Model Counting meets Distinct Elements

[Extended Abstract]

A. Pavane
lowa State University

Arnab Bhattacharyya®
National University of
Singapore

ABSTRACT

Constraint satisfaction problems (CSPs) and data stream
models are two powerful abstractions to capture a wide va-
riety of problems arising in different domains of computer
science. Developments in the two communities have mostly
occurred independently and with little interaction between
them. In this work, we seek to investigate whether bridging
the seeming communication gap between the two communi-
ties may pave the way to richer fundamental insights. To this
end, we focus on two foundational problems: model count-
ing for CSPs and distinct elements estimation (also known
as zeroth frequency moments (Fp)) for data streams.

Our investigations lead us to observe striking similarity
in the core techniques employed in the algorithmic frame-
works that have evolved separately for model counting and
Fo computation. We design a recipe for translation of algo-
rithms developed for Fp estimation to that of model count-
ing, resulting in new algorithms for model counting. We then
observe that algorithms in the context of distributed stream-
ing can be transformed to distributed algorithms for model
counting. We next turn our attention to viewing streaming
from the lens of counting and show that framing Fy estima-
tion as a special case of #DNF counting allows us to obtain
a general recipe for a rich class of streaming problems, which
had been subjected to case-specific analysis in prior works.

I’CO;EMMQJQE’EEQNObZemS (CSP’s) and the data

stream model are two core themes in computer science with
a diverse set of applications in topics including probabilis-
tic reasoning, networks, databases, and verification. Model
counting and computation of zeroth frequency moment (Fp)
are fundamental problems for CSPs and the data stream

The extended version of this paper, titled “Model Count-

ing Meets Fp Estimation”, appeared in the Proceedings
of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, Virtual Event, China,
June 20-25, 2021. ACM 2021, ISBN 978-1-4503-8381-3.
https://dl.acm.org/doi/10.1145/3452021.3458311

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

N. V. Vinodchandran@
University of Nebraska,
Lincoln

Kuldeep S. Meel
National University of
Singapore

model respectively. This paper is motivated by our observa-
tion that despite the usage of similar algorithmic techniques
for the two problems, the developments in the two commu-
nities have, surprisingly, evolved separately, and rarely has
a paper from one community been cited by the other.

Given a set of constraints ¢ over a set of variables in a
finite domain D, the problem of model counting is to esti-
mate the number of solutions of ¢. We are often interested
when ¢ is restricted to a special class of representations such
as Conjunctive Normal Form (CNF) and Disjunctive Nor-
mal Form (DNF). A data stream over a domain [N] is rep-
resented by a = (a1,az2, - ,am) where each item a; is a
subset of [N]. The zeroth frequency moment, denoted as Fo,
of a is the number of distinct domain elements appearing
in a, i.e., | U; a;] (traditionally, a;s are singletons; we will
also be interested in the case when a;s are sets). The funda-
mental nature of model counting and Fy computation over
data streams has led to intense interest from theoreticians
and practitioners alike in the respective communities for the
past few decades.

The starting point of this work is the confluence of two
viewpoints. The first viewpoint contends that some of the
algorithms for model counting can conceptually be thought
of as operating on the stream of the solutions of the con-
straints. The second viewpoint contends that a stream can
be viewed as a DNF formula, and the problem of estimating
the number of distinct elements is similar to model counting.
These viewpoints make it natural to believe that algorithms
developed in the streaming setting can be directly applied
to model counting, and vice versa. We explore this connec-
tion and indeed design new algorithms for model counting
inspired by algorithms for estimating the number of distinct
elements in data streams. By exploring this connection fur-
ther, we design new algorithms to estimate Fy for stream-
ing sets that are succinctly represented by constraints. It
is worth noting that the two communities focus on seem-
ingly different efficiency objectives: in streaming algorithms,
space complexity is of major concern while in the context of
model counting, time (especially NP query complexity in
the context of CNF formulas) is of primary concern. There-
fore, it is striking to observe that our transformation recipe
leads to the design of efficient algorithms for Fj estimation
as well as model counting wherein efficient is measured by
the concern of the corresponding community. We further
investigate this observation and demonstrate that the space

complexity of streaming algorithms provides an upper bound
on the query complexity of model counting algorithms.

To put our contributions in context, we briefly survey the
historical development of algorithmic frameworks in both
model counting and distinct element estimation and point
out the similarities.

Model Counting

The complexity-theoretic study of model counting was ini-
tiated by Valiant who showed that this problem, in gen-
eral, is #P-complete [32]. This motivated researchers to
investigate approximate model counting and in particular
to design (g, d)-approximation schemes. The complexity of
approximate model counting depends on its representation.
When the model ¢ is represented as a CNF formula ¢, de-
signing an efficient (e, §)-approximation is NP-hard [30]. In
contrast, when it is represented as a DNF formula, model
counting admits an FPRAS (fully polynomial-time approx-
imation scheme) [21, 22]. We will use #CNF to refer to the
case when ¢ is a CNF formula and #DNF to refer to the
case when ¢ is a DNF formula.

For #CNF, Stockmeyer [30] provided a hashing-based ran-
domized procedure that can compute an (g, d)-approximation
with running time poly(|¢|,1/e,1/6), given access to an NP
oracle. Building on Stockmeyer’s approach and motivated
by the unprecedented breakthroughs in the design of SAT
solvers, researchers have proposed a series of algorithmic im-
provements that have allowed the hashing-based techniques
for approximate model counting to scale to formulas involv-
ing hundreds of thousands of variables. The practical imple-
mentations substitute the NP oracle with a SAT solver. In
the context of model counting, we are primarily interested in
time complexity and therefore, the number of NP queries is
of key importance. The emphasis on the number of NP calls
also stems from practice as the practical implementation of
model counting algorithms have shown to spend over 99%
of their time in the underlying SAT calls [29].

Karp and Luby [21] proposed the first FPRAS scheme
for #DNF, which was improved in subsequent works [22,
9]. Chakraborty, Meel, and Vardi [5] demonstrated that
the hashing-based framework can be extended to #DNF,
thereby providing a unified framework for both #CNF and
#DNF. Meel, Shrotri, and Vardi [24, 25] subsequently im-
proved the complexity of the hashing-based approach for
#DNF and observed that hashing-based techniques achieve
better scalability than Monte Carlo techniques.

Distinct Elements Estimation

Estimating (g, d)-approximation of the k™ frequency mo-
ments (Fj) of a stream is a central problem in the data
streaming model [1]. In particular, considerable work has
been done in designing algorithms for estimating the 0"
frequency moment (Fp), the number of distinct elements in
the stream. For streaming algorithms, the primary resource
concerns are space complexity and processing time per ele-
ment. In general, for a streaming algorithm to be considered
efficient, these should be poly(log IV, 1/¢) where N is the size
of the universe (we assume § to be a small constant and ig-
nore O(log($)) factors in this discussion).

The first algorithm for computing Fy with a constant
factor approximation was proposed by Flajolet and Mar-
tin, who assumed the existence of hash functions with ideal
properties resulting in an algorithm with undesirable space

complexity [15]. In their seminal work, Alon, Matias, and
Szegedy designed an O(log N) space algorithm for Fy with a
constant approximation ratio that employs 2-universal hash
functions [1]. Subsequent investigations into hashing-based
schemes by Gibbons and Tirthapura [16] and Bar-Yossef,
Kumar, and Sivakumar [3] provided (e, §)-approximation al-
gorithms with space and time complexity log N - poly(2).
Later, Bar-Yossef et al. proposed three algorithms with im-
proved space and time complexity [2]. While the three al-
gorithms employ hash functions, they differ conceptually in
the usage of relevant random variables for the estimation of
Fy. This line of work resulted in the development of an al-
gorithm with optimal space complexity O(log N + E%) and
O(log N) update time to estimate the Fy of a stream [20].

The above-mentioned works are in the setting where each
data item a; is an element of the universe. Subsequently,
there has been a series of results of estimating Fy in rich
scenarios with a particular focus to handle the cases a; C
{1,2,---, N} such as a list or a multidimensional range [3,
26, 31].

The Road to a Unifying Framework

As mentioned above, the algorithmic developments for model
counting and Fp estimation have largely relied on the us-
age of hashing-based techniques and yet these developments
have, surprisingly, been separate, and rarely has a work from
one community been cited by the other. In this context, we
wonder whether it is possible to bridge this gap and if such
an exercise would contribute to new algorithms for model
counting as well as for Fy estimation? The main concep-
tual contribution of this work is an affirmative answer to
the above question. First, we point out that the two well-
known algorithms; Stockmeyer’s #CNF algorithm [30] that
is further refined by Chakraborty et al. [5] and Gibbons and
Tirthapura’s Fy estimation algorithm [16], are essentially
the same.

The core idea of the hashing-based technique of Stock-
meyer’s and Chakraborty et al’s scheme is to use pairwise
independent hash functions to partition the solution space
(satisfying assignments of a CNF formula) into roughly equal
and small cells, wherein a cell is small if the number of so-
lutions is less than a pre-computed threshold, denoted by
Thresh. Then a good estimate for the number of solutions
is the number of solutions in an arbitrary cell X number of
cells. To determine the appropriate number of cells, the so-
lution space is iteratively partitioned as follows. At the m!"
iteration, a hash function with range {0,1}™ is considered
resulting in cells h™*(y) for each y € {0,1}™. An NP ora-
cle can be employed to check whether a particular cell (for
example A1 (0™)) is small by enumerating solutions one by
one until we have either obtained Thresh+1 number of solu-
tions or we have exhaustively enumerated all the solutions.
If the cell A~'(0™) is small, then the algorithm outputs ¢ x2™
as an estimate where ¢ is the number of solutions in the cell
R™1(0™). If the cell A~1(0™) is not small, then the algo-
rithm moves on to the next iteration where a hash function
with range {0,1}™"" is considered.

We now describe Gibbons and Tirthapura’s algorithm for
Fo estimation which we call the Bucketing algorithm. With-
out loss of generality, we assume that N is a power of two
thus identify [N] with {0,1}". The algorithm maintains a
bucket of size Thresh and starts by picking a hash function
h: {0,1}" — {0,1}". It iterates over sampling levels. At

level m, when a data item x comes, if h(z) starts with 0™,
then x is added to the bucket. If the bucket overflows, then
the sampling level is increased to m + 1 and all elements
x in the bucket other than the ones with h(z) = 0™ are
deleted. At the end of the stream, the value ¢ x 2™ is output
as the estimate where ¢t is the number of elements in the
bucket and m is the sampling level.

These two algorithms are conceptually the same. In the
Bucketing algorithm, at the sampling level m, it looks at
only the first m bits of the hashed value; this is equivalent
to considering a hash function with range {0,1}™. Thus the
bucket is nothing but all the elements in the stream that
belong to the cell ~*(0™). The final estimate is the number
of elements in the bucket times the number of cells, identical
to Chakraborty et al.’s algorithm. In both algorithms, to
obtain an (g,0) approximation, the Thresh value is chosen
as O(Zz). To reduce the error probability to 1/4,the median
of O(log §) independent estimations is output.

Our Contributions

Motivated by the conceptual identity between the two al-
gorithms, we further explore the connections between algo-
rithms for model counting and Fj estimation.

First, we formalize a recipe to transform streaming algo-
rithms for Fy estimation to those for model counting. Such a
transformation yields new (g, d)-approximate algorithms for
model counting, which are different from currently known
algorithms. Our transformation recipe from Fj estimation
to model counting allows us to view the problem of the de-
sign of distributed #DNF algorithms through the lens of
distributed functional monitoring that is well studied in the
data streaming literature.

Building on the connection between model counting and
Fy estimation algorithms, we design new algorithms to es-
timate Fy over structured set streams where each element
of the stream is a (succinct representation of a) subset of
the universe. Thus, the stream is Si,S2,--- where each
Si C [N] and the goal is to estimate the Fy of the stream,
i.e. the size of U;S;. In this scenario, the goal is to design
algorithms whose per-item time (time to process each S;)
is poly-logarithmic in the size of the universe. Structured
set streams that are considered in the literature include 1-
dimensional and multidimensional ranges [26, 31]. Several
interesting problems, including max-dominance norm [6] and
counting triangles in graphs [3], can be reduced to comput-
ing Fy over such ranges.

We observe that several structured sets can be represented
as small DNF formulae and thus Fy counting over these
structured set data streams can be viewed as a special case
of #DNF. Using the hashing-based techniques for #DNF,
we obtain a general recipe for a rich class of structured sets
that include DNF sets, affine spaces, and multidimensional
ranges. Prior work on structured sets had to rely on in-
volved analysis for each of the specific instances, while our
work provides a general recipe for both analysis and imple-
mentation.

A natural question that arises from the transformation
recipe is the relationship between the space complexity of
the streaming algorithms and the query complexity of the
obtained model counting algorithms. We establish a rela-
tionship between these two quantities by showing that the
space complexity is an upper bound on the query complex-
ity.

2.wNOTATION. universe [N]={0,1}".

Fy Estimation: A data stream a over domain [N] can be rep-
resented as a = a1, a2, ...,a, wherein each item a; € [N].
Let a, = U;{a;}. Fo of the stream a is |a,|. We are inter-
ested in a probably approximately correct scheme that returns
an (g, 0)-estimate c of Fp, i.e., Pr [Ilj_“gl <ec<(1+ E)|au|] >
1-06.

Model Couting: Let X = {z1, 22, ...,z } be aset of Boolean
variables. For a Boolean formula ¢ over variables X, let
Sol(p) denote the set of all satisfying assignments of ¢. The
propositional model counting problem is to compute |Sol(p)]
for a given formula . As in the case of Fy, we are interested
in a probably approximately correct algorithm that takes as
inputs a formula ¢, a tolerance ¢ > 0, and a confidence
d € (0,1], and returns a (e,d)-estimate ¢ of |Sol(p)] i.e.,

Pr [l < ¢ < (14 &)[Sol(¢)[] > 1 6.

14¢

k-wise Independent hash functions: Let n,m € Nand H(n,m) £
{h:{0,1}" — {0,1}™} be a family of hash functions map-
ping {0,1}" to {0,1}™.

DEFINITION 1. A family of hash functions H(n,m) is k-
wise independent, denoted Hi-wise(n,m), if Yai,a2,..., 00 €
{0,1}™, for all distinct x1,x2, ...z, € {0,1}",

heHP(fhm)[(h(m) = a1)A(h(z2) = a2) ... (h(zk) = ar)] = S

Explicit families. An explicit hash family that we use is
Hoeplitz(1, M), which is known to be 2-wise independent [4].
The family is defined as follows: Hroeplitz (12, m) S {h:{0,1}" —
{0,1}™} is the family of functions of the form h(x) = Az+b
with A € Fy**™ and b € F3**!, and F is the finite field of size
2. For a hash function h: {0,1}" — {0,1}™, he: {0,1}" —
{0,1Y, ¢ € {1,...,m}, is the function where h¢(y) is the
first ¢ bits of h(y).

3 *As ERQMt&IREM g &QeQQQIN)TLh\LGhree

hashing-based algorithms proposed in Bar-Yossef et al [2].
Their first algorithm, the Bucketing algorithm discussed above,
is a modification of an Fj estimation algorithm due to Gib-
bons and Tirthapura [16]. The second algorithm, which we
call Minimum, is based on the idea that if we hash all the
items of the stream, then O(1/£®)-th minimum of the hash
values can be used to compute a good estimate of Fy. The
third algorithm, which we call Estimation, chooses a set of k
functions, {h1, ha, ..., hx}, such that each h; is picked ran-
domly from an O(log(1/e))-independent hash family. For
each hash function hj;, we say that h; is not lonely if there
exists a; € a such that hj(a;) = 0. One can then estimate
Fp of a by estimating the number of hash functions that are
not lonely.

Algorithm 1, called ComputeF0, presents the overarching
architecture of the three proposed algorithms. The architec-
ture of ComputeF0 is fairly simple: it chooses a collection of
hash functions using ChooseHashFunctions, calls the subrou-
tine ProcessUpdate for every incoming element of the stream
and invokes ComputeEst at the end of the stream to return
the Fp approximation.

ChooseHashFunctions. As shown in Algorithm 2, the hash
functions depend on the strategy being implemented. The
subroutine PickHashFunctions(?,t) returns a collection of ¢

independently chosen hash functions from the family H. We
use H to denote the collection of hash functions returned,
this collection is viewed as either a 1-dimensional array or
as a 2-dimensional array. When H is a 1-dimensional ar-
ray, H[i] denotes the ith hash function of the collection and
when H is a 2-dimensional array HJ[i][j] is the [¢, j]th hash
function.

ProcessUpdate. For a new item x, the update of S, as shown
in Algorithm 3 is as follows:

Bucketing For a new item z, if H[i]m,(x) = 0™, then we
add it to S[¢] if x is not already present in S[¢]. If the
size of S[i] is greater than Thresh (which is set to be
O(1/€?)), then we increment the m; as in line 8.

Minimum For a new item z, if H[i](z) is smaller than max S[i],
then we replace max S[i] with H[i](x).

Estimation For a new item x, compute z = TrailZero(H i, j](z)),
i.e, the number of trailing zeros in H[i, j|(z), and re-
place S[i, 7] with z if z is larger than S[i, j].

ComputeEst. Finally, for each of the algorithms, we esti-
mate Fy based on the sketch S as described in the sub-
routine ComputeEst presented as Algorithm 4. It is crucial
to note that the estimation of Fy is performed solely using
the sketch S for the Bucketing and Minimum algorithms.
The Estimation algorithm requires an additional parameter
r that depends on a loose estimate of Fp.

Algorithm 1 ComputeF0(n, g, §)

: Thresh « 96/&>
: t < 35log(1/6)
H < ChooseHashFunctions(n, Thresh, t)
S —{}
while true do
if EndStream then exit;
x + input()
ProcessUpdate(S, H, x, Thresh)
: Est < ComputeEst(S, Thresh)
: return Est

OL X PO w

—_

Sketch Properties. For each of the three algorithms, their

corresponding sketches can be viewed as arrays of size 351og(1/4).

The parameter Thresh is set to 96/¢2.

Bucketing The element S[i] is a tuple (¢;, m;) where ¢; is
a list of size at most Thresh, where ¢; = {z € a |
Hli]m,;(x) = 0™}, We use S[i](0) to denote ¢; and
S[i](1) to denote m;.

Minimum Each S[i] holds the lexicographically Thresh many
smallest elements of {H[i](z) | = € a}.

Estimation Each S[i] holds a tuple of size Thresh. The j’th
entry of this tuple is the largest number of trailing
zeros in any element of H|[i, j](a).

3.5 A Recipe: Eox, Transformation,. final compu-

tation of Fy estimation depends on the sketch S. Therefore,
as long as for two streams a and &, if their corresponding
sketches (and the hash functions chosen) match, then the

Algorithm 2 ChooseHashFunctions(n, Thresh, t)

1: switch AlgorithmType do

2 case AlgorithmType==Bucketing

3 H < PickHashFunctions(Hoepiitz(12, 1), t)

4 case AlgorithmType==Minimum

5: H < PickHashFunctions(Hoeplitz(7, 31), t)

6 case AlgorithmType==Estimation

7 s+ 10log(1/¢)

8 H + PickHashFunctions(Hs—wise(n,n),t X

Thresh)
return H

Algorithm 3 ProcessUpdate(S, H, z, Thresh)

1: for i € [1,|H]|] do
2 switch AlgorithmType do
3 case Bucketing
4: m; = S[i](0)
5: if H[i]m,(z) == 0™ then
6: S[i)(0) « S[i](0) U {z}
7 if size(S[é](0)) > Thresh then
8: S[i)(1) + S[i)(1) + 1
9: for y € S do
10: if H[i]m,+1(y) # 0™ then
11: Remove(S[i](0),y)
12: case Minimum
13: if size(S[i]) < Thresh then
14: S[i].Append(H [i](x))
15: else
16: j < arg max(S[i])
17: if S[i](7) > H[i](x) then
18: S[i](j) + H[i](x)
19: case Estimation
20: for j € [1, Thresh] do
21: Si, §] < max(S[i, j], TrailZero(H[i, j](z)))
22: return S

three schemes presented above would return the same esti-
mates. The recipe for a transformation of streaming algo-
rithms to model counting algorithms is based on the follow-
ing insight:

1. Capture the relationship P(S, H, a,,) between the sketch
S, set of hash functions H, and set a, at the end of
stream.

2. View the formula ¢ as symbolic representation of the
unique set a, represented by the stream a such that

Sol(y) = ay.

3. Given a formula ¢ and set of hash functions H, de-
sign an algorithm to construct sketch S such that the
property P(S, H,Sol(¢)) holds. Using the sketch S,
|Sol(¢)| can be estimated.

By applying the above recipe to the three Fy estima-
tion algorithms, we can derive corresponding model count-
ing algorithms. In particular, applying the above recipe to
the Bucketing algorithm leads us to the state of the art
hashing-based model counting algorithm, ApproxMC, pro-
posed by Chakraborty et al. [5]. Applying the above recipe
to Minimum and Estimation allows us to obtain different
model counting schemes. In this extended abstract we illus-
trate this transformation for the Minimum-based algorithm.

Algorithm 4 ComputeEst(S, Thresh)

Algorithm 5 ApproxModelCountMin(yp, €, §)

1: switch AlgorithmType do
2: case Bucketing

return Median ({size(S[i}(O)) x 25 }Z)

case Minimum

. Threshx 2™
return Median (m}z)

case Estimation(r)
n(1— 1 Thresh i i>r
return Median ({1 (1 i 2y 23" {51051 >7) })

In(1—2—7)

3.2 Example Application of Recipe: Minimum-

We Jﬁ%@&!ﬁ!g%Mion of the recipe in the context

of minimum-based algorithm. For a given multiset a (e.g.:
a data stream or solutions to a model), we now specify the
property P(S, H,a,) as follows: The sketch S is an array of
sets indexed by members of H that holds lexicographically
p minimum elements of H[i](a,) where p is min(%3, |a,|). P
is the property that specifies this relationship.

The following lemma due to Bar-Yossef et al. [2] estab-
lishes the relationship between the property P and the num-
ber of distinct elements of a multiset. Let max(S;) denote
the largest element of the set S;.

LEMMA 1. [2] Let a C {0,1}" be a multiset. Let H C
Hroeplitz(12, 1) where each H|i] is independently drawn from
Hroeplitz(n,m), and |H| = O(log1/§). Let S be such that

P(S, H,ay) holds. Let c = Median {ﬁ;z])}z Then
2| <c< (1+e)ay| >1-04.
(I4+e) = — -

Therefore, we can transform the Minimum algorithm for
Fo estimation to that of model counting given access to a
subroutine that can compute S such that P(S, H, Sol(y))
holds. The following proposition establishes the existence
and complexity of such a subroutine, called FindMin.

PropoOSITION 1. There is an algorithm FindMin that, given

@ over n variables, h € Hroeplitz(n,m), and p as input, re-
turns a set, B C h(Sol(y)) so that if |h(Sol(p))| < p, then
B = h(Sol(y)), otherwise B is the p lexicographically mini-
mum elements of h(Sol(y)). Moreover, if ¢ is a CNF for-
mula, then FindMin makes O(p - m) calls to an NP oracle,
and if ¢ is a DNF formula with k terms, then FindMin takes
O(m? - n-k-p) time.

Equipped with Proposition 1, we are now ready to present
the algorithm, called ApproxModelCountMin, for model count-
ing. Since the complexity of FindMin is PTIME when ¢ is in
DNF, we have ApproxModelCountMin as a FPRAS for DNF
formulas.

THEOREM 1. Given @, €,5, ApproxModelCountMin returns
Est such that

Pr ('510'7&)‘ < Bst<(1 +e)\50l(s0)|) >1-0.

If ¢ is a CNF formula, then ApproxModelCountMin is a
polynomial-time algorithm that makes O(Znlog(5)) calls to

an NP oracle. If p is a DNF formula, then ApproxModelCountMin

is an FPRAS.

1: t + 35log(1/90)

2: H < PickHashFunctions(Hoepiitz (12, 312), t)
3 S+ {}

4: Thresh «+ Z—S

5: for i € [1,¢] do

6: S[¢] < FindMin(p, H|[i], Thresh)

7: Est + Median ({% .

8: return E'st

We now give a proof of Proposition 1 by describing the
subroutine FindMin.

PRrROOF. We first present the algorithm when the formula
@ is a DNF formula. Adapting the algorithm for the case
of CNF can be done by using similar ideas. Let ¢ = T} V
TV ---V T, be a DNF formula over n variables where T is
a term. Let h: {0,1}" — {0,1}™ be a linear hash function
in Hroeplitz(n, m) defined by a m x n binary matrix A. Let
C be the set of hashed values of the satisfying assignments
for p: C = {h(z) | z = ¢} € {0,1}™. Let C, be the first
p elements of C in the lexicographic order. Our goal is to
compute Cp.

We illustrate an algorithm with running time O(m>np)
to compute C, when the formula is just a term 7. This
algorithm can easily be generalized to formulas with k-terms.
Let T be a term with width w (number of literals) and C =
{Az | z = T}. By fixing the variables in T we get a vector
br and an N X (n —w) matrix Ar so that C = {Arx + br |
z € {0,1}")}, Both Ar and br can be computed from
A and T in linear time. Let hp(z) be the transformation
Arx + br.

We will compute C, iteratively as follows: assuming we
have computed the (¢—1)*" minimum of C, we will compute
the ¢* minimum using a prefix-search strategy. We will use
a subroutine to solve the following basic prefix-search primi-
tive: Given any [bit string y1 ...y, is therean z € {0,1}"~
so that y1 ...y is a prefix for some string in {hr(x)}? This
task can be performed using Gaussian elimination over an
(I+1) X (n — w) binary matrix and can be implemented in
time O(I*(n — w)).

Let y = y1 ... Ym be the (¢g—1)""* minimum in C. Let r1 be
the rightmost 0 of y. Then using the above-mentioned pro-
cedure we can find the lexicographically smallest string in
the range of hr that extends yi ...y—1)1 if it exists. If no
such string exists in C, find the index of the next 0 in y and
repeat the procedure. In this manner the ¢** minimum can
be computed using O(m) calls to the prefix-searching prim-
itive resulting in an O(m®n) time algorithm. Invoking the
above procedure p times results in an algorithm to compute
Cp in O(mPnp) time. [

3'éon&§mbm@bg€zsg%ﬁy@ng counting. In this

setting, there are k sites that can each communicate with a
central coordinator. The input DNF formula ¢ is parti-
tioned into £ DNF subformulas ¢1, ..., @k, where each ¢; is
a subset of the terms of the original ¢, with the j’th site re-
ceiving only ¢;. The goal is for the coordinator to obtain an
(e, 0)-approximation of the number of solutions to ¢, while
minimizing the total number of bits communicated between
the sites and the coordinator. Distributed algorithms for
sampling and counting solutions to CSP’s have been stud-

)th

ied recently in other models of distributed computation [12,
11, 13, 14]. From a practical perspective, given the central-
ity of #DNF in the context of probabilistic databases [28,
27], a distributed DNF counting algorithm would entail ap-
plications in distributed probabilistic databases.

From our perspective, distributed DNF counting falls within

the distributed functional monitoring framework formalized
by Cormode et al. [7]. Here, the input is a stream a which is
partitioned arbitrarily into sub-streams ai,...,ax that ar-
rive at each of k sites. Each site can communicate with the
central coordinator, and the goal is for the coordinator to
compute a function of the joint stream a while minimizing
the total communication. This general framework has sev-
eral direct applications and has been studied extensively (see
[8, 18, 33] and the references therein). In distributed DNF
counting problem, each sub-stream a; corresponds to the set
of satisfying assignments to each subformula ¢;, while the
function to be computed is Fp.

The algorithms discussed in Section 3 can be extended to
the distributed setting. We briefly describe the distributed
implementation of the minimum based algorithm.

Distributed implementation of the minimum-based algorithm.
The coordinator chooses hash functions H[1],..., H[t] from
Hoeplitz(1, 3n) and sends them to the k sites. Each site runs
the FindMin algorithm for each hash function and sends the
outputs to the coordinator. So, the coordinator receives
sets S[i, j], consisting of the Thresh lexicographically small-
est hash values of the solutions to ¢;. The coordinator then
extracts S[i], the Thresh lexicographically smallest elements
of S[i,1] U --- U S[i, k] and proceeds with the rest of algo-
rithm ApproxModelCountMin. The communication cost is
O(kn/e? - log(1/8)) to account for the k sites sending the
outputs of their FindMin invocations. The time complexity
for each site is polynomial in n, e 7!, and log(6™").

A straightforward implementation of the Bucketing algo-
rithm leads to a distributed DNF counting algorithm whose
communication cost is O(k(n + 1/¢2) - log(1/6)) and time
complexity per site is polynomial in n, ¢!, and log(6™1).
Similarly, the estimation based algorithm leads to a dis-
tributed algorithm with O(k(n 4 1/£%)1log(1/6)) communi-
cation cost. However, we do not know a polynomial time
algorithm to implement the last algorithm on DNF terms.

Lower Bound

The communication cost for the Bucketing and Estimation-
based algorithms is nearly optimal in their dependence on
k and e. Woodruff and Zhang [33] showed that the ran-
domized communication complexity of estimating Fy up to
a 1 4 ¢ factor in the distributed functional monitoring set-
ting is Q(k/e?). We can reduce the Fy estimation problem to
distributed DNF counting. Namely, if for the Fy estimation
problem, the j’th site receives items a1, ..., am € [IN], then
for the distributed DNF counting problem, ¢; is a DNF
formula on [log, N| variables whose solutions are exactly
ai,...,am in their binary encoding. Thus, we immediately
get an Q(k/e?) lower bound for the distributed DNF count-
ing problem. Finding the optimal dependence on N for
k > 1 remains an interesting open question.

4.1 EROMi&QUNTINGEQ S TREAMING ing

model where each item S; of the stream is a succinct rep-
resentation of a set over the universe U = {0,1}". Our

goal is to design efficient algorithms (both in terms of mem-
ory and processing time per item) for computing | U; S| -
the number of distinct elements in the union of all the sets
in the stream. We call this problem Fy computation over
structured set streams. We discuss two types of structured
sets DNF Sets and Affine Spaces. As we mentioned in the
introduction, other structured sets studied in the literature
are single and multi-dimensional ranges. Our techniques
also give algorithms for estimating Fo of such structured set
streams, which we omit in this extended abstract.

DNEF Sets

A particular representation we are interested in is where
each set is presented as the set of satisfying assignments to
a DNF formula. Let ¢ be a DNF formula over n variables.
Then the DNF set corresponding to ¢ be the set of satisfy-
ing assignments of ¢. The size of this representation is the
number of terms in the formula p. A stream over DNF sets
is a stream of DNF formulas ¢1, 2, Given such a DNF
stream, the goal is to estimate || J; Si| where S; the DNF set
represented by ;. This quantity is the same as the number
of satisfying assignments of the formula V;p;. We show that
the algorithms described in the previous section carry over
to obtain (e,) estimation algorithms for this problem with
space and per-item time poly(1/e, n, k,log(1/d)) where k is
the size of the formula.

THEOREM 2. There is a streaming algorithm to compute
an (¢,0) approzimation of Fo over DNF sets. This algorithm
takes space O(% -log §) and processing time Oo(n* - k- -
log §) per item where k is the size (number of terms) of the
corresponding DNF formula.

PROOF. We show how to adapt the Minimum-value based
algorithm from Section 3.2 to this setting. The algorithm
picks a hash function h € Hroeplitz(, 3n) and maintains the
set B consisting of ¢ lexicographically minimum elements of
the set {h(Sol(¢1V...Vp;—1))} after processing ¢ — 1 items.
When ¢; arrives, it computes the set B’ consisting of the
t lexicographically minimum values of the set {h(Sol(y;))}
and subsequently updates B by computing the ¢ lexicograph-
ically smallest elements from B U B’. By Proposition 1, the
computation of B’ can be done in time O(n* - k - t) where
k is the number of terms in ¢;. Updating B can be done
in O(t - n) time. Thus, the update time for the item ¢;
is O(n* - k - t). For obtaining an (e, §)-approximation, we
set t = O(Zz) and repeat the procedure O(log §) times and
take the median value. Thus the update time for item ¢ is
o(n* k- E% -log §). For analyzing space, each hash function
uses O(n) bits and and the algorithm stores O(Z) mini-
mums, resulting in overall space usage of O(Z - log 1). The
proof of correctness follows from Lemma 1. []

Instead of the Minimum-value based algorithm, we could
also adapt the Bucketing-based algorithm to obtain an al-
gorithm with similar space and time complexities.

Affine Spaces

Another example of a structured stream is where each item
of the stream is an affine space represented by Ax = B where
A is a Boolean matrix and B is a zero-one vector. Without
loss of generality, we may assume that A is a n X n matrix.
Thus an affine stream consists of (41, B1), (A2, B2), - -, where
each (A;, B;) succinctly represents a set {z € {0,1}" | A;xz =

B;}. Here operations are over the finite field of size 2. For
a n X n Boolean matrix A and a zero-one vector B, let
Sol({A, B)) denote the set of all x that satisfy Az = B.

PROPOSITION 2. Given (A, B), h € Hroeplitz(1,3n), and t
as input, there is an algorithm, AffineFindMin, that returns a
set, B C h(Sol((A, B))) so that if |h(Sol({A, B)))| < t, then
B = h(Sol({A, B))), otherwise B is the t lexicographically
minimum elements of h(Sol((A, B))). The time taken by this
algorithm is O(n4t) and the space taken by the algorithm is
O(tn).

The above proposition together with the minimum-based
algorithm gives the following theorem.

THEOREM 3. There is a streaming algorithm that com-
putes a (¢, d)-approzimation of Fy over affine spaces. This
algorithm takes space O(Z5 -log(1/6)) and processing time
of O(n4€i2 log(1/9)) per item.

5. RELATING SKETCH SPACE COMPLEX-
Oul T ANDNE QUERY & OMBLEXI T cen

algorithms for Fy estimation and model counting that are of
interest to two different communities. It is noteworthy that
the two communities often have different concerns: in the
context of model counting, one is focused on the NP-query
complexity while in the context of streaming, the focus is
on the space complexity. This begs the question of whether
the connections are a matter of happenstance or there is an
inherent relationship between the space complexity in the
context of streaming and the query complexity for model
counting. We detail our investigations on the existence of
such a relationship.

In the following, we will fold the hash function h also in
the sketch S. With this simplification, instead of writing
P(S, h,Sol(p)) we write P(S, Sol(p)).

We first introduce some complexity-theoretic notation. For
a complexity class C, a language L belongs to the complexity
class 3 C if there is a polynomial ¢(-) and a language L' € C
such that for every z, x € L < 3y, |y| < q(|z]), (z,y) € L'.

Consider a streaming algorithm for Fy that constructs a
sketch such that P(S,a,) holds for some property P using
which we can estimate |ay|, where the size of S is poly-
logarithmic in the size of the universe and polynomial in
1/e. Now consider the following Sketch-Language

Lsketeh = {{¢,S) | P(S,Sol(p)) holds}.

THEOREM 4. If Lsketcr belongs to the complexity class C,
then there exists a FP?C model counting algorithm that es-
timates the number of satisfying assignments of a given for-
mula . The number of queries made by the algorithm is
bounded by the sketch size.

Let us apply the above theorem to the minimum-based
algorithm. The sketch language consists of tuples of the
form (g, (h,v1,--- ,v:)) where {v1,--- v} is the set of ¢ lex-
icographically smallest elements of the set h(Sol(¢)). It can
be see that this language is in coNP. Since 3 - coNP is
same as the class ¥, we obtain a F Py algorithm. Since
t = O(1/€*) and h maps from n-bit strings to 3n-bit strings,
it follows that the size of the sketch is O(n/e?). Thus the
number of queries made by the algorithm is O(n/e?).

Interestingly, all the model counting algorithms that were
obtained following our recipe are probabilistic polynomial-
time algorithms that make queries to languages in NP. The
above generic transformation gives a deterministic polynomial-
time algorithm that makes queries to a ¥¥ language. Pre-
cisely characterizing the properties of the sketch that lead
to probabilistic algorithms making only NP queries is an
interesting direction to explore.

6.0 CONGLANON ANREUTURE QUILLOOK

over two decades of work in model counting and Fy estima-
tion. The viewpoint presented in this work has the potential
to spur several new interesting research directions.

Higher Moments. There has been a long line of work on
estimation of higher moments, i.e. F} over data streams. A
natural direction of future research is to adapt the notion
of F} in the context of model of counting and explore its
applications. We expect extensions of the framework and
recipe presented in this work to derive algorithms for higher
frequency moments in the context of model counting.

Sparse XORs. In the context of model counting, the perfor-
mance of underlying SAT solvers strongly depends on the
size of XORs. The standard constructions lead to XORs of
size ©(n) and an interesting line of research has focused on
the design of sparse XOR-based hash functions [17, 19, 10]
culminating in showing that one can use hash functions of
the form h(z) = Az + b wherein each entry of the m-th row
of A is 1 with probability O(@%) [23]. Such XORs were
shown to improve the runtime efficiency. In this context,
a natural direction would be to explore the usage of sparse
XORs in the context of Fy estimation.

Acknowledgements

We thank the anonymous reviewers of PODS 21 for valuable
comments. We are grateful to Phokion Kolaitis for suggest-
ing exploration beyond the transformation recipe that led to
results in Section 5. We thank Wim Martens for providing
valuable suggestions on an earlier version of the manuscript.
Bhattacharyya was partly supported by an MOE Tier 2
grant [MOE2019-T2-1-152]. Meel was supported in part
by the NRF Fellowship Programme[NRF-NRFFAI1-2019-
0004] and the AI Singapore Programme [AISG-RP-2018-
005], and NUS ODPRT Grant [R-252-000-685-13]. Vinod
was partly supported by NSF CCF-2130608, NSF CCF-
184908 and NSF HDR:TRIPODS-1934884 awards. Pavan
was partly supported by NSF CCF-2130536, NSF CCF-
1849053 and NSF HDR:TRIPODS-1934884 awards.

7['1] PRELEE,&EM:QiEﬂSand M. Szegedy. The space
complexity of approximating the frequency moments.
J. Comput. Syst. Sci., 58(1):137-147, 1999.

[2] Z. Bar-Yossef, T. S. Jayram, R. Kumar,

D. Sivakumar, and L. Trevisan. Counting distinct
elements in a data stream. In Proc. of RANDOM,
volume 2483, pages 1-10, 2002.

[3] Z. Bar-Yossef, R. Kumar, and D. Sivakumar.
Reductions in streaming algorithms, with an
application to counting triangles in graphs. In Proc. of
SODA, pages 623-632. ACM/SIAM, 2002.

[4] J. L. Carter and M. N. Wegman. Universal classes of
hash functions. In Proceedings of the ninth annual

15

[16]

[20]

[21]

ACM symposium on Theory of computing, pages
106-112. ACM, 1977.

S. Chakraborty, K. S. Meel, and M. Y. Vardi.
Algorithmic improvements in approximate counting
for probabilistic inference: From linear to logarithmic
SAT calls. In Proc. of IJCAI, 2016.

G. Cormode and S. Muthukrishnan. Estimating
dominance norms of multiple data streams. In G. D.
Battista and U. Zwick, editors, Proc. of ESA, volume
2832 of Lecture Notes in Computer Science, pages
148-160. Springer, 2003.

G. Cormode, S. Muthukrishnan, and K. Yi.
Algorithms for distributed functional monitoring.
ACM Transactions on Algorithms (TALG), 7(2):1-20,
2011.

G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang.
Continuous sampling from distributed streams.
Journal of the ACM (JACM), 59(2):1-25, 2012.

P. Dagum, R. Karp, M. Luby, and S. Ross. An
optimal algorithm for monte carlo estimation. STAM
Journal on computing, 29(5):1484-1496, 2000.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman.

Low-density parity constraints for hashing-based
discrete integration. In Proc. of ICML, pages 271-279,
2014.

W. Feng, T. P. Hayes, and Y. Yin. Distributed
symmetry breaking in sampling (optimal distributed
randomly coloring with fewer colors). arXiv preprint
arXiw:1802.06953, 2018.

W. Feng, Y. Sun, and Y. Yin. What can be sampled
locally? Distributed Computing, pages 1-27, 2018.
W. Feng and Y. Yin. On local distributed sampling
and counting. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing,
pages 189-198, 2018.

M. Fischer and M. Ghaffari. A simple parallel and
distributed sampling technique: Local glauber
dynamics. In 32nd International Symposium on
Distributed Computing, 2018.

P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput.
Syst. Sci., 31(2):182-209, 1985.

P. B. Gibbons and S. Tirthapura. Estimating simple
functions on the union of data streams. In A. L.
Rosenberg, editor, Proc. of SPAA, pages 281-291.
ACM, 2001.

C. P. Gomes, J. Hoffmann, A. Sabharwal, and

B. Selman. From sampling to model counting. In Proc.

of IJCAI pages 2293-2299, 2007.

Z. Huang, K. Yi, and Q. Zhang. Randomized
algorithms for tracking distributed count, frequencies,
and ranks. In Proc. of PODS, pages 295-306, 2012.
A. Ivrii, S. Malik, K. S. Meel, and M. Y. Vardi. On
computing minimal independent support and its
applications to sampling and counting. Constraints,
pages 1-18, 2015.

D. M. Kane, J. Nelson, and D. P. Woodruff. An
optimal algorithm for the distinct elements problem.
In Proc. of PODS, pages 41-52. ACM, 2010.

R. Karp and M. Luby. Monte-carlo algorithms for
enumeration and reliability problems. Proc. of FOCS,

(22]

23]

24]

(25]

(26]

27]

28]

29]

(30]

(31]

32]

(33]

1983.

R. M. Karp, M. Luby, and N. Madras. Monte-carlo
approximation algorithms for enumeration problems.
Journal of Algorithms, 10(3):429 — 448, 1989.

K. S. Meel and S. Akshay. Sparse hashing for scalable
approximate model counting: Theory and practice. In
Proc. of LICS, 2020.

K. S. Meel, A. A. Shrotri, and M. Y. Vardi. On
hashing-based approaches to approximate
dnf-counting. In In Proc. of FSTTCS, 2017.

K. S. Meel, A. A. Shrotri, and M. Y. Vardi. Not all
fprass are equal: Demystifying fprass for dnf-counting
(extended abstract). In Proc. of IJCAI 8 2019.

A. Pavan and S. Tirthapura. Range-efficient counting
of distinct elements in a massive data stream. STAM
J. Comput., 37(2):359-379, 2007.

C. Ré and D. Suciu. Approximate lineage for
probabilistic databases. Proceedings of the VLDB
Endowment, 1(1):797-808, 2008.

P. Senellart. Provenance and probabilities in relational
databases. ACM SIGMOD Record, 46(4):5-15, 2018.
M. Soos and K. S. Meel. Bird: Engineering an efficient
cnf-xor sat solver and its applications to approximate
model counting. In Proceedings of AAAI Conference
on Artificial Intelligence (AAAI)(1 2019), 2019.

L. Stockmeyer. The complexity of approximate
counting. In Proc. of STOC, pages 118-126, 1983.

S. Tirthapura and D. P. Woodruff. Rectangle-efficient
aggregation in spatial data streams. In Proc. of
PODS, pages 283-294. ACM, 2012.

L. Valiant. The complexity of enumeration and
reliability problems. SIAM Journal on Computing,
8(3):410-421, 1979.

D. P. Woodruff and Q. Zhang. Tight bounds for
distributed functional monitoring. In Proceedings of
the forty-fourth annual ACM symposium on Theory of
computing, pages 941-960, 2012.

