, only 0.02%-19.1% and 9.2%-24.2% of total microbial biomass are in
active states in the subkurgan paleosoils of different ages and modern background soils, respectively (Khomutova
et al., 2004). Other studies reported that under natural soil conditions, the fraction of active microbial biomass is
usually below 50% of total live microbial biomass (Lennon & Jones, 2011; Stenstrom et al., 2001; Van de Werf
& Verstraete, 1987). Thus, not including dormancy from the microbially driven ecosystem processes could result
in inaccurate estimates of total live microbial biomass, leading to inaccuracies in model parameterization and
forecasts of SOC (G. S. Wang et al., 2014).

In our review, only 10 out of 71 models explicitly simulate microbial transformation between active and dormant
states (Brangari et al., 2020; Gignoux et al., 2001; He et al., 2015; Y. Huang et al., 2018; Y. Huang et al., 2021;
Liu et al., 2019; G. S. Wang et al., 2015; K. Wang et al., 2017; Zha & Zhuang, 2020; X. Zhang et al., 2022;
Table 1). SOMKO is one of the first microbial models that distinguish active and dormant microbial biomass
(Gignoux et al., 2001). In SOMKAO, the direction of net flux from the active to the dormant state depends on the
maintenance requirement relative to substrate availability. If the substrate availability is less than the maintenance
requirement, there is a positive net flux from the active to the dormant pool and vice versa. Later, MEND_dor
introduced the rates of dormancy and reactivation of microbial biomass (G. S. Wang et al., 2014) into the MEND
model (Wang et al., 2013). Following G. S. Wang et al. (2013), a few more microbial models were developed
by adopting the MEND_dor dormancy framework to simulate SOC decomposition. For example, ORCHIMIC
(v1.0 and v2.0) and TRIPLEX_Microbe microbial models have incorporated the MEND_dor dormancy frame-
work along with the following assumptions: (a) the dormancy (B,-,) and reactivation rates (B,_,) are propor-
tional to the active and dormant biomass pool sizes, respectively; (b) when substrate concentration is very high,
B,—s — 0 and B,_, > 0; (c) when substrate concentration is very low, B,_, > 0 and B,_, — 0; and (d) both
transformation processes are governed by the maximum specific maintenance rate for active microbes since the
maintenance energy cost is the critical factor determining the dormancy strategy (Lennon & Jones, 2011; G.
S. Wang et al., 2014). Unlike the above-mentioned microbial models that consider the substrate dependence of
dormancy, the microbial dormancy in the microbial models DORMANCY 2.0, EcoOSMMARTS, and MESDM
is also affected by soil moisture content (Table 2). Such microbial models were developed to simulate the soil
respiration in soil moisture-limited conditions to capture the drying-rewetting effect (i.e., Birch effect) under the
assumptions that the soil water content determines the overall microbial performance and changes in soil water
content can alter the physiological state of a portion of the microbes (Brangari et al., 2020; X. Zhang et al., 2022).

4. Environmental Control on Microbial Processes

Many environmental factors affect microbial processes, including soil temperature, moisture, pH, redox poten-
tial, and oxygen availability. This review mainly focuses on soil temperature, moisture, and pH because they are
commonly incorporated into microbial models (Table 3). Among the 71 models we reviewed, 41 include temper-
ature, 26 include soil moisture, and 7 include pH.

Temperature. In the microbial models, the temperature dependency of microbial processes was simulated using
four mathematical functions: (a) Q,, functions, (b) Arrhenius functions, (c) Generalized Poisson function, and
(d) Arctangent function. Of these functions, the Arrhenius function is most widely used among most microbial
models, followed by the Q,, function. The Arrhenius function represents an increase in SOC decomposition with
temperature and dependence on substrate quality through the activation energy (X. Zhang et al., 2014). Only the
SOMic v1.0 model was found to use a Generalized Poisson function, which is taken from the CENTURY model,
determined by fitting data from an incubation experiment conducted in the laboratory in which cellulose was
labeled and decomposed at three different temperatures (Burke et al., 2003; Parton et al., 1987; Sorensen, 1981).
In addition, only the Millennial model uses the arctangent function, the temperature response function from the
DAYCENT model, which predicts a decline in temperature sensitivity with increasing temperature (Abramoff
et al., 2018).

Moisture. Modeling the response of microbial communities to pulse moisture dynamics is challenging because
moisture controls complex physical and biological interactions in soil and has significant direct and indirect
impacts on the decomposition rates (Lawrence et al., 2009). Soil moisture is a critical factor controlling SOC
decomposition because, at high water content, O, becomes a limiting factor, whereas, at low water content,
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Environmental Control on Microbial Processes
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Table 3
Continued
Model

ISM

RothC
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function for temperature
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T = 45°C
Ty = 35°C

N/A

WHC
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EC1, EC2

Temperature was kept constant

during laboratory incubation

experiment; Water Holding

Capacity (WHC)

diffusion is constrained by thin and discontinuous water films (Abramoff et al., 2017;
Abs & Ferriére, 2020; Sihi et al., 2018). Diverse mathematical functions were used
to represent the responses of microbial processes to soil moisture; for example, the
moisture response variables vary widely by including the function of soil water
potential, water holding capacity, or soil water content (Table 3).

pH. A small number of microbial models consider the effect of soil pH on microbial
processes. Soil pH has a significant impact on mineral surfaces and SOC availability
to microbes. At high pH, the sorption capacity of mineral surfaces is reduced dras-
tically, which means that less SOC will be sorbed on the mineral surfaces, and most
of the SOC will be available to microbes for decomposition (Abramoff et al., 2022).

5. Challenges and Recommendations

Despite the diverse representations of microbial processes and appropriate simula-
tions of the microbial responses to perturbations by microbial models, conventional
SOC models remain the backbone of SOC modeling in most applications, includ-
ing in most ESMs (Woolf & Lehmann, 2019). Moreover, the microbial models were
intended to represent the SOC dynamics better than the conventional SOC model
(Y. P. Wang et al., 2014) with the belief that microbial models may be appropriate
to describe the C cycling under variable environmental conditions (Schimel, 2001;
Schimel & Weintraub, 2003). However, it poses several challenges, such as the lack
of experimental evidence for the rate-limitation processes, the lack of observational
data to constrain model parameters, and the spin-up problem in microbial models,
which will be discussed in this section. Finally, we finish it by providing some recom-
mendations for future model improvements.

5.1. Experimental Evidence for Rate-Limitation Processes in Microbial
Models

It is known that SOC is decomposed mainly as a result of ENZ produced by microbes,
and it has been demonstrated that microbes can degrade almost all SOC, irrespec-
tive of the chemical composition of SOC, if it is physically accessible to microbes
(Kleber, 2010; Liitzow et al., 2006; Woolf & Lehmann, 2019). Microbial models are
mainly based on the assumption that the SOC decomposition rate is limited by either
microbial biomass or ENZ, or both (Allison et al., 2010). However, a few studies
reported that in soil, microbial activities do not limit the rate of SOC decomposition;
instead, abiotic processes are rate-limiting (Kemmitt et al., 2008). A common way
for abiotic processes to control SOC decomposition is through physical protection
that limits microbial access to substrates (Dungait et al., 2012; Kemmitt et al., 2008;
Schimel & Schaeffer, 2012). In contrast, a core assumption of conventional SOC
models is that the biomass of microbes and their enzyme production never limit
microbial processes, and microbial communities will always rapidly adapt to the
available substrate and subsidence of environmental stress (Schimel, 2001). Thus, it
is imperative to conduct experimental studies to examine the assumption on the rate
limitation processes by microbial biomass or enzyme activity.

5.2. The Lack of Observational Data to Estimate Model Parameters

A lack of observational data is one of the most significant constraints to the vali-
dation of mechanistic descriptions of microbial processes and the parameterization
of microbial models. Model development and data collection are generally separate
activities, and their integration is critical for the advancement of science (De Kauwe
et al., 2014; Luo et al., 2012; Peng et al., 2011; X. Xu et al., 2016). In addition,
the performance of a model is usually assessed by comparing simulations against
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a set of empirical observations derived from independent experiments (Moorhead & Sinsabaugh, 2006). When
processes are made explicit rather than implicit, it is essential to test the validity of those assumptions against
the reality provided by data (Schimel, 2001). However, the incorporation of microbial processes increases the
complexity of models and enlarges the number of model parameters, which can be challenging to empirically
measure. For example, FMM, RMM, and ECA kinetics use two kinetic parameters, the maximum specific reac-
tion rate (V,

max

) and half saturation constant (K,). There are very few estimates of the K, for enzyme pools in
explicitly enzyme-represented microbial models (Lawrence et al., 2009; Moorhead & Sinsabaugh, 2006) or of
the V. or K for substrates (G. S. Wang et al., 2013). In addition, observational data of pool size is critical to
constrain rate processes (T. Xu et al., 2006). However, the inability to simultaneously measure active, dormant,
and dead microbial biomass in situ (see Section 3.4) and difficulty in differentiating microbial necromass C from
nonmicrobial C (Liang et al., 2019) present challenges in validating these processes. Similarly, the measurement
and evaluation of the stability of various SOC-mineral interactions in different soils are challenging due to diffi-
culty with the fractionation of SOC bound to different minerals in situ (Liitzow et al., 2006). Therefore, most
of the parameter values used by microbial models are primarily laboratory-based (Sulman et al., 2014; Wieder
et al., 2013; Wieder, Allison, et al., 2015; Wieder, Grandy, et al., 2015) or assumed by the researchers (G. S.
Wang et al., 2013). While laboratory data provide valuable insights into microbial processes under controlled
conditions and help to constrain model parameters, challenges remain in understanding the effects of real-world
environmental conditions or land management practices on the parameters related to microbial processes. As
model parameterization is one of the three elements toward realistic model predictions (Luo & Schuur, 2020), the
research community needs to collect observational data for estimating model parameters.

5.3. The Spin-Up Problem in Microbial Models

Setting up initial values of all C pools is crucial before a model can be used for any analyses (Xia et al., 2012). These
initial values can be estimated based on observations (Luo & Reynolds, 1999) or assumed to be at a steady state. The
steady state is usually achieved by spin-up methods that perform long model simulations for a long time until there is
no trend of change in pool sizes over multiple years of repeated climate forcing (M. Shi et al., 2013). Several spin-up
approaches have been used, including accelerated decomposition, native dynamics, and semi-analytical steady-state
solutions. Attaining a steady state is computationally expensive, particularly for global model simulations and when
integrating more biogeochemical processes (Thornton & Rosenbloom, 2005), and these approaches have yet to be
tested on microbial models. Recently, an analytical steady-state solution has been developed and applied to micro-
bial models to substantially reduce the computation cost of spin-up (Georgiou et al., 2017; Tao et al., 2023).

5.4. Potential Improvements of Microbial Models

While the incorporation of microbial processes increases model complexity, several strategies can reduce the
mismatch between model complexity and observational data. First, we need targeted, precise data collection strate-
gies because more data does not necessarily contribute to a better-constrained model (Keenan et al., 2013; Richardson
et al., 2010). Additionally, to achieve reliable predictions of SOC dynamics, it is crucial to validate models against
independently collected long-term time-series datasets (Le Nog et al., 2023). This approach could help optimize the
accuracy and reliability of model predictions. Thus, coordinated efforts between modelers and empiricists can return
data maximally useful to constrain a model. Second, inaccurate parameterization is emerging as one of the major
causes of mismatches between models and data (Luo & Schuur, 2020). Therefore, model improvements should
include optimization algorithms that calibrate model parameters with data, such as data assimilation techniques
(Luo et al., 2016; Wang & Chen, 2013). Third, an alternative approach is model complexity reduction techniques
that can simplify complex models without the loss of key model processes or the ability to integrate empirical
data. Some commonly used model complexity reduction techniques include conversation analysis, nondimension-
alization, model decomposition (Snowden et al., 2017), and Manifold Boundary Approximation Method (MBAM)
(Transtrum & Qiu, 2014). For example, a recent study applied the MBAM technique to a highly complex microbial
model to demonstrate the systematic reduction of model complexity to match the information content of different
datasets and thereby could explain fundamental controlling mechanisms in each data set (Marschmann et al., 2019).

6. Summary

During the past three decades, SOC models have increasingly considered microbial controls on C cycling.
Although the first microbial model was developed in the 1970s, our review shows that the majority of microbial
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models were developed after 2000, likely in sync with the accelerated innovation of molecular techniques to study
soil microbes. Most microbial models incorporated one or more of four microbial processes: microbial-mediated
decomposition, mineral interactions, microbial necromass recycling, and active and dormant microbial dynamics.
Among the four processes, microbial necromass recycling and dormancy were the least studied. The 71 microbial
models reviewed mostly incorporated the three major environmental factors: soil temperature, moisture, and pH
on the sorption capacity of minerals and/or SOC availability to microbes.

The diversity in mathematical equations and parameterization implies the presence of challenges in translating
the theoretical understanding of microbial processes into models. Alternative to the approaches primarily based
on conceptual and theoretical understanding, microbial models and their parameterization can be directly derived
from experimental data (i.e., data-driven modeling approach). For example, the microbial-iron (MiFe) interactive
model was developed from laboratory soil incubation data sets by testing three alternative model structures and
parameter estimation with data assimilation (Liao et al., 2022). Future development of microbial models could
benefit from coordinated research between modelers and empiricists to use empirical data to constrain the model
structure and parameters and use models to guide experimental studies. Moreover, future research may employ
statistically rigorous methods, such as data assimilation, to improve the model performance by optimizing param-
eterization and selecting alternative model structures.

Data Availability Statement

No data were used in producing this manuscript; materials in the figures and tables are properly cited and referred
to in the reference list.
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