1274

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

PMDB: A Range-Based Key-Value Store
on Hybrid NVM-Storage Systems

Baoquan Zhang ', Haoyu Gong, and David H.C. Du, Fellow, IEEE

Abstract—Emerging Nov-Volatile Memory (NVM) may replace DRAM as main memory in future computers. However, data will likely
still be stored on storage due to the enormous large size of available data. We investigate how key-value stores can be efficiently
designed and implemented in a hybrid system, called NVM-Storage system, consisting of NVM as memory and traditional storage.

We first discuss the performance trade-offs among Put, Get, and Range Query of the existing designs. Then, we propose PMDB, a
range-based key-value store on NVM-Storage systems. PMDB achieves good performance for Put, Get and Range Query at the same
time by utilizing a range-based data management and deploying a light-weight index on NVM. We compare PMDB with the state-of-the-
art schemes including SLM-DB [21] and MatrixKV [40] for hybrid NVM-storage systems. Evaluation results indicate that in workloads
with mixed Put, Get and Range Queries, PMDB outperforms existing key-value stores by 1.16x —2.49 x .

Index Terms—Non-volatile memory, key-value store, log-structured merge tree, interval tree

1 INTRODUCTION

BYTE-ADDRESSABLE Non-Volatile Memory (NVM) provides
data persistence in memory speed [5]. Although NVM
has a higher storage density than DRAM, it still may not be
large enough to hold all data in this big data era [1], [41].
Therefore, in this paper we target a hybrid system, called
NVM-Storage system, which includes both byte-addressable
NVM as memory and block-based storage like Solid State
Drive (SSD) or Hard Disk Drive (HDD) to achieve both high
performance and large capacity at a reasonable cost.

In current storage infrastructure, key-value (KV) stores
play an essential role in various application scenarios includ-
ing data storage services [10], streaming platforms [28],
machine learning pipelines [4], etc. Generally, KV stores pro-
vide three major access functions, Put (write a single KV
pair), Get (read a single KV pair) and Range Query (a query
toread multiple KV pairs within a specified key range). Dele-
tion of a KV pair is implemented by a Put function with the
key and a deletion mark as the value. Building KV stores on
NVM-Storage systems to achieve a better performance can
be very critical for many upper-layer applications. Although
existing studies have explored and proposed several
approaches [21], [22], [40], there are performance tradeoffs in
these approaches for Put, Get and Range Queries.

Several approaches [22], [40] build KV stores on NVM-
Storage systems based on Log-Structured Merge Tree (LSM-
Tree) [30]. NVM is used as a write buffer to merge repetitive

o The authors are with the Department of Computer Science, University of
Minnesota, Minneapolis, MN 55455 USA. E-mail: {zhan4281, gong0098}
@umn.edu, du@cs.umn.edu.

Manuscript received 18 January 2022; revised 17 June 2022; accepted 4
August 2022. Date of publication 29 August 2022; date of current version 7
April 2023.

(Corresponding author: Baoquan Zhang.)

Recommended for acceptance by A.R. Alameldeen.

Digital Object Identifier no. 10.1109/TC.2022.3202755

updates before writing KV pairs to storage. However, LSM-
Tree trades performance of Get for that of Put. A Get in an
LSM-Tree is inefficient since reading a KV pair will result
in multiple storage accesses. [8], [9]. In addition, although
an LSM-Tree provides a higher Put efficiency than other
data structures, the level-based compaction of LSM-Tree
introduces a relatively large number of data rewrites on
storage. A KV store’s Put performance can be further impro-
ved by reducing the number of data rewrites on storage
[31], [39]. Since the compactions are typically triggered by
inserting new KV pairs (Put functions), we consider the
compaction cost as part of Put cost.

SLM-DB [21] is another approach that builds a B+ Tree
index on NVM and stores KV pairs on storage in a single
level. The B+ Tree identifies the location of each KV pair in
storage. SLM-DB ensures a good Get performance since each
Get in SLM-DB only requires one storage read after search-
ing the B+ Tree in NVM for the location of the target KV pair.
However, the global B+ Tree index and the single-level struc-
ture intensify the performance trade-off between Put and
Range Query. That is, it can only ensure a good performance
for either Put or Range Query, but not both at the same time.

To meet the challenge of performance trade-offs among
Put, Get and Range Query, we propose PMDB, a range-
based KV store on NVM-Storage systems that provides effi-
ciently Put, Get and Range Query at the same time. To
ensure good performance of Put, Get and Range Query,
instead of using a single-level (like SLM-DB) or multi-level
(like LSM-Tree) structure in storage, PMDB manages KV
pairs on storage based on disjoint key ranges. A Partition
consists of multiple disjointed key ranges on storage and an
individual write buffer (MemTable) on NVM. The number
of partitions is dynamically increased based on the number
of KV pairs inserted. However, it will be upper bounded
due to the NVM space limit for write buffers. The KV pairs
are compacted (re-organized) with a new type of two-stage
compaction called Partition and Range compactions. To

0018-9340 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See htips://www ieee.org/publications/rights/index. html for more information.

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 18:11:50 UTC from |EEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9139-0734
https://orcid.org/0000-0001-9139-0734
https://orcid.org/0000-0001-9139-0734
https://orcid.org/0000-0001-9139-0734
https://orcid.org/0000-0001-9139-0734
mailto:zhan4281@umn.edu
mailto:gong0098@umn.edu
mailto:du@cs.umn.edu

ZHANG ET AL.: PMDB: A RANGE-BASED KEY-VALUE STORE ON HYBRID NVM-STORAGE SYSTEMS

further ensure a good Get performance, PMDB also builds
an index on NVM. To reduce the update and NVM space
overheads, instead of using a per-key index, PMDB uses a
light-weight and block-based index which combining a
binary search tree with a novel Interval Filter Tree (IFTree)
on NVM. That is, a node in the binary search tree has a link
pointing to a data block in a Sorted String Table (SST) (SST
will be defined later) instead of an individual KV pair.

PMDB fully leverages the byte-addressable and data per-
sistent properties of NVM to build complex indexes for key-
value pairs on storage. Besides, NVM has a larger capacity
than DRAM which allows PMDB partitions the storage and
deploys a MemTable for each partition. We compare PMDB
with the state-of-the-art schemes including SLM-DB [21]
and MatrixKV [40]. Evaluation results indicate that PMDB
is the only KV store achieving good performance for Put,
Get and Range Query simultaneously. In workloads with
mixed queries, PMDB outperforms other KV stores by
1.16x —2.49 x .

The rest of the paper is organized as follows: In Section 2,
we discuss the challenges of designing KV stores on NVM-
Storage systems. The design of PMDB is presented in Sec-
tion 3. The implementation issues of PMDB are discussed in
Section 4. The comparisons of PMDB performance with
existing schemes including SLM-DB and Matrix-KV are pro-
vided in Section 5. The related work of PMDB is included in
Section 6 and we offer some conclusion in Section 7.

2 CHALLENGES OF BUILDING KEY-VALUE STORES
ON NVM-STORAGE SYSTEMS

Workload characterization [4] of KV stores indicates that the
performance of Put, Get and Range Query is essential to the
support of upper layer applications. Therefore, we focus on
building KV stores on NVM-Storage systems to achieve
good performance for Put, Get and Range Query. Existing
research has proposed and exploited several approaches.
However, there are trade-offs among the performance of
Put, Get and Range Query. It is challenging to improve the
performance of all of them with better trade-offs.

LSM-Tree-Based Key-Value Stores. LSM-Tree is a write-
optimized data structure widely used in KV stores [10],
[11], [13]. In the implementation of LevelDB [13] (a type of
LSM-Trees), it buffers new KV pairs in a MemTable in
DRAM first. Once the MemTable is full, it will be flushed to
Level 0 (Lg) on storage as a Sorted String Tables (SST)(i.e.,
all KV pairs in an SST are sorted based on their keys). That
means Ly will include SSTs with overlapping key ranges.
Beyond L, LevelDB stores KV pairs using multiple levels
with increasing level sizes based on a configurable size ratio
between adjacent levels. In each level above L, KV pairs
are stored in SSTs with disjoint key ranges and each SST
consists of multiple data blocks with sorted KV pairs.

A compaction process migrates data from a lower level to
the next level if the lower level’s size reaches a threshold.
For example, a compaction can include one SST from I,
and multiple SSTs from L; whose key ranges overlap with
the key range of the SST from L. The compaction is exe-
cuted by reading all involved SSTs from storage and merge
them in memory. After the merging, the newly sorted SSTs

are written back to L, on storage. An approach based on
Authonzed licensed use limited to: University o

1275
MemTable B+Tree
[1,3.5,6,9,10,13,14.15|
NVM l_nus}] leaf 0 |1,2,3,5| leaf E| 6,7,9.10 |
Storee §5.10,1829,36.47.56 £.9.17,043845,495 [12.33]
SST 0 (flushed) SST 1 (flushed) SST2 (old)
— — ___J Compact leaf 0

T4 SSTS
7) 38 Extra data rewrites]

Fig. 1. SLM-DB.

LSM-Tree can achieve a higher write efficiency than other
data structures since it only performs sequential writes and
a compaction is triggered infrequently based on the size
ratio between two adjacent levels. The level structure limits
the total amount of data to be included in a compaction.

However, an LSM-Tree trades the performance of Get for
that of Put. A Get in LSM-Tree has to check the MemTable,
every SSTs in L;, and one SST from each other levels
sequentially until the KV pair is found or the highest and
largest level is searched. Moreover, finding a key in an SST
may also need multiple I/O accesses since an SST consists
of multiple data blocks[14] (i.e., a data block is the basic unit
of I/O accesses). As a result, a Get operation may lead to
multiple random storage I/O accesses, thus degrading the
Get performance significantly [8], [9]. Besides, although the
Put efficiency of LSM-Tree can be higher than other data
structures like B+ Trees, its Put efficiency can be further
improved by reducing the number of data rewrites intro-
duced by the leveled compaction[31], [39]. Several studies
have built KV stores on NVM-Storage systems based on
LSM-Tree [22], [24], [40]. Typically, a MemTable is used in
NVM to hold and sort newly inserted KV pairs and a lev-
eled structure like LSM-Tree is used in storage. Therefore,
they suffer from the performance trade-offs of LSM-Trees
and fail to provide good performance for Put, Get and
Range Query at the same time.

Indexing KV Pairs on NVM. SLM-DB (as shown in Fig. 1)
deploys a MemTable in NVM and store all SSTs on storage
in a single level. Besides, SLM-DB builds a global B+ Tree in
NVM recording the location of every KV pair in storage.
SLM-DB ensures a high Get efficiency since a KV pair can
be accessed from storage with only one storage read after
searching the B+ Tree to identify its location. However,
without compactions, the response to a Range Query can be
inefficient since it may access an excessive number of over-
lapping SSTs. Besides, multiple versions of keys may exist
in different SSTs which increasing the storage space over-
head. Therefore, SLM-DB also deploys a selective compac-
tion as described below to merge and sort overlapping SSTs
in storage from time to time.

SSTs will be selected as compaction candidates under
two conditions: 1) If the number of distinct SSTs refer-
enced by keys in a leaf node of B+ Tree reaches to a given
maximal number, all SSTs containing KV pairs referenced
by the leaf node will be selected as compaction candidates;
and 2) If the ratio of invalid keys in an SST is larger than a
maximal ratio, the SST will also be selected as a compac-
tion candidate. The selective compaction will be triggered
if the total number of compaction candidates reaches a
threshold.

innesota. Downloaded on August 25,2023 at 18:11:50 UTC from IEEE Xplore. Restrictions apply.

1276

The global B+ Tree and the single-level structure with
selective compaction intensifies the performance trade-offs
between Put and Range Query. That is, to achieve a good
range query performance, the selective compaction will
have to be performed/triggered more frequently impacting
the put performance.

Considering the selective compaction, we plan to discuss
its access properties based on the example shown in Fig. 1.
KV pairs in a newly-flushed SST can be distributed over a
wide key range and scattered over a large number of leaf
nodes in B+ Tree. SST 0 is a newly flushed SST from NVM
and contains KV pairs referenced by multiple leaf nodes of
B+ Tree, e.g., leaf 0, leaf 1, etc. One newly flushed SST can
cause an increase in the SST counts of several leaf nodes
simultaneously. As a result, a good number of SSTs will be
selected as compaction candidates that may increase the fre-
quency of selective compactions.

Besides, the selective compaction may introduce some
extra data rewrites by including SSTs whose key ranges are
significantly different from each other, but overlapped in a
small range. For instance, in Fig. 1, SST 0 and SST 1 are
newly flushed from NVM with a larger size and wider key
ranges than the existing SST 2. All these three SSTs will be
selected as compaction candidates if leaf 0 reaches its maxi-
mal count of SSTs. Then, they will be merged and rewritten
during the compaction. However, the newly flushed SST 0
and SST 1 also include many KV pairs with their keys out of
the range of leaf 0.

Finally, the write performance can be further impacted by
the required relatively large NVM space and update overhead
of the global B+ Tree. Since the B+ Tree stores every KV pair’s
location, its size becomes larger with an increasing number of
KV pairs. With a fixed NVM size, the available NVM space
for write buffer becomes less. A smaller write buffer may
increase the total number of data writes to storage since it can
absorb fewer updates before flushing out to storage. Besides,
the B+ Tree must be searched and updated for each KV pair
when creating new SSTs during compactions. The perfor-
mance of searching and updating the B+ Tree can be signifi-
cant if we assume that the read /write performance NVM is
multiple times slower than that of DRAM.

Summary. LSM-Tree based KV stores suffer from the per-
formance trade-off between Put and Get. The Put perfor-
mance can also be further improved by reducing the
number of data rewrites introduced by the leveled compac-
tion. SLM-DB ensures a good Get performance by building
B+ Tree in NVM for every KV pair in storage. However, the
performance trade-off between Put with compactions and
Range Query is intensified by the global B+ Tree and its sin-
gle-level structure. Therefore, our goal is to design a KV
store on NVM-Storage systems which can better deal with
the performance tradeoffs and achieve high performance
for Put, Get and Range Query at the same time.

3 PMDB OVERVIEW

3.1 PMDB Architecture

Fig. 2 shows the overall architecture of PMDB. PMDB
includes two major mechanisms: a range-based data man-
agement and a light-weight NVM index to achieve a better
performance trade-off among Put, Get and Range Que

Authonzed licensed use limited to: University of Minnesota. Dowrll-l)éaded on

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NQ. 5, MAY 2023

afeolg | IWAN

Disjoint key ranges 4~ StushSpace

Fig. 2. Overall architecture of PMDB.

Range-Based Data Management. Instead of a single-level or
multi-level structure, PMDB stores KV pairs on storage
in small disjoint key ranges. NVM has a larger capacity than
DRAM. Existing studies assumes that the NVM space can
be 10% of the total data set [22], [40]. Therefore, PMDB
deploys multiple write buffers (MemTables) on NVM: one
for each partition. Each partition represents a disjoint key
range that consists of a number of SSTs. If we use a single
large MemTable, a newly-flushed SST will overlap with a
large number of key ranges on storage which may increase
the data rewrites on storage in later compaction process.
Besides, flushing a large MemTable may also impact the Put
performance [3], [40]. On the other hand, a small MemTable
may not be very efficient for flushing data to storage. There-
fore, a reasonable size of MemTable has to be chosen. That
is, in PMDB, a fixed size MemTable is used. With a fixed
size NVM, this will limit the number of partitions.

As shown in Fig. 2, PMDB partitions the possible key
range into a number of disjoint key ranges with each as a
partition, and maintains a MemTable for each partition.
Each flush operation will only flush one MemTable in a par-
tition to reduce the number of overlapped key ranges for
the newly-flushed SST and to avoid impacting foreground
write operations significantly. At the beginning of a KV
store, there is only a single partition with one very wide key
range. The number of partitions will increase with more KV
pairs are inserted until a limit is reached. Since MemTable
needs to maintain a certain size for better I/O performance,
when the number of KV pairs is continuously inserted, the
number of disjoint key ranges (represented by the nodes in
the binary search tree) will increase, but not the number of
partitions. Thus, a partition may consist of several consecu-
tive smaller disjoint key ranges. That is, a partition is repre-
sented by an intermediate node in the binary search tree
and all nodes under this node represents disjoint key ranges
of this partition.

As we discussed in Section 2, compacting overlapping
S5Ts whose key ranges are widely different may result in
an extra number of data rewrites. Therefore, PMDB utilizes
a two-stage, partition and range, compaction to reduce the
frequency of compactions. It also ensures that any compac-
tion will only include SSTs with largely overlapped key
ranges.

As shown in Fig. 2, PMDB will flush the filled up MemT-
able in a partition to a Stash Space as an SST. That is, each
partition has a separate Stash Space. After the number of
SSTs accumulated in the Stash Space reaches a limit, a parti-
tion compaction will be triggered to merge and sort these
potentially overlapped SSTs since they cover the same key

range in a partition. A set of new disjoint SSTs are created
August 25,2023 at 18:11:50 UTC from IEEE Xplore. Restrictions apply.

ZHANG ET AL.: PMDB: A RANGE-BASED KEY-VALUE STORE ON HYBRID NVM-STORAGE SYSTEMS

based on the existing disjoint key ranges in the partition as
the result of compaction. Then these disjoint SSTs will be
added into their corresponding existing key ranges. When
adding a new SST to a key range, the existing SSTs in the
key range will not be resorted and rewritten. Therefore,
each key range may also include several overlapped SSTs.
A range compaction may be triggered if a key range accu-
mulates enough number of overlapped SSTs. As the result
of range compaction, several smaller key ranges are formed
in the original key range and each key range corresponding
to one of the newly formed SSTs.

With this range-based data management, to maintain a
good performance of range queries, compactions do not
have to be triggered frequently. In the proposed two-stage
compaction, each compaction will only involve SSTs with
closely overlapped key ranges that further reducing the
data rewrites introduced by the compaction. Therefore, the
Put performance with compactions will be less impacted.
However, a key range on storage including overlapping
S5Ts may impact the Get performance. Therefore, to
improve Get performance PMDB also builds special indexes
for overlapping SSTs on NVM.

Light-Weight NVM Index. PMDB uses a binary search tree
in NVM to index both partitions and disjoint key ranges on
storage. That is, some intermediate nodes of the binary
search tree correspond to the key ranges of partitions and
the leaf nodes correspond to disjoint key ranges in storage.
The space overhead for the global binary search tree is neg-
ligible compared to those of IFTree and MemTable. The
global binary search tree indexes the disjoint key ranges on
storage. Since either a Stash Space or a key range may
involve overlapping SSTs that decreases search efficiency
for Get. To improve the search efficiency with overlapping
SSTs, PMDB builds an Interval Filter Tree (IFTree) in each
Stash Space and each disjoint key range as shown in Fig. 2
(represented as triangles). A node of an IFTree points to a
data block in an SST. An IFTree consists of pointers to the
sorted data blocks of overlapping SSTs based on their corre-
sponding key ranges, and stores a bloom filter for each data
block. When adding a new SST to a key range or a Stash
Space, block information of the new SST will be added to its
corresponding IFTree. The detailed design of [FTree will be
further discussed later in Sections 3.3 and 4.1.

When searching a key, we follow the binary search tree to
identify the partition and the key range under the partition
that potentially hold the KV pair. Then, we search the key
with the order of MemTable of the partition first, Stash Space
of the partition and the corresponding key range. In the
Stash Space or the key range, data blocks potentially includ-
ing the key can be quickly identified via its corresponding
IFTree. Also, unnecessary storage reads can be avoided
with their bloom filters. An IFTree indexes the data blocks
consisting of multiple KV pairs. Therefore, the total size of
an IFTree is small. Besides, the false positive rate of a bloom
filter is typically small. For example, in the default setting of
LevelDB, the false positive rate of a bloom filter is about
0.03. The amortized number of storage reads for each search
can be a little bigger than one.

Compared to SLM-DB which has per-key indexes in
NVM, PMDB builds indexes in NVM based on data blocks

on storalﬁle. Since a block have multiple key value pairs, the
Authonzed licensed use limited to: University of Minnesota.

loaded on August 25,2023 at 18:1

1277
Immutable MemTable it
NvM [430.45.61 J« {1, 31,36.47 J+" keys
Storage | flush Stash Space

[.S‘H [1.45.46.61] 513[1.34.46.61] 51234,38.41.47| 5!1134,38.47.61|]

Partition Compact ,7~===== ~
- Key <= 61
Key <=45 575 ([1.34.38.45/4-" S16146.47.61
53 [1,15,30,41 54146.49 \ Range
: 55143.44.48 “,-‘ Compaction
(Writeback)

52|1.10.14,.20 57]28,32

Range Compact (Spli) ™

521143.44,46,47]522[48,4961 /IJ

—————— T

817 [L10.14.15] 515 [20.28 S19[30,32,34,38] S20{41,45 |
Key <= 28 Key <= 45

Fig. 3. Two-stage compaction.

total size and update overheads of PMDB NVM index are
much smaller. Besides, SLM-DB has a single-level structure
on storage. The single-level structure intensifies the perfor-
mance trade-off between Put and Range Query. An SST in
the single-level structure may overlap with all of the exist-
ing SSTs. Thus compaction can be triggered frequently and
each compaction may include a large amount of SSTs.
PMDB inherits some designs from SLM-DB. For example,
compactions in PMDB can also be triggered by invalid key
ratios. Besides, PMDB uses a partition structure for storage
so that SSTs only overlap with those in the same partition.
PMDB also deploys a two-stage compaction to ensure that a
compaction in PMDB only compacts SSTs with similar
ranges.

3.2 Two-Stage Compaction

The purpose of the compaction is to improve the Get/Range
Query efficiency and remove invalid KV pairs. Therefore,
PMDB sets two thresholds to trigger a compaction: the
number of storage I/Os to search a key in the worst case
(max_io) and the invalid key ratio (invalid_ratio) (the same as
used in SLM-DB). We will discuss how to set these two
thresholds later. Besides, PMDB also utilizes an additional
seek-based compaction to improve the performance of
range queries. If range queries are executed frequently over
a particular key range, PMDB will also more frequently
compact the overlapping SS5Ts in the key range. With these
compaction parameters, PMDB can be tuned to either
reduce the number of rewrites during compactions or to
improve the Get performance. The number of SSTs involved
in each compaction is also reduced since a stash space or a
key range will only include a limited number of overlap-
ping SS5Ts.

Fig. 3 shows the two-stage compaction process within the
key range of an MemTable in a partition. The dark gray
boxes are new SSTs produced by compactions. We repre-
sent an SST with a format of {key,, ke,..., key,}. For the con-
venience of presentation, we also mark each SST with an
SST ID, e.g. 51, 52, etc. In PMDB, an SST ID is unique and
incremental. New KV pairs inserted into this partition will
be first buffered in MemTable. Each MemTable is imple-
mented as a SkipList (the same as in [21], [22]). A MemTable
will be flushed to Stash Space as an SST if its size reaches a
threshold /limit. Then the two-stage compaction is executed

with the following £rclcess.
50 UTC from IEEE Xplore. Restrictions apply.

1278

Partition Compaction. In Fig. 3, the Stash Space has four
overlapping SSTs: S14, S13, 512, and S11. Once a partition
compaction is triggered, the SSTs in the Stash Space will be
merged. The newly generated SSTs, 515 and S16, are dis-
joint, and created based on key range £ <45 and 45 < k <
61. Two new SSTs, S15 and 516, are produced since the com-
paction results include 7 key-value pairs and the maximal
number of key-value pairs in an SST is 4 in our example.
Finally, the two new SSTs are added to their corresponding
key ranges without rewriting and merging with the existing
SSTs. However, the data blocks in the new SSTs are updated
in their corresponding IFTrees.

Range Compaction. A range compaction may be triggered
to merge overlapping SSTs in a key range. A key range has
a capacity limit (20 SSTs by default in PMDB) to reduce the
time and space overheads of a compaction. A range com-
paction has two possible operations: write back or split. If a
compaction produces more than 20 SSTs, a key range will
be split into two ranges. Otherwise, the produced SSTs will
be written back to the current key range. In Fig. 3 the range
compaction for 45 < key <61 will execute the write
back operation (Range Compaction Writeback). That is, new
SSTs, 521 and S22, are written back to the key range
45 < key < 61. The compaction for the key range key < 45
performs a split (Range Compaction Split). That is, two
smaller key ranges, key < 28 and 28 < key < 45, are created
using the median key 28 of the compaction results. The key
range split does not introduce extra data rewrites since it is
executed during a range compaction. A key range splitting
will create a new key range on storage and a MemTable on
NVM. When PMDB runs out of NVM space, key ranges will
stop further splitting. PMDB can still serve writes and write
back new key values to storage without range splitting.
However, the number of SSTs in a key range will keep
increasing leading to a worse write and read performance.

Trade-Offs Introduced by Compaction Parameters. The basic
principle is that if frequent compactions are triggered, the
performance of Get/Range Query gets better and a better
space efficiency can be achieved while the Put efficiency
will be worst. The compaction parameters, max_io and inva-
lid_ratio, can trigger compactions for different purposes.
They also introduce different efficiency trade-offs among
Put, Get, Range Query and space.

The max_io is set to guarantee a worst-case Get/Range
Query performance. When max_io is large, a key range or a
Stash Space may accumulate more overlapping SSTs before
triggering a compaction. PMDB will have a better Put effi-
ciency since compactions are triggered less frequently.
However, it decreases the Get/Range Query efficiency. It
may also decrease space efficiency since more versions of
KV pairs can exist at the same time.

The invalid_ratio is to improve the space efficiency. If the
invalid_ratio is small, compactions will be triggered more
frequently if with excessive updates. The Get/Range Query
efficiency can also be improved since there will be fewer
overlapping SSTs. However, the Put efficiency will be
degraded. The invalid_ratio may have a significant perfor-
mance influence in update-intensive workloads.

The characteristics of real-world workloads show that
range queries has localities and certain key ranges may be
queried more frequently [4], [15]. Therefore, PMDB also

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,20

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NQ. 5, MAY 2023

Range:30, 38
Aug: 20.45 20,49

SST1 [R1 25'28 33 B5,35f39.40| |45.47,‘43,49| J

Fig. 4. Indexing overlapping SSTs using IFTree.

deployed a seek-based compaction. If a key range is being
queried frequently, a compaction will also be triggered. The
seek-based compaction improves the read performance,
especially the performance of range queries. Besides, the
seek-based compaction limits its impact on Put efficiency by
only triggering compaction on frequently-queried ranges.

3.3 Light-Weight NVM Index with IFTrees

As shown in Fig. 2, PMDB indexes key ranges using a
binary search tree. Each key range (pointed by a leaf node)
and the stash space of a partition may include overlapping
SSTs. IFTrees are used on NVM to index overlapping SSTs
to increase the read efficiency.

Fig. 4 shows how an IFTree indexes the data blocks in
overlapping SSTs. A node of IFTree includes the key range
of each data block (Range) and an Augment information
(Aug). It also contains a link that points to its corresponding
data block (shown by a dashed link in Fig. 4). Considering
at the beginning, there is only SST 0. SST 0 has three data
blocks whose ranges are {20, 27}, {30, 38} and {41, 45}. There-
fore, an IFTree is created with three nodes, nodes 0, 1 and 2,
and sort them based on their start keys. The augment (Aug)
of a tree node records the smallest and the largest keys in
their subtrees. Therefore, with only SST 0, the augments of
nodes 0, 1 and 2 are {20, 45}, {20, 27} and (41, 45) respec-
tively. When SST 1 is added including three more data
blocks overlapping with those in SST 0. The IFTree will add
three new nodes: nodes 4, 5 and 6. The Augments of exiting
nodes will be updated based on the key ranges of data
blocks in SST 1.

When searching a key, subtrees of a node can be fanned
out based on its augment information. For example, the
searching process of key 43 can start from node 0. The key
range of node 0 {30, 38} indicates that the indexed data block
does not contain the target key 43. Before we search the chil-
dren of node 0, we will further check its augment. The aug-
ment of node 0 is {20, 49} which includes the target key 43.
Therefore, we will further check its two children: nodes 1
and 2 of node 0. However, neither the key range nor the aug-
ment of node 1 includes the target key 43. Thus, the children
of node 1 will be removed from the follow-up searching pro-
cess. Finally, we can identify that the only data block
indexed by node 2 (i.e., (41, 45}) includes the target key 43.
Since we may search multiple overlapping data blocks for a
given key, a bloom filter of its corresponding data block is
also stored in the tree node to avoid unnecessary storage

reads. Onlzg if the bloom filter of a possible data block does
at 18:11:50 UTC from IEEE Xplore. Restrictions apply.

ZHANG ET AL.: PMDB: A RANGE-BASED KEY-VALUE STORE ON HYBRID NVM-STORAGE SYSTEMS

IFTree | Tree Structure | Compaction Parameters |

Root Node |rc-)-tal |£nva!m‘ "max_io "see.k l
node; KeyRange | Min key in block;
E H v { max key in block;
Z ; Bloomfilters
o : S8T id of block;
1]
Ll

; v o Locati
§ { iy 0 {b;mt_ b
b @‘!‘E block; block; size

SST Augment -[mm key in subtrees
max key in subtrees

Fig. 5. IFTree implementation.

potentially include the searched key, the data block will be
accessed from storage.

Since the IFTree indexes data blocks instead of each KV
pair, the sizes of binary search tree and IFTree are reduced.
PMDB can save more NVM space for write buffers (i.e.,
more partitions). More repetitive updates can be merged in
NVM further reducing the data rewrites on storage. Besides,
an [FTree is also updated less frequently since it will only be
updated for each data block instead of each KV pair. There-
fore, the update overhead of the NVM index is also reduced
and it can avoid impacting the write performance.

4 PMDB IMPLEMENTATION

This section discusses the implementation of PMDB includ-
ing the implementation of IFTree and the range-based data
management. We also introduce the interfaces of PMDB.

4.1 IFTree

IFTree is a critical data structure to index the data blocks in
overlapping SSTs in a Stash Space or in each disjoint key
range. Essentially, IFTree is a specially-designed augmented
interval tree [12]. To be self-balance, an augmented interval
tree can be implemented based on AVL-Tree [35] or red-
black tree [17]. In PMDB, IFTree is implemented by red-back
tree since a red-black tree can achieve better insert perfor-
mance and less additional memory cost [17].

In the augmented interval tree implemented based on
red-black tree, node augments do not need to be modified
for re-color operations since the tree structure does not
change. During a rotation, augments of the involved nodes
will be updated according to their new children [12].

Fig. 5 shows the implementation of an IFTree. An SST
includes multiple data blocks (we assume the default block
size is 4KB) [14]. Therefore, an IFTree is a tree structure
with each node of the tree referring to a data block in an SST
(shown by dashed pointers in Fig. 5).

Searching A Key. Algorithm 1 shows the process of search-
ing a key. The search process in an [FTree starts from the
root node with a Breath-First Search (BFS). When BFS
arrives at node;, the KeyRange and bloom filter of node; will
determine if the target key exists in the data block. That is,
only if the key range includes the target key and the bloom
filter tested positive, we will access and check the data
block. Otherwise, the node’s augment including the min
and max keys of the data blocks in its subtrees and it is used

to make the fan out decision of its subtree. If the target key
Authonzed licensed use limited to: University of Minnesota. Downloaded

1279

is not in the range of augment of node;, the subtrees of node;
will be excluded from the follow-up BFS.

Adding A New Data Block. IFTree is a particular type of
binary search tree. The nodes of an IFTree are sorted based
on the start keys of the indexed data blocks. When add a
new block;, a new node; is created. The place to add the
node; can be identified by binary searching the IFTree based
on the max value of the corresponding key range of the data
block. Since the nodes visited during this binary search are
ancestors of node;, the augments of visited nodes should be
updated using the key range of node;.

Algorithm 1. Searching a Key in IFTree

def search(key, locations)
to_visit.append(root)
while not to_visit.empty do
node = to_visit.pop()
if node and key in node.range, node.bloomfilter then
locations.append (node.location)
to_visit.append(nodeleft)
to_visit.append(node.right)
end if
end while

Updating Compaction Parameters. Both a disjoint key
range and the Stash Space of a partition use an IFTree to
index the data blocks of overlapping SSTs. Therefore,
PMDB also records the parameters to trigger compactions
in the IFTree. Compaction can be triggered, either in a key
range or a Stash Space by three thresholds, max_io, invalid_-
ratio and seek. The max_io is the required number of storage
I/0s to search a key in the worst case among the overlap-
ping SSTs. The invalid_ratio is the ratio of invalid keys that
can be calculated with the number of invalid keys (invalid)
and the total number of keys (fotal). The seek is the number
of range queries searched in the IFTree. The max_io and
invalid_ratio will be updated after adding data blocks of a
new SST.

Calculating the exact max_io and invalid_ratio can be diffi-
cult. A key range may include both disjoint SSTs from the
last range compaction and newly added overlapping SSTs.
Besides, [FTree indexes data blocks instead of KV pairs. It is
almost impossible to accurately identify whether a KV pairis
a new insert or an update. On the other hand, PMDB does
not require the exact max_io and invalid_ratio to trigger com-
pactions. Therefore, we estimate max_io and invalid_ratio as
follows. In most conditions, a newly generated SST will over-
lap with most of the existing SSTs in a key range or in a Stash
Space. Accordingly, for each new SST, we increment the
max_io of the IFTree by one. We also estimate the invalid_ratio
based on the bloom filters of data blocks. For each new data
block, PMDB identifies all of the overlapping blocks. Then
PMDB checks the bloom filters of overlapping blocks for
each new key. If the bloom filter of a block indicates that the
key may exist (tested positive), the invalid is incremented by
one. The inwvalid_ratio is calculated by invalid and total which
is the total inserted KV pairs in the key range.

Space Overhead. In the build-in benchmarks, dbbench [4],
of LevelDB and RocksDB, the default sizes of keys, values
and data blocks are 16B, 100B and 4KB respectively. A 4KB

on August 25,2023 at 18:11:50 UTC from IEEE Xplore. Restrictions apply.

1280

MemTable
#1,20,50,100

Max Key: 20 | .-
IFTree - ™
¥

NVM

¥ ; X
Stora, ; : : :
e [Ll SST [Ll ssT [Ll SST [Ll SST J
Key e J e J e J S
Range (0, 20] (20,100] (100,150] Stash Space

Fig. 6. Data structure in a partition.

data block includes 32 KV pairs. Besides, by default, a bloom
filter includes 10 bits per key. Therefore, KeyRange of a node
is 32 bytes including two keys (min and max). The size of a
bloom filter is 40 bytes. The location address will be of 16
bytes including an 8-byte SST ID, a 4-byte block offset, and 4-
byte block size. The augment of a node is also 32 bytes
including two keys. Other tree structure information
includes a 1-bit node color, an 8-byte left/right child pointer.
Therefore, for a 4KB data block, the size of a node of an
IFTree is 136 bytes, and the total size of an IFTree is about
3.32% (136B/4KB) of the total data set size. The required
NVM space can be less if we use a larger block size.

4.2 Partitions and Key Ranges

To support Get and range queries, PMDB uses a Binary
Search Tree (BST) on NVM to index disjoint key ranges in
storage. Multiple disjoint key ranges are grouped by a parti-
tion (represented by an intermediate node) and each parti-
tion has a dedicated MemTable.

Fig. 6 shows the data structure of a partition. A node of
the BST stores the maximum (max) key of a key range in
storage. Besides, to further improve the search efficiency on
overlapping SSTs in a key range, each BST leaf node (corre-
sponding to a disjoint key range) also includes an IFTree.
Key ranges in the same partition (represented by an inter-
mediate node called partition node) will share an MemT-
able. When searching a key, the search process will then be
executed with the ordering of MemTable of a partition,
IFTree of the Stash Space, and the IFTree of the key range
covering the target key.

PMDB creates partitions by splitting from a single parti-
tion. Thus, workloads will be balanced among different par-
titions if the initial portion of the workload represents the
whole workload distribution. Otherwise, the partition can
be initially set up based on the understanding of the key dis-
tribution of the workload. In this paper we simply assume
the former case.

PMDB deploys MemTable whose size is the same to an
SST for each partition. Assume that each partition includes
at most 10 disjoint key ranges. Fach key ranges can store at
most 10 SSTs. The NVM space requirements for all MemT-
ables will be about 1% of the total data set.

Overall, the minimal NVM space requirements of PMDB
for both IFTree and MemTables can be about 5% of total
data set. PMDB can be tuned for more NVM budgets by
decreasing the maximal numbers of overlapping S5Ts in a
key range on storage.

We implement BST and IFTrees using Persistent Memory
Development Kits (PMDK) [20]. To ensure data consistency,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NQ. 5, MAY 2023

libmemobj transactions [19] are used to modify the NVM data
structure. With much slower storage (compared with NVM
speed), the KV store’s overall performance will be domi-
nated by the number of storage accesses. The overhead to
ensure data consistency on NVM will not significantly
impact the overall performance. We have verified that the
performance overhead to ensure data consistency on NVM
is not significant by comparing with the overall write perfor-
mance of KV store with and without transaction guarantee.

4.3 Key-Value Store Interfaces
As a KV store, PMDB provides the following interfaces.

Put is to store a new KV pair. A new KV pair will be
inserted into the corresponding MemTable in a partition.
Deletions are executed using Put with a delete mark in the
Value. Invalid KV pairs will be dropped during compaction.

Get is to search a KV pair. PMDB will search the BST to
find the key range that possibly holding the KV pair. Then,
it searches the target key with the order of MemTable of the
partition containing the possible key range, Stash Space of
the partition that may store the target key, and the possible
key range containing the target key.

Iterator is for a range query. It consists of a Seek and a
Next function. When executing a range query, PMDB per-
forms the Seek using a start key and then call Next several
times. An iterator in PMDB consists of sub-iterators of a
MemTable in a partition, the SSTs in Stash Space, the SSTs in
a disjoint key range. During a Seek, PMDB will locate the
positions of the sub-iterators using the start key. For each of
the Next, PMDB will iterate all sub-iterators simultaneously
and choose the smallest key as the next key.

Recover is called after the system restarts after a failure.
PMDB maintains a root object at a specific location. The root
object stores the root node of the BST such that the index of
KV store can be recovered.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

Limited by the available resources, we use NVDIMM [33]
and spin for a specified duration with a time stamp counter
in its write and read interfaces to emulate different NVM
devices which is similar to prior works [6], [38]. We set write
and read latency of the NVM to 500ns (5x that of DRAM)
and 200ns (2x that of DRAM) respectively [27], [29].

We use an SSD to store SSTs through an ext4 file[25]. The
SSD (Dell 400-AFKX, SATA interface) has a 600Mbps data
transfer rate and a 480GB capacity. Following the approach
of some existing systems [21], [22], we implement PMDB by
modifying LevelDB [13]. We compare PMDB to two state-
of-the-art KV stores designed for NVM-Storage systems:
MatrixKV [40] and SLM-DB [21]. We use MatrixKV to repre-
sent KV stores using LSM-Tree based structure in storage
since it outperforms other designs [22], [24], [40]. SLM-DB
keeps one level in storage and builds an index for each KV
pair in NVM. We use two threads, one for executing bench-
marks, and the other for background compaction. In all
experiments, we disable data compression and enable
bloom filters (10 bits per key). We set the default SST size as
2MB, block size as 4KB, and an internal block cache as 8MB.

uthonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 18:11:50 UTC from IEEE Xplore. Restrictions apply.

ZHANG ET AL.: PMDB: A RANGE-BASED KEY-VALUE STORE ON HYBRID NVM-STORAGE SYSTEMS

100

MatrixKV &=
80

B e

S g

3 60 =

3 £:50

& 40 S 20

@ 3

E 20 g 10 o
i 542 3 ratl = g Lk Sk s
128B 512B 1KB 128B 5128 1KB

Value Size Value Size

(a) Latency (b) Throughput

Fig. 7. Put (Random Write).

Since SLM-DB is not open-sourced, we also implement
SLM-DB based on LevelDB. In our implementation, an
entry in the B+ Tree is 32 bytes, including a 16-byte key and
16-byte location information (i.e., SST ID, block offset, and
block size). The size of the location information in SLM-DB
is the same as that in PMDB. In SLM-DB, we use similar
configurations in [21] including the live key ratio (0.7), the
leaf node threshold (10), and the sequential degree thresh-
old (0.8). Since SLM-DB builds an index for each KV pair,
bloom filters are not needed.

In PMDB, the max_io and invalid_ratio are set to 10 and
0.3 respectively which are the same as used in SLM-DB. The
seek count to trigger seek-based compaction is set to 3. The
largest possible number of SS5Ts in a key range is set to 20.
Besides, the default NVM partition size is the same as the
maximal file size (2MB).

5.2 Micro-Benchmarks

We use the built-in benchmark tool, dbbench [4], to com-
pare the performance of MatrixKV, SLM-DB, and PMDB by
running different benchmarks including random workloads
and mixed skewed workloads. We also discuss the recovery
and space overheads, and analyze the sensitivity of PMDB
by varying the configurations.

5.2.1 Random Workloads

Random Writes (Put). We first discuss the write performance
of each design. We run random writes with 50GB in a total
data set which is similar to the prior work in [31], [39]. We
vary the Value sizes among 128B (400 million KV pairs),
512B (100 million KV pairs), and 1KB (50 million KV pairs).
The NVM size is set to 10% of the total data size which is
close to the configurations used in [22], [40].

We keep the same total NVM budget for each system.
PMDB and SLM-DB will use NVM to store both index struc-
ture and MemTables. However, when the Value size is 128B,
the size of B+ Tree in SLM-DB is about 25% (32B/128B) of
the total data set. The 5GB NVM is not large enough to store
the B+ Tree index of SLM-DB. PMDB builds an index for
each data block (4KB). The index structure on NVM of
PMDB is about 3% of the total data set size which can be
stored in the 5GB NVM. To compare PMDB and SLM-DB
with small KV pairs, in the evaluation with 128-byte Values,
we assume the index of SLM-DB can be stored in NVM and
the write buffer size of SLM-DB is the same as that of
PMDB.

Fig. 7 shows the performance of the random writes
including the latency (Fig. 7a) and throughput (Fig. 7b). We
also measure the sizes of the total data written to NVM

1281

1 T T o T T
= 90 MatrixKV == a N0 MatrixKV &=
c 80 SLM-DB = SLM-DB =
2 60 MDB g 200
= - s
= 40 1R s 100
= &

S 20 g =)
= R R S P> e WS WS
128 512B 1KB 1288 512B KB
Value Size Value Size
(c) NVM write (d) Storage write

(Fig. 7c) and to storage (Fig. 7d). Fig. 7d indicates that
PMDB achieves the smallest amount of data written to stor-
age. Compared to MatrixKV and SLM-DB, PMDB reduces
the total amount of data written to storage by 47.17% -
48.32% and 39.46% — 42.9% respectively.

Fig. 7c shows that MatrixKV achieves the least amount of
NVM writes since it only stores Level 0 in NVM. All com-
pactions in MatrixKV will not generate any updates in
NVM. SLM-DB and PMDB maintain index structures in
NVM. The index will be updated during Puts and compac-
tions. The total size of NVM writes in SLM-DB is signifi-
cantly influenced by the number of KV pairs. With a given
total data set size, a smaller Value means a larger number of
KV pairs. Since SLM-DB stores an index entry for each KV
pair, more KV pairs lead to a larger NVM writing size.
PMDB only builds an index referred to each data block.
Theretore, the Value size has less influence on its NVM writ-
ing size.

When the Value size is 128 bytes, the total NVM writing
size, including writing to MemTables and updating the
index, of PMDB is only about 4.61% higher than that of
MatrixKV. Compared to SLM-DB, PMDB reduces the NVM
writing size by 40.24%. The size of NVM writes due to index
updates is reduced by 90.12%. When the Value size is larger
(512 bytes and 1KB), the NVM writing size of SLM-DB
becomes smaller. PMDB still reduces the total size of NVM
writes by 9.92% and 5.32% for 512-byte and 1KB Value sizes
respectively.

However, Figs. 7a and 7b show that the performance of
SLM-DB is not better than that of MatrixKV with a Value
size of 128-bytes due to the larger performance overhead for
index updates. PMDB achieves the best write performance
since it reduces the writing sizes to NVM and to storage
simultaneously. PMDB reduces the write latency with dif-
ferent Value sizes by 50.14% — 54.89% and 48.74% — 61.63%
compared to those of MatrixKV and SLM-DB respectively.
The throughput of PMDB is 2.02x — 2.28x and 1.92x —
2.61x higher than those of MatrixKV and SLM-DB.

Random Reads (Get). We present the results of random
read evaluations after random write experiments. Similar to
[21], the number of reads covers about 20% of the total KV
pairs to reduce the total execution time. We show the per-
formance of random reads including latency (Fig. 8a) and
throughput (Fig. 8b). Similar to [8], [9], we also measure the
number of storage reads for each Get operation (Fig. 8d).
Besides, we also measure the number of NVM reads per
read to demonstrate the overhead of the index structure
(Fig. 8¢).

Fig. 8d indicates that MatrixKV requires the most num-
ber of storage reads (3.54 — 3.66) for searching a key since a

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 18:11:50 UTC from IEEE Xplore. Restrictions apply.

1282
& 1400 MatfixKV £ z 22 MalrixKV &
o 1200 o & SLM-DB =
2 1000 < 2
= 800 rg e
g 600 MY £ 1‘?
,g 400 2 05
200 g2 o
=] |£] o 2% S5
128B 512B 1KB
Value Size Value Size
(a) Latency (b) Throughput

Fig. 8. Get (Random Read).

read may check multiple SSTs and each SST needs multiple
storage I/O accesses. With the global B+Tree, SLM-DB
needs the least number of storage reads (0.97 - 0.99) to
search a key. Although PMDB using overlapping SSTs in
each key range, it can also search a key with a close effi-
ciency to SLM-DB (1.03 - 1.05) with the help of IFTrees.

Fig. 8c shows that MatrixKV has the least number of
NVM reads (31 - 61 per key) since it does not have an index
structure in NVM. Its NVM reads are only for checking
SSTs in Lj. SLM-DB has the most NVM reads since it
searches the B+ Tree in NVM for each key lookup. The size
of B+ Tree becomes larger with more KV pairs inserted.
Since PMDB indexes data blocks of 4KB size instead of each
key, the size of IFTrees is less influenced by the total num-
ber of KV pairs. Compared to SLM-DB, PMDB reduces the
total number of NVM reads by 29.03% — 74.24%.

Figs. 8a and 8b show that compared to MatrixKV, PMDB
reduces the read latency by 61.54% — 51.81%. The through-
put of PMDB is 2.61x — 2.06 x higher than that of MatrixKV.
PMDB achieves a comparable read performance to SLM-
DB. When the number of KV pairs is large, e.g., with 128-
byte Value, the read latency of PMDB can be close to that of
SLM-DB since the index search in SLM-DB introduces a sig-
nificant performance overhead. However, with 1KB Value,
PMDB has a higher read latency by 11.13% than SLM-DB
since the B+ Tree size in SLM-DB becomes smaller com-
pared to that of 128-byte Value.

Range Queries. This experiment evaluates the performance
of range queries. We set the Value size to 512 bytes since the
real workloads are dominated by small Values [2], [4]. We
pre-load KV stores with 50GB data and execute three types
of operations including Seek, Range8 and Range64. Seek Seek
means only a seek operation is performed. Seek is to find the
start point of a range query. In this case, bloom filters in
IFTree will not help. Range8 and Range64 mean a short-range
query of 8 keys and a longer range query of 64 keys respec-
tively. Note that the start keys of range queries are randomly
chosen/distributed. Therefore, seek-based compaction in
PMDB will have very limited benefits.

This evaluation only shows the throughput (Fig. 9a).
Besides, the performance of range queries is dominated by
storage I/Os since a range query requires multiple storage
1/0s. Therefore, we also show the number of storage 1I/Os
for each range query in Fig. 9b. Fig. 9b indicates that SLM-
DB achieves the highest efficiency for Seek. With the B+
Tree, SLM-DB can execute a Seek with only one storage I/0.
MatrixKV and PMDB need multiple storage I/0s to con-
struct iterators with overlapping SSTs. However, a single
Seek is less used. It is typically followed by several Nextsin a
range que

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NQ. 5, MAY 2023

SN MatrixKV &z 2 g MatrixKV &z
8 4000 S, SLM-DB mz
@ 3000 | ¢ e E
o E o 3
= 2000 [& 2,
Z 1000 3 21 .
k] i) [l 0 2 Sty 225 2|25
1288 512B 1KB 1288 5128 1KB
Value Size Value Size
(c) NVM reads (d) Storage reads

Range8 in Fig. 9b shows the efficiency of KV stores for
short-range queries. Since consecutive KV pairs may be in
different SSTs, each Next of SLM-DB may lead to a random
number of storage I/Os. After a Seek, MatrixKV and PMDB
have built iterators with multiple data blocks. Next in a
short-range may not need additional storage 1/0Os. How-
ever, for a longer range query (Range64), SLM-DB can have
a closer efficiency with MatrixKV and PMDB since the pre-
viously read data blocks will be cached in memory. Some
Next function can be satisfied by the cached data blocks.

Fig. 9a shows that PMDB achieves a higher throughput
by 16.82% for Range8 than that of SLM-DB. For the longer
range queries (Range64), PMDB achieves a close perfor-
mance to that of MatrixKV. The throughput of Range64 of
PMDB is still 7.23% higher than that of SLM-DB.

5.2.2 Mixed Workloads

Real-world workloads are highly skewed and include mixed
types of operations [2], [4]. Therefore, we further discuss KV
store performance in skewed workloads with mixed opera-
tions as discussed in some existing studies [4], [36].

Similar to [36], we pre-load 50GB KV pairs randomly
with a Value size of 512 bytes. Since PMDB is less efficient
for short-range queries, we especially set the length of range
queries to 8. Then we run mixed workloads with different
ratios of the number of writes (Puts) and the number of
reads (Gets), and short-range queries. The skewness of the
workloads is defined in the same way as in [4], [36]. That is,
it is the ratio of the accesses of writes, reads, and the start
keys of range queries to a set of hottest keys. In our evalua-
tion, we set the hottest key ratio and the workload skewness
to 1% and 50% respectively as used in [36]. That is, 50% of
total accesses are for the 1% of hottest keys.

First, we vary the write ratio to represent the write-domi-
nated scenarios (Fig. 10a). We keep the same ratio of reads
and range queries. For example, if the write ratio (i.e., the
percentage of writes in total operations) is 0.2, both read
ratio (the percentage of reads in total operations) and range

MatrixKV &=
SLM-DB ==a
PMDE,_

P—y

O M & Do N

MatrixKV =3
SLM-DB ==

Throughput (kop/s)
o o 9= =
B O N P

Storage Reads

seek 8 64
Range Lengths

seek 8 64
Range Length
(a) Range throughput

(b) Storage reads

Fig. 9. Ra ueries.

umgnyzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 18:11:50 UTC from |EEE Xplore. Restrictions apply.

ZHANG ET AL.: PMDB: A RANGE-BASED KEY-VALUE STORE ON HYBRID NVM-STORAGE SYSTEMS

- 30 T T =15 - -

- o5 | MatrixkV e a MatrixKV Ez=1

8 SLM-DB =& g 12 SLM-DB &2

=z 20 PMDB == < 09

g 15 £

& 10 5 061

£ 5 2 03 [

[= . ol e Lo (52 |'E o Ll 4% 5
0.2 0.5 0.8 0.2 0.5 0.8

Write Ratio Range Ratio

(a) Varying write ratios (b) Varying range ratios

Fig. 10. Throughputs of mixed workloads.

ratio (the percentage of range queries in total operations)
will be 0.4. Results in Fig. 10a indicate that PMDB outper-
forms the other two KV stores in all workloads. The
throughput of PMDB is 1.16x — 1.54x and 1.51x — 1.62x
higher than those of SLM-DB and MatrixKV respectively.

Range queries can influence the performance of PMDB
significantly. Therefore, we further evaluate KV stores in
workloads including only reads and range queries with dif-
ferent range ratios (the ratio of the number of range queries
to the number of reads) (Fig. 10b). As shown in Fig. 10b,
PMDB can improve the efficiency of range queries with
seek-based compaction. When the range ratio is 0.2, the
overall performance is dominated by reads, the throughput
of PMDB is 1.96x higher than that of MatrixKV, and similar
to that of SLM-DB. When the range ratio is 0.8, the through-
put of PMDB is 1.21x and 1.61x higher than that of SLM-
DB and MatrixKV respectively.

5.2.3 Recovery and Space Overheads

Recovery. We measure the time to recover a KV store after
loading 50GB KV pairs with 512-byte Value. The results indi-
cate that all KV stores can achieve fast recovery. The time
required to recover the KV store is less than one second.

Space Overhead. We measure the NVM and storage over-
heads after completing a random write workload with 50GB
KV pairs with 512-byte Value. The storage space required for
MatrixKV, SLM-DB and PMDB is 44.92GB, 45.31GB, and
45.22GB respectively. Since invalid key ratios can trigger
compaction in both SLM-DB and PMDB, they do not intro-
duce significant storage overhead than that of MatrixKV
using leveled compaction.

The results of required NVM space indicate that
MatrixKV introduces the least NVM space overhead
(0.08GB) since it does not build indexes in NVM. Compared
to SLM-DB (2.73GB) with indexes to every KV pair, PMDB
(1.21GB) reduces the NVM space by 55.67% by constructing
indexes based on data blocks. A data block can store more
KV pairs if the Value size is small. When the Value size is 128
bytes, PMDB reduces the NVM space used for indexes by
88.31% compared to that of SLM-DB. The reduction of used
NVM space can be more significant if we enable data com-
pression or use larger blocks with sizes greater than 4KB.

5.2.4 Sensitivity Analysis

NVM Performance. There are multiple types of NVM with
different performance [21], [29], [34]. Therefore, we vary
NVM latency by changing the delay time in the write and
read interfaces of the reserved memory. Fig. 11 shows the

read and write throl(ljghput of three KV stores with different
Authonized license

use limited to: University of Minnesota. Downloaded on August 25,2023 at 18:11:50 UTC

1283

- 60

50 MatrixKV &= 5 MatrixKV E==
SLM-DB & SLM-DB ===
40 PMDBE mm 2

30
20
10

=
il

T e st B i
100/200 200/500 500/900
NVM Read/Write Latency(ns)

Throughput(kop/s
Throughput(kop/s)
=

100/200 200/500 500/900
NVM Read/Write Latency(ns)

(a) Random write (b) Random read

Fig. 11. Write/Read performance on HDD.

NVM latencies. The results indicate that the performance of
PMDB is less sensitive on the NVM performance compared
to SLM-DB. From 100/200ns to 500/900ns, the write and
read throughout of PMDB is decreased by 9.53% and 5.98%.
However, the write and read throughput of SLM-DB is
decreased by 16.2% and 9.98%.

NVM Space. We decrease and increase the total available
NVM space to 5% (5% NVM) and 20% (20% N'VM) from the
default 10% (10% NVM) of total size of data set respectively.
Note that with 512-byte value, the B+ Tree of SLM-DB will
need about 7.32% NVM to store B+ Tree. Similar to the previ-
ous evaluations, we set the write buffer size of SLM-DB the
same as that of PMDB and assume SLM-DB has enough
NVM to store B+ Tree. Then we run random writes (50GB
with 512-byte Value) and random reads with different avail-
able NVM space. The results indicate that PMDB can still
provide the best write performance with a comparable read
performance to SLM-DB with different available NVM sizes.
The write throughput (kop/s) of PMDB is 2.23x and 2.56x
higher than that of MatrixKV and SLM-DB respectively.

5.25 Configuration Parameters

Max_io and Invalid_ratio. The max_io and invalid ratio
determine the frequency of compactions. They influence the
trade-offs among write performance, read performance and
storage space overhead. First of all, we keep the default
invalid_ratio (0.3) and vary the max_io to 1, 10 and 20.
When max_io = 1, PMDB will do read-merge-write compac-
tion in storage. It achieves a close write and range perfor-
mance to MaxtixKV and read performance to SLM-DB.
When max_io = 10, the write throughput of PMDB is
increased by 2.36 x compared to that of max_io = 1. The ran-
dom read throughput is not significantly decreased with the
help of bloom filters. The performance of short-range
queries is decreased by 45.26% as we discussed. When
max_io = 20, the write performance of PMDB is further
increased by 1.7x compared to that of max_io = 10. How-
ever, the read performance is decreased by 17.96%.

Next, we keep max_io = 10 and increases invalid_ratio
from 0.3 to 0.5. The invalid_ratio has limited performance
impact without enough number of updates. Therefore, we
run random updates after loading KV pairs. After invalid_-
ratio is increased to 0.5 from 0.3, the write performance
increases by 32.26%. However, the required storage space is
increased by 19.22%.

Block Size. PMDB uses IFTrees to represent data blocks in
an SST of a key range. We study the performance of random
writes and random reads that influenced by varying block
sizes among 4KB, 16KB and 64KB. The results indicate that

a large block size will im'Prove the write performance. With
om IEEE Xplore. Restrictions apply.

1284
2 MatrixKV &=z
El o SLM-DB =z
= &
a2
)
g
£ o%e L

Workloads
Fig. 12. Throughput of YCSB workloads.

larger blocks, the size of IFTrees becomes relatively smaller
leaving more NVM space used by write buffers. Besides,
these IFTrees will be updated less frequently during a com-
paction. When the block sizes are set to 16KB and 64KB, the
write throughput of PMDB is increased by 15.37% and
42.11% respectively. However, if the block size is too large,
the read performance will be decreased due to a large data
transfer size for one storage read. The read throughput of
PMDB is decreased by 14.78% after we increase the block
size from 4KB to 64KB.

Partitions. We further run random writes without parti-
tions. The whole available NVM space will be used as a sin-
gle partition with one MemTable. The results indicate that
the write throughput of PMDB without partitions is
decreased by 21.45% compared to PMDB with partitions
due to the frequently-triggered compactions.

5.3 Yahoo! Cloud Service Benchmark (YCSB)

Same as some of the prior work [21], [36], we further evalu-
ate PMDB using core workloads from YCSB [7] including
workloads A (50% reads, 50% writes), B (95% reads, 5%
writes), C (100% reads), D (95% reads (latest values),
5% writes), E (95% ranges, 5%writes) and F (50% reads, 50%
read-modify-writes). The total data size used in YCSB is
50GB. The key and value sizes are 16 bytes and 512 bytes
respectively. Fig. 12 shows the throughputs of three KV
stores in six core workloads. Note that the results are pre-
sented with a log scale to make them more readable.
Although MaxtrixKV and SLM-DB achieves best perfor-
mance for range queries and Gets respectively, PMDB
ensures the best performance in workloads with mixed
operations. In write-intensive workload A, the throughput
of PMDB is 1.91 x and 1.46x higher than those of MatrixKV
and SLM-DB respectively. In read-intensive workloads (B,
D, E, F), the throughput of PMDB is 1.27x — 2.49x and
1.15x — 1.21x higher than those of MatrixKV and SLM-DB
respectively. In workload C (100% reads), the throughput of
PMDB is comparable (2.95% smaller) to that of SLM-DB,
and it is still 2.32x higher than that of MatrixKV.

6 RELATED WORK

Write-Optimized Key-Value Stores. KV stores play significant
roles in big data applications [8], [23], [37]. LSM-Tree based
approach has been widely used in KV stores to serve write-
intensive workloads [26], [32], [37]. Trade-offs among write,
read and space amplifications in an LSM-Tree have been
studied [8], [9] with compaction methods [31], [32], [39].
Key-Value Stores on NVM-Storage Systems. Several existing
studies build KV stores for NVM-Storage hybrid systems.
LSM-Tree based approaches including NoveLSM [22],
NVMRocks [24], and MatrixKV [40] store a small portion of

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 18:11:50 UTC from

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

data in NVM and KV pairs in storage using a leveled struc-
ture. SLM-DB [21] stores KV pairs in storage with a single
level structure and maintains a persistent B+ Tree [18] index
in NVM for every KV pair. LightKV [16] has partitions on
storage, but it still builds per-key indexes on NVM. Besides,
it only uses size-tiered compaction in each partition which
will lead to compacting a large amount of data involved in
a single compaction.

7 CONCLUSION

In this article, we propose PMDB, a range-based KV store
for hybrid NVM-Storage systems. PMDB can provide high
performance for both write and read operations. We have
compared PMDB to other state-of-the-art schemes designed
for hybrid NVM-Storage systems. The results indicate that
PMDB outperforms the other KV stores by 1.16x —2.49 x .
Besides, the performance of PMDB can be tuned for either
write or read-intensive workloads.

REFERENCES

[1]]. Arulraj and A. Pavlo, “How to build a non-volatile memory
database management system,” in Proc. ACM Int. Conf. Manage.
Data, 2017, pp. 1753-1758.

[2] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” ACM SIG-
METRICS Perform. Eval. Rev., vol. 40, pp. 53-64, 2012.

[3] O. Balmau, F. Dinu, W. Zwaenepoel, K. Gupta, R. Chandhira-
moorthi, and D. Didona, “{SILK}: Preventing latency spikes in
log-structured merge key-value stores,” in Proc. USENIX Annu.
Tech. Conf., 2019, pp. 753-766.

[4] Z. Cao, S. Dong, S. Vemuri, and D. H. C. Du, “Characterizing,
modeling, and benchmarking rocksDB key-value workloads at
facebook,” in Proc. 18th USENIX Conf. File Storage Technol., 2020,
pPp- 209-223.

[5] A. Chen, “A review of emerging non-volatile memory (NVM)
technologies and applications,” Solid-Statist. Electron., vol. 125,
pp- 25-38,2016.

[6] H. Chenetal, “Efficient and available in-memory KV-store with
hybrid erasure coding and replication,” ACM Trans. Storage,
vol. 13, no. 3, pp. 1-30, 2017.

[71 B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with YCSB,” in Proc.
1st ACM Symp. Cloud Comput., 2010, pp. 143-154.

[8] N. Dayan, M. Athanassoulis, and S. Idreos, “Monkey: Optimal
navigable key-value store,” in Proc. ACM Int. Conf. Manage. Data,
2017, pp- 79-94.

[91 N.Dayan and S. Idreos, “Dostoevsky: Better space-time trade-offs
for LSM-tree based key-value stores via adaptive removal of
superfluous merging,” in Proc. Int. Conf. Manage. Data, 2018,
pp- 505-520.

[10] G.DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” ACM SIGOPS Oper. Syst. Rev., vol. 41, pp. 205-220, 2007.

[11] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and M.
Strum, “Optimizing space amplification in RocksDB,” in Proc. 8th
Biennial Conf. Innov. Data Syst. Res., 2017, Art. no. 3.

[12] OpenGenus Foundation, “Interval trees: One step beyond BST,”
2020. [Online]. Available: https:/ /iq.opengenus.org/interval-tree/

[13] S. Ghemawat and]. Dean, “LevelDB, A fast key-value storage
library,” 2012. [Online]. Available: https://github.com/google/
leveldb

[14] S. Ghemawat and]. Dean, “Sorted tables, LevelDB

implementation,” 2012. [Online]. Available: https://github.com/

google/leveldb /blob /master/doc/impl.md#sorted-tables

E. Gilad et al., “Evendb: Optimizing key-value storage for spatial

locality,” in Proc. 15th Eur. Conf. Comput. Syst., 2020, pp. 1-16.

[16] S.Han, D. Jiang, and]. Xiong, “LightKV: A cross media key value
store with persistent memory to cut long tail latency,” in Proc.
36th Int. Conf. Massive Storage Syst. Technol., 2020.

[17] S. Hanke, “The performance of concurrent red-black tree algo-
rithms,” in Proc. Int. Workshor Altgm'iﬁrm Eng., 1999, pp. 286-300.

EEE Xplore. Restrictions apply.

[15]

https://iq.opengenus.org/interval-tree/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/google/leveldb/blob/master/doc/impl.md#sorted-tables
https://github.com/google/leveldb/blob/master/doc/impl.md#sorted-tables

ZHANG ET AL.: PMDB: A RANGE-BASED KEY-VALUE STORE ON HYBRID NVM-STORAGE SYSTEMS

[18]

[19]

[201

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[301

[31]

[32]

[33]
[34]

[35]

[36]

D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent b+-tree,” in Proc. 16th
USENIX Conf. File Storage Technol., 2018, pp. 187-200.

Intel, “Transaction in PMDK libmemobj,” 2015. [Online]. Avail-
able: https://pmem.io/2015/06/15/transactions.html

Intel, “Tree map in PMDK,” 2020. [Online]. Available https://
github.com/pmem/pmdk/tree/master /src/examples/
libpmemobj/tree_map

O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y.-R. Choi, “SLM-
DB: Single-level key-value store with persistent memory,” in Proc.
17th USENIX Conf. File Storage Technol., 2019, pp. 191-205.

S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, and R.
Arpaci-Dusseau, “Redesigning L SMS for nonvolatile memory with
novelsm,” in Proc. USENIX Annu. Tech. Conf., 2018, pp. 993-1005.

A. Kejriwal, A. Gopalan, A. Gupta, Z. Jia, S. Yang, and . Ousterh-
out, “{SLIK}: Scalable low-latency indexes for a key-value store,”
in Proc. USENIX Annu. Tech. Conf., 2016, pp. 57-70.

J. Li, A. Pavlo, and S. Dong, “NVMRocks: RocksDB on non-vola-
tile memory systems,” 2017.

A. Mathur, M. Cao, 5. Bhattacharya, A. Dilger, A. Tomas, and
L. Vivier, “The new ext4 filesystem: Current status and future
plans,” in Proc. Linux Symp., 2007, pp. 21-33.

F. Mei, Q. Cao, H. Jiang, and]. Li, “SifrDB: A unified solution for
write-optimized key-value stores in large datacenter,” in Proc.
ACM Symp. Cloud Comput., 2018, pp. 477-489.

1. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Rangana-
than, and N. Binkert, “Consistent, durable, and safe memory man-
agement for byte-addressable non volatile main memory,” in Proc.
1st ACM SIGOPS Conf. Timely Results Oper. Syst., 2013, Art. no. 1.
S. A. Noghabietal ., “Samza: Stateful scalable stream processing at
linkedin,” Proc. VLDB Endowment, vol. 10, no. 12, pp. 1634-1645,
2017.

L Oukid,]. Lasperas, A. Nica, T. Willhalm, and W. Lehner,
“FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory,” in Proc. Int. Conf. Manage. Data, 2016,
pp- 371-386.

P. O'Neil, E. Cheng, D. Gawlick, and E. O'Neil, “The log-struc-
tured merge-tree (LSM-tree),” Acta Informatica, vol. 33, no. 4,
pp- 351-385, 199.

P. Raju, R. Kadekodi, V. Chidambaram, and I Abraham,
“PebblesDB: Building key-value stores using fragmented log-
structured merge trees,” in Proc. 26th Symp. Oper. Syst. Princ.,
2017, pp. 497-514.

K. Ren, Q. Zheng, J. Arulraj, and G. Gibson, “SlimDB: A space-effi-
cient key-value storage engine for semi-sorted data,” Proc. VLDB
Endowment, vol. 10, no. 13, pp. 2037-2048, 2017.

A. Sainio, “NVDIMM: Changes are here so what's next,” Memory
Comput. Summit, 2016.

R. Strenz, “Review and outlook on embedded NVM technologies—
from evolution to revolution,” in Proc. IEEE Int. Memory Workshop,
2020, pp. 1-4.

Tutoralspoint, “Data structure and algorithms - AVL trees,”
2020. [Online]. Available: https://www.tutorialspoint.com/
data_structures_algorithms/avl tree algorithm.htm

F. Wu, M.-H. Yang, B. Zhang, and D. H. C. Du, “AC-key: Adap-
tive caching for LSM-based key-value stores,” in Proc. USENIX
Annu. Tech. Conf., 2020, pp. 603-615.

371

[38]

[39]

[40]

[41]

[I

1285

X. Wu, Y. Xu, Z. Shao, and S. Jiang, “LSM-trie: An LSM-tree-based
ultra-large key-value store for small data items,” in Proc. USENIX
Annu. Tech. Conf., 2015, pp. 71-82.

J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “NV-
tree: Reducing consistency cost for NVM-based single level sys-
tems,” in Proc. 13th USENIX Conf. File Storage Technol., 2015,
pp- 167-181.

T. Yao et al, “A light-weight compaction tree to reduce 1/O
amplification toward efficient key-value stores,” in Proc. 33rd Int.
Conf. Massive Storage Syst. Technol., 2017.

T. Yao et al,, “MatrixKV: Reducing write stalls and write amplifi-
cation in LSM-tree based KV stores with matrix container in
NVM,” in Proc. USENIX Annu. Tech. Conf., 2020, pp. 17-31.

S. Zheng, M. Hoseinzadeh, and S. Swanson, “Ziggurat: A tiered
file system for non-volatile main memories and disks,” in Proc.
17th USENIX Conf. File Storage Technol., 2019, pp. 207-219.

Baoquan Zhang received the PhD degree in
computer science from the University of Minne-
sota - Twin Cities advised by professor David H.
C. Du. His research interests include memory/
storage systems, such as key-value stores, RAID
systems, non-volatile memory, etc.

Haoyu Gong received the BS degree in com-
puter science from the Huazhong University of
Science and Technology, in 2019. She is currently
working toward the PhD degree in computer sci-
ence with the University of Minnesota — Twin Cit-
ies advised by professor David Du. Her research
interests include file and storage system designs
for emerging storage technologies such as ZNS,
storage class memories.

David H.C. Du (Fellow, IEEE) is currently the
Qwest Chair Professor in computer science and
engineering with the University of Minnesota -
Twin Cities. His current research interests include
focuses on intelligent and large storage systems.
He serves on editorial boards of several interna-
tional journals. He was a program director (IPA)
| with National Science Foundation (NSF) CISE/
CNS Division from 2006 to 2008. He has served
as Conference Chair, Program Committee Chair,
and General Chair for several major conferences
in database, security and parallel processing.

= For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 18:11:50 UTC from IEEE Xplore. Restrictions apply.

https://pmem.io/2015/06/15/transactions.html
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj/tree_map
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj/tree_map
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj/tree_map
https://www.tutorialspoint.com/data_structures_algorithms/avl_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/avl_tree_algorithm.htm

