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1 | INTRODUCTION

Earth system models (ESMs) is a primary tool for predicting the
global carbon (C) cycle and informing climate change mitigation pol-
icies (IPCC, 2021). However, ESMs have yielded large across-model
spread in the predicted global C cycle, which primarily arises from
the land C component, as shown in the fourth to sixth assessment
reports of the Intergovernmental Panel on Climate Change (IPCC;
Ciais et al., 2013; Friedlingstein et al., 2006; J. Zhou et al., 2021).
Generally, most land models of ESMs represent land C input via
photosynthesis, transformations among multiple pools, and losses
via plant autotrophic and microbial heterotrophic respiration (Luo
et al., 2016; Manzoni & Porporato, 2009). However, there are large
differences in model parameters, the number of C pools, and the
functions to represent responses of C cycling processes to tempera-
ture and moisture (Koven et al., 2013; Luo et al., 2016). These dif-
ferences result in land models with distinct structures and varying
complexities (Bradford et al., 2016; Manzoni & Porporato, 2009),
making it a growing challenge to understand across-model spread
in simulated land C dynamics. Thus, understanding across-model
spread is urgently needed to facilitate the development of the next
generation of land models (IPCC, 2021).

Several methods have been developed to analyze and reduce
across-model spread or model uncertainty (i.e., uncertainty shown
in a single model) in simulating land C dynamics, such as benchmark-
ing, sensitivity analysis, reduced complexity model, model intercom-
parison, and data assimilation (Huntzinger et al., 2017; Keenan &
Williams, 2018; Lépez-Blanco et al., 2019; Luo et al., 2012, 2016;
Todd-Brown et al., 2013; Wieder et al., 2015). For example, bench-
marking analysis can quantitatively assess model fidelity through
rigorous comparisons with measurements and observations (Collier
et al., 2018; Luo et al., 2012). Sensitivity analysis provides informa-
tion on the importance of variables, parameters, and other inputs on
model uncertainty (Huang, Zhu, et al., 2018). Model intercomparison
candisentangle, interpret, and inform understanding of across-model

captured the observed negative response of NEP to warming, but differed largely in
the magnitude of response, due to differences in baseline C residence time and tem-
perature sensitivity of decomposition. While there was a lack of response of NEP to
elevated CO, (eCO,) concentrations in the measurements, simulated NEP responded
positively to eCO, concentrations in most models, due to the positive responses of
simulated net primary production. Our study used one case study in Minnesota peat-
land to demonstrate that the sources of across-model spreads in simulating transient
C dynamics can be precisely traced to model structures and parameters, regardless
of their complexity, given the protocol that all the matrix models were driven by the

same gross primary production and environmental variables.

across-model spread, carbon residence time, environmental scalar, land carbon dynamics,
matrix model, SPRUCE experiment, traceability analysis

spread (Huntzinger et al., 2013, 2017). Data assimilation can rigor-
ously integrate model and data to reduce model uncertainty (Luo
et al., 2016). All these methods are fundamental to understand and
reduce model uncertainty or across-model spread in land C dynam-
ics. However, these methods have been applied unevenly among
models due to required technical efforts and computational costs,
and none of them enables a systematical and analytical analysis of
across-model spread (Keenan & Williams, 2018; J. Zhou et al., 2021).

Recently, a matrix approach has been developed to unify differ-
ent land C models and analytically understand model uncertainty or
across-model spread (Luo et al., 2017, 2022). The matrix approach is
based on the fact that although hundreds of models have been de-
veloped to represent land C dynamics (Manzoni & Porporato, 2009),
the current generation of land C models inside ESMs all use multi-
ple pools to represent various land C compartments and transfers
among them (Luo et al., 2016; Sierra et al., 2018). This common
structure makes it possible to unify the land C models in a matrix
form, by accommodating any number of pools, and by folding all
C cycling processes into the terms of the matrix equation related
to C input, C allocation into different plant organs, C turnover rate
and its environmental modifier, and C transfers among pools (Luo
et al., 2016). This unification enables an analytical analysis of sources
of model uncertainty or across-model spread using a traceability
framework in a hierarchal way (Luo et al., 2017; Xia et al., 2013; J.
Zhou et al., 2021; S. Zhou et al., 2018). This framework has been
used to analyze across-model spread in C simulations in steady
states (Rafique et al., 2016; Wei et al., 2022; Xia et al., 2013) and has
also been expanded to analyze sources of uncertainty in ecosystem
C storage in non-steady states simulated by a single model (Jiang
et al., 2017; Luo et al., 2017). However, the framework has yet been
used to pin down the sources of the across-model spread in transient
ecosystem C simulations under global change. In fact, C cycling in
most, if not all, terrestrial ecosystems are in dynamic disequilibrium
states, due to the prevalence of global change (e.g., elevated CO,
[eCO,] and climate warming) and disturbance (e.g., deforestation
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and fire) over the land (Luo & Weng, 2011). Thus, it is a high priority
to pin down sources of the across-model spread in transient C dy-
namics in non-steady states.

Peatlands contribute disproportionately to the long-term stor-
age of terrestrial C, with those at high latitudes especially vulnerable
to climate change, and thus may have important C cycle feedbacks to
the atmosphere with global climate implications (Hanson et al., 2020;
Lopez-Blanco et al., 2022; Nichols & Peteet, 2019). The responses
of these ecosystems to global change have been explored by more
and more manipulative experiments (Bridgham et al., 2008; Huang
et al., 2021), among which the Spruce and Peatland Responses
Under Changing Environments (SPRUCE) experiment is a unique one
(Hanson et al., 2020). The SPRUCE experiment is an ecosystem-level
climate change manipulation that focuses on the whole-ecosystem
responses to multiple levels of warming at both ambient and eCO,
concentration (Hanson et al., 2016, 2017, 2020). It is unique in the
size of the plots (114 m? for each enclosure) that enclosed intact ex-
amples of ombrotrophic boreal bogs, and covers a larger range (+0
to +9°C) of warming treatments than other peatland experiments
(<5°C). The estimates of ecosystem-level annual C budget from the
experiment provide a unique opportunity to examine model perfor-
mance in capturing the nature of observed ecosystem responses to
climate change manipulations. Earlier versions of the ELM-SPRUCE
model have been used to analyze model uncertainty of net ecosys-
tem production (NEP) simulation at the site, and those simulations
indicated relatively modest NEP responses to warming (Griffiths
et al., 2017). An updated version of ELM-SPRUCE, mainly by add-
ing phosphorus cycling, C and nutrient storage pools, and improving
phenology, captured the negative responses of NEP to warming in
field but failed to predict the lack of observable response to eCO,
(Hanson et al., 2020). Moreover, while observed temperature sen-
sitivity of NEP did not differ between ambient CO, and eCO,, sim-
ulated temperature sensitivity reduced under eCO, compared with
ambient CO, (Hanson et al., 2020). However, reasons for the model-
data mismatches and whether other land C models perform similar
as the ELM-SPRUCE in simulating peatland C responses to global
change remain unclear.

As part of the SPRUCE effort, this study aimed to examine
across-model spread in transient C storage under global change ma-
nipulations and, meanwhile, pin down its sources analytically using
the matrix approach. We firstly converted the C cycle module of
eight land surface models into eight matrix models. The eight ma-
trix models differ largely in complexity, with the number of C pools
ranging from 2 to 101. We then used the matrix models to simulate
ecosystem C dynamics and compared the simulations to the obser-
vations in the SPRUCE experiment. Since our matrix models were
not embedded in the original models (i.e., run in standalone), we can-
not explore across-model spread in gross primary production (GPP).
Therefore, we deliberately used the same GPP and environmental
variables (e.g., soil temperature and water content) in each treatment
to drive all models, to focus this study on the allocation, transfer,
and turnover processes of C. Finally, we analyzed the sources of the
across-model spread in transient C dynamics using both backward

S ey

and forward analyses. The backward analysis is a transient traceabil-
ity analysis, which can trace the source of spread back to its com-
ponents hierarchically (Jiang et al., 2017; Luo et al., 2017; J. Zhou
et al., 2021). The forward analysis is via parameter manipulation, in
which we manipulated parameters in the matrix models to investi-
gate their contributions to spread. While the backward analysis is to
partition sources of spread, the forward analysis can explore the role
of each parameter in causing the across-model spread. Our analyses
demonstrate that consolidating multiple land C models into a uni-
fied matrix form enables an analytical and systematical examination
of the across-model spread in transient peatland C dynamics under
global change to pin down its sources, which is a step forward for
understanding the sources of the across-model spread from model
intercomparison projects (MIPs) in comparison with the previous

studies.

2 | METHODS
2.1 | Study site and experimental treatments

The experiment selected in this study was the SPRUCE experi-
ment in the S1 bog in the Marcell Experimental Forest in north-
ern Minnesota, USA (Latitude 47.503 N, Longitude 93.483W). The
experiment was selected mainly for two reasons. First, it is still a
challenge to simulate C dynamics in peatlands, given the small living
biomass relative to the amount of soil organic matter, the difficulty
to simulate peatland hydrology that is closely tied to the humifica-
tion of the peat file, and the relatively slow turnover rates of plant
tissues and dead organic matter than those in other ecosystems (e.g.,
temperate forests). Second, the global change experiment (two at-
mospheric CO, levels x five warming levels) at the SPRUCE is unique
in that, the treatments utilized plot (114m2 for each enclosure) en-
closed intact examples of ombrotrophic boreal bogs that contained
the diversity of the natural ecosystem (tree, shrubs, mosses, mi-
crobes, and a deep peat soil), and the warming treatment covers a
larger range of warming (+0 to +9°C) than other warming experi-
ments in peatlands (Hanson et al., 2020).

The overstory vegetation of the S1 bog is dominated by two tree
species: Picea mariana and Larix laricina, underlain by a bryophyte
layer dominated by Sphagnum spp. mosses (Hanson et al., 2020).
Mean annual temperature and precipitation at the site are approx-
imately 3°C and 770 mm, respectively (Hanson et al., 2017). In the
experiment, the two atmospheric CO, levels are ambient (~400 ppm)
and eCO, (900ppm) concentrations, respectively; the five warming
levels are whole-ecosystem warming by +0, +2.25, +4.5, +6.75, and
+9°C, respectively; another two ambient treatment plots without an
enclosure were not considered in this study (Hanson et al., 2020).
The environmental changes were experimentally created using a
regression-based experimental design, with one 12.8-m diame-
terx 7-mtall, open-top enclosure per treatment (Hanson et al., 2020).
Whole-ecosystem warming began in August 2015 following a year
of belowground-only warming, which commenced in 2014. The
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eCO, treatment was initiated in June 2016. Carbon dynamics in this
peatland have been measured since 2011, that is, 3-4 years ahead of
the treatments (Hanson et al., 2016, 2017). Therefore, simulations in
this study started in 2011. Detailed site description and experiment
design were described previously by Hanson et al. (2017, 2020).

2.2 | Model conversion and parameterization

The C cycle modules of eight land models were converted into
eight matrix C models than run in standalone. The eight land mod-
els are the Terrestrial Ecosystem Model (TEM; Raich et al., 1991),
Data Assimilation Linked Ecosystem Carbon model version 2
(DALEC2; Bloom & Williams, 2015), Terrestrial ECOsystem (TECO)
model (Luo et al., 2017), Forest Biomass and Dead organic matter
Carbon (FBDC, previously known as KFSC) model (Lee et al., 2014),
Carnegie-Ames-Stanford approach biosphere (CASA) model (Potter
et al,, 1993), CENTURY version 4 on forest ecosystem (Kirschbaum
& Paul, 2002), Community Land Model Version 4.5 (CLM4.5) (Huang,
Lu, et al., 2018), and Organizing Carbon and Hydrology in Dynamic
Ecosystems (ORCHIDEE) model (Huang, Zhu, et al., 2018) (Table S1).
These models were selected by the authors who participated in a
model conversion working group organized during the 2nd Training
Course on New Advances in Land Carbon Cycle Modeling (https://
www?2.nau.edu/luo-lab/?training_course_2019), based on the au-
thors' modeling experiences.

While the list of our models is not a comprehensive one, it in-
cludes eight models with a range of complexity (the number of C
pools ranging from 2 to 101), which represent the land C models
used in the current generation of ESMs well (Wei et al., 2022). For
simplicity, the abbreviations of the original models are used to rep-
resent their C cycle modules in the matrix forms (i.e., the matrix
models) as well, unless otherwise specified. The original FBDC runs
yearly, but the matrix-based FBDC runs daily. Other matrix models
run in the same time steps as the original models, that is, the TEM,
CASA and CENTURY4 run monthly, and the DALEC2, TECO, CLM4.5
and ORCHIDEE run daily. Here, we provide a condensed description
of the model conversion, full details can be found in Text S1.

In all the eight models, C enters ecosystem as GPP or net primary
production (NPP), transfers among compartments, and loses via au-
totrophic or heterotrophic respiration based on first-order kinetics
(Figure 1). Given this similarity, all the models were converted into

the following matrix form:

% = B(H)B x u(t) — (AEBK + V) x X(t), (1)

where the left part (i.e., the part before the equal symbol) depicts C
change rate, and the right part depicts the difference between C input
rate (the component before the minus symbol) and C output rate (the
component after the minus symbol) at time t. X(t) indicates C pool size
at time t, dX(t) indicates change in C pool size, dt indicates change in
time, u(r) indicates C input through photosynthesis (i.e., GPP here). B

indicates time-averaged coefficients of C allocation from GPP to plant
tissues, and g(t) indicates the modifier of B at time t; the multiplication
of B and p(t) represents C allocation coefficients at time t; sum of the
multiplication across all cells indicates plant C use efficiency (CUE) at
time t. K is a matrix of baseline C turnover rates, which indicate the
baseline rates of C leaving individual pools through mortality or de-
composition. A is a matrix of transfer coefficients, which indicate C
transfer in the network of multiple interconnected pools. V is a matrix
of vertical transfer coefficients, which indicate the rates of C mixing
across layers in a soil profile. £(t) indicates the scalar depicting envi-
ronmental modification of the K matrix, and can be further calculated

as follows:

§() = ST (DEwDEo (D), (2)

where &1(t), Ew(t), £o(t) indicate the scalars depicting the modifications
by temperature, water, and other environmental factors (e.g., oxygen),
respectively, at time t. Values in the matrices are indicated by the cor-
responding lowercases, for example, a value in the K matrix is indicated
by k.

It is too time consuming to convert traditional C cycle modules
into a unified matrix form and embed the matrix version of mod-
ules in the eight original models by this single study. Therefore, we
converted the eight traditional C cycle modules into eight matrix-
based C models that can run in standalone, by directly extracting the
above coefficients from each of the eight land models. Whenever
the coefficients depend on plant or soil properties, they were esti-
mated using the plant or soil properties at the SPRUCE site or sites
with similar vegetation or soil types (Text S1). During the extraction,
some simplifications were made, mainly of using fixed GPP and time
constant C allocation coefficients. This is because that GPP and C
allocation coefficients usually depend on plant phenology, nutri-
ent availability, and downstream values (e.g., leaf biomass), which
are difficult to be represented in a matrix form. How these model
simplifications may affect our results were explored by sensitivity
analyses following.

Carbon allocation coefficients vary with time in the original
TEM, TECO, CLM4.5, and ORCHIDEE, depending on variables
such as air temperature, soil water content, and maximum plant
growth rate; their approximate time averages were used in the ma-
trix forms. Specifically, an observed plant CUE in a boreal conifer
forest (0.4) in McGuire et al. (1992) was used as b1 in the matrix-
based TEM. Empirical constant C allocation coefficients in Luo
et al. (2017) were directly used in the matrix-based TECO. Since
plant C modules in the CLM4.5 and ORCHIDEE were not con-
verted into the matrix forms, one plant C pool and a fixed CUE (i.e.,
b1) and k of it were used to represent plant C dynamics in the ma-
trix forms. Plant CUE in the matrix-based CLM4.5 and ORCHIDEE
were assigned as 0.35 and 0.5, respectively, the average values re-
vealed in the versions participated in CMIP5 (Wei et al., 2022); k of
the plant C pool was set empirically as 0.00004gg’1 day’1 in both
models (Montané et al., 2017). Time constant bs were used in the
original DALEC2 and CASA; these coefficients were directly used
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CLMH4.5 (71 pools)

GPP GPP

DALEC?2 (6 pools) FBDC (13 pools) CENTURY 4 (15 pools) ORCHIDEE (101 pools)
GPP GPP
=
3 i 1] i
x3 | xa | x5 |

NI

X38-69 | X70-101

dx(t)
dt

Unified matrix C model:

BB xu(t) — (AE(H)K + V) x X(t)

FIGURE 1 Consolidating eight land C models into a unified matrix form. All models simulate land C cycle from gross primary production
(GPP) to autotrophic respiration (blue arrow), heterotrophic respiration (black arrow), and plant (green box), litter (orange box, binned with
soil in the TEM), and soil (black box) C pools. le 2.3, indicates different C pools. In the CLM4.5 and ORCHIDEE, red arrow indicates vertical
transfer process. In the unified matrix form, B indicates time-averaged coefficients of C allocation from GPP to different plant components,
B(t) indicates modifier of B at time t, u(t) indicates GPP at time t, A indicates coefficients of transfer among C pools, £ indicates environmental
scalars, K indicates baseline turnover rate of C pools, V indicates vertical transfer coefficients, and X(t) indicates C pool sizes at time t. Full
names of the models can be seen in Table S1. [Colour figure can be viewed at wileyonlinelibrary.com]

in the matrix forms. The original FBDC and CENTURY4 adopted
time constant coefficients of C allocations from NPP to plant tis-
sues, without a simulation of GPP; a multiplication of these time
constant coefficients by 0.5 (assumed plant CUE) were used as bs
in the matrix forms.

Values of the other model parameters were directly extracted
from the original models, though sometimes with modifications or
simplifications. First, C transfers from the plant pools to litter pools
in the original CLM4.5 and ORCHIDEE were simplified as the trans-
fer of C from a single plant pool to multiple litter pools in the ma-
trix forms; nevertheless, the proportions of C transfers from plant
pool to litter pools are generally the same as in the original models.
Such a simplification does not enable a comparison of C dynamics
among models at plant tissue level, but should not affect C dynam-
ics much at the ecosystem level. Second, the transfers of C from
foliage and fine roots to structural and metabolic litters and further
to soil are controlled by the lignin to N ratio in the plant materials
in the CENTURY4; these transfer coefficients were parameterized
based on a constant lignin to N ratio of black spruce. Coefficients of
C transfer among pools are constant in the original TEM, DALEC2,

TECO, FBDC, and CASA,; these coefficients were extracted and di-
rectly used as as in the matrix forms.

Third, k of each C pool was firstly extracted, or calculated based
on soil particle size at the study site (for active soil C pool in the
CENTURY4, CLM4.5, and ORCHIDEE only), from the original mod-
els, and then standardized with a reference temperature of 20°C,
whenever it is temperature dependent. Fourth, & of each C pool was
firstly calculated in the same way as in the original models, and then
standardized with a reference temperature of 20°C (i.e., & at 20°C
was set as 1), in correspondence to the standardization of ks by tem-
perature. Note that different types of temperature measurements
have been used to calculate &; in these models, for example, using
monthly mean air temperature in the TEM versus daily mean soil
temperature in the CLM4.5 to calculate the &; of soil C turnover.
Therefore, even after our standardizations, temperature scalars
could still differ among models under the same environmental con-
ditions (e.g., soil temperature at 20°C). Moreover, it is a challenge
to standardize water scalars across models to the same water con-
ditions, because the water scalars of soil C pools were either not
calculated (e.g., the FBDC) or calculated based on soil water content
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(e.g., the TECO), soil matric potential (the CLM4.5), or potential
evapotranspiration (the CENTURY4), though they ranged between
~0and 1inall models. Therefore, water scalars in the original models
were used in the matrix models. Finally, vs in the matrix models were
parameterized the same as in the original models, whenever vertical
discretization is considered, that is, in the CLM4.5 and ORCHIDEE;
for the other models that do not consider vertical discretization, all

vs were set as 0.

2.3 | Model simulations and validations

To run the eight matrix models, we generated some of the required
forcing data (i.e., GPP and soil temperature and water content of O-
100cm depth at an interval of 10 cm) in each experimental treatment
with a full version of the TECO model, which couples land C, water,
and energy dynamics at an hourly time step (Huang et al., 2017; Ma
et al., 2017). The model is driven by six climate variables, including
precipitation, wind speed, solar radiation, air temperature, relative
humidity, and vapor pressure deficit. Simulated GPP and a few other
C variables (e.g., leaf C pool) were calibrated with their measure-
ments in each treatment (Figure S1).

The above forcing data in each experimental treatment were
used to drive all the eight models to simulate ecosystem C dynam-
ics (soil in the top meter was considered). As a typical modeling
practice on initial condition, the ecosystem was assumed to be in
a steady state at the start of our simulation (i.e., the year 2011),

as indicated by the measured NEP before the start of experiment

(0.082+0.101kgCm™ year* during 2014-2015; Figure 2c). While
this assumption may be a simplified one due to past land use change
and transient CO, and climate effects, it enables us to model land
C dynamics similarly to current ESMs, and thus provides a good
comparison with ESM simulations. Under this assumption, initial C
storage was set to be equal to the C storage in steady state in 2011
in each model. How this assumption would affect our traceability
results were tested following. Spin-up of all models were performed
with a semi-analytical solution (Xia et al., 2012).

Model simulations of NPP, NEP, and heterotrophic respiration
were validated with their measurements in each experimental
treatment during 2014-2018, which were reported by Hanson
et al. (2020). Here we used measured NPP for validation, rather
than for calibration, because comparing simulated NPP against
its measurements enables an assessment of inter-model differ-
ence in plant CUE, which is known to be an important source of
across-model spread in NEP. Pretreatment data were collected
over multiple years prior to 2016 (i.e., 2011-2015), as summarized
by Griffiths et al. (2017) and Hanson et al. (2020). The mean and
standard deviation of NPP were calculated as a sum of the means
and standard deviations, respectively, of the aboveground NPP of
trees and shrubs, the NPP of Sphagnum, and the belowground NPP
of trees, shrubs, and graminoids. Model simulations of ecosystem
C storage were validated with its empirical estimate in 2012, which
is a sum of plant C pool in Hanson et al. (2017) and top-meter soil
C stock in Tfaily et al. (2014). Model performance in simulating the
above C variables were assessed based on the root mean square
error (RMSE).

(a) GPP (b) NPP
10 SD:0.13
: CV: 19.6% Model
0.8 — TEM
- M — oniec:
e 0.6
g — TECO
> 0.4 °
L . — FBDC
%) [ )
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2 (c) NEP (d) Ecosystem C storage
£ o4 SD:0.07 1991 CENTURY4
S . SD:24.69
g CV: 67.5% _
= 80+ CV: 50% CLM4.5
(@] 4
0.2 =T — ORCHIDEE
60+ ®
0.0 =
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FIGURE 2 Simulated and measured ecosystem C dynamics in a northern peatland. Model simulated (a) gross primary production
(GPP), (b) net primary production (NPP), (c) net ecosystem production (NEP), and (d) ecosystem C storage under the ambient condition;
measurements are indicated by the black points, with the error bars indicates standard deviations. In each subplot, the standard deviation
(SD) and coefficient of variance (CV) of time-averaged simulations are shown. [Colour figure can be viewed at wileyonlinelibrary.com]
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2.4 | Analyses of model simulations

Reasons for across-model spreads in the ecosystem C dynamics
were explored using a transient traceability analysis and a parameter
manipulation analysis (Figure S2). Both analyses were performed
on yearly simulations for demonstration, though all eight matrix
models run daily or monthly. The transient traceability analysis was
modified from Jiang et al. (2017) and J. Zhou et al. (2021), based
on the mathematical foundation described by Luo et al. (2017). In
brief, across-model spread in ecosystem C storage can be attributed
to inter-model variation in C storage capacity (X., the maximum
amount of C that an ecosystem can store) and C storage potential
(X, the difference between X and ecosystem C storage). The vari-
ation in X was further traced to variations in NPP and ecosystem C
residence time (z;). The variation in NPP was totally due to variation
in plant CUE, given the same GPP for all models; the variation in
7 was attributed to variations in baseline C residence time (z,) and
& The variation in & was attributed to variations in &, &, and &,
which were further traced to the specific functions calculating these
scalars in each model. Contributions of these diagnostic variables
(e.g., Xe X and zE) to across-model spread in ecosystem C stor-
age were quantified using a hierarchical partition method (Chevan
& Sutherland, 1991) with the “hier.part” package version 1.0.6 in R
version 4.1.3 (R Core Team, 2020).

To explore how the traceability results would be affected by
our major model simplifications (i.e., using fixed GPP and time con-
stant C allocation coefficients) and the steady state assumption,
additional model runs were performed. Specifically, the impacts of
model simplifications were examined by model runs with randomly
scaled GPP and/or C allocation coefficients in each model, within
the magnitudes of variations shown in the current generations of
ESMs, that is, a 2.5-fold variation in GPP, and a plant CUE between
0.3 and 0.7 (Wei et al., 2022). For GPP scaling, the original GPP val-
ues in a model were multiplied by a random value between 0.57 and
1.43, to create a 2.5-fold (1.43/0.57 = 2.5) variation in GPP without
a change in its mean (mean of random values between 0.57 and 1.43
would be approximately 1.00) across models. For the scaling of C
allocation coefficients, the sum of B matrix in each model was set as
arandom value between 0.3 and 0.7, and g(t) of each plant C pool in
each model was multiplied by a random value between 0.6 and 1.4
to generate time-variable C allocation coefficients; 1.4 was used as
the upper limit of the modifier of g(t) to avoid a plant CUE over 1.
Given the randomization processes, the above tests were repeated
five times. The impacts of the steady state assumption were tested
by two another model runs, in which initial C storage was set as half
or twice of the C storage in the steady state for each C pool in each
model.

For the parameter manipulation analysis, the eight matrix mod-
els were manipulated in five sequential steps to shrink their simu-
lations, which were standardizing plant CUE, baseline C residence
time, environmental scalar, and vertical transfer coefficients, and
homogenizing decomposition coefficients. The manipulations were
ordered based on the C flow order (Figure 1) as well as on our prior

S ey

knowledge of their relative importance. First, plant CUE of all mod-
els were set to be their average (i.e., 0.484), by rescaling all bs (i.e.,
cells in the B matrix) in a model in the same proportion, in order to
achieve the same NPP across models. Second, 7, of all models were
set to be their average (i.e., 52.77 years), by increasing or decreasing
all ks in a model in the same proportion. Third, & of all models were
set to be their average for plant and soil (including litter) C pools
separately at each time step; this setting is based on the fact that
& is always different between plant and soil C pools but not among
multiple plant C pools or multiple soil C pools (Text S1). Fourth, vs
of the vertically resolved models (i.e., CLM4.5 and ORCHIDEE) were
set to be zero. Finally, k of all plant or soil (including litter) C pools
in a model were set as their approximate averages across models
(plant C pools: 0.0002gg™ day™; soil C pools: 0.00005gg™* day™),
and then rescaled to achieve the standardized 7, (i.e., 52.77 years) as
in the Second step. To explore how the order of parameter manip-
ulations would affect our results, alternative manipulation orders,
for example, standardizing ¢ before the standardization of 7, were
also tested.

2.5 | Statistical analysis

Linear regression analysis was used to determine the effects of
eCO, and warming as well as their interaction on both measured
and simulated C fluxes, including GPP, NEP, NPP, and heterotrophic
respiration. The eCO, was treated as a factor variable, with its effect
ona Cflux expressed as a percentage change in the eCO, treatments
in comparison to the ambient CO, treatments. Warming level (i.e.,
ambient condition +0, 2.25, 4.5, 6.75, and 9.0°C, respectively) was
treated as a numeric variable, with its effect on a C flux expressed
as a change in the flux rate per °C warming. The regression analyses
adopted data during the treatment period (i.e., 2016-2018) only, and
were performed using the “Im” function in R version 4.1.3.

3 | RESULTS

3.1 | Ecosystem C dynamics under the ambient
condition

There were divergent simulations of ecosystem C dynamics among
models under the ambient condition (Figure 2). Simulated NPP var-
ied from a time average of 0.48kgCm™ year! in the CLM4.5 to
0.93 kng_2 year‘1 in the DLAEC2; these simulations were much
higher than the measurements (0.25-0.39kgCm™ year! during
2014-2018) (Figure 2b). Simulated NEP ranged between a time aver-
age of 0.02 and 0.24 kg Cm ™2 year™ across models (Figure 2c); models
generally simulated NEP well in 2014 and 2015, but overestimated it
after that, that is, simulations of -0.02 to 0.42 kng'2 year'1 versus
measurements of -0.20 to 0.01 kng_2 year’1 during 2016-2018
(Figure 2c). Simulated ecosystem C storage varied 3.7 folds among
models, though their average (49.4 kg Cm™2) was comparable to the
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measurement (58.9 +11.8 kgCm™?) (Figure 2d). The RMSE of NPP
increased in the order of CLM4.5<TEM <TECO <CASA = CENTUR
Y4 = FBDC = ORCHIDEE < DALEC2, the RMSE of NEP in the order
of TEM<CLM4.5<ORCHIDEE<FBDC<CASA<TECO <DALEC2>
CENTURY4, and the RMSE of ecosystem C storage in the order of
FBDC < CENTURY4 < CASA<CLM4.5<DALEC2<TECO<TEM<O
RCHIDEE (Figure 2; Figure S3).

Traceability analysis showed that across-model spread in eco-
system C storage was attributed primarily to inter-model varia-
tion in X (82.2% of the variation), and a less degree to X (17.8%)
(Figure 3a); the X (27.2-125.6 kgC m~) was, on average, five folds
larger than the X, (1.1-28.6 kg Cm™?) (Figure 3b,c). The variation in
X was attributed primarily to inter-model variation in z (75.9%) and
much less to NPP (6.3%) (Figure 3a), which differed by factors of
4.3 (41.0-181.6years) and 1.9 (0.48-0.93kg Cm™ year™?), respec-
tively, among models (Figure 3d,e). Since GPP was the same for all
models, variation in NPP was totally attributed to variation in plant
CUE (Figure 3a). The variation in ¢ was attributed more to variation
in 7, (63.2%) than to variation in & (12.8%) (Figure 3a). The 7, (16.2-
110.0years) and the ¢ (0.28-0.82) differed by factors of 6.8 and 2.9,
respectively, among models (Figure 3f,g). Although & increased with
soil temperature in all models, the response curve differed largely
among models (Figure S4a-h; Text S1). &, increased with soil water

content from 0.90 to 0.95cm® cm™2 in the ORCHIDEE, but decreased
slightly in the FBDC, without any gradual change in the other models
(Figure S4i-p).

After GPP and plant CUE were rescaled according to variations
revealed in the current generations of ESMs, they explained 7.3%-
22.6% (mean 16.3%) and 6.6%-31.5% (17.7%), respectively, of inter-
model variation in ecosystem C storage (Figure 4b; Figure S5), which
were essentially higher than those shown in the default traceability
analyses (0% and 6.3%, respectively) (Figure 4a). Correspondingly,
the proportions explained by z,, , and X, decreased from 63.2% to
42.1%, from 12.8% to 8.5%, and from 17.8% to 15.4%, respectively
(Figure 4a,b). The proportions estimated by the modified traceability
analyses are generally comparable to those in a previous traceability
analysis of global C simulations in the CMIP5 and CMIPé6 (Figure 4).
Tests of the steady state assumption showed that, after initial eco-
system C storage was set as half (or twice) of the value in the steady
state in each model, the proportion explained by X, increased from
17.8% to 42.2% (or 39.9%), and the proportions explained by other
variables (e.g., X.) correspondingly decreased (Table S2).

Sequentially manipulating model parameters shrunk model sim-
ulations (Figure 5). Standardizing plant CUE reduced inter-model
variations in ecosystem C storage and cumulative NEP from 50.0%
to 47.2% and from 67.5% to 62.6%, respectively, without an impact
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FIGURE 3 Transient traceability analysis of simulated ecosystem C dynamics. (a) Across-model spread in ecosystem C storage is traced
into model components by three steps. First, the spread is attributed to inter-model variations in (b) C storage capacity (X.) and (c) C storage
potential (X;,). Second, the variation in X, is attributed to inter-model variations in (d) net primary production (NPP) and (e) ecosystem C
residence time (z;). Third, the variation in z is attributed to inter-model variations in (f) baseline C residence time (z,) and (g) environmental
scalars (&); the variation in NPP is attributed wholly to inter-model variation in plant C use efficiency (CUE). [Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 4 Comparison of traceability results among model intercomparison projects (MIPs). Traceability results in our (a) default Matrix-
based MIP (Default MatrixMIP), (b) MatrixMIP with more complete consideration of inter-model variations in gross primary production (GPP)
and C allocation coefficients (Modified MatrixMIP), and the phases (c) 6 and (d) 5 of the Coupled Model Intercomparison Project (CMIPé

and CMIP5, respectively). Model components include GPP, plant C use efficiency (CUE), baseline C residence time (z,), environmental scalar
(€), and C storage potential (X). In (a), the default MatrixMIP used the same GPP to drive all models, therefore the contribution of GPP is 0.
Results in (c) and (d) are redrawn from Wei et al. (2022), which cannot attribute across-model spread to X,. [Colour figure can be viewed at

wileyonlinelibrary.com]

on 7, (Figure 5a-f). Thereafter, standardizing 7, reduced variations
in the C storage and 7. from 47.2% to 37.0% and from 49.5% to
39.5%, respectively, and also reduced variation in the NEP slightly
from 62.6% to 61.9% (Figure 5d-i). Alternatively, if ¢, instead of z,,
was standardized in the second step, variations in the C storage and
7 would increase, instead of decrease, from 47.2% to 66.2% and
from 49.5% 66.5%, respectively, and the variation in NEP would
decrease from 62.6% to 22.5% (Figure S6). Comparison of results
between the two different orders showed a larger contribution of
7, than ¢ to the variation in ecosystem C storage while an opposite
rank of contributions to the variation in NEP. Standardizing & after
the standardization of 7, reduced variations in the NEP, C stor-
age, and 7 from 61.9% to 12.2%, 37.0% to 0.1%, and from 39.3%
to 0.1%, respectively (Figure 5g-I). Standardizing vs in the fourth
step had minor influences on the variations in C storage, NEP, and
¢ (Figure 5j-0). Homogenizing ks in the fifth step reduced variation
in the NEP from 12.2% to 0.1% (Figure 5n,q). After the above five
manipulations, the remaining minor variations in C storage, NEP, and
7¢ (all £0.1%; Figure 5p-r) were due to the different time steps (i.e.,
daily vs. monthly) used by the models.

3.2 | Responses of ecosystem C dynamics to
experimental treatments

In general, both measured and simulated NEP responded negatively
to warming, with measured response of -0.026kgCm™2 year *°C?
and simulated responses of -0.061 to 0.001 (mean-0.023) kgC
m~2 year *°C™? (Figures 6k-t and 7d). The simulated responses be-
came more divergent among models with warming (Figure 6k-
t). The negative responses were mainly because of the positive
responses of heterotrophic respiration to warming in both the

measurements (0.01<Skng’2 year °C™Y) and the simulations (O-
0.062kgC m2 year °C™?), since NPP responded minorly to warming
(Figure 7d-f). The positive warming responses of heterotrophic res-
piration in models were attributed to the increases in & with warm-
ing (Figure S4a-h), since 7, did not respond to warming in any model
(Figure 8f). RMSE of the NEP, but not that of the NPP or hetero-
trophic respiration, increased under warming (Figure S3).

Measured NEP responded minorly (3.2%) to eCO, (Figures 6a-j
and 7a). Simulated NEP also responded minorly toeCO, inthe CLM4.5
(-0.9%) and ORCHIDEE (-2.4%), but positively (26.9%-52.4%) in the
other models (Figure 7a). The positive simulated responses were re-
lated to the increases in X, and X under eCO, (Figure 8; Figure S7).
The increase in X was attributed to the increases in simulated NPP
(34.8%-67.1%) and GPP (62.4%) under eCO, (Figure 8c,e); however,
neither the measured NPP nor the measured GPP responded sig-
nificantly to eCO, (Figure 7b; Figure S8). Minor responses of NEP
to eCO, in the CLM4.5 and ORCHIDEE were due to their relatively
high z.s, and thus relatively slow responses to eCO,, than the other
models (Figure 8d). RMSE of both the NPP and the NEP increased
under eCO, (Figure S3).

4 | DISCUSSION

Many studies have compared land C simulations among models
to understand the across-model spread in steady states (e.g.,
Rafique et al., 2016; Todd-Brown et al., 2013; Wei et al., 2022).
Some studies have also analytically analyzed the uncertainty of
transient ecosystem C dynamics simulated by a single model after
converting it into a matrix form (Jiang et al., 2017; Luo et al., 2017).
Nevertheless, no study has analytically compared transient eco-
system C simulations under global change among multiple models.
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FIGURE 5 Across-model spread in ecosystem C dynamics are shrinkage after standardizing parameter values. Simulated ecosystem C
storage, net ecosystem production, and C residence time in the (a-c) original model run and (d-r) model runs after Steps 1-5, respectively.
Origin model run indicates model simulations with the default parameter values. Steps 1-5 indicate model simulations after sequentially
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By converting the C cycle modules of eight land models into a uni-
fied matrix form, our study analytically traced the across-model
spread in simulated transient C dynamics under global change to
its sources in the SPRUCE experiment. Since the matrix models
ran in standalone, some model simplifications were made during
the model conversion, mainly of using fixed GPP and time constant
C allocation coefficients (Text S1). Therefore, we cannot consider
uncertainty in GPP caused by feedbacks to it from downstream
processes (e.g., C allocations to plant tissues) or variables (e.g., nu-
trient availability) in some models (e.g., the CLM4.5), and could
also not fully consider model differences in C allocation coeffi-
cients. Nevertheless, how these simplifications may affect our re-
sults have been explored by model runs with randomized GPP and
C allocation coefficients in the ranges revealed by the current gen-
erations of ESMs. Moreover, how the assumption of steady state
at the start of model simulation may affect our traceability results
has been explored by model runs with non-steady state initial C
storages. These tests suggest that our default model comparison
may underestimate the relative contributions of GPP, C allocation

coefficients, and X, to the across-model spread in ecosystem C
dynamics. Nevertheless, all the tests showed that 7, contributed
the most to the across-model spread in ecosystem C storage
(Figure 4; Figure S5; Table S2). This conclusion was also supported
by our parameter manipulation analyses (Figure 5; Figure Sé).

Our parameter manipulation analysis clearly demonstrated the
major contribution of & to the spread. Models generally captured
the negative response of NEP to warming, but differed largely in the
magnitude of response. The difference was traced to the varied 7,
and temperature sensitivity of & among models. While there was
a lack of response of NEP to eCO, in the measurement, simulated
NEP responded positively to eCO, in most models. The positive
responses in models were attributed to the modelled positive re-
sponses of NPP to eCO,. Our matrix-based approach not only ana-
lytically traced the across-model spread in ecosystem C storage to
its sources as done in previous studies (Jiang et al., 2017; Rafique
et al., 2016; Wei et al., 2022), but also analytically traced spreads
in NEP and its responses to global change manipulations to their
sources, which has not been achieved previously.
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FIGURE 6 Comparison between simulated and measured C fluxes in different experimental treatments. Carbon fluxes include yearly
(a-j) net primary production (NPP), (k-t) net ecosystem production (NEP), and (u-ad) heterotrophic respiration (Het. resp.). Experimental
treatments include a factorial combination of five warming levels (i.e., ambient +0, 2.25, 4.5, 6.75, and 9.0°C) and two atmospheric CO,
levels (i.e., ambient and elevated CO,). Simulations are indicated by color lines (colors indicate models); the means and standard deviations
of measurements are indicated by black points and error bars, respectively. In each subplot, the shaded area indicates the treatment period
(i.e., during 2016-2018), and the number in it indicates the standard deviation of time-averaged simulations during the period. [Colour figure

can be viewed at wileyonlinelibrary.com]

4.1 | Ecosystem C dynamics under the
ambient condition

All models generally overestimated NEP, which was mainly due
to the overestimation of NPP. NPP is a multiplication of GPP and
plant CUE. Since GPP is validated by only a few days of meas-
urements, we cannot rule out the possibility that yearly GPP is
overestimated here; however, plant CUE was more likely to be

overestimated. Plant CUE was simply assigned as 0.5 in models
that start C simulations from NPP rather than GPP, that is, the
FBDC, CENTURY4, and CASA (Text S1). Although this value is only
slightly higher than the global average of observations (0.45), ob-
served plant CUE varies largely among sites and suffer from a large
uncertainty as well (Wei et al., 2022; Zhang et al., 2014). The over-
estimation of NPP, in combination with the comparable ecosys-
tem C storage between the model average and the measurement
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(Figure 2b,d), suggests that models generally underestimated z..
Indeed, heterotrophic respiration, which indicates soil C turnover
rate, was overestimated by models across experimental treat-
ments, though with a less extent in the vertically resolved models
(i.e., the CLM4.5 and ORCHIDEE models) than in the vertically un-
resolved ones (Figure 6u-ad). These findings are in line with the
findings in recent global data-model comparisons (Shi et al., 2020;
Wei et al., 2022), in which land z; is globally underestimated by
models, especially over the northern high latitudes, and even by
the vertically resolved models.

In general, across-model spread in ecosystem C dynamics can
be attributed to inter-model variations in C input, 7, and internal C
cycling processes such as C transfers among pools. Although such
attributions cannot be fully explored here, our traceability analyses
with considerations of uncertainties in GPP and C allocation coef-
ficients showed that, 7y was the major contributor to across-model
spread in C storage. This resultis in line with that in Wei et al. (2022),
in which inter-model variation in z; contributed to 66.1% and 77.9%

of the inter-model variation in land C storage in the CMIP5 and
CMIPé, respectively. The increase in relative contribution of 7, from
CMIP5 to CMIPé6 highlights the growing need for improved under-
standing of inter-model variation in land 7.

Inter-model variation in 7 can be attributed to variations in z, and
&. Similar as revealed by traceability analyses of CMIP5 and CMIP6
simulations (Wei et al., 2022), our traceability analysis attributed vari-
ation in 7 more to 7, than to & (Figure 4). A similar trend but a smaller
difference between the two components was revealed by our param-
eter manipulation analysis (Figure 5; Figure Sé). This difference among
analyses was because that, the statistical method used in the trace-
ability analysis (i.e., hierarchical analysis) cannot accurately attribute
variation in 7 to its two components that are positively correlated
(r=.76, p = .28, n = 8). Given such a positive correlation, standard-
izing ¢ before the standardization of 7, even increased inter-model
variation in ecosystem C storage (Figure S6). Moreover, inter-model
variation in NEP was attributed more to variation in £ than to variation
in 7, (Figure 5; Figure S6), and increasing across-model spread in NEP
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with warming was attributed to the increase in inter-model variation
in & (Figures 6a-j and 8h). These findings highlight the underappreci-
ated contribution of £ to across-model spread in transient C dynam-
ics. The findings also reflect the fact that, &s in models are calculated
using distinct functions of C turnover responses to environmental
changes (e.g., exponential, unimodal, and logistic functions) and dif-
ferent environmental variables (e.g., monthly mean air temperature
in the TEM vs. daily mean soil temperature in the CLM4.5 for soil C
pools) (Text S1). These functions were primarily developed based on
limited and short-term empirical data, obtained using diverse methods
(e.g., laboratory or field measurements of soil respiration and isotopic
tracer) from individual sites (Burke et al., 2003).

To improve model performance in simulating ecosystem C dy-
namics, an increasing number of C pools have been created in models

to represent more biogeochemical processes (Bonan & Doney, 2018;
Koven et al.,, 2013; Luo & Schuur, 2020). Our results showed that
model structure (i.e., the number of C pools and C transfers among
the pools) contributed much less to the across-model spreads in C
storage and NEP than model parameters (Figure 5). This result was
probably because that the turnover of C pools in all models are
generally based on the same (i.e., first-order) kinetics. Although the
complex models (i.e., the CLM4.5 and ORCHIDEE) captured the lack
of NEP response to eCO,, they failed to predict the lack of NPP re-
sponse of eCO, (Figure 7). The lack of NEP response was likely at-
tributed to the lack of NPP response in the measurements, but was
probably associated with the relatively high z,s, which indicate the
relatively slow responses to global change and disturbances, in the
two complex models, compared to the simpler ones (Figure 8f). These
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results suggest that the two complex models captured the pattern
of NEP response to eCO, due to an incorrect reason. Moreover, the
underestimated temperature sensitivity of NEP in the two complex
models was probably associated with their relatively high z,s and
relatively low temperature sensitivity of & in comparison to the sim-
pler ones (Figures 7d and 8). Overall, the complex models had similar
performances with the simpler ones in simulating C dynamics at the
ecosystem level. We propose that while more pools and processes
can represent C cycle more in details, improved mechanistic repre-
sentation of C cycling processes and parameterization are more es-
sential to improve model performance at the ecosystem level.

4.2 | Ecosystem dynamics under elevated
atmospheric CO, and temperature

Similar as the ELM-SPRUCE model in Hanson et al. (2020), our mod-
els generally captured the response of C fluxes (i.e., NEP, NPP, and
heterotrophic respiration) to warming but failed to predict the gen-
eral lack of response to eCO, at the SPRUCE site. This finding sug-
gests that the current generation of land C models perform generally
similar in capturing the nature of land C responses to global change.
Measured NEP responded negatively to warming, but not responded
to eCO, or its interaction with warming. These responses were
mainly attributed to the corresponding responses of heterotrophic
respiration: positive response to warming but no response to eCO,
or its interaction with warming.

Although models generally captured the positive response of
heterotrophic respiration to warming, there was a large inter-model
difference in the magnitude of response to warming, that is, warming
sensitivity. Our traceability analysis showed that this difference was
attributed to inter-model differences in z, and/or the warming sen-
sitivity of & (usually indicated by Q). For example, warming sensi-
tivity of heterotrophic respiration was highest in the TEM (Figure 7d)
due to its lowest 7, among models (Figure 8f). Warming sensitivity
of heterotrophic respiration is lowest in the CENTURY4 (Figure 7d),
due to its low temperature sensitivity of & (Figure 8h). Since neither
7, nor Q,;, was measured at the site, we cannot distinguish which
parameter(s) were biased in each model. Measurements of these
parameters are highly needed to constrain model simulations of de-
composition response to warming. While Q, is relatively easy to be
determined, determining 7, of a soil is usually difficult. z, may be
empirically determined by approaches such as stable isotope tech-
niques (Bernoux et al., 1998) and long-term (>10years) monitoring of
soil organic C storage (Smith et al., 2020), or estimated by combin-
ing measurements such as *C signature of soil organic matter with
data-model fusion techniques (e.g., data assimilation; Lépez-Blanco
etal., 2019; Luo et al., 2016; Luo & Schuur, 2020; Shi et al., 2020).

The response of NEP to eCO, was overestimated by all models,
due to the overestimation of NPP response, which was at least partly
further attributed to the overestimation of GPP response. Leaf-level
response to eCO, in the woody plants at the SPRUCE site was ev-
ident as increased nonstructural carbohydrates and differential

biochemical acclimation; nevertheless, community-level NPP gain in
response to eCO, has yet to develop (Hanson et al., 2020). The lack
of response in measurement has been attributed to the nutrient-
limited conditions (mainly N-limited) at the site, which is expected
to be eliminated with enhanced decomposition under warmer con-
ditions (Hanson et al., 2020). Nutrients may affect NPP by multiple
pathways, such as limiting photosynthesis rate (Liang et al., 2020),
reducing plant CUE by increasing C allocation to nutrient acquisition
and use (Manzoni et al., 2018), and altering the allocation of GPP to
different plant tissues (Hartmann et al., 2020).

All models in this study did not consider nutrient impacts on C
dynamics, though some of the original models (e.g., CLM4.5 and
ORCHIDEE) did (Text S1). Nevertheless, the ELM-SPRUCE model
also failed to predict the lack of response of NEP to eCO, at the
site, though it includes a detailed treatment of N and P cycle dynam-
ics and C-N-P interactions such as complex interactions between
plants, microbes, and soils on soil N and P availability, and is validated
by measurements such as measured N and P deposition rates and N
and P concentrations of plants and fresh litter (Hanson et al., 2020).
In fact, the responses of peatland C dynamics to eCO, remain poorly
known, with mixed responses (e.g., positive response and lack of re-
sponse) reported in previous studies (Fenner et al., 2007; Girardin
et al., 2016). To improve our predictive understanding of peatland C
responses to eCO, concentrations, multiple efforts are still needed,
such as improved understanding of nutrient impacts on photo-
synthesis rate and C allocations, more realistic model representa-
tion of these impacts, and more observations to validate the new
representations.

Predicting peatland C dynamics under global change remains a big
challenge (Chaudhary et al., 2020; Wei et al., 2022). In this study, we
have little empirical information on the model parameters, therefore
in our parameter manipulation practice parameters were standard-
ized to their averages across models for a demonstration purpose,
instead of standardized to empirical values to constrain model pre-
dictions. Our comparisons between the measured and simulated C
fluxes can shed lights on, but not constrain, the model parameters.
Nevertheless, our study showed that the matrix approach of mod-
eling enables an analytical understanding of across-model spread
in C dynamics in a northern peatland under different global change
treatments. Previous studies suggest that the matrix approach also
facilitates a semi-analytical model spin-up (Xia et al., 2013), a sensi-
tivity analysis of model parameters (Huang, Zhu, et al., 2018), and
the assimilation of multiple data sources into complex land surface
models (e.g., CLM4.5) (Tao et al., 2020), to understand and reduce
uncertainties in model parameters and predictions (Luo et al., 2022).
Beside C cycle modules or models, N and P cycle modules or mod-
els can also be consolidated in a matrix form (Hou et al., 2019; Lu
et al., 2020). Therefore, we advocate efforts to implement matrix
approach to biogeochemistry modules of the current generation of
ESMs, ideally without any simplification in model structure or pa-
rameter, to perform inter-model comparisons and model-data com-
parisons, which will finally help understand model uncertainty and
thereafter improve model performance.
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5 | CONCLUSION

This study pinned down sources of the across-model spread in predict-
ing ecosystem C dynamics in a global change experiment in a north-
ern peatland. We first consolidated eight land C models into a unified
matrix form, and then traced the across-model spread to its sources,
according to the terms of the matrix equations. We found that the
across-model spread in predicting C storage in the peatland was pri-
marily due to inter-model variation in C residence time, which was
further attributed mainly to the inter-model variation in baseline C resi-
dence time. The across-model spread in predicting NEP was mainly due
to the inter-model variation in environmental scalars, and were shrunk
to almost none after each of the model components were standard-
ized. The eight models can generally capture the negative responses
of NEP to warming, but differed largely in the magnitude of responses,
due to varied baseline C residence time and temperature sensitivity of
decomposition among models. Most models failed to predict a lack of
responses of NEP to eCO, concentrations, due to the predicted CO,
stimulation of NPP. Pinning down the sources of the across-model
spreads in ecosystem C dynamics provides a scientific basis for de-
veloping more realistic models and gaining more reliable predictions.
Although our study was performed in a peatland ecosystem with sim-
plified matrix models, our matrix-based approaches provide a powerful
way to understand causes of the across-model spreads both analyti-
cally and systematically, and thus offer pointers for effective improve-
ment in predicting land C dynamics under global change with ESMs.
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