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that hampers important yet time-consuming analysis of biogeochemical models (e.g., parameter perturbation 

experiment (PPE) and model-data fusion) (Sun et al., 2023).

To resolve the “spin-up problem,” a variety of methods have been proposed over the past two decades to improve 

the computational spin-up efficiency. The simplest method is native dynamics spin-up (ND). ND takes hundreds 

to thousands of years of model simulation, running under recursive external forcing (Bondeau et  al.,  2007; 

Randerson et  al.,  2009). The accelerated decomposition (AD) spin-up approach was developed by temporar-

ily assuming higher decomposition rates (Thornton & Rosenbloom, 2005) and has been successfully applied 

to both the Biome-BGC and Community Land Model (CLM) to reduce 70% spin-up time (Fang et al., 2015; 

Koven et al., 2013; Shi et al., 2013; Thornton & Rosenbloom, 2005). It should be noted that both AD approaches 

require an additional period of ND simulation (the post-AD spin-up process) to further adjust the quasi-steady-

state from the accelerated mode to a real steady-state, which is sometimes accompanied by a great computing 

burden. Some models are initiated with observations of plants, litter and soil in previous regional experiments 

(Fang et al., 2014; Murty & McMurtrie, 2000; Zhang et al., 2002). However, the model still take a long time 

to come to equilibrium so that this method may not practically improve efficiency (Shi et al., 2013; Wutzler & 

Reichstein, 2007).

In addition, a suite of approaches has been proposed based on the formulated carbon balance equation to solve the 

steady state in an analytical or semi-analytical manner. The approach works because most of the current genera-

tion of terrestrial carbon and nitrogen cycle models use the first-order kinetics to describe terrestrial carbon and 

nitrogen dynamics (Adair et al., 2008; Koven et al., 2013; Shi et al., 2018) while some of the nonlinear models 

also can be analytically solved to obtain steady state (Georgiou et al., 2017). Full analytical spin-up method such 

as gradient projection approach (Fang et al., 2015), numerically solves matrix-based expressions via the Jacobian 

matrix or Gauss-Jordan elimination algorithms (Lardy et al., 2011; Martin et al., 2007; Qu et al., 2018), which 

could save up to 85%–90% of the computational cost. However, the fully analytical method requires a series 

of complicated mathematical operations and currently it is only tested at a few sites (Fang et al., 2015; Lardy 

et al., 2011) and North America (Qu et al., 2018). Based on the matrix representation of biogeochemical models 

in the terrestrial ecosystems (Luo et al., 2003, 2017), Xia et al. (2012) first developed a semi-analytical spin-up 

(SASU) using the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model. SASU offers 

great potential to effectively reduce the spin-up time of global models, which saves up to 92.4% and 86.6% of 

computational time in CABLE (Xia et al., 2012).

As more ecological processes are integrated, increasing complexity of current biogeochemical model struc-

tures further introduce substantial difficulties to achieve efficient spin-up. For examples, in recognition of 

the importance of vertical distribution and exchange of soil organic matter (SOM) (Baisden & Parfitt, 2007; 

Balesdent et al., 2018; Jobbagy & Jackson, 2000), vertically resolved SOM structure has been implemented 

in land models (Braakhekke et al., 2011; Jenkinson et al., 2008). In CLM Version 5 (CLM5), Koven et al. 

revised the vertically resolved structure (Koven et  al.,  2013), which can simulate dynamic changes of soil 

carbon up to 8.6 m deep (Lawrence et al., 2019). In addition, different from fixed carbon-nitrogen ratios in 

most of the current carbon-nitrogen coupled models (Clark et al., 2011; Oleson et al., 2010; Potter et al., 1993; 

Running & Hunt,  1993), CLM5 improved global carbon-nitrogen coupling simulation by defining flexible 

carbon-nitrogen ratios and adding a Fixation and Uptake of Nitrogen (FUN) module (Ghimire et al., 2015; 

Lawrence et  al.,  2019). All of the above advancements in representing biogeochemical processes lead to 

relatively longer carbon turnover times and more complex carbon-nitrogen interactions than its predecessors 

(Koven et al., 2015), which bring greater computational burden to the spin-up. Implementing SASU to such 

a complicated biogeochemical model like CLM will benefit future biogeochemical model development (Fang 

et al., 2015; Qu et al., 2018).

In this study, we propose a new SASU framework by combining the AD method and semi-analytical algorithm 

based on the CLM5 matrix version (Lu et al., 2020). We found that this new SASU framework further acceler-

ates spin-up of global carbon–nitrogen coupled models over that introduced by Xia et al. (2012). Computational 

efficiency and steady-state consistency of ND, AD, and SASU approaches are evaluated using CLM5 at both 

one-site and the global scale. In addition, we applied SASU to a PPE using CLM5, which is designed to examine 

the parameter sensitivity and provide a pathway for systematic parameter calibration. Our results provide strong 

support for the applications of SASU to complicated biogeochemical models with vertically resolved structure 

and flexible carbon to nitrogen ratio representations.
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of grid cells that can reasonably capture model behavior across different ecoregions around the globe (Figure 5). 

They are driven by repeated meteorological forcing from 2005 to 2014 to compare these approaches. All spin-up 

methods are initiated with cold-start, which means that plants will grow from baer land.

2.5. Parameter Perturbation Experiment (PPE) in CLM5

With the growing of complexity and comprehensiveness of land models, land carbon dynamics simulated 

by earth system models are highly variable and fit poorly with observations (Luo et  al.,  2015; Spafford & 

MacDougall, 2021; Tian et al., 2015). It is crucial to understand sources of uncertainties. There are more than 

200 crucial parameters in CLM5 and the contribution of parameter uncertainty to total uncertainty expected to be 

large, but unquantified (Bradford et al., 2016). Parameter values in the current land models are mostly determined 

on an ad hoc basis and may be derived from the results of field experiments, other models, or informed from 

scientific studies (Luo et al., 2001). Systematic parameter calibration will enhance the accuracy of simulations, 

and increase suitability and accessibility of models for actionable science. Parameter perturbation experiment 

on CLM5 is proposed to examine the parameter importance and sensitivity on model results by ensemble anal-

ysis under parameter perturbation. Steady state under each parameter perturbation should be estimated to give 

us insight into how carbon cycle response to parameter change. PPE considered total 197 parameters in CLM5 

across 14 categories and thousands of spin-up tasks are required for this ensemble analysis.

We applied SASU to PPE protocol based on a global 400 grid cell sparse grid driven by repeated meteorological 

forcing from 2005 to 2014. The test was to start from an equilibrium with default parameterization and we modi-

fied a model parameter (the changed parameter stem_leaf in this test was reduced by 50%, which is an allocation 

parameter that controls the amount of new stem carbon per new leaf carbon). We used the SASU method to 

achieve a new equilibrium with this modified parameter. We tested a range of simulation times in the three SASU 

method steps and identified the following procedures as optimal: (a) 20 years of AD phase and exit-AD spin-up 

as described in Section 2.3.2; (b) 120 years of semi-analytical mode, updating soil organic carbon and nitrogen 

pools with analytical solutions every forcing loop; (c) at least 20 years ND mode to reach final equilibrium. It is 

worth to noticed that the time allocation among these steps is not quite the same as description in Section 2.4. 

The time of step 1 (AD mode) is greatly reduced in PPE due to the relative mature vegetation but no growing 

from baer land.

3. Results

3.1. Spin-Up at the Brazil Site

We first compared the computational cost of each spin-up method at the Brazil site. For the Brazil site, the AD 

spin-up scaling scalars were set to 1, which means that it is fundamentally the same as ND. To reach the spin-up 

threshold (∆CTOTECOSYSC < 1.0 g C m −2 yr −1), we ran SASU and took ND spin up as a control. We recorded the 

first year when the growth rate of total ecosystem carbon storage is below the spin-up criterion. Generally, it took 

SASU 420 years and ND 3,000 years to achieve the same steady state (Figure 3a). ND kept a slow growth rate 

for about 2,000 years to reach steady state. In SA mode, all the carbon pools quickly approached a quasi-steady-

state after 360 years (Figure 3a). Moreover, in the following simulation of step 3, the state variables maintained 

a dynamic balance and the change rate approached zero (Figure 3b). Compared with ND, SASU significantly 

reduced the computational cost, saving 2,580 years (86.0% simulation time) to reach the same state (Figures 3a 

and 4). The steady-state estimations from ND and SASU are consistent, just with small bias. TOTVEGC reached 

the same equilibrium of 15.37 kg C m −2. Total ecosystem carbon (TOTECOSYSC) is 25.25 kg C m −2 with ND 

and 25.28 kg C m −2 with SASU. Even the same spin-up criterion is adopted, SASU has reached the equilibrium 

with 0.56 g C m −2 yr −1 of change rate, while total ecosystem carbon in ND still increases with 1.00 g C m −2 yr −1.

When a smaller criterion of the steady state (∆CTOTECOSYSC < 0.05 g C m −2 yr −1) was set to evaluate computational 

efficiency of the two spin-up methods at the Brazil site, it took SASU a total of 480 years and ND 4,720 years 

to meet the smaller criterion (Figures 3a–3c). It took an additional 1720 years to reach the new criterion of 

∆CTOTECOSYSC < 0.05 g C m −2 yr −1 beyond the 3,000 years to reach the original criterion of (∆CTOTECOSYSC < 1.0 g  

C m −2 yr −1) for ND (Figure 3c). It only took an additional 60 years to reach the new criterion of ∆CTOTECOSYSC 

< 0.05 g C m −2 yr −1 beyond the 420 years to reach the original criterion of (∆CTOTECOSYSC < 1.0 g C m −2 yr −1) 

for SASU (Figure 3c). Biases of the steady-state pool sizes are reduced to a minimal for both the methods. Total 
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ecosystem carbon from both ND and SASU are 25.28 kg C m −2. The difference of total ecosystem carbon is about 

0.001 kg C m −2, which is less than 0.005% of the pool size (Table 1). Each individual carbon pool (i.e., CWD, 

TOTVEGC, each litter and soil pool) was consistent as well (Table 1). The difference of CWD pools between 

the two methods was 6.51 × 10 −5 kg C m −2, while the difference of total soil carbon (TOTSOMC) was about 

1.45 × 10 −3 kg C m −2. In general, the good agreement demonstrated that SASU can reach the same steady state 

as with the ND method but with much higher computational efficiency.

3.2. Spin-Up at Global Scale

We selected 400 sparse grid cells at global scale to compare the spin-up performance among ND, AD and SASU 

methods. All of grid cells were under 1.9° × 2.5° resolution and the same for three spin-up approaches (Figure 5). 

For the global test, spin-up ends when ∆CTOTECOSYSC is less than 1.0 g C m −2 yr −1 for more than 97% grid cells. 

The traditional ND and AD spin-up method spent 19,840 and 3,200 simulation years to reach equilibriums, 

Figure 3. Carbon state trajectories (a, d, g) and the change of carbon between loops for semi-analytical spin-up (SASU) (b, e, 

h) and native dynamics (ND) (c, f, i) on the Brazil site. Results are organized as total ecosystem carbon (a–c), total vegetation 

carbon (d–f) and total soil carbon (g–i). These two methods ended up with the same steady state (horizontal black dashed line 

in a, d, g) on the Brazil site. Blue dots in a, d, g indicate where the SA mode starts. To reach the criterion of 1.0 g C m −2 yr −1 

(horizontal gray dashed line in b, c, e, f, h, i), SASU took 420 years (b) and ND took 3,000 years (c), which were marked with 

gray arrows in (b, c). To meet a smaller criterion of 0.05 g C m −2 yr −1 (horizontal brown dashed line in b, c, e, f, h, i), SASU 

took 480 years (b) and ND took 4,720 years (c), which were marked with brown arrows in (b, c).
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et al., 2011; Huang et al., 2018; Koven et al., 2013). However, the vertically resolved structure strictly limited the 

decomposition of deep soil by environmental factors, especially in high latitudes, resulting in little carbon input 

and output in deep soil and long carbon turnover time (Jenkinson et al., 2008; Jones et al., 2017), which means 

native dynamic simulation need an extremely long time to bring the SOM to the final steady state.

In CLM5, the extremely long turnover time in vertical structure brings a heavy computational burden on spin up 

and makes it difficult to accurately assess the steady state (Lawrence et al., 2019). ND is really a time-consuming 

method, requiring 19,840 years for the sparse grid, which took about 40 days of real time on a high-performance 

computing system. The widely used AD spin-up method was 6.2 times faster than ND (Figure 4), which took 

about a week of real time. However, due to the extremely long turnover time of deep SOM, the acceleration 

factors of deep soil layers are particularly high (greater than 200 in CLM5) to accelerate the decomposition and 

Figure 5. Global distributions of steady-state carbon density (g C m −2) from native dynamics (a, b), accelerated decomposition (c, d) and semi-analytical spin-up (e, f) 

at 400 global grid cells. The figure is organized as the global carbon density of total ecosystem carbon (a, c, e), total soil carbon (b, d, f).
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SOM cycling (Koven et al., 2013). Microbial activities are generally less active in deep soil, resulting in low SOM 

decomposition rates and small environmental factors (e.g., temperature, water and oxygen scalar), especially in 

high latitudes with permafrost (Koven et al., 2013, 2015; Schuur et al., 2015). In contrast, not limited by the long 

turnover time, SASU can estimate the theoretical steady-state once the annual soil carbon inputs and losses are 

obtained (Xia et al., 2012), which reduced the real running time to less than a day. The analytical principle of 

SASU is more conducive to solving the “spin up problem” brought by vertical structure in terms of computational 

efficiency and simulation accuracy in the context of model development.

The SASU method saved 86% of the computational time at the Brazil site, and 98.0% at 400 sparse grid cells 

worldwide than traditional ND spin-up. Compared to the efficient method explored by Thornton and Rosenbloom 

(AD method), SASU saved 87.5% of computational time at global scale. It is more efficient than methods 

currently reported in the literature. Our results are consistent with the results recorded in previous studies. AD can 

be successfully applied to land model and the calculation time is saved by 84% compared with the traditional ND 

method, which also showed the high efficiency of AD method as documented (Thornton & Rosenbloom, 2005). 

Xia et al. (2012) first applied SASU to CABLE and sped up spin-up by 20 times (Xia et al., 2012). To adapt to the 

strong carbon-nitrogen coupling cycle, compared with Xia et al. (2012), we introduced the AD step at the begin-

ning of spin up, which can help the system stability in a short time. In this study, the computational efficiency is 

greatly improved, which is 50 times higher than 20 times in CABLE (Xia et al., 2012).

4.2. Applications of SASU to Various Biogeochemical Models

The developed SASU is directly applicable to most of terrestrial biogeochemical models that followed similar 

first-order decay principle with CLM5 in this study (Xia et al., 2012). The application of SASU in microbial 

models is under explored. With the increasing recognition of the role of microbial processes in soil carbon 

dynamics, dozens of microbial models have been developed in the past decades to consider microbial traits and 

nonlinear kinetics in simulating biogeochemical cycle (Allison et al., 2010; Wieder et al., 2015). For example, the 

rate of carbon assimilation by microbes and decomposition catalyzed by extracellular enzymes are not constant 

as assumed in linear model such as CLM5 but dependent on the substrate concentration (e.g., Michaelis-Menten 

Kinetics). Nevertheless, the nonlinear microbial models still can be represented in the matrix form (Sierra & 

Figure 6. The application of semi-analytical spin-up in parameter perturbation experiment. Total ecosystem carbon (a) and 

net primary productivity state trajectories (b) in whole spin-up process. Changes in land area percentage of disequilibrium (c) 

and disequilibrium area distribution (d). Gray line in (c) is the threshold of 3% disequilibrium regions.
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Müller, 2015) with either logistic or Michaelis-Menten equations in recent examples (Liao et al., 2022b; Tao 

et al., 2023). While various methods have been explored to obtain the steady state of microbial models, Georgiou 

et  al.  (2017) have developed a similar semi-analytical solution for accelerating model spin-up by solving 

differ ential equations and their method can be used to different microbial models (Tao et al., 2023). Thus, the 

SASU approach is likely appliable to different microbial models in the future.

The application of SASU to a dynamic global vegetation model (DGVM) is mathematically possible. However, 

it is still technically challenging. The development of DGVM in land models has expanded greatly in recent 

years, especially the vegetation demography model (VDM) (Fisher & Koven, 2020; Fisher et al., 2018; Koven 

et al., 2020). VDM introduces new representation of spatially heterogeneous canopy, which describes vegetation 

dynamics in two dimensions, individual plant size and the age of a forest gap since last disturbance. The steady 

state of vegetation dominancy hierarchy could be obtained by solving partial differential equations, which assume 

at long time scale that both plant size changes and gap age changes equal to zero at steady state. Although SASU 

is theoretically applicable on aboveground carbon cycle spin-up, the impact of weak nonlinearity or discretiza-

tion in the VDM could still prevent the aboveground ecosystem from an immediate approaching to the steady 

state. Regardless, final convergence to the unique steady state should be still guaranteed based on the theory of 

compartmental model. Then, steady states of belowground soil carbon and nitrogen can be finally approached 

after plant size and age both reach the steady states.

For similar reasons, incorporating SASU into Community Earth System Model (CESM) may potentially increase 

the spin-up efficiency, but the acceleration rates will be negatively impacted by the nonlinearity. Compared to 

the offline version CLM5, the CESM add the feedback of the land surface change to the atmosphere. For exam-

ple, an increase in leaf area index induced under climate change would also enhance latent heat fluxes (Forzieri 

et  al.,  2020), increase local precipitation (Muller & O’Gorman,  2011) and consequently alter the vegetation 

productivity patterns (Zhang et al., 2013). These feedbacks introduce nonlinearity into land carbon cycle, which 

therefore affect SASU spin up efficiency. Nevertheless, most of the new nonlinearity in CESM is external to land 

carbon cycle, so a quasi-steady state could still be derived from SASU.

4.3. Implications for Model Improvement

Acceleration of spin-up for biogeochemical models make some of the computationally costly studies possible, 

such as parameter sensitivity analysis (Huang et al., 2018), model inter-comparison (Liao et al., 2022a; Sulman 

et al., 2018) and data assimilation with complicated carbon cycle models (Hararuk et al., 2014; Shi et al., 2018; 

Tao et al., 2023). SASU accelerates spin-up, thus makes it computationally feasible to assimilate both flux- and 

pool-based big data to constrain full-dynamic model (e.g., earth system model) prediction through data assim-

ilation and machine learning (Luo & Schuur, 2020; Reichstein et al., 2019; Tao et al., 2020; Xia et al., 2020). 

Constrained parameter values after data assimilation will improve SOM storage estimates and yielded better 

spatial and vertical distributions of SOM than the original model (Tao et al., 2020, 2023). In addition, SASU 

provides the possibility to implement parameter sensitivity analysis of complicated earth system models, such 

as PPE in CLM5. The total spin-up time of CLM5 was reduced to 190 years under parameter variations. Thus, 

computational resources can be reallocated to do more parameter perturbation experiments and ensemble analy-

sis. SASU offers a new technical solution for most of terrestrial biogeochemical models that follow the first-order 

decay function in Equation 1 to increase the applicability of biogeochemical models toward an improved under-

standing of the land carbon cycle.

5. Conclusions

We applied a SASU framework to CLM5 to accelerate the spin-up of biogeochemical cycle to steady states. 

The SASU framework combined the AD mode, semi-analytical mode, and ND mode to improve the spin-up 

efficiency. SASU is 7.1 times faster than the AD spin-up to reach the same steady state at Brazil site. For the 

global simulation at 400 grid cells, SASU is 49.6 times faster than the ND method and 8.0 times faster than the 

AD method. Overall, the SASU method, to the best of our knowledge, is the most efficient spin-up method in 

comparison with all previously reported methods. Our study suggested that SASU is applicable to most of the 

biogeochemical models with the first-order kinetics and possibly with nonlinear microbial models and, thus, 

enabling computationally costly research, such as parameter sensitivity analysis and data assimilation with 

complex models.
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Data Availability Statement

All simulations used in this work were performed using Version 5.0 of CLM https://escomp.github.io/ctsm-docs/

versions/release-clm5.0/html/ (Lawrence et  al.,  2018). The code of the matrix model of CLM5 are available 

at this site https://github.com/chrislxj/ctsm/tree/cn-matrix_v3 (Lu, 2020). The model output data this study at 

https://zenodo.org/record/7593184#.Y9oTTOxBy3J (Liao, 2023) as an archival repository.
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