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Abstract— This paper investigates the finite-time bounded
control of nonlinear planar systems subject to mismatched
disturbances, where the perturbed uncertainties are relaxed
to nonlinear functions with low-order terms. By revamping the
technique of adding a power integrator and introducing new
coordinates, a systematic Lyapunov method is proposed. This
is achieved by three major mechanisms: (i) for the purpose
of finite-time convergence, a lower-order integral dynamic is
first constructed; (ii) a new structural controller is constructed
to handle the mismatched disturbances; and (iii) a new struc-
tural Lyapunov function is established to provide an effective
estimating tool for analyzing the finite-time boundness of the
considered systems. A simulation example is given to verify the
effectiveness of the proposed controller.

I. INTRODUCTION

It is well-known that planar systems are widely applied
to model various practical systems in circuit analysis, me-
chanical and thermal processes, image processing, and digital
filtering, etc. [1]. As one of the key topics in the control field,
global feedback stabilization of the control systems is a very
practical and some remarkable results have been obtained for
planar systems [2], [3].

In practice, planar systems are often affected by per-
turbed uncertainties and have received fully consideration[4].
When the perturbed uncertainties satisfy linear condition
with known growth rate, the global stabilization problem
has been studied by the backstepping approach [4] and the
static high-gain method [5]. When the perturbed uncertain-
ties satisfy linear condition with unknown growth rate, a
domination approach was proposed in [6] to construct linear
controllers making system states converge to zero. Time-
varying high-gain method has been introduced in [7] to study
the regulation problem. Furthermore, finite-time stability [8]
achieved for control systems has many features such as faster
convergence rates, higher accurateness, as well as better
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disturbance rejection properties [9], [10], [11]. When the per-
turbed uncertainties meet Hölder growth condition, a design
methodology called adding a power integrator was proposed
in [12] to achieve the global finite-time stabilization. The
finite-time stabilization problem was then considered in [13]
via the dynamic gain method, where systems nonlinearities
are dominated by a lower-triangular model with time-varying
gains.

Mismatched disturbances widely exist in various control
engineering systems [14] such as the buck converter system
[15]. Due to the presence of mismatched disturbances, the
aforementioned methods bring great difficulties to control
this kind of systems. In order to tackle the mismatched
disturbances, sliding mode control [14], integral sliding
mode control [16], disturbance observer technique [17] and
extended state observer technique [18] have been proposed.
For example, an integral sliding-mode control approach was
introduced in [16] to tackle system’s mismatched uncertain-
ties. [19] proposed an extended state observer-based sliding
mode control for pulse-width modulation-based DC-DC buck
converter systems subject to mismatched disturbances. Re-
cently, [20] studied the finite-time bounded control problem
of nonlinear planar systems with mismatched disturbances,
but the method of how to design the proposed controllers
and choose these kinds of Lyapunov functions is not given
clearly. Then, the following interesting question arises nat-
urally: is there a systematic method one can adopt to
construct the desired finite-time controllers and choose
the Lyapunov functions correspondingly for nonlinear
planar systems subject to mismatched disturbances?

This work attempts to answer this question. In particular,
inspired by [21], [12], [20], this paper investigates the global
finite-time bounded problem of perturbed planar systems
subject to mismatched disturbances. In comparison with
those relevant existing literatures, this work has the following
two distinctive features. First, in contrast to those relevant
existing works [21], [12], a revamped adding a power in-
tegrator technique is proposed and based on this method,
a controller with a new structure is designed. Moreover, a
robustness analysis of the proposed control strategy is also
given. Second, significantly different from [20], a systematic
Lyapunov method is proposed, and it is shown that a novel
integral controller consisting of a nonlinear integral dynamic
is constructed and the required Lyapunov functions are given
correspondingly. Moreover, the proposed control strategy
can solve the considered systems with the actuator being
undergoing partial loss of effectiveness.

Notations: Define the parameters r1 = 1, r2 =
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r1+⌧
p , r3 = r2 + ⌧ = 1 and � = r2, where

⌧ = q
d with q an even integer and d an odd integer,

p 2 R+
odd satisfying p < 1, and the set R+

odd :=
{m/n| m and n are positive odd intergers}. t 2 R�0

denotes t � 0. Lemmas A.1, A.2 and A.3 can be found
in our previous work [21].

II. PRELIMINARIES

We consider the uncertain nonlinear planar system de-
scribed as follows

(
⇠̇1 = ⇠2 + f1(⇠1) + ✓,

⇠̇2 = b(t, ⇠)u+ f2(⇠1, ⇠2),
(1)

where ⇠ = (⇠1, ⇠2)T 2 R2 and u 2 R are system state
and control input respectively, ✓ is the mismatched and
non-vanishing constant disturbance, f1(⇠1) and f2(⇠1, ⇠2)
are perturbed uncertain functions vanishing at the origin,
and b(t, ⇠) is an unknown function satisfying the following
assumptions.

Assumption 1: There are known constants c1 and c2 such
that

|f1(⇠1)|  c1|⇠1|
p+1
2 , |f2(⇠1, ⇠2)|  c2|⇠1|p. (2)

Assumption 2: There is a continuous function b0(t, ⇠)
such that b(t, ⇠) � b0(t, ⇠) > 0 for all (t, ⇠) 2 R�0 ⇥ R2.

Remark 1: It should be noted that the main results ob-
tained in [20] cannot be applied to finite-time bounded
control system (1) since the existence of b(t, ⇠). Moreover,
it follows from Assumption 2 that system (1) can be viewed
as an extension of a control system with the actuator being
undergoing partial loss of effectiveness when b(t, ⇠) is an
unknown constant belonging to (0, 1) [22].

With the above preliminaries, our control objective is to
propose a systematic Lyapunov method to design integral
controllers for system (1) under Assumptions 1 and 2 to
make all system states finite-time bounded, that is, there is
a finite time t⇤ such that ⇠1 = 0 and ⇠2 = �✓ for t � t⇤.
Therefore, we introduce the following three parts to elaborate
the main results of this paper.

III. A SECOND-ORDER INTEGRATOR SYSTEM

In this section, we motivate our design with the following
second-order integrator system

(
⇠̇1 = ⇠2 + ✓,

⇠̇2 = u,
(3)

which can be used to model the rigid body plant driven
by a force on a smooth surface, where ⇠1 and ⇠2 are the
position and velocity respectively, the input u represents
the acceleration, and ✓ is an unknown, mismatched and
non-vanishing constant disturbance. In order to achieve the
control objective, a desired controller will be proposed by
revamping the adding a power integrator technique [21]. To
this end, the following proposition is first introduced.

Proposition 1: For the control system

ẋ1 = xp
2, ẋ2 = x3, ẋ3 = v (4)

with xi 2 R, i = 1, 2, 3 and v 2 R being system states
and control input respectively, there are positive constants
ai, i = 1, 2, 3 such that the controller

v = �a3
�
a1x1 + a2x

p+1
2

2 + x3

� 2p
p+1 (5)

globally finite-time stabilizes system (4).
Proof. A systematic Lyapunov method is proposed to

design the desired controller and choose the corresponding
Lyapunov functions. To this end, the proof of Proposition 1
is divided into the following four steps.

Step 1. Choose the Lyapunov function

V1 =
r1

2� � ⌧
x

2��⌧
r1

1 . (6)

Taking the time derivative of V1 along system (4) and
constructing the virtual controller

x⇤p
2 = ��1x

r2p
r1
1 = �3x

r2p
r1
1 , (7)

we have V̇1|(4) = �3x2�
1 + x

2��r2p
r1

1 (xp
2 � x⇤p

2 ).
Step 2. First, choose the Lyapunov function

V2 = V1 +W2, W2 =

Z x2

x⇤
2

⇣
s

�
r2 � x

⇤ �
r2

2

⌘ 2��r2�⌧
�

ds. (8)

The time derivative of V2 along system (4) is

V̇2|(4) � 3x2�
1 + x

2��r2p
r1

1 (xp
2 � x⇤p

2 )

+
⇣
x

�
r2
2 � x

⇤ �
r2

2

⌘ 2��r3
�

x⇤
3

+
@W2

@x1
ẋ1 +

⇣
x

�
r2
2 � x

⇤ �
r2

2

⌘ 2��r3
�

(x3 � x⇤
3).

(9)

By the fact p < 1 and Lemma A.1, we have

xp
2 � x⇤p

2  2�⌧

����x
1
r2
2 � x

⇤ 1
r2

2

����
r2p

, (10)

which indicates

x
2��r2p

r1
1

�
xp
2 � x⇤p

2

�
 1

2
x2�
1 + c21

✓
x

1
r2
2 � x

⇤ 1
r2

2

◆2�

(11)

with c21 being a positive constant.
Then, it follows from (7) and Lemmas A.1-A.3 that we

have

|x2|p  2�⌧

����x
1
r2
2 � x

⇤ 1
r2

2

����
r2p

+ �1 |x1|r2p (12)

and

|x2 � x⇤
2|  c

 ����x
1
r2
2 � x

⇤ 1
r2

2

����
r2

+

����x
1
r2
2 � x

⇤ 1
r2

2

����x
⇤
⇣
1� 1

r2

⌘

2

!

(13)
with c being a known positive constant, and it follows from
R x2

x⇤
2

⇣
s

�
r2 �x

⇤ �
r2

2

⌘��r2�⌧
�

ds  2
�⌧
� c

��⌧
�

✓���x
1
r2
2 �x

⇤ 1
r2

2

���
��⌧

+

�
1

1+⌧ (��1)��⌧
�

1

���x
1
r2
2 �x

⇤ 1
r2

2

���
��⌧
� |x1|(��1)��⌧

�

◆
that we obtain

@W2

@x1
ẋ1  1

2
x2�
1 + c22

✓
x

1
r2
2 � x

⇤ 1
r2

2

◆2�

, (14)
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where c22 is a positive constant. Now we construct the virtual
controller

x⇤
3 = ��2

�
x

r3
r2
2 � x

⇤ r3
r2

2

�
(15)

with �2 = 2(��1)(2��1)/�(c21 + c22 + 2) being a positive
constant and substitute (11), (14) and (15) into (9) yielding

V̇2|(4) � 2x2�
1 � �2

⇣
x

�
r2
2 � x

⇤ �
r2

2

⌘ 2��r3
�

✓
x

r3
r2
2 � x

⇤ r3
r2

2

◆

+ (c21 + c22)

✓
x

1
r2
2 � x

⇤ 1
r2

2

◆2�

+
⇣
x

�
r2
2 � x

⇤ �
r2

2

⌘ 2��r3
�

(x3 � x⇤
3).

(16)
It then follows from Lemma A.1 and r3 = 1 that we

can easily obtain ��2

⇣
x

�
r2
2 � x

⇤ �
r2

2

⌘ 2��r3
�
⇣
x

r3
r2
2 � x

⇤ r3
r2

2

⌘


�2(1��) 2��1
� �2�

2

⇣
x

1
r2
2 � x

⇤ 1
r2

2

⌘2�
, which makes (16) be

rewritten as

V̇2|(4) � 2x2�
1 � 2

✓
x

1
r2
2 � x

⇤ 1
r2

2

◆2�

+
⇣
x

�
r2
2 � x

⇤ �
r2

2

⌘ 2��r3
�

(x3 � x⇤
3).

Step 3. Choose the following function

W3(x1, x2, x3) =

Z x3

x⇤
3

l(x1, x2, s)ds, (17)

where l(x1, x2, s) =

✓
s� �2x

⇤ r3
r2

2

◆3��2

+

✓
�2x

r3
r2
2

◆3��2

is a continuous function with respect to x1, x2 and s.
We first introduce the following proposition whose proof

can be found in the Section VIII.
Proposition 2: W3(x1, x2, x3) is a positive C1 function.

It follows from Proposition 2 that the time derivative of V3 =
V2 +W3 along system (4) is

V̇3|(4) � 2x2�
1 � 2

✓
x

1
r2
2 � x

⇤ 1
r2

2

◆2�

+
⇣
x

�
r2
2 � x

⇤ �
r2

2

⌘ 2��r3
�

(x3 � x⇤
3)

+ l(x1, x2, x3)v +
2X

i=1

@W3

@xi
ẋi.

(18)

It follows from (13), (15) and Lemmas A.1-A.3 that we have
⇣
x

�
r2
2 � x

⇤ �
r2

2

⌘ 2��r3
�

(x3 � x⇤
3)

 1

3

✓
x

1
r2
2 � x

⇤ 1
r2

2

◆2�

+ c31 (x3 � x⇤
3)

2� ,

(19)

where c31 is a positive constant.
Then, it follows from (7), (12), (13) and (15), and Lemmas

A.1-A.3 that we have
2X

i=1

@W3

@xi
ẋi 

2

3
x2�
1 +

2

3

✓
x

1
r2
2 � x

⇤ 1
r2

2

◆2�

+c32 (x3 � x⇤
3)

2� ,

(20)

where c32 is a positive constant. Now we choose the con-
troller

v = ��3 (x3 � x⇤
3)

2�� = ��3

�
x3 + �2x

1
r2
2 + �

1
r2
1 �2x1

�2��

(21)
with �3 = 23��3(c31+c32+1) and substitute (19), (20) and
(21) into (18), we have

V̇3|(4) � x2�
1 �

✓
x

1
r2
2 � x

⇤ 1
r2

2

◆2�

� �3l(x1, x2, x3)(x3 � x⇤
3)

2��

+ (c31 + c32)(x3 � x⇤
3)

2�.

(22)

Similarly, it follows from Lemma A.1 and r3 = 1 that we
have ��3l(x1, x2, x3)(x3�x⇤

3)
2��  �23�3��3(x3�x⇤

3)
2� ,

which indicates

V̇3|(4)  �x2�
1 �

✓
x

1
r2
2 � x

⇤ 1
r2

2

◆2�

� (x3 � x⇤
3)

2�. (23)

Thus, we have proven that system (4) can be globally
asymptotically stabilized by controller (21).

Step 4. We will prove that all states of the closed-loop
system (4)-(21) converge to the origin in a finite time [8].

It follows from (6), (8), (17) and Lemmas A.1-A.3 that
we can easily obtain
8
>>>><

>>>>:

V
2�

2��⌧

1  �1|x1|2�,

W
2�

2��⌧

2  �2|x1|2� + �3
⇣
x

1
r2
2 � x

⇤ 1
r2

2

⌘2�
,

W
2�

2��⌧

3  �4|x1|2� + �5
⇣
x

1
r2
2 � x

⇤ 1
r2

2

⌘2�
+ �6(x3 � x⇤

3)
2�,

where 2�
2��⌧ < 1 and �i, i = 1, . . . , 6 are positive constants.

Thus, we finally arrive at

V̇4|(4)  ��

✓
V

2�
2��⌧

1 +W
2�

2��⌧

2 +W
2�

2��⌧

3

◆
 ��V

2�
2��⌧

4 ,

where � is a positive constant. Then, we can see that

0  V4(t)
1� 2�

2��⌧  V4(0)
1� 2�

2��⌧ � �

✓
1� 2�

2� � ⌧

◆
t

for t  t⇤ = V4(0)
1� 2�

2��⌧

�(1� 2�
2��⌧ )

and V4(t) = 0, for t � t⇤.
Therefore, all states of the closed-loop system will converge
to the origin in a finite time.

Based on Proposition 1, we state the following theorem.
Theorem 1: There are positive constants ai, i = 1, 2, 3

such that the following integral controller
8
<

:
u = �a3

⇣
a1⇠0 + a2⇠

p+1
2

1 + ⇠2
⌘ 2p

p+1

,

⇠̇0 = ⇠p1

(24)

makes system (3) finite-time bounded.
Proof. Define

8
>><

>>:

x1 = ⇠0 �
✓

a1
,

x2 = ⇠1,

x3 = ⇠2 + ✓,

(25)
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and it follows from the new coordinates (25) that the closed-
loop system (3) and (24) can be converted into (4) and (5).
Then, by Proposition 1, we can find constants ai, i = 1, 2, 3
such that system (3) is globally finite-time bounded under
controller (24), that is, there is a finite time t⇤ determined
in Proposition 1 such that ⇠1 = 0 and ⇠2 = �✓ for t � t⇤.

IV. THE PERTURBED UNCERTAIN PLANAR SYSTEMS

In this section, we consider the case when system (3) is
affected by the perturbed uncertainties, that is,

(
⇠̇1 = ⇠2 + f1(⇠1) + ✓,

⇠̇2 = u+ f2(⇠1, ⇠2),
(26)

where f1(⇠1) and f2(⇠1, ⇠2) satisfy Assumption 1. By Propo-
sition 1 and Theorem 1 that we can state the following
theorem.

Theorem 2: Under Assumption 1, there are constants
ai, i = 1, 2, 3 such that the integral controller (24) makes
system (3) finite-time bounded.

Proof. It follows from the new coordinates (25) that
system (26) satisfying Assumption 1 can be converted into

8
><

>:

ẋ1 = xp
2,

ẋ2 = x3 + f1(⇠1),

ẋ3 = u+ f2(⇠1, ⇠2).

(27)

Next, we will prove Theorem 2 based on Proposi-
tion 1. By Proposition 1, we have v = u. Due to
the existence of f1(⇠1) in system (27), there exists a

term
⇣
x

�
r2
2 � x

⇤ �
r2

2

⌘ 2��r3
�

f1(⇠1) in (9), and the terms
l(x1, x2, x3)f2(⇠1, ⇠2) and @W3

@x2
f1(⇠1) in (18), and it then

follows from Assumption 1 that the estimate of these terms
is given as follows
⇣
x

�
r2
2 � x

⇤ �
r2

2

⌘ 2��r3
�

f1(·)  x2�
1 + c23

⇣
x

1
r2
2 � x

⇤ 1
r2

2

⌘2�
, (28)

l(·)f2(·)  c33
⇣
x2�
1 +

⇣
x

1
r2
2 � x

⇤ 1
r2

2

⌘2�
+ (x3 � x3)

2�
⌘

(29)

and
@W3

@x2
f1(·)  c34

⇣
x2�
1 +

⇣
x

1
r2
2 � x

⇤ 1
r2

2

⌘2�
+ (x3 � x3)

2�
⌘
.

(30)
Therefore, by Proposition 1, we can rechoose constants
ai, i = 1, 2, 3 such that system (26) satisfying Assumption
1 is globally finite-time bounded under controller (24), that
is, there is a finite time t⇤ such that ⇠1 = 0 and ⇠2 = �✓ for
t � t⇤.

Remark 2: Based on the homogeneous system theory
[23], [24], [25], it should be noted that a system needs a
negative homogeneous degree to achieve finite-time conver-
gence. Thus, a nonlinear integral auxiliary equation ⇠̇0 = ⇠p1
with p < 1 is proposed in this paper. However, when
p < 1, the proposed controller using traditional adding a
power integrator approach [21] cannot be used to handle
the unknown, mismatched and non-vanishing constant dis-
turbance ✓. Therefore, the novel controller based on new

chosen Lyapunov functions is constructed in Theorem 1 to
tackle the mismatched disturbance.

Furthermore, in the case when p = 1 for the introducing
integral term, the following corollary can be easily obtained.

Corollary 1: Under Assumption 1, there are constants
ai, i = 1, 2, 3 such that the following integral controller

(
u = �a3(a1⇠0 + a2⇠1 + ⇠2),

⇠̇0 = ⇠1
(31)

makes system (3) asymptotically bounded.

V. MAIN RESULTS

We recall the system (1) satisfying Assumptions 1 and 2
of interest. It follows from Proposition 1, and Theorems 1
and 2 that we can now state our main result.

Theorem 3: Under Assumptions 1 and 2, there are con-
stants ai, i = 1, 2, 3 such that the following integral
controller8

><

>:
u = � a3

b0(t, ⇠)

⇣
a1⇠0 + a2⇠

p+1
2

1 + ⇠2
⌘ 2p

p+1

,

⇠̇0 = ⇠p1

(32)

makes system (1) finite-time bounded.
Proof. In order to achieve the proof of Theorem 3, we

aim to prove that Proposition 1 holds for system (4) when
the input is infected by b(t, ⇠). It follows from the new
coordinates (25) and the proof of Proposition 1 and (18)
that we can easily have

V̇3 � x2�
1 �

✓
x

1
r2
2 � x

⇤ 1
r2

2

◆2�

+ b(t, ⇠)l(x1, x2, x3)v

+ (c31 + c32) (x3 � x⇤
3)

2� .
(33)

It follows from Assumption 2 that we can design the con-
troller

v =� �3

b0(t, ⇠)
(x3 � x⇤

3)
2��

=� �3

b0(t, ⇠)

✓
x3 + �2x

1
r2
2 + �

1
r2
1 �2x1

◆2�� (34)

with �3 = 23��3(c31+c32+1). Then, substituting controller
(34) into (33), (22) is satisfied, which implies that Proposition
1 holds. Finally, it follows from Assumption 1 and the proof
of Theorem 2 that we can achieve the proof of Theorem 3.

Now, we proceed to discuss the robustness of the proposed
control strategy for the uncertain nonlinear planar systems

(
⇠̇1 = ⇠2 + f1(⇠1) + ✓,

⇠̇2 = b(t, ⇠)u+ f2(⇠1, ⇠2) +4(t),
(35)

where the perturbation 4(t), t 2 R�0 is uniformly bounded
with a known constant 4̄, i.e., |4 (t)|  4̄.

It follows from (25), Assumptions 1 and 2, and the proof
of Proposition 1, and Theorems 2 and 3 that we can have

l(·)4 (·) c35
⇣
x2�
1 +

⇣
x

1
r2
2 � x

⇤ 1
r2

2

⌘2�
+ (x3 � x3)

2�
⌘

+ �̂2|4̄|
2p

p+1
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with c35 being a positive constant, which further indicates

V̇4  ��̂1V
2�

2��⌧

4 + �̂2|4̄|
2p

p+1 (36)

under controller (32) with gains ai, i = 1, 2, 3, where �̂1
and �̂2 are known positive constants. It then follows from
(36) and [26] that the states of system (35) under controller
(32) converges into a bounded region in finite-time. Thus,
the proposed control strategy is robust to 4(t).

VI. AN EXAMPLE

To show the feasibility of the proposed control strategy,
we apply it to the following example

(
⇠̇1 = ⇠2 + d(t)sin(⇠1) + ✓,

⇠̇2 = b(t, ⇠)u,
(37)

where ✓ is the mismatched disturbance, d(t) is an unknown
satisfying |d(t)|  1. It can be verified that |d(t)sin(⇠1)| 
|⇠1|

11
13 satisfying Assumption 1 with c1 = 1 and p = 9

13 .
It follows from Theorem 3 that we can construct the

integral controller as follow
8
><

>:

u = � a3
b0(t, ⇠)

⇣
a1⇠0 + a2⇠

11
13
1 + ⇠2

⌘ 9
11

,

⇠̇0 = ⇠
9
13
1 .

(38)

Since the existence of b(t, ⇠) in system (37), the control
strategy proposed in [20] cannot be used to solve the finite-
time bounded control of system (37). Moreover, in order to
verify the effectiveness of the proposed controller (38), we
compare it with the following conventional controller

8
><

>:

u = � a3
b0(t, ⇠)

⇣
a1⇠

13
11
0 + a2⇠1 + ⇠

13
11
2

⌘ 9
13

,

⇠̇0 = ⇠
9
13
1 ,

(39)

which is designed in our previous work [12].
The simulations results are shown in Figs. 1-3, where the

parameters are chosen as b(t, ⇠) = 3
2+sin(⇠1), d(t) = sin(t),

a1 = 1, a2 = 3 and a3 = 50 with (⇠0, ⇠1, ⇠2) = (1, 3,�1).
More specifically, it follows from Fig. 1 that all states
of system (37) under controller (38) with the mismatched
disturbance ✓ = 0 converge to zero before 10s, which
indicates that the proposed control strategy is still valid
for the systems without mismatched constant disturbances.
When ✓ = 5, it follows from Fig 2 that we can see that
under controller (38), the states ⇠0 and ⇠2 are bounded and
finite-time convergent to the mismatched disturbance ✓ and
�✓ respectively due to the constant a1 = 1 and the state ⇠1 is
finite-time convergent to zero before 10s. However, from Fig
3, we can see that under controller (39), all states of system
(37) oscillates, which indicates that the previous controller
(39) is invalid for the system (37) with mismatched constant
disturbances.

0 5 10 15

Time(s)

-10

-5

0

5

Fig. 1. Trajectories of system (37) under controller (38) with ✓ = 0.
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Fig. 2. Trajectories of system (37) under controller (38) with ✓ = 5.
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Fig. 3. Trajectories of system (37) under controller (39) with ✓ = 5.

VII. CONCLUSION

This paper has proposed a new approach to design
finite-time integral controllers to make all states of uncer-
tain nonlinear planar systems with mismatched disturbances
bounded. Compared to traditional control methods to tackle
mismatched disturbances, our proposed controller have a
simple structure and does not rely on designing an observer
for the mismatched disturbances. Owing to the use of a
homogeneous integral element and a new structural Lya-
punov function, the system states will be bounded, and the
mismatched disturbances can be recovered from the integral
state in a finite time.
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VIII. APPENDIX

Proof of Proposition 2. By definition (17) and from
3��2
r2

> 1, it is clear that

@W3(x1, x2, x3)/@x3 = l(x1, x2, x3). (40)

Then, similar to [27], denote

41 = (x1 +4, x2), 42 = (x1, x2 +4), X2 = (x1, x2)

and consider the limit as shown below

lim
4!0

W3(x1 +4, x2, x3)�W3(x1, x2, x3)

4

= lim
4!0

R x⇤
3(X2)

x⇤
3(41)

l(x1 +4, x2, s)ds

4

+ (3� � 2)�
1

r2p

1 �2

Z x3

x⇤
3

✓
s� �2x

⇤ r3
r2

2

◆3��3

ds.

Observe that������

R x⇤
3(X2)

x⇤
3(41)

l(x1 +4, x2, s)ds

4

������


����

✓
x⇤
3(X2)� �2x

⇤ r3
r2

2 (41)

◆3��2

+

✓
�2x

r3
r2
2

◆3��2 ����

⇥
����
x⇤
3(X2)� x⇤

3(41)

4

���� .

(41)

Using (7) and (15), it is clear that x⇤
3(x1, x2) is C1 with

respect to x1. Hence, it follows from the inequality above
that lim

4!0

R x⇤
3(X2)

x⇤
3(41)

l(x1 +4, x2, s)ds/4 = 0.
On the other hand, we can easily have

lim
4!0

W3(x1, x2 +4, x3)�W3(x1, x2, x3)

4

= lim
4!0

R x⇤
3(X2)

x⇤
3(42)

l(x1, x2 +4, s)ds

4

+
3� � 2

�
�3��2
2 x

2��2
�

2 (x3 � x⇤
3)

and observe that
���
R x⇤

3(X2)
x⇤
3(42)

l(x1, x2 +4, s)ds/4
��� 

�3��2
2

����
�
(x2 +4)

3��2
� � x

3��2
�

2

�
/4

����|x
⇤
3(X2)� x⇤

3(42)|.
By means of the fact p < 1 and Lemma A.3, we

can easily have lim
4!0

R x⇤
3(X2)

x⇤
3(42)

l(x1, x2 + 4, s)ds/4 = 0

Consequently, from (40) and (41), W3(x1, x2, x3) is C1

because of continuity of @W3
@xi

, i = 1, 2, 3.

Furthermore, let v = s � �2x
⇤ r3

r2
2 and we have W3 =

R x3��2x
⇤ r3
r2

2

��2x

r3
r2
2

 
v3��2 +

✓
�2x

r3
r2
2

◆3��2
!
dv, which indicates

W3 � 0. Thus, we have proven that W3 is a positive C1

function.
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