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Abstract Numerical models have been developed to investigate and understand responses of
biogeochemical cycle to global changes. Steady state, when a system is in dynamic equilibrium, is generally
required to initialize these model simulations. However, the spin-up process that is used to achieve steady

state pose a great burden to computational resources, limiting the efficiency of global modeling analysis on
biogeochemical cycles. This study introduces a new Semi-Analytical Spin-Up (SASU) to tackle this grand
challenge. We applied SASU to Community Land Model version 5 and examined its computational efficiency
and accuracy. At the Brazil site, SASU is computationally 7 times more efficient than (or saved up to 86%
computational cost in comparison with) the traditional native dynamics (ND) spin-up to reach the same steady
state. Globally, SASU is computationally 8 times more efficient than the accelerated decomposition spin-up and
50 times more efficient than ND. In summary, SASU achieves the highest computational efficiency for spin-up
on site and globally in comparison with other spin-up methods. It is generalizable to wide biogeochemical
models and thus makes computationally costly studies (e.g., parameter perturbation ensemble analysis and data
assimilation) possible for a better understanding of biogeochemical cycle under climate change.

Plain Language Summary Land carbon cycle models, a critical component of earth system
models, have been developed to investigate and understand ecological responses to global changes. However,
the model spin-up process to achieve steady state are usually time-consuming and pose great computational
burden. The spin-up problem hinders our ability to study some key issues in land carbon cycle modeling, such
as sensitivity analysis. This paper applies a new SASU framework to accelerate spin-up of Community Land
Model matrix version 5. Compared with traditional native dynamic approach, SASU speeds up the spin-up

by approximately 50 times, achieving the fastest spin-up speed than all the previously recorded methods. Our
SASU method is applicable to biogeochemical models and, therefore, liberates the models for computationally
costly studies, such as parameter perturbation ensemble analysis and data assimilation.

1. Introduction

Terrestrial biogeochemical models usually contain several modules (e.g., photosynthesis, litter fall, carbon
decomposition) by defining various state variables representing carbon and nitrogen pools to simulate the feed-
back of land ecosystem to global change over the past decades (Ahlstrom et al., 2012; Lehmann & Kleber, 2015;
Wieder et al., 2018). Initialization of these state variables is essential for a transient model simulation, especially
in the study of carbon-climate feedback. Observation of ecosystem carbon and nitrogen storage provides reliable
information for model initialization (Fang et al., 2014; Murty & McMurtrie, 2000; Zhang et al., 2002). However,
these observations are not commonly available, especially at global scale. Typically, a transient biogeochemical
model simulations are initialized by a spin-up run. During spin-up, an arbitrary initial condition is given and the
models are driven under recursive external meteorological forcing until an approximate equilibrium is reached
for carbon and nitrogen. The computational cost to achieve the steady state is generally high due to the slow
turnover rates of the soil carbon pools. Such computation cost would further surge with integrating more biogeo-
chemical processes and adopting higher resolutions in the simulation of terrestrial models. This is known as the
“spin-up problem” (Thornton & Rosenbloom, 2005). This spin-up problem become a computational bottleneck
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that hampers important yet time-consuming analysis of biogeochemical models (e.g., parameter perturbation
experiment (PPE) and model-data fusion) (Sun et al., 2023).

To resolve the “spin-up problem,” a variety of methods have been proposed over the past two decades to improve
the computational spin-up efficiency. The simplest method is native dynamics spin-up (ND). ND takes hundreds
to thousands of years of model simulation, running under recursive external forcing (Bondeau et al., 2007;
Randerson et al., 2009). The accelerated decomposition (AD) spin-up approach was developed by temporar-
ily assuming higher decomposition rates (Thornton & Rosenbloom, 2005) and has been successfully applied
to both the Biome-BGC and Community Land Model (CLM) to reduce 70% spin-up time (Fang et al., 2015;
Koven et al., 2013; Shi et al., 2013; Thornton & Rosenbloom, 2005). It should be noted that both AD approaches
require an additional period of ND simulation (the post-AD spin-up process) to further adjust the quasi-steady-
state from the accelerated mode to a real steady-state, which is sometimes accompanied by a great computing
burden. Some models are initiated with observations of plants, litter and soil in previous regional experiments
(Fang et al., 2014; Murty & McMurtrie, 2000; Zhang et al., 2002). However, the model still take a long time
to come to equilibrium so that this method may not practically improve efficiency (Shi et al., 2013; Wutzler &
Reichstein, 2007).

In addition, a suite of approaches has been proposed based on the formulated carbon balance equation to solve the
steady state in an analytical or semi-analytical manner. The approach works because most of the current genera-
tion of terrestrial carbon and nitrogen cycle models use the first-order kinetics to describe terrestrial carbon and
nitrogen dynamics (Adair et al., 2008; Koven et al., 2013; Shi et al., 2018) while some of the nonlinear models
also can be analytically solved to obtain steady state (Georgiou et al., 2017). Full analytical spin-up method such
as gradient projection approach (Fang et al., 2015), numerically solves matrix-based expressions via the Jacobian
matrix or Gauss-Jordan elimination algorithms (Lardy et al., 2011; Martin et al., 2007; Qu et al., 2018), which
could save up to 85%-90% of the computational cost. However, the fully analytical method requires a series
of complicated mathematical operations and currently it is only tested at a few sites (Fang et al., 2015; Lardy
et al., 2011) and North America (Qu et al., 2018). Based on the matrix representation of biogeochemical models
in the terrestrial ecosystems (Luo et al., 2003, 2017), Xia et al. (2012) first developed a semi-analytical spin-up
(SASU) using the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model. SASU offers
great potential to effectively reduce the spin-up time of global models, which saves up to 92.4% and 86.6% of
computational time in CABLE (Xia et al., 2012).

As more ecological processes are integrated, increasing complexity of current biogeochemical model struc-
tures further introduce substantial difficulties to achieve efficient spin-up. For examples, in recognition of
the importance of vertical distribution and exchange of soil organic matter (SOM) (Baisden & Parfitt, 2007;
Balesdent et al., 2018; Jobbagy & Jackson, 2000), vertically resolved SOM structure has been implemented
in land models (Braakhekke et al., 2011; Jenkinson et al., 2008). In CLM Version 5 (CLMS5), Koven et al.
revised the vertically resolved structure (Koven et al., 2013), which can simulate dynamic changes of soil
carbon up to 8.6 m deep (Lawrence et al., 2019). In addition, different from fixed carbon-nitrogen ratios in
most of the current carbon-nitrogen coupled models (Clark et al., 2011; Oleson et al., 2010; Potter et al., 1993;
Running & Hunt, 1993), CLM5 improved global carbon-nitrogen coupling simulation by defining flexible
carbon-nitrogen ratios and adding a Fixation and Uptake of Nitrogen (FUN) module (Ghimire et al., 2015;
Lawrence et al., 2019). All of the above advancements in representing biogeochemical processes lead to
relatively longer carbon turnover times and more complex carbon-nitrogen interactions than its predecessors
(Koven et al., 2015), which bring greater computational burden to the spin-up. Implementing SASU to such
a complicated biogeochemical model like CLM will benefit future biogeochemical model development (Fang
et al., 2015; Qu et al., 2018).

In this study, we propose a new SASU framework by combining the AD method and semi-analytical algorithm
based on the CLM5 matrix version (Lu et al., 2020). We found that this new SASU framework further acceler-
ates spin-up of global carbon—nitrogen coupled models over that introduced by Xia et al. (2012). Computational
efficiency and steady-state consistency of ND, AD, and SASU approaches are evaluated using CLM5 at both
one-site and the global scale. In addition, we applied SASU to a PPE using CLMS, which is designed to examine
the parameter sensitivity and provide a pathway for systematic parameter calibration. Our results provide strong
support for the applications of SASU to complicated biogeochemical models with vertically resolved structure
and flexible carbon to nitrogen ratio representations.
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2. Materials and Methods
2.1. Model Description

This study is based on CLMS5, which is widely used and incorporate comprehensive biogeochemical processes.
Similar to other land surface models, CLMS5 represents the terrestrial carbon cycle via multiple carbon and
nitrogen pools. The dynamics of pools can be characterized by the difference between carbon input and output
(Figure 1). Terrestrial organic carbon is originally produced by photosynthesis of plants and distributed to six
main pools (leaf, fine root, live stem, dead stem, live coarse root, dead coarse root). Vegetation carbon pools are
regulated by multiple processes such as phenology, nutrient constraints, fire, etc. Subsequently, carbon is directly
transferred from the vegetation or indirectly through the Coarse Woody Debris (CWD) pools to three different
litter pools, including labile, cellulose and lignin. Downstream of the litter pools are three SOM pools with fast,
slow, and passive decomposition. To simulate advection and diffusion of organic matter along a soil vertical
profile, CLM5 divides soil into 20 layers that are up to 8.5 m along depth (Lawrence et al., 2019). The carbon
turnover time varies in different pools, which depends on the transfer coefficients regulated by the availability of
soil nutrients and environmental factors (such as temperature and moisture). Limited by depth and environmental
factors, SOM in deep layers typically has little carbon input and low decomposition rates.

In addition to having the same structure as the carbon cycle described above, the nitrogen cycle in CLMS5 also
regulates the availability of mineral nitrogen in the soil through immobilization and denitrification, which will
constrain the photosynthesis of plants to form a relatively complete carbon-nitrogen coupling cycle. In particu-
lar, compared to CLM4, CLMS5 has been updated in nutrient dynamics to model the nitrogen limitation in plant
growth. In CLM4, denitrification was handled through a time constant applied to a bulk soil mineral N pool,
and static carbon-nitrogen ratio is used to indicate that the availability of soil mineral nitrogen limits potential
photosynthesis; in CLM4.5 nitrification and denitrification were modified based on CENTURY model from
distinct and vertically resolved NO, and NH, pools (Koven et al., 2013; Lawrence et al., 2019). In CLMS5, the
FUN module proposes that plants will consume a certain amount of carbon when they uptake nitrogen based on
the reality of symbiotic nitrogen fixation (Brzostek et al., 2014). The description of biogeochemical processes in
CLMS has been well documented in Lawrence et al. (2019) and more details can be found on this site (https://
escomp.github.io/ctsm-docs/versions/release-clm5.0/html/).

2.2. The Matrix Representation of the Terrestrial Carbon and Nitrogen Cycle

In the carbon-nitrogen coupled cycle model, multiple carbon/nitrogen balance equations are used to calculate the
dynamics of each carbon or nitrogen pool, which can be mathematically expressed by a matrix equation (Luo
et al., 2003, 2017, 2022). The vegetation simulation in CLMS5 contains six tissue pools (leaf, fine root, live stem,
dead stem, live coarse root, dead coarse root) and each tissue pool is accompanied by a storage and a transfer
pool to facilitate the description of vegetation biomass growth and other phenological processes. An additional
nitrogen pool is used to store reusable nitrogen (Figure 1). These 18 Carbon (C) pools and 19 Nitrogen (N) pools
are represented by 18 X 1 vector Cyeg(f) and 19 X 1 vector Nyeg(?). Following two matrix equations are constructed
to track the state variables of carbon and nitrogen in CLMS5 matrix version (Lu et al., 2020):

dCye
T = = Be(t)Ucin(h) + (ACph(I)KCph + Acgm(t)Kcgm + Acfi(f)KCfi)Cveg(f) (N

d Nyeg
TR Bn(O)Unin(?) + (ANph(t)KNph + ANgm () Kngm + ANfi(f)KNfi)Nveg(T) )

t represents each simulated timestep, which is half an hour in this study. A state variable with z will change
dynamically with time. B¢ () (18 X 1 vector) and By (f) (19 X 1 vector) indicate input allocation fractions of
Total vegetation carbon (TOTVEGC) or nitrogen. Ucin(t) and Uin(?) are total amount of carbon/nitrogen inputs
to the system. In general, carbon input refers to the net primary productivity (NPP) and the sources of nitrogen
input are usually nitrogen absorption and fixation. A are 18 X 18 matrices for vegetation carbon pools and 19
X 19 matrices for N pools, representing carbon/nitrogen transfer coefficients along prescribed pathway between
pools. All A matrices have —1 diagonally, and the element ag;; (in row i and column j) in the matrix represents
transfer coefficient from the pool j to i. Acpn and Anp, are used to quantify carbon and nitrogen fluxes among
plant pools controlled by phenology processes. Acgm(?) and Anem(?) describe the gap-mortality transfer fractions
and fire-induced process is indicated by Acri(¢) and Anri(?).
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K are diagonal matrices (18 x 18 matrices for carbon pools and 19 X 19 matrices for nitrogen pools) with each
diagonal element representing the turnover rate of each plant carbon and nitrogen pools. Phenology matrices
Kepn(t) and Kypn(?) represent plant tissue turnover rates according to phenology principles. Harvest rates and
natural mortality are all included in gap mortality matrices Kcgm(f) and Kngm(?). Fire matrices Keri(#) and Kyri(f)
refer to vegetation carbon/nitrogen losses from fire.

The soil carbon and nitrogen biogeochemical processes in CLMS5 follow the CLM4.5bgc matrix structure devel-
oped by Huang et al. (2018), which includes CWD pool, three litter pools (metabolic litter, cellulose litter and
lignin litter) and three SOM pools (fast SOM, slow SOM and passive SOM). Each pool can be subdivided
into 20 layers along soil depth so that the carbon/nitrogen pools are represented by a 140 X 1 vector, that is,
(C1(D), Co(1), Cs(1), ..., Crao(?))". The matrix equation for litter and SOM can be organized as following:

% = Icsoit + (AchE(OKn + V() + K (1)) Coon(1) 3)
stoil
—ar = Ingoit + (ANnE@Kn + V() + K7 (1)) Nsoir (1) 4)

where Icsoii and Ingon are 140 X 1 vector, representing vegetation carbon and nitrogen inputs to litter or CWD,
respectively. As with vegetation, Ac, and Anp, a matrix of size (140 X 140), which is used to represent the transfer
coefficient of carbon/nitrogen between pools. Kj, are diagonal matrices (140 x 140), representing the potential
decomposition coefficient of litter and soil pools. K refers to litter and SOM carbon/nitrogen loss induced by
fire. £(¢) is a diagonal matrix (140 x 140) reflecting the environmental factors. Each element is a number from 0
to 1 to indicate the degree of carbon/nitrogen cycle affecting by environment such as soil temperature and mois-
ture. V() is a 140 x 140 matrix, used to capture carbon and nitrogen dynamics in the vertical soil profile through
mixing mechanisms (i.e., diffusion and advection).

The above matrix equations have been successfully constructed and verified in previous studies (Huang
et al., 2018; Liao et al., 2022a; Lu et al., 2020; Luo et al., 2022). More details about CLMS5 matrix version can be
found in Lu et al. (2020).

2.3. Spin-Up Methods

This study evaluated three spin-up methods, which are ND spin-up, AD spin-up, and semi-analytic spin-up
(SASU). These three methods adopt the same spin-up criterion (the mean change in total ecosystem carbon over
last two 1oops ACorpcosyse < 1.0 g C m=2 yr~! for the Brazil site and each gird cell in global verification), which
is one of criteria in Thornton and Rosenbloom (2005) and Shi et al. (2013). Below is a description of the three
methods.

2.3.1. Native Dynamics (ND) Spin-Up

The ND spin-up is simple and universal. It keeps default model running from arbitrary initial conditions until
steady-state is reached under cycled meteorological forcing (Thornton & Rosenbloom, 2005). Recursive forcing
provides similar environmental conditions over time. With no additional disturbance, the state variables (carbon
and nitrogen pools) in terrestrial model will gradually approach the quasi-equilibrium state after long-time simu-
lation. It relies entirely on internal dynamics and results in high computation cost, but it is a reliable reference for
other spin-up methods.

2.3.2. Accelerated Decomposition (AD) Spin-Up

Accelerated decomposition spin-up was first described by Thornton & Rosenbloom (2005) and was implemented
into CLM4. The approach was slightly modified by Koven et al. (2013) to use different acceleration factors for

Figure 1. Diagram of the carbon and nitrogen processes of Community Land Model version 5 model. (a) The vegetation module tracks 18 carbon pools, 18
corresponding nitrogen pools, and an additional retranslocated nitrogen pool, which are controlled by phenology, gap-mortality and fire processes. L, leaf pool; L_X,
leaf transfer pool; L_S, leaf storage pool; Fr, fine root; Fr_X, fine root transfer pool; Fr_S, fine root storage pool; Ls, live stem pool; Ls_X, live stem transfer pool; Ls_S,
live stem storage pool; Ds, dead stem pool; Ds_X, dead stem transfer pool, Ds_S, dead stem storage pool; Lcr, live coarse root pool; Ler_X, live coarse root transfer
pool; Ler_S, live coarse root storage pool; Der, dead coarse pool; Der_X, dead coarse root transfer pool; Der_S, dead coarse root storage pool. (b) The soil module
tracks 7 carbon and 7 corresponding nitrogen pool categories that into 20 soil profiles, resulting in 140 pools in the matrix representations. SOM, soil organic matter;
CWD, coarse woody debris. Figures are originally from Lu et al. (2020) and Huang et al. (2018).
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each soil pool, leading to a 70% reduction in computational cost from ND. The spin-up efficiency is mainly
limited by the pools with long turnover times. Thus, AD defines a series of fixed scaling scalars for litter and SOM
pools to accelerate carbon decomposition while vegetation pools maintain their default turnover timescales. In
this solution, the vegetation states achieve quasi-equilibrium quickly, but the litter and SOM carbon and nitrogen
predicted state are inversely proportional to the decomposition scaling factors (Thornton & Rosenbloom, 2005).
The scaling scalars can vary considerably for different pools and regions. For example, for passive soil organic
carbon pool, the acceleration factor is higher to make it similar to the decomposition rates of other fast pools.
Geographically, the decomposition rates at high latitude are much lower than in the tropics, where temperature
and moisture factors strongly limit the carbon decomposition. In CLMS, these areas were assigned higher scalars
to ensure spin-up efficiency, by adding a latitudinal dependence to the acceleration. Introducing scaling factors,
the model will converge to a steady state in a short time due to the fact that fast SOM decomposition provides
sufficient mineralized nitrogen for rapid plant growth (Shi et al., 2013). Consequently, a quasi-steady state can be
obtained by multiplying by the corresponding scaling scalars. Thus, the model continues to run at the ND model
after the end of the AD simulation until a steady state is reached.

To evaluate computational efficiency in this study, we used the same AD scaling scalars as Lawrence et al. (2019)
and followed 2 spin-up steps suggested by Andre et al. (2020) to do AD spin-up: (a) 200 years of AD phase in which
both carbon decomposition and vertical transport rates are accelerated by a set of scaling factors to ensure sufficient
mineral nitrogen availability. At the end of AD spin-up, an exit-AD phase is executed automatically in the model to
obtain quasi-steady-state values by multiplying the soil carbon and nitrogen states from the AD spin-up step by the
scaling factors; (b) a long-time (at least 400 years) post-AD spin-up in normal mode (ND) to reach final equilibrium.

2.3.3. Semi-Analytical Spin-Up (SASU)

Xia et al. first proposed SASU for CABLE based on matrix equation (Xia et al., 2012). Fundamentally, litter and
soil organic carbon decomposition in terrestrial models limits the spin-up efficiency due to the long carbon turn-
over time. The default first-order dynamical scheme can efficiently simulate the decay of litter and SOM, which
can be described by the following matrix equation:

d Csoi]

T B(OU (@) + AS()K Coir(1) Q)

where Cqi1(?) is a vector of pool sizes; U(¢) is the total carbon input from vegetation, usually referring to NPP;
B(t) is a vector of allocation fraction to each pool; A is a matrix of transfer coefficients (or microbial carbon
use efficiency) to quantify carbon transition; £(¢) is a diagonal matrix of environmental scalars. K is a diagonal
matrix, representing the potential decomposition coefficient of litter and soil pools. It has been well documented
and validated in different models (Huang et al., 2018; Lu et al., 2020; Luo et al., 2003; Xia et al., 2012).

Mathematically, theoretical steady state can be calculated by making Equation 5 equal to zero. As there are
several time-dependent variables (U (¢), B(t), and &(¢)), we treated them by mean values during the forcing loops
(U, B, &) so that we can solve the equation as:

C. = —(AEK)_'W ©)

where Cj; is the theoretical steady state, assuming that the carbon input is equivalent to the output. The dynamic
changes of environmental factors £(¢) in the same climate loop are very similar and will be relatively stable after aver-
aging. In addition to environmental factors, dynamic variables (e.g., B(f) and U (¢)), which are associated with the
plant input and allocation, are also subject to feedback regulation of mineralized nitrogen. When vegetation growth
is deficient in available mineral nitrogen, reduced gross primary productivity will lead to dynamic changes of down-
stream pools. In other words, the organic carbon and nitrogen produced by vegetation vary nonlinearly and generally
dominate in the simulations. Regularly, the vegetation becomes stable within several atmosphere loops as it grows
rapidly. Indeed, B and U will be close to steady state, which makes the analytical solution more accurate. The actual
equilibrium can be achieved quickly when the analytical solution is applied as initial value for next simulation loop.

In the CLMS5.0 matrix version, by setting Equations 3 and 4 to 0, at the end of each climate loop, the analytical
solution of soil carbon and nitrogen can be calculated based on matrix operation as:

C SsS

soil T

- N S
—(Acthch +V+ Kf) Tcson @)
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Figure 2. Procedures of the semi-analytical spin-up (SASU) method used in this study. There are three steps in SASU, including accelerated decomposition mode,
semi-analytical (SA) mode, and native dynamics mode.
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In this study, we combined AD, semi-analytical and native dynamic modes to become a new SASU framework
as the following three steps (Figure 2):

Step 1. Accelerated decomposition mode: We used the same AD scaling scalars from Andre et al. (2020) and
Lawrence et al. (2019) to accelerate soil decomposition and provide enough mineral nitrogen for plants
to grow rapidly. Thus, model will quickly obtain a near steady-state estimate of NPP (or all plant pools),
which usually takes 100-200 years (looping over 20 years of atmospheric forcing).

Step 2. Semi-analytical (SA) mode: Calculate the analytical solutions of soil organic carbon and nitrogen pools
based on matrix equations at the end of every atmosphere forcing loop. Figure 2 shows an overview
diagram of the SASU mode used in CLMS matrix version.

Step 3. Native dynamic mode: Reach the final equilibrium by taking the analytical carbon and nitrogen pools
as initial values and then cycling over repeat-forcing until the total ecosystem carbon meets the spin-up
criterion.

We tested and adjusted the required simulation time in the three steps to maximize the spin-up efficiency. The
following procedure was identified as the best-performing for site and global simulation: (a) 160 years of AD
and the exit-AD mode as described in Section 2.3.2; (b) 200 years of semi-analytical mode, updating soil organic
carbon and nitrogen pools with analytical solutions every forcing loop; (c) at least 40 years ND mode to reach
final equilibrium.

2.4. Evaluation of These Three Spin-Up Methods

To evaluate the computational efficiency of different spin-up approaches, we ran AD and SASU at a Brazil site
(55°W, 7°S). They are driven by recursive meteorological forcing from 1901 to 1920 of the Global Soil Wetness
Project Phase 3 dataset (GSWP3) (Guo et al., 2006). In addition, we conducted the ND, AD and SASU for a
400-gridcell sparse grid (1.9° x 2.5°) (Hoffman et al., 2013) that is used for parameter perturbation studies with
CLM. The 400 grid cells that are used were identified using a cluster analysis and represent a minimum number
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of grid cells that can reasonably capture model behavior across different ecoregions around the globe (Figure 5).
They are driven by repeated meteorological forcing from 2005 to 2014 to compare these approaches. All spin-up
methods are initiated with cold-start, which means that plants will grow from baer land.

2.5. Parameter Perturbation Experiment (PPE) in CLMS

With the growing of complexity and comprehensiveness of land models, land carbon dynamics simulated
by earth system models are highly variable and fit poorly with observations (Luo et al., 2015; Spafford &
MacDougall, 2021; Tian et al., 2015). It is crucial to understand sources of uncertainties. There are more than
200 crucial parameters in CLMS and the contribution of parameter uncertainty to total uncertainty expected to be
large, but unquantified (Bradford et al., 2016). Parameter values in the current land models are mostly determined
on an ad hoc basis and may be derived from the results of field experiments, other models, or informed from
scientific studies (Luo et al., 2001). Systematic parameter calibration will enhance the accuracy of simulations,
and increase suitability and accessibility of models for actionable science. Parameter perturbation experiment
on CLMS is proposed to examine the parameter importance and sensitivity on model results by ensemble anal-
ysis under parameter perturbation. Steady state under each parameter perturbation should be estimated to give
us insight into how carbon cycle response to parameter change. PPE considered total 197 parameters in CLMS
across 14 categories and thousands of spin-up tasks are required for this ensemble analysis.

We applied SASU to PPE protocol based on a global 400 grid cell sparse grid driven by repeated meteorological
forcing from 2005 to 2014. The test was to start from an equilibrium with default parameterization and we modi-
fied a model parameter (the changed parameter stem_leaf in this test was reduced by 50%, which is an allocation
parameter that controls the amount of new stem carbon per new leaf carbon). We used the SASU method to
achieve a new equilibrium with this modified parameter. We tested a range of simulation times in the three SASU
method steps and identified the following procedures as optimal: (a) 20 years of AD phase and exit-AD spin-up
as described in Section 2.3.2; (b) 120 years of semi-analytical mode, updating soil organic carbon and nitrogen
pools with analytical solutions every forcing loop; (c) at least 20 years ND mode to reach final equilibrium. It is
worth to noticed that the time allocation among these steps is not quite the same as description in Section 2.4.
The time of step 1 (AD mode) is greatly reduced in PPE due to the relative mature vegetation but no growing
from baer land.

3. Results
3.1. Spin-Up at the Brazil Site

We first compared the computational cost of each spin-up method at the Brazil site. For the Brazil site, the AD
spin-up scaling scalars were set to 1, which means that it is fundamentally the same as ND. To reach the spin-up
threshold (ACrgppcosyse < 1.0 g C m=2 yr=!), we ran SASU and took ND spin up as a control. We recorded the
first year when the growth rate of total ecosystem carbon storage is below the spin-up criterion. Generally, it took
SASU 420 years and ND 3,000 years to achieve the same steady state (Figure 3a). ND kept a slow growth rate
for about 2,000 years to reach steady state. In SA mode, all the carbon pools quickly approached a quasi-steady-
state after 360 years (Figure 3a). Moreover, in the following simulation of step 3, the state variables maintained
a dynamic balance and the change rate approached zero (Figure 3b). Compared with ND, SASU significantly
reduced the computational cost, saving 2,580 years (86.0% simulation time) to reach the same state (Figures 3a
and 4). The steady-state estimations from ND and SASU are consistent, just with small bias. TOTVEGC reached
the same equilibrium of 15.37 kg C m~2. Total ecosystem carbon (TOTECOSYSC) is 25.25 kg C m~2 with ND
and 25.28 kg C m~2 with SASU. Even the same spin-up criterion is adopted, SASU has reached the equilibrium

with 0.56 ¢ C m~2 yr~! of change rate, while total ecosystem carbon in ND still increases with 1.00 g C m=2 yr~!.

When a smaller criterion of the steady state (A Cqoppcosyse < 0-05 g C m=2 yr~!) was set to evaluate computational
efficiency of the two spin-up methods at the Brazil site, it took SASU a total of 480 years and ND 4,720 years
to meet the smaller criterion (Figures 3a—3c). It took an additional 1720 years to reach the new criterion of
ACrorpcosyse < 0.05 g Cm~2 yr~! beyond the 3,000 years to reach the original criterion of (A Crorpcosyse < 1.0 8
C m~2 yr~!) for ND (Figure 3c). It only took an additional 60 years to reach the new criterion of ACrorpcosysc
< 0.05 g C m™ yr~! beyond the 420 years to reach the original criterion of (ACqgpcosyse < 1.0 g C m=2 yr=h)
for SASU (Figure 3c). Biases of the steady-state pool sizes are reduced to a minimal for both the methods. Total
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Figure 3. Carbon state trajectories (a, d, g) and the change of carbon between loops for semi-analytical spin-up (SASU) (b, e,
h) and native dynamics (ND) (c, f, i) on the Brazil site. Results are organized as total ecosystem carbon (a—c), total vegetation
carbon (d—f) and total soil carbon (g—i). These two methods ended up with the same steady state (horizontal black dashed line
in a, d, g) on the Brazil site. Blue dots in a, d, g indicate where the SA mode starts. To reach the criterion of 1.0 g C m=2 yr~!
(horizontal gray dashed line in b, c, e, f, h, i), SASU took 420 years (b) and ND took 3,000 years (c), which were marked with
gray arrows in (b, ¢). To meet a smaller criterion of 0.05 g C m~2 yr~! (horizontal brown dashed line in b, ¢, ¢, f, h, i), SASU
took 480 years (b) and ND took 4,720 years (c), which were marked with brown arrows in (b, c).
ecosystem carbon from both ND and SASU are 25.28 kg C m~2. The difference of total ecosystem carbon is about
0.001 kg C m~2, which is less than 0.005% of the pool size (Table 1). Each individual carbon pool (i.e., CWD,
TOTVEGC, each litter and soil pool) was consistent as well (Table 1). The difference of CWD pools between
the two methods was 6.51 x 10~° kg C m~2, while the difference of total soil carbon (TOTSOMC) was about
1.45 x 1073 kg C m~2. In general, the good agreement demonstrated that SASU can reach the same steady state
as with the ND method but with much higher computational efficiency.
3.2. Spin-Up at Global Scale
We selected 400 sparse grid cells at global scale to compare the spin-up performance among ND, AD and SASU
methods. All of grid cells were under 1.9° X 2.5° resolution and the same for three spin-up approaches (Figure 5).
For the global test, spin-up ends when ACqqppcosysc 1S less than 1.0 g C m=2 yr~! for more than 97% grid cells.
The traditional ND and AD spin-up method spent 19,840 and 3,200 simulation years to reach equilibriums,
LIAO ET AL. 90f 16
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Figure 4. Model years needed for reaching equilibrium for different spin-up
methods at 400 global grid cells (AC;qrpcosysc < 1.0 g C m=2 yr=! for each
grid cell), the Brazil site (ACpgrpcosyse < 1.0 g C m=2 yr=!).

respectively (Figure 4). For SASU, it took a total of 400 years, including
200 years for AD mode, 160 years for SA mode and the last 40 years for
ND. At the end of the spin-up, the number of grid cells that did not reach the
spin-up criterion was 2.50% of the 400 grid cells for ND, 2.78% for AD, and
2.57% for SASU.

For the 400 global sparse grid cells, the steady states obtained by the three
methods were similar (Figure 5). Total ecosystem carbon density was high
in northern North America, northern Asia and the Tibetan Plateau, but
low in the Sahara and Australia (Figures 5a, 5c, and 5e). Total soil organic
carbon and total ecosystem carbon was mainly stored at high-latitude regions
(~60°N), especially in Asia and northern North America (Figures 5b, 5d,
and 5f).

3.3. Application of SASU in Parameter Perturbation Experiment
(PPE)

When the parameter in plant processes was perturbed, gross primary produc-
tivity and total ecosystem carbon had changed compared with the default
steady state. Total ecosystem carbon increased to 317.83 Pg C (Figure 6a)
and NPP quickly approached relative equilibrium (from 1.97 x 1077 to
2.03 x 1077 g C m~2 s7!) (Figure 6b). The whole spin-up process took

190 years by SASU from the default to a new steady state (Figure 6c¢). There were 2.61% of global areas that did
not meet the spin-up criterion (ACtorecosysc < 1.0 g Cm=2 yr~!) (Figures 6¢ and 6d).

4. Discussion

4.1. Improved Computational Efficiency for CLMS5 With Vertical Structure

The development of vertical structure in SOM models posed great challenges to spin-up. Most terrestrial models

regard the soil as a bulk without description of vertical distribution of SOM along the depth (Parton et al., 1987,

Schimel et al., 1994). Recently, with increasing awareness of the importance of deep soil organic carbon, more

and more models include an explicit representation of the vertical SOM distribution to improve predictions of

carbon cycling, as well as facilitate the addition of new process descriptions (Braakhekke et al., 2011; Clark

Table 1

Mean Steady State Values (kg C/m?) and the Corresponding Differences From Last Two Loops (g C/m?) of State Variables
With Semi-Analytical Spin-Up (420 years) and Accelerated Decomposition (3,000 years)

SASU ND/AD
State variable SASU-ND (kg C/m?)  Pool size (kg C/m?)  AC(gC/m?)  Pool size (kg C/m?) AC (g C/m?)
CWDC -1.8x10~* 2.34 -2.5x% 1072 2.34 8.7x 1073
Metabolic Litter 6.2 x 1077 9.9x 1073 2.0x 10~* 9.9 x 1073 34x107°
Cellulose Litter 1.5% 1073 0.17 -2.0x 1073 0.17 5.7x107*
Lignin Litter 55x%x 107 6.7 x 1072 —4.5%x 1074 6.6 x 1072 22x 10
Fast SOM 1.6 X 1073 0.10 7.2 % 107? 0.10 6.9 x 10~*
Slow SOM 3.8x 107* 2.75 —2.0x 1072 2.75 1.7 x 1072
Passive SOM 2.5% 1072 4.46 -1.8x 1072 4.44 8.9 x 107!
TOTSOMC 2.7 x 1072 7.32 —-3.8x 1072 7.29 4.6 x 1072
TOTVEGC 9.7x 10~* 15.37 -2.1x 107! 15.37 4.4 x 1072
TOTECOSYSC 2.7 %1072 25.28 -2.8x 107! 25.25 9.6 x 107!

Note. CWDC = Coarse Wood Debris Carbon; TOTSOMC = Total SOM Carbon; TOTVEGC = Total Vegetation Carbon;
TOTECOSYSC = Total Ecosystem Carbon. Since scaling scalars at Brazil site are all 1, which means AD does the same

way as ND for the Brazil site.
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Figure 5. Global distributions of steady-state carbon density (g C m~2) from native dynamics (a, b), accelerated decomposition (c, d) and semi-analytical spin-up (e, )
at 400 global grid cells. The figure is organized as the global carbon density of total ecosystem carbon (a, c, e), total soil carbon (b, d, f).

et al., 2011; Huang et al., 2018; Koven et al., 2013). However, the vertically resolved structure strictly limited the
decomposition of deep soil by environmental factors, especially in high latitudes, resulting in little carbon input
and output in deep soil and long carbon turnover time (Jenkinson et al., 2008; Jones et al., 2017), which means
native dynamic simulation need an extremely long time to bring the SOM to the final steady state.

In CLMS, the extremely long turnover time in vertical structure brings a heavy computational burden on spin up
and makes it difficult to accurately assess the steady state (Lawrence et al., 2019). ND is really a time-consuming
method, requiring 19,840 years for the sparse grid, which took about 40 days of real time on a high-performance
computing system. The widely used AD spin-up method was 6.2 times faster than ND (Figure 4), which took
about a week of real time. However, due to the extremely long turnover time of deep SOM, the acceleration
factors of deep soil layers are particularly high (greater than 200 in CLMS5) to accelerate the decomposition and
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Figure 6. The application of semi-analytical spin-up in parameter perturbation experiment. Total ecosystem carbon (a) and
net primary productivity state trajectories (b) in whole spin-up process. Changes in land area percentage of disequilibrium (c)
and disequilibrium area distribution (d). Gray line in (c) is the threshold of 3% disequilibrium regions.

SOM cycling (Koven et al., 2013). Microbial activities are generally less active in deep soil, resulting in low SOM
decomposition rates and small environmental factors (e.g., temperature, water and oxygen scalar), especially in
high latitudes with permafrost (Koven et al., 2013, 2015; Schuur et al., 2015). In contrast, not limited by the long
turnover time, SASU can estimate the theoretical steady-state once the annual soil carbon inputs and losses are
obtained (Xia et al., 2012), which reduced the real running time to less than a day. The analytical principle of
SASU is more conducive to solving the “spin up problem” brought by vertical structure in terms of computational
efficiency and simulation accuracy in the context of model development.

The SASU method saved 86% of the computational time at the Brazil site, and 98.0% at 400 sparse grid cells
worldwide than traditional ND spin-up. Compared to the efficient method explored by Thornton and Rosenbloom
(AD method), SASU saved 87.5% of computational time at global scale. It is more efficient than methods
currently reported in the literature. Our results are consistent with the results recorded in previous studies. AD can
be successfully applied to land model and the calculation time is saved by 84% compared with the traditional ND
method, which also showed the high efficiency of AD method as documented (Thornton & Rosenbloom, 2005).
Xia et al. (2012) first applied SASU to CABLE and sped up spin-up by 20 times (Xia et al., 2012). To adapt to the
strong carbon-nitrogen coupling cycle, compared with Xia et al. (2012), we introduced the AD step at the begin-
ning of spin up, which can help the system stability in a short time. In this study, the computational efficiency is
greatly improved, which is 50 times higher than 20 times in CABLE (Xia et al., 2012).

4.2. Applications of SASU to Various Biogeochemical Models

The developed SASU is directly applicable to most of terrestrial biogeochemical models that followed similar
first-order decay principle with CLMS in this study (Xia et al., 2012). The application of SASU in microbial
models is under explored. With the increasing recognition of the role of microbial processes in soil carbon
dynamics, dozens of microbial models have been developed in the past decades to consider microbial traits and
nonlinear kinetics in simulating biogeochemical cycle (Allison et al., 2010; Wieder et al., 2015). For example, the
rate of carbon assimilation by microbes and decomposition catalyzed by extracellular enzymes are not constant
as assumed in linear model such as CLMS5 but dependent on the substrate concentration (e.g., Michaelis-Menten
Kinetics). Nevertheless, the nonlinear microbial models still can be represented in the matrix form (Sierra &

LIAO ET AL.

12 of 16

QSUDOIT SUOWWO)) dANeaI) d[qedrjdde oy £q pauroaos are saponIe Y (28N JO SI[NI J0f ATRIQIT AUIUQ AJ[IAN UO (SUONIPUOI-PUEB-SULIA) WO KA[IM" AIRIqI[auT[u0//:sd11y) SUONIPUO)) PuE SULIAL, Y 998 “[£707/80/1T] U0 Areiqry aurjuQ Aafip “AisIoatun [[ouio) Aq SZ9€00SINETOT/6201 01/10p/wod Kaim Areiqrautjuo sqndnSe//:sdny woiy papeoumo( ‘8 ‘€70z ‘994761



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003625

Miiller, 2015) with either logistic or Michaelis-Menten equations in recent examples (Liao et al., 2022b; Tao
et al., 2023). While various methods have been explored to obtain the steady state of microbial models, Georgiou
et al. (2017) have developed a similar semi-analytical solution for accelerating model spin-up by solving
differential equations and their method can be used to different microbial models (Tao et al., 2023). Thus, the
SASU approach is likely appliable to different microbial models in the future.

The application of SASU to a dynamic global vegetation model (DGVM) is mathematically possible. However,
it is still technically challenging. The development of DGVM in land models has expanded greatly in recent
years, especially the vegetation demography model (VDM) (Fisher & Koven, 2020; Fisher et al., 2018; Koven
et al., 2020). VDM introduces new representation of spatially heterogeneous canopy, which describes vegetation
dynamics in two dimensions, individual plant size and the age of a forest gap since last disturbance. The steady
state of vegetation dominancy hierarchy could be obtained by solving partial differential equations, which assume
at long time scale that both plant size changes and gap age changes equal to zero at steady state. Although SASU
is theoretically applicable on aboveground carbon cycle spin-up, the impact of weak nonlinearity or discretiza-
tion in the VDM could still prevent the aboveground ecosystem from an immediate approaching to the steady
state. Regardless, final convergence to the unique steady state should be still guaranteed based on the theory of
compartmental model. Then, steady states of belowground soil carbon and nitrogen can be finally approached
after plant size and age both reach the steady states.

For similar reasons, incorporating SASU into Community Earth System Model (CESM) may potentially increase
the spin-up efficiency, but the acceleration rates will be negatively impacted by the nonlinearity. Compared to
the offline version CLMS5, the CESM add the feedback of the land surface change to the atmosphere. For exam-
ple, an increase in leaf area index induced under climate change would also enhance latent heat fluxes (Forzieri
et al., 2020), increase local precipitation (Muller & O’Gorman, 2011) and consequently alter the vegetation
productivity patterns (Zhang et al., 2013). These feedbacks introduce nonlinearity into land carbon cycle, which
therefore affect SASU spin up efficiency. Nevertheless, most of the new nonlinearity in CESM is external to land
carbon cycle, so a quasi-steady state could still be derived from SASU.

4.3. Implications for Model Improvement

Acceleration of spin-up for biogeochemical models make some of the computationally costly studies possible,
such as parameter sensitivity analysis (Huang et al., 2018), model inter-comparison (Liao et al., 2022a; Sulman
et al., 2018) and data assimilation with complicated carbon cycle models (Hararuk et al., 2014; Shi et al., 2018;
Tao et al., 2023). SASU accelerates spin-up, thus makes it computationally feasible to assimilate both flux- and
pool-based big data to constrain full-dynamic model (e.g., earth system model) prediction through data assim-
ilation and machine learning (Luo & Schuur, 2020; Reichstein et al., 2019; Tao et al., 2020; Xia et al., 2020).
Constrained parameter values after data assimilation will improve SOM storage estimates and yielded better
spatial and vertical distributions of SOM than the original model (Tao et al., 2020, 2023). In addition, SASU
provides the possibility to implement parameter sensitivity analysis of complicated earth system models, such
as PPE in CLMS. The total spin-up time of CLMS5 was reduced to 190 years under parameter variations. Thus,
computational resources can be reallocated to do more parameter perturbation experiments and ensemble analy-
sis. SASU offers a new technical solution for most of terrestrial biogeochemical models that follow the first-order
decay function in Equation 1 to increase the applicability of biogeochemical models toward an improved under-
standing of the land carbon cycle.

5. Conclusions

We applied a SASU framework to CLMS5 to accelerate the spin-up of biogeochemical cycle to steady states.
The SASU framework combined the AD mode, semi-analytical mode, and ND mode to improve the spin-up
efficiency. SASU is 7.1 times faster than the AD spin-up to reach the same steady state at Brazil site. For the
global simulation at 400 grid cells, SASU is 49.6 times faster than the ND method and 8.0 times faster than the
AD method. Overall, the SASU method, to the best of our knowledge, is the most efficient spin-up method in
comparison with all previously reported methods. Our study suggested that SASU is applicable to most of the
biogeochemical models with the first-order kinetics and possibly with nonlinear microbial models and, thus,
enabling computationally costly research, such as parameter sensitivity analysis and data assimilation with
complex models.
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