2021 IEEE Seventh Intemational Conference on Big Data Computing Service and Applications (BigDataService) | 978-1-6654-3483-6/21/$31.00 ©2021 IEEE | DOI: 10.1109/BigDataService52369.2021.00011

2021 IEEE Seventh International Conference on Big Data Computing Service and Applications (BigDataService)

TransKV: A Networking Support for Transaction
Processing in Distributed Key-value Stores

Hebatalla Eldakiky and David Hung-Chang Du
Department of Computer Science and Engineering
University of Minnesota—Twin Cities, USA
E-mails: {eldak002, du} @umn.edu

Abstract—Through the massive use of mobile devices, data
clouds, and the rise of Internet of Things, enormous amount
of data has been generated and analyzed for the benefit of
society. NoSQL Databases and specially key-value stores be-
come the backbone in managing these large amounts of data.
Most of key-value stores ignore transactions due fto their ef-
fect on degrading key-value store’s performance. Meanwhile,
programmable switches with the software-defined networks and
the Programming Protocol-Independent Packet Processor (P4)
lead to a programmable network where in-network computa-
tion can help accelerating the performance of applications. In
this paper, we proposed a networking support for transaction
processing in distributed key-value stores. Our system leverages
the programmable switch to act as a transaction coordinator.
Using a variation of the time stamp ordering concurrency control
approach, the programmable switch can decide to proceed in
transaction processing or abort the transaction directly from
the network. Our experimental results on an initial prototype
show that our proposed approach, while supporting transactions,
improves the throughput by up to 4X and reduces the latency
by 35% when compared to the existing architectures.

I. INTRODUCTION

Big data has attracted lots of people’s attention. Nowadays,
enormous amount of data has been generated and analyzed
for the benefit of society at a large scale. With this huge
amount of generated data, data is distributed among several
storage instances, accessed frequently, retrieved and processed
by many applications to extract useful information. So, it is
important to improve the data access performance when data
is accessed from storage nodes through network.

Nowadays data is being generated by many different sources
with un-unified structures, hence this data is often maintained
in key-value storage, Which is widely used due to its efficiency
in handling data in key-value format, and flexibility to scale
out without significant database redesign. According to DB-
Engines [5], key-value store is one of the most popular
NoSQL databases which are broadly used as the storage engine
for high-traffic websites and other high-performance content.
Examples of popular key-value stores include Dynamo [6],
RocksDB [30], Redis [28], Memcached [24]. These key-value
store engines have been extensively used by different clients
including Amazon, Facebook, Nokia and Samsung [16].

Some of the applications built on these key-value stores em-
ploy non-trivial concurrent transactions from multiple clients.
Consequently, managing all of these concurrent transactions
without adequate concurrency control creates significant prob-

lems for the application. For example, in Amazon’s e-
commerce platform, the shopping cart service processes tens
of millions requests that come from over 3 million checkouts
in a single day. Each of these requests represents a transaction,
that should guarantee the different ACID properties in order
to reach a correct database state.

Unfortunately, the distributed architecture of key-value
stores makes it difficult to implement the required ACID
properties for supporting transactions. Implementing the trans-
action concepts has a negative effect on the main two targets of
any key-value store: scalability and predictable perfromance,
as shown in Figure 1. This effect is due to the complexity,
locking, starvation introduced by transactions and the inter-
ference with other non-transaction operations. That is why,
some key-value stores [17], [32] omit the transaction concepts.
However, other key-value stores [7], [28] support transaction
concepts by introducing a transaction coordinator. The trans-
action coordinator is responsible for the coordination among
the key-value storage nodes. Each storage node implements a
concurrency control mechanism to decide whether to accept or
reject a transaction, then the transaction coordinator aggregates
these decisions from the participating nodes and decides
whether to abort or accept the transaction before processing it.
Unfortunately, this model introduces lots of communications
and forwarding steps in key-value queries processing, which is
usually carried out through network switches. These additional
steps increase the response time of the key-value queries.

On the networking side, Software-defined Network (SDN)
simplifies network devices by introducing a logically cen-
tralized controller (control plane) to manage simple pro-
grammable switches (data plane). Recently, the Programming
Protocol-Independent Packet Processor (P4) [3] unleashes ca-
pabilities that give the freedom to create intelligent network
nodes performing various functions. Thus, applications can
accelerate their performance by offloading part of their compu-
tational tasks to these programmable switches to be executed
in the network. Nowadays, programmable networks get a
bigger foot in the data center doors. Google cloud started to
use the programmable switches with P4ARuntime [26] to build
and control their smart networks [11]. Some Internet Service
Providers (ISPs), such as AT&T, have already integrated
programmable switches in their networks [1].

Now, as we have control over both network and storage,
it is time to think about how to improve data access per-

978-1-6654-3483-6/21/$31.00 ©2021 IEEE 41
DOI 10.1109/BigDataService52369.2021.00011
Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 14:57-:28 UTC from IEEE Xplore. Restrictions apply.

ency

3 r l‘t"t
W
b GETPUT b GLT/PUT
- Scale ————>5cale
(a) Without Transactions (b) WithTransactions

Fig. 1: Performance of KV Stores w/o Transactions

formance when applications access storage through network.
In this paper, we propose TransKV: a network support for
transaction processing using the programmable switches to
further improve the latency of transactional key-value queries.
We believe that network latency has a significant impact on
the performance of transactions which have to be processed
by the storage system in order to ensure serializability. Tran-
sKV utilizes the programmable switches as a concurrency
control manager to execute the transaction processing logic in
network. We are developing a variation of the Timestamp Or-
dering (TSO) [29] algorithm on the programmable switches. If
a transaction can start processing according to the TSO logic,
it is accepted and forwarded to the storage nodes. Otherwise,
the transaction is aborted early by the programmable switches,
and packets are routed back to the client.

TransKV adapts a hierarchical caching scheme to distribute
the hottest key-value pairs on the data plane of data center’s
switches, where higher level of cache contains the hottest
key-value pairs, and the hotness of data decreases while
going down in the hierarchy. TransKV provides a transactional
support by injecting some information about the requested
data in packet headers. The programmable switches use this
information along with the timestamps saved for all cached
key-value pairs to decide whether to accept the transaction or
abort it and send the packet back to the client.

TransKV utilizes the architecture of software-defined net-
work [10], [22]. In our architecture, a logically centralized
controller has a global view of the whole system [12].
This logically centralized controller manages the log of all
transactions’ history for failure recovery. It acts also as the
transaction coordinator for the non-cached key-value pairs. It
also updates the cache of each switch by the hottest key-value
pairs periodically. Our Experimental evaluation based on our
initial prototype shows that TransKV improves the throughput
by up to 4X and reduces the latency by 35% on average

The remaining sections of this paper are organized as
follows. Background is discussed in Section II. Section III
provides the architecture of TransKV, while the detailed design
of TransKV is presented in Section IV. TransKV implemen-
tation is discussed in Section V, while Section VI gives an
experimental evidence and analysis of TransKV. Section VII
provides a short survey about the related work, and finally, the
paper is concluded in Section VIIL

II. BACKGROUND

A. Preliminaries on Programmable Switches

Software-Defined Network (SDN) simplifies network de-
vices by introducing a logically centralized controller (control

42

i

|
= %‘EJ% =5 v
1O = === N e
= — — g EOON] ;| LLoow | ace tach
Programmabie

Frogammabls Ingmez Trafle
Farcer Fipelinec Manager Fiplines Deparsar

(a) Switch Data Plane Architecture (b) Multiple Stages of Pipeline

Fig. 2: Primelinries on Programmable Switches
plane) to manage simple programmable switches (data plane).
SDN controllers set up forwarding rules at the programmable
switches and collect their statistics using OpenFlow APIs [22].
As a result, SDN enables efficient and fine-grained network
management and monitoring. Recently, P4 [3] has been in-
troduced to enrich the capabilities of network devices by
allowing developers to define their own packet formats and
build the processing graphs of these customized packets. P4
is a programming language designed to program parsing and
processing of user-defined packets using a set of match/action
tables. It is a target-independent language, thus a P4 compiler
is required to translate P4 programs into target-dependent
switch configurations.

As shown in Figure 2(a), The data plane for most of
modern switch ASICs consists of five main components. These
components include programmable parser, ingress pipeline,
traffic manager, egress pipeline and programmable deparser.
When a packet is received by an ingress port, it goes through
the programmable parser. The parser is modeled as a simple
deterministic state machine, that consumes packet data and
identifies headers that will be recognized by the data plane
program. It makes transitions between states typically by
looking at specific fields in the previously identified headers.

After the packet is processed by the parser and decomposed
into headers, it goes through one of the ingress pipes to enter a
set of match-action processing stages as shown in Figure 2(b).
In each stage, a key is formed from the extracted data and
matched against a table of some entries. These entries can be
added and removed through the control plane. If there is a
match with one of the entries, the corresponding action will
be executed, otherwise a default action will be executed. After
the action execution, the packet and the updated headers go
through next stages in the pipeline.

After the packet finishes all the stages in the ingress
pipeline, it is queued and switched by the traffic manager for
an egress pipe for further processing. At the end, there is a
programmable deparser that performs the reverse operation of
the parser. It reassembles the packet back with the updated
headers so that the packet can go back onto the wire to the
next hop in the path to its destination.

B. Timestamp Ordering Concurrency Control

Transaction processing systems require high availability and
fast response time for hundreds of concurrent users. With the
concurrent access of hundreds of users, concurrency control is
needed to ensure the correct execution of users’ transactions,
when multiple transactions submitted by various users interfere
with one another in a way that produces incorrect results.

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 14:57-28 UTC from IEEE Xplore. Restrictions apply.

Clents

— o=l

Distributed Storage Servers
Fig. 3: TransKV Architecture Overview

Timestamp Ordering (TSO) [8], [29] is a concurrency con-
trol protocol that guarantees serializability using transaction’s
timestamps to order transaction execution for an equivalent
serial schedule. The idea for this scheme is to order the
transactions based on their timestamps, transaction start time,
then the transaction processing system will only allow the
transactions to be processed according to that order.

The TSO algorithm must ensure that, for each item accessed
by conflicting operations in the schedule, the order in which
the item is accessed does not violate the timestamp order. To
do this, the algorithm associates with each database item X two
timestamp (TS) values: read timestamp and write timestamp.
The read timestamp of item X is the largest timestamp among
all the timestamps of transactions that have successfully read
item X. The write timestamp of item X is the largest of all
the timestamps of transactions that have successfully written
item X. The system checks timestamps for every operation.
If a transaction tries to read/write an object from the future,
ie., with greater read/write timestamp than the transaction’s
timestamp, it aborts and restarts. TSO is different from any
locking protocol; it determines serializability order of transac-
tions based on their timestamps before execution without using
any locks, and hence it is a deadlock-free protocol which make
it more suitable for the programmable switches architecture.

III. TRANSKV ARCHITECTURE OVERVIEW

TransKV is a networking support for transactions in dis-
tributed key-value stores that leverages the capability of
programmable switches. TransKV utilizes the programmable
switches as a transaction manager to coordinate between the
submitted transactions. Figure 3 shows the architecture of
TransKV within a data center, which consists of the pro-
grammable switches, controller, storage nodes, and clients.

Programmable Switches. Programmable switches are the
essential component in our proposed system. We augment
the programmable switches with a cache [15] to store the
popular key-value pairs, and leverage match-action tables and
registers in the programmable switches to design the in-
switch transaction coordinator where the values and the time
stamps information of cached key-value pairs will be stored.
The programmable switch uses a variation of the TSO along
with the stored information to decide whether the submitted
transaction can start processing and be routed to the target
storage node, or can be aborted directly from the network

43

before reaching the storage node. Following this approach, the
programmable switches act as transaction coordinator nodes
that coordinate between the submitted transactions.

In addition to transaction coordination, each programmable
switch has a query statistics module to provide the controller
with statistics reports to enable it to update the cache with
the popular key-value pairs. TransKV can distinguish between
packets. Packets marked as TransKV packets, are processed by
our system. Other packets are processed and routed using the
standard L.2/L.3 protocols which make TransKV compatible
with other network functions and protocols.

Controller. The controller is primarily responsible for system
reconfigurations including (a) log management for recovering
from system failures, (b) transaction coordinator for non-
cached key-value pairs, and (c) updating each switch’s cache
with the recent popular key-value pairs. The controller keeps
track with all changes made by the transactions on a log.
In case of any system failure, this log is done/undone in
order to restore the system to a consistent state. Through
the control plane, the controller also updates the match-action
tables in the switches with the new popular key-value pairs.
TransKV controller is an application controller that is different
from the network controller in SDN, and it does not interfere
with other network protocols or functions managed by the
SDN controller. Qur controller only manages the transaction
log and the cached key-value pairs. Both controllers can be
co-located on the same server, or on different servers.

Storage Nodes. They represent the location where the key-
value pairs reside in the system. The key-value pairs are
partitioned among these storage nodes. Each storage node runs
a simple shim that is responsible for reforming TransKV query
packets to API calls for the key-value store. This layer makes
it easy to integrate our design with existing key-value stores
without any modifications to the storage layer.

Clients. TransKV provides a client library which can be
integrated with the client applications to send TransKV packets
through the network, and access the key-value store without
any modifications to the application.

IV. TRANSKV DESIGN

The data plane provides on-switch cache and transaction
coordination model for the key-value stores to handle concur-
rency control earlier in network. In this model, all timestamps
for cached key-value pairs are stored on switches, and are used
for transaction coordination. Figure 4 represents the whole
pipeline that the packet traverses inside the switch before being
forwarded to the storage node for processing, or aborted by
the switch and forwarded back to the client. In this section,
we discuss how the switch supports these functions.

A. Network Protocol Design

Packet Format. Figure 5 shows the format of TransKV re-
quest packet sent from clients. The programmable switches
use a reserved port number in the TCP/UDP header to identify
TransKV packets, and lookup the cache for non-transactional

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 14:57-28 UTC from IEEE Xplore. Restrictions apply.

L] r
L P P
———>| Cache Hit/Miss Query > i
i At | stasstics _|p Packet Out
i = send Module
Yes o p Transaction Management = i
I Custom W Hit 2 accept’ [
. eagers | #an | [EC 1= o okp [P statetes L # Packet Out
B F = T abort [7
Packetin | oot No] ¥ § PacketOut
PaselPp | M Miss (send to controller) [=
Headers 3
: > Iwﬂm,h g : Packet Out
Parser : Ingress Pipeline : Egress Pipeline
Fig. 4: Logical View of TransKV Data Plane Pipeline
i | . There are two types o.f match-action tables inside the swntche'.s:
- . - :) the routing match-action table and the key-value cache. In this
Etnemet] 1P_[TcPuDP] 775 [TLengtn [OP [OP | JOP,[OP.| vamesist | section we will discuss the design of the key-value cache.
0 T ————
s e) sons of transaction i The key-value cache design is shown in Figure 6(a). Each
Existing Protocols | fairetary |roe e s y gn gure 6(a)

Fig. 5: TransKV Packet Format

packets, or execute the transaction management process for
the transactional packets. Other switches in the network do
not need to understand the TransKV header, and treat all
packets as normal IP packets. The TransKV header consists
of three main fields: T-TS, TLength, and a list of OP.
The T-TS is a 4-byte field which stands for the submitted
transaction timestamp. A packet with T-TS = 0 represents
a non-transactional operation. TLength stores the number of
key-value operations on the submitted transaction. The OP list
is a list of (key,op) pairs of length equals to TLength, each
pair represents a 4-bit operation followed by a requested key.

After the packet is processed by the programmable switch,
the switch either accepts the packet and sends it to the storage
nodes for processing, or aborts the transaction and sends the
reply back to the client. The reply packet is a standard IP
packet, and the result is added to the packet payload.

Network Routing. TransKV uses existing routing protocols
to forward clients” packets through the network. For a Tran-
sKV packet, based on the information of data location, the
client appropriately sets the Ethernet and IP headers and
sends the packet to the storage server where data resides. The
programmable switches, placed on the path from the clients
to the storage clusters, process TransKV packets. If the packet
represents a transaction, the switch either accepts the packet
and sends it to the storage nodes for processing or aborts the
transaction and sends the reply back to the client. If the packet
represents a non-transactional operation, the switch attaches
the value to the packet, in case of cache hit, and sends the
reply back to the client, or sends the packet to the storage
nodes if the requested item is not in cache. Other switches
simply forward packets based on the destination MAC/IP
address according to the L2/L3 routing protocol. In this way,
TransKV can coexist with other network protocols.

B. On-Switch Cache

TransKV adopts on switch cache, where hot key-value pairs
are stored on switch match-action table and switch registers.

4

record in the table consists of three parts: match, action and
action data. The match represents the value that we match the
requested key against, TransKV uses the exact-match to match
a requested key against a record in the match-action table.
The action represents the transaction management process that
will be executed when a requested key matched a record
in the match-action table. The action data consists of three
parts: v_index, bitmap and ts_index. v_index and
bitmap are used as in [15] to support storing of variable
length key-value pairs in the switch’s registers. Figure 6(b)
shows an example of 3 registers cache and how we use the
v_index and bitmap to retrieve the value of a requested
key. ts_index represents the index of the timestamps associ-
ated to a key-value pair in the switch registers. The timestamps
of a record are stored at the same index in all registers. There
are three registers used to store the timestamps as shown in
Figure 6(d): read timestamp register, write timestamp register
and submitted transaction timestamp register. The usage of
each of these registers will be discussed in Section IV-C.

TransKV uses a hierarchical caching approach as shown in
Figure 6(c), the total cache size equals to n x m, where n is
the number of switches in the data center network and m is the
size of each switch cache. Each key-value pair is cached only
once on the whole cache, where the hottest key-value pairs
are cached on top level (level 1) where the client requests are
submitted, hot key-value pairs are cached on the middle level
(level 2), and warm key-value pairs are cached on the bottom
level (level 3). The controller decides which key-value pairs
reside in each level.

C. On-Switch Transaction Management

TransKV acts as a transaction manager for the cached key-
value pairs. Figure 6(e) shows the transaction management
process. A variation of Timestamp Ordering (TSO) concur-
rency control protocol is implemented on the programmable
switches. TSO is chosen because it is a deadlock free ap-
proach; there is no locking mechanism used on the records,
and hence there is no checking in the dependency graph for
cycles, which makes it suitable for the match-action pipeline.
For each cached key-value pair, the read timestamp R —T'S,

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 14:57-28 UTC from IEEE Xplore. Restrictions apply.

{v_index bitmap){
Match Action Action data =’
Key=A| access_registers_arrays | v_index=0 bitmap=111, t5_index=0 E‘wm]:” (v index:
Key=B| access_registers_amays | v_index=1bitmap=110, ts_index=1 Wn:‘]} i

w_index=1,bitmap=001, ts_ndex=2 v=+ process_amay2(v_index);
v_index=2 bitmap=101. t5_index=3
v_index=_, bitmap=__.. ts_index=_. }

Key=C| access_registers_amays
Key=0| access_registers_amays
.| access_registers_amays

v=# process_amay3{v_index);

(a) Switch Match-Action Table

Vel Alv o] v 0]]
oy Jve] |]
oy YT I

(b) Cache lookup with 3 value arays

o 1 2 3

(c) Hierarchical Caching inside Data center's Switches

RTsAmay [Ry[ro[rolra] [| [Ra] {
1. process_value :
wrsamy [wiwlwiwd [] [wn] 2. process_R_TS_amay(ts_index)

7]

Aooepted T-78 1 12| T[T [|
Array 1

process_registers_amaysiv_index bamap, ts_ndex)

3. process_W_TS_amay(ts_index)
4. process_Accepted]_amay(ts_ndex)
5. coordinate_transacSon()

Controller

= =
Coordination for __Timsamons Log
mnon-cached K\'s

{Gontrot Pana}——————

Aodmemover Upaate | Feports to Controller

(d) Transactions Data Register Amrays

(e) Transaction Management process

. keviaNegaNE
e

(f) Logical View of The Controller and Query Statistics

Fig. 6: TransKV Design inside Switch Data Plane

the write timestamp W —T'S, and the timestamp of the current
accepted transaction T — T'S' are stored on the switch registers
as shown in Figure 6(d).

Read Operation within a transaction. If there is a submitted
transaction 7; with timestamp 7°S(T;) submitted on one of the
cached key-value pairs X, where T; contains a read operation,
the switch will fetch z’s corresponding timestamps from the
registers R — T'S(X), and W — T'S(X). Then, the switch
compares 7'S(T;) with X s timestamps and decide whether to
accept or abort the operation as shown in Figure 7(a). If there
is a previously accepted transaction T; on X (I' —T'S > 0),
the switch will fetch T'S(T}) from the register of submitted
transaction, and decide whether to accept or abort the opera-
tion as shown in Figure 7(b).

Write Operation within a transaction. If there is a submitted
transaction 7; with timestamp 7°S(T;) submitted on one of the
cached key-value pairs X, where T; contains a write operation,
the switch will fetch z’s corresponding timestamps. Then,
the switch compares these timestamps and decide whether
to accept or abort the operation as shown in Figure 8. After
the accepted transaction is processed by the storage node, the
storage node sends the transaction back to the switch with a
committed status. The switch uses the value in the packet of
committed transaction to update the value stored on the switch.
So the updated value will be available to other transactions
submitted on the same key-value pair.

Transaction that contains multiple key-value operations
(Tlength > 1) will be accepted if all its key-value op-
erations are accepted, and it will be aborted otherwise. The
transaction could pass by several switches in the path to the
target storage nodes before it is accepted or aborted; as the
requested key-value pairs may be cached on different switches.

D. Query Statistics

In TransKV, the data plane has a query statistics module
to provide query statistics reports to the controller about the
popularity of key-value pairs. Thus, through control plane, the
controller updates the cache on each switch with the most
popular key-value pairs. As shown in Figure 6(f), the switch’s

45

data plane maintains a per-key counter for each key in the
match-action table. Upon each hit for a key, its corresponding
counter is incremented by one. The switch also will notify
the controller about each cache miss, so the controller can
estimate the popularity of non-cached items. The controller
receives reports periodically from the data plane including
these statistics, and resets these counters periodically. Based
on the received statistics, the controller updates the cache and
all registers with the new popular items.

E. Transaction Log Management

One of the main transaction concepts is consistency, which
means that data must be in a consistent state when the trans-
action starts, and when it ends. If a failure happens during the
processing of any transaction, all changes made by that failed
transaction must be undone to guarantee data consistency.
That is why TransKV controller stores a log of all submitted
transactions’ history, this log is used to redo/undo the changes
made by committed/failed transaction. When a transaction is
submitted and reaches the programmable switch, the switch
sends a copy of this transaction to the controller, then the
controller fetches the old data from key-value stores that is
related to the submitted transaction, and finally controller
creates a record for that transaction with the after and before
images, and append this record to the recovery log. If a failure
happens, the controller rolls back all the changes made by
any uncommitted transaction, rolls back also any transaction
that read a value written by the failed transaction (cascading
rollback), and restore the database to a consistent state.

E Transaction Management for non-cached KV Pairs

The programmable switches have a limited on-chip capacity,
so all key-value pairs can not be cached on the switches,
and hence switches can only cache the most popular key-
value pairs, and manage the transactions targeting these cached
data. For other non-cached key-value pairs, the controller
will take the transaction coordination role. The controller
will act as the transaction coordinator described in [7], [28].
The controller checks with each storage node, participating
in the transaction. Each storage node sends its decision of

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 14:57-28 UTC from IEEE Xplore. Restrictions apply.

W-TS(x)

x TS(T,) < W-TS(X} TS(T,] > W-TS{X) iy
abort T; [accept 7; and return value to App |
(a) Tj is the submitted transaction on X
2 W-TS(¥} TS{T;) Tere
TE(T,) < W-TS(X) W-TS(X] = TS(T,) < TS(T,) TE(T,) > T8(T,)

" (* accept T; and retum the current value. " abortT; asthe

* value is still valid for T; and not updated yet by | | value should be
T updated by T, first |

(b) Tj is submitted after T; was accepted

Fig. 7: Acceptance or abortion of Read Operation
whether to accept or reject the transaction, then the controller
aggregates these decisions and sends the final decision back
to the client. Because of the 80/20 rule in data science, we
can see that only 20% of data is accessed 80% of the time
and vise versa. By applying this rule on TransKV, nearly 80%
of submitted transactions will be managed by the switches
and 20% will take the normal path of transaction coordination
via the controller, so the amortized response time for the
transactions will be improved.

V. IMPLEMENTATION

We have implemented a prototype of TransKV, including
all switch data plane and control plane features, described in
Section IV. We have also implemented the client and server
libraries that interface with applications and storage nodes,
respectively, as described in Section III. The switch data plane
is written in P4, and due to lack of real hardware, it is
compiled to the simple software switch BMV2 [2] running
on Mininet [23]. The key size of the key-value pair is 16
bytes with total key range spans from 0 to 2!?%. The cache
lookup table has 64K entries. We used 3 registers for storing
the value, each register has a 64K 16-byte slots with value
granularity of 16 byte and up to 48 bytes. We also used 4
registers, each of them has 64K 4-byte slots: 3 of them for
storing the timestamps of all cached key-value pairs, and the
other register is used to count the access requests of cached
key-value-pairs for query statistics module. The controller is
able to update/read the values of these registers through the
control plane. It also can add/remove key-value pairs to/from
the caching table. The controller is written in Python and can
update the switch data plane through the switch driver by using
the Thrift API generated by the P4 compiler The total on-
chip used memory is around 5SMB leaving enough space for
processing other network operations.

The client and server libraries are written in Python using
Scapy [31] for packet manipulation. The client can translate
a YCSB [4] workload with different distributions and mixed
key-value operations into TransKV packets and send them
through the network. We used Plyvel [27] which is a Python
interface for levelDB [18] as the storage agent. The server
library translates TransKV packets into Plyvel format and
connects to levelDB to perform the key-value pair operations.

V1. PERFORMANCE EVALUATION

This section provides the experimental results of TransKV.
We show the performance improvement of TransKV on the

46

W-TS(¥) R-TS(X) Time
TE{T) < W-TS{¥) and TS{T,) < R-TS(X) | TS[T)> W-TS(X) and TS(T)< R-TS(x) | TS[T)> W-TS(X) and TS([T)> R-TS(X)

abort T; oracceptT; but | °* TR
- ' : abort T, accept T; and push
mnreilsué;dmeﬁhmﬁs | e elxeclrlinn

(a) Tj is the submitted transaction on X

R/W-TS(X) TS{T,) accepted but net executed

¥ TS{T,) = RW-TS(X) RW-TS(X] < TS{T,) = TS(T,) TS{T.} > TS{T,) TI’me
| abortT; oraccept |~ | abortT; unlessT;isputor | * [aacapi‘!‘]
| based on RW-TS(X) delete (Thomas Rule) ikl

(b) T; is submitted after T; was accepted
Fig. 8: Acceptance or abortion of write Operation
key-value operations latency and system throughput.

Experimental Setup. Our experiments consist of eight simple
software switches BMV2 [2] running on Mininet (2 Core
switches, 2 aggregation switches and 4 ToR switches). The
switches are connected together as shown in Figure 6(c). Each
ToR switch is connected to 4 storage nodes with total of 16
storage nodes. Each core switch is connected to 2 clients with
total of 4 clients. Each of the clients runs the client library and
generates the key-value transactional and non-transactional
operations. Each storage node runs the server library and uses
LevelDB as the storage agent. The data is range-partitioned
over the storage nodes, where each storage node is responsible
for handling part of the total key span.

Comparison. We compared our in-switch transaction manage-
ment model (TransKV) with the transaction coordinator model
(we refer to it as Tranx-Coor) shown in [7]. In TransKV, the
hottest key-value pairs are stored on the switch cache. Any
submitted transaction on one of the cached key-value pairs is
managed by the switch. Other non-cached key-value pairs are
managed by TransKV controller which acts as the transaction
coordinator. In Tranx-Coor, The transaction coordinator is
responsible for the coordination among the key-value storage
nodes. Each storage node implements the TSO concurrency
control mechanism to decide whether to accept or reject a
transaction, then the transaction coordinator aggregates these
decisions from the participating nodes and decides whether to
abort or accept the transaction before processing it.

Workloads. We use both uniform and skewed workloads
to measure the performance of TransKV under different
workloads. The skewed workloads follow Zipf distribution
with different skewness parameters (0.95, 0.99, 1.2). These
workloads are generated using YCSB [4] basic database with
16 byte key size and 48 byte value size. The generated data
is stored into files, then parsed by the client library to con-
vert them into TransKV packets. We generate different types
of workloads: transactional and non transactional read-only
workload, transactional write-only workload and transactional
mixed workload with multiple write ratios.

A. Effect on System Throughput

Impact of Read-only Workloads. Figure 9(a) shows the
system throughput under different skewness parameters with
transactional read-only workload. We compare TransKV vs

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 14:57-28 UTC from IEEE Xplore. Restrictions apply.

Uniform Zipf-0.99 Zipi-1.2
Mean 50 Percentile | 99 Percentile Mean 50 Percentile | 99 Percentile Mean 50 Percentile | 99 Percentile
rans A LOTL37 15 L .| .| .| . . A
TransKV 0.07061354 0. 63 | 0.104059825 | 0.063888747 | 0.067531943 | 0.099380732 | 0.053317506 | 0.048128009 | 0.095414464
| Tranx-Coor | 0.076945137 [0.075366497 | 0.104418943 | 0.075576334 | 0.074002504 | 0.104888678 | 0.078707565 | 0.076314449 | 0.111776471
TABLE I: Read Transactions Latency Analysis Under Different Workloads
Uniform Zipf-1.2
Mean 50 Percentile | 99 Percentile Mean 50 Percentile | 99 Percentile
[TransKV 0.081189324 | 0.080517054 | 0.120302806 0.0614705 0.051731467 0.11642298
| Tranx-Coor | 0.080760114 | 0.076931477 | 0.116496080 | 0.080588034 [0.078615069 | 0.114953876
TABLE II: Write Transactions Latency Analysis Under Different Workloads
g g1500 No-Cache Bl skewed workload. This result is because frequent requests to
g ;énzm TV {Geacte) B8 hot data over cold data lead to load imbalance among storage
‘% B nodes; some nodes are heavily congested while others become
E E . under-utilized. This results in a performance degradation of the
o o m whole system and a high tail latency. But using caching on the
= * s =R switch side absorbs the hot key-value queries and increase
et Ik the throughput of the whole system. So we can conclude

(a) Transactional Operations (b) Non Transactional Operations
Fig. 9: Throughput vs Skewness - Read Only

o
TransKV —- S so0 TransKV —
Tranx-Coor -+- 5= Tranx-Coor -+-
i £ 600
e (=]
- -
— 3 400
B ’_zm R Y
5 0 0204 06 08 1 qg;' 0 0204 06 08 1
(a) Uniform (b) Zipf-0.99

Fig. 10: Throughput with Different Write Ratios

Tranx-Coor. As shown in Figure 9(a), TransKV outperforms
Tranx-Coor by minimum of 1.2X in case of uniform workload
and by maximum of 4.4X in case of skewed workload. This
result is because TransK'V manages the transactions for the hot
key-value pairs directly in the switch data plane. It decides
using the TSO whether to accept or reject the transaction,
and eliminates any excessive communication steps between
the transaction coordinator and the storage nodes for decisions
aggregation in case of Tranx-Coor. Moreover, the key-value
pairs are stored on the switch data plane, they are retrieved
directly from the switch without the need to go to the storage
node to fetch the value. Also, when the skewness parameter
increases, the throughput of the system increases; more hits
occur on the switch cache ,and small amount of key-value pair
misses are coordinated through TransKV controller.

Figure 9(b) shows the system throughput under different
skewness parameters for the non-transactional read-only work-
load. We compare the performance of TransKV when it caches
the hottest key-value pairs in the switches without performing
the TSO logic vs the performance of accessing the key-value
pairs normally from the storage nodes without any caching
on the switch side (No Cache). As shown in Figure 9(b),
TransKV also outperforms the No Cache approach by 7%
in case of uniform workload and maximum of 5X in the

from Figure 9(a) and Figure 9(b) that TransKV improves the
throughput of the key-value storage for both the transactional
and non-transactional key-value operations.

Impact of Write Ratio. Figure 10(a) and Figure 10(b) show
the system throughput under uniform and skewed workload
with varying the workload write ratio for transactional Op-
erations. As shown in Figure 10(a) and Figure 10(b), Tran-
sKV outperforms the transaction coordinator (Tranx-Coor)
for both the unifrom and skewed workload by minimum
of15% and maximum of 25% in case of uniform workload
and by minimum of 1.5X and maximum of 3X in case
of skewed workload. This is because the management of
the concurrency control logic in switch data plane and the
elimination of excessive communication steps between the
transaction coordinator and the storage nodes. We can see
also from the same figures that as the workload write ratio
increases, the throughput decreases. This result is because
write requests can’t be completed without writing the value
in the storage node, so that other requests to the same Key-
value pair can see the latest update. So when the write ratio
increases, higher percentage of the requests will travel longer
path to reach the storage node and persist the value which
reduces the throughput of the system.

B. Effect on Key-value Transactions Latency

Figures 11(a), 11(b) and 11(c) show the CDF of read
transactions latency on key-value pairs under uniform, Zipf-
0.99 and Zipf-1.2 workloads, respectively, for TransKV and
Tranx-Coor. The analysis of these three figures is shown in
Table I Figure 11(a) shows that TransKVperforms the same
as the Tranx-Coor with very small latency improvement equals
to 8% on average for the uniform workload; as the effect
of caching significantly degrades when the data is uniformly
accessed, small amount of key-value transactions will be
managed by the switch and other transactions will be man-
aged by TransKVcontroller, which is the normal transaction
coordinator path as well in Tranx-Coor. When the skewness

47

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 14:57-28 UTC from IEEE Xplore. Restrictions apply.

1 1 - 1 [| S ! 1 -
0.75 E 075 E 075 w 075 ——f—1— w 0.75 /
o 05 Tranx-Coor — | [@ 05— Tranx-Coor — | [0 03 O 05— FTranxCoor — | [0 03 1 Tranx-Coor ——
025 17 TransKy —- 0325 — TransKV — 0325 025 | —-—- TransKV — 025 i TransKW —
I L | F. 1 I 1 |
0 005 01 015 D2 1] ao5 @1 a1 a2 0 005 01 015 02 0 005 01 D15 D2
Read L: Read L Write Lal Wirite Late j(zec)
(a) Uniform (b) Zipf-0.99 (c) Zipf-1.2 (d) Uniform (e) Zipf-1.2

Fig. 11: Request Latency (the three left subfigures (a, b and c) represent read latency under different
workloads, and the two right subfigures (d and e) represent write latency under different workloads)

of data increases, the caching effect goes in action with more
hits in the switch cache. This effect makes TransKV out-
performs Tranx-Coor with 15% and 32% on average in the
case of zipf-0.99 workload and zipf-1.2 workload as shown
in Figures 11(b) and 11(c), respectively; as TransKV manages
larger number of transactions using TSO logic in the switch
data plane and decides directly whether to accept or abort
them. This approach makes TransKV avoids the excessive
communications introduced by Tranx-Coor. Moreover, for read
transactions, the transaction can retrieve the value directly
from the switch cache without the need to go to the storage
node to retrieve it.

Figures 11(d) and 11(e) show the CDF of write transactions
latency on key-value pairs under uniform and Zipf-1.2 work-
loads for TransKV and Tranx-Coor. The analysis of these two
figures is shown in Table II. Similar to our observation from
the read latency results, TransKV has no improvement in case
of uniform workload, but TransKV outperforms Tranx-Coor
when the data skewness increases as shown in Figure 11(e);
this is because hit ratio in switch data plane increases, and
TransKV manages the transactions of the cached key-value
pairs directly in the switch. TransKV reduces the latency
by 24% on average and by 34% for the 50" percentile. The
latency improvement in write transactions is less than the read
transactions, because the write transactions need to reach the
storage node to update the value and make it accessible for
other transactions.

VII. RELATED WORK

Distributed Key-value Stores. Key-value storage is widely
used to support lots of large-scale applications. Some key-
value stores manage data in DRAM for faster data access [24],
[25], [28]. Other key-value stores are presistent key-value
stores which save data on presistent storage devices [6],
[17], [18], [30], while other key-value stores use hybrid
storage(DRAM and SSD) [32]. Most key-value stores omit
the transactions because of the negative effect on key-value
store performance, but others [7], [28] use the concept of
transaction coordinator to solve this problem. Also, there
is Wrap [9], a transactional system over key-value store,
that uses a protocol called acyclic transactions for providing
serializable transactions on top of a sharded data store. It
allows multiple transactions to prepare and commit simultane-
ously. TransKV supports transactions in distributed key-value
stores without any extra communications or forwarding steps
introduced by the transaction coordinator.

48

Hardware Acceleration. Emerging hardware is used speed
up the performance of the distributed systems. Some dis-
tributed systems use the programmable switches to improve
their performance like: [15], [19], [21] that use the pro-
grammable switches to balance the load among storage nodes,
NetChain [14] that uses the switches to implement in-network
key-value store, iSwitch [20] which uses the switches to im-
prove the performance of the distributed reinforcement learn-
ing, JoiNS [34] which uses the OpenFlow switches to prioritize
/O packets to meet their latency SLO, Concordia [33], a
distributed shared memory that use the programmable switches
for in-network cache coherence and finally Gotthard [13]
that uses the optimistic concurrency control along with the
programmable switches to cache some transaction results,
and based on that cached history, it aborts some transactions
that are likely to be aborted by the storage server. Gotthard
operates only on a single storage server and single switch.
TransKV uses the TSO for transaction processing on the
switches. It caches the hot key-value pairs on switch’s data
plane to execute the TSO logic and accept or reject transac-
tions directly from network. Moreover, TransKV is scalable to
the data center network with multiple switches and distributed
Key-value nodes.

VIII. CONCLUSION

In this paper, we presented TransKV: a networking support
for transaction processing in distributed key-value stores, that
leverages the power and flexibility of the new programmable
switches to act as a transaction manager. TransKV switches
coordinate between the submitted transactions on the key-
value pairs that are cached on the switch data plane, while
TransKV controller manages the log for restoring the system to
a consistent state after transactions failure. TransKV also takes
the benefit of the data center’s network structure to design a
hierarchical caching mechanism on the switches. We believe
that TransKV can be deployed on the programmable switches
currently integrated in the data center’s network to improve
the performance of distributed key-value stores.

IX. ACKNOWNLEDGEMENT

This work was partially supported by NSF I/UCRC Center
Research in Intelligent Storage and the following NSF awards
1439662, and 1812537.

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 14:57-28 UTC from IEEE Xplore. Restrictions apply.

[

[2]
3]

[4

[5]
[6]

7
[8]
[

[10]

[11]

[12]

[13]

[14]

[13]

[16]

[17]

REFERENCES

Prog. switches in ATT: https://www.sdxcentral.com/articles/news/att-
picks-barefoot-networks-programmable-switches/2017/04/.

P4 Software Switch Website: http:/www.bmv2.org/index.html.

Pat Bosshart, Dan Daly. Glen Gibb, Martin Izzard. Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming Protocol-Independent
Packet Processors. SIGCOMM Comput. Commun. Rev., 44(3):87-95,
July 2014,

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
10, page 143-154, 2010.

Database Ranking categories listed by DB-engine: hitps:/db-
engines.com/en/ranking_categories.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
Highly Available Key-Value Store. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles, SOSP "07, page
205-220, 2007.

Transactions at Amazon DynamoDB: https://docs.aws.amazon.com
/amazondynamodb/latest/developerguide/transactions.html.

Ramez Elmasri et al. Fund. Is of Database Sy . 3rd Edition.
Addison-Wesley-Longman, 2000.

Robert Escriva, Bernard Wong, and Emin Giin Sirer. Warp: Lightweight
Multi-Key Transactions for Key-Value Stores. CoRR, abs/1509.07815,
2015.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to
SDN: An Intellectual History of Programmable Networks. SIGCOMM
Comput. Commun. Rev., 44(2):87-98, April 2014

Google Cloud using P4Runtime to build smart networks:
https://cloud.google. oom.‘blugfpmducts.r‘gcpfgoogle—c]oud -using-
p4runtime-to-build-smart-networks

Natasha Gude, Teemu Koponen, Justm Pettit, Ben Pfaff, Martin Casado,
Nick McKeown, and Scott Shenker. NOX: Towards an Operating System
for Networks. SIGCOMM Comput. Commun. Rev., 38(3):105-110, July
2008.

Theo Jepsen, Leandro Pacheco de Sousa. Huynh Tu Dang, Fernando
Pedone, and Robert Soulé. Gotthard: Network Support for Transaction
Processing. In Proceedings of the Symposium on SDN Research, SOSR
17, page 185-186, 2017.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. NetChain: Scale-Free Sub-
RTT Coordination. In [5th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 3549, Renton, WA, April
2018.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. NetCache: Balancing Key-
Value Stores with Fast In-Network Caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP "17, page 121-136.
2017.

Customers of Popular Key-value stores listed by DB-engine: https://db-
engines.com/en/ranking/key-value+store.

Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev., 44(2):35-40, April
2010.

49

[18]

[19]

[20]

21]

22

[23]
24

[25]

[26]
[27]
[28]
1291
[30]

[31]
[32]

[33]

34

LevelDB: A light-weight single-purpose library for persistent key-value
store, https://github.com/google/leveldb.

Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan R. K. Ports.
Pegasus: Tolerating Skewed Workloads in Distributed Storage with
In-Network Coherence Directories. In I4th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 387-
406. USENIX Association, November 2020.

Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing,
and Jian Huang. Accelerating distributed reinforcement learning with
m—swnch computing. In 2019 ACM/AEEE 46th Annual International

. on Computer Architecture (ISCA), pages 279-291, 2019.

Zaoxmg Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,
Vladimir Braverman, Xin Jin, and Ion Stoica. DistCache: Provable Load
Balancing for Large-Scale Storage Systems with Distributed Caching.
In 17th USENIX Conference on File and Storage Technologies (FAST

J'QJ pﬁ es 143157, Boston,MA Feb 2019 USENIX Association.
Nick McKeown, Tom Anderson, akrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scolx Shenker and Jonathan Turner.

OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM

Comput. Commun. Rev., 38(2):69-74, March 2008.

Mininet Website: http://mininet org/.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-

man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul

Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani.

Scaling Memcache at Facebook. In I0th USENIX Symposium on

Nerworked Systems Design and Implementation (NSDI 13), pages 385

398, Lombard, IL. April 2013.

John Ousterhout, Parag Agrawal. David Erickson, Christos Kozyrakis,

Jacob Leverich, David Maziéres, Subhasish Mitra, Aravind Narayanan,

Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann,

and Ryan Stutsman. The Case for RAMClouds: Scalable High-

Performance Storage Entirely in DRAM. SIGOPS Oper Syst. Rev,

43(4):92-105, January 2010.

P4Runtime: https://p4.org/p4-runtime/.

Python Interface for LevelDB: https://plyvel.readthedocs.iofen/latest/.

S. Sanfilippo and P. Noordhuis, Redis: in-memory Key-value store,

http//redis.io, 2009.

David P. Reed. Implementing Atomic Actions on Decentralized Data.

ACM Trans. Comput. Syst., 1(1):3-23, February 1983.

RocksDB. A facebook fork of leveldb which is optimized for flash and

big memory machines, 2013. https://rocksdb.org.

Scapy: https://scapy.readthedocs.io/en/latest/.

V. Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju,

Andrew Gooding, Rajkumar Iyer, Ashish Shinde, and Thomas Lopatic.

Aerospike: Architecture of a Real-Time Operational DBMS. Proc.

VLDB Endow., 9(13):1389-1400, September 2016.

Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and Jiwu Shu.

Concordia: Distributed Shared Memory with In-Network Cache Coher-

ence. In I9th USENIX Conference on File and Storage Technologies

(FAST 21), pages 277-292. USENIX Association, February 2021.

Hao Wen, Zhichao Cao, Yang Zhang, Xiang Cao, Zigi Fan, Doug

Voigt, and David Du. JoiNS: Meeting Latency SLO with Integrated

Control for Networked Storage. In 2018 IEEE 26th International
posium on Modeling, Analysis, and Simulation of Comp and

lec (MASCOTS). pages 194-200, 2018.

R

= [
ation §

Authonzed licensed use limited to: University of Minnesota. Downloaded on August 25,2023 at 14:57-28 UTC from IEEE Xplore. Restrictions apply.

