10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

Title: Relatedness within colonies of three North American species of carpenter ants (Subgenus:

Camponotus) and a comparison with relatedness estimates across Formicinae

Brandon A. Meadows', Mateen Emad", Jack P. Hruska', Jesus Silva', Garrett J. Behrends",
Jennifer C. Girén?, Joseph D. Manthey'-

'Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA

2Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, USA

*Corresponding author email: jdmanthey@gmail.com

Keywords: ants, relatedness, genomics, Formicinae, museum genomics

Running Head: Genomic relatedness in three Camponotus species



27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52

ABSTRACT

Understanding a haplodiploid species’ social structure and quantifying relatedness among
individuals are both important when designing sampling schemes or identifying potential biases
in population genetics studies. However, it is not always possible to accurately identify social
structure of study species in the field, or to collect large numbers of individuals from a single
colony to estimate relatedness with methods that rely on accurate estimation of allele
frequencies. Here, we assessed the utility of allele frequency-free inference of relationships in
haplodiploid ant colonies, while using limited sample sizes. Using genome-wide single
nucleotide polymorphism data, we measured intracolony relatedness and kinship estimates
consistent with full sister relationships among workers in three Nearctic species: Camponotus
herculeanus, C. laevissimus, and C. modoc. Notably, the allele frequency-free inference of
relationships clearly demonstrated these full sister relationships without ambiguity; this result
suggests the utility of these methods for identifying closely related individuals in population
genetics studies of haplodiploid organisms. We additionally performed a literature review of
relatedness estimates in the subfamily Formicinae both as a compiled resource and to place our
results in context within this larger clade of ants. Our results suggestive of Camponotus colonies
founded by a lone singly mated queen are consistent with previously published relatedness

estimates in the genus Camponotus that have generally shown high intra-colony relatedness.
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INTRODUCTION

The reproductive strategies of ants are varied; colonies may have one or multiple reproductive
females (monogyny and polygyny, respectively), and these females may have mated with one
(monandry) or multiple partners (polyandry) (Boomsma 2007, 2009). Understanding social
structure is particularly important when designing sampling schemes or identifying potential
biases in population genetics studies (Rosenberg and Nordborg 2006). When species’ specific
social organization is not available in the literature or easily assessed by excavating colonies,
using genetic methods to estimate relatedness and/or kinship among individuals in or between
colonies may provide insight about a given colony’s or species’ social structure.

However, a relatively small proportion of ant species have estimates of genetic
relatedness in the literature; in particular, the ant subfamily Formicinae is diverse, with 51 extant
genera and 3030 described species (Ward, et al. 2016), but only a small fraction of genera and
species within this complex have estimates of genetic relatedness in the literature (Appendix 1).
As such, researchers that want to study population genetics, adaptation, or speciation in
understudied eusocial species may desire estimates of kinship and/or relatedness of their
samples. Because it is not always possible or feasible to extract large colonies to count queens
or obtain large sample sizes per colony (e.g., when utilizing museum collections), methods able
to identify whether samples are closely related while using small sample sizes are necessary.

Most methods for estimating relatedness have utilized large sample sizes with various
genotyping information among individuals (Queller and Goodnight 1989), including genotypes
measured from variation in allozymes, microsatellites, and single-nucleotide polymorphisms
(SNPs). However, most methods for relatedness estimation require the availability of or ability to
infer accurate population allele frequencies (Waples, et al. 2019). Recently, Waples and
colleagues (2019) demonstrated that three allele-frequency free ratios measured from pairwise

biallelic SNP panels could accurately identify parent-offspring or sibling relationships in diploid



79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

organisms. This allele-frequency free method has the potential utility to identify closely related
females in haplodiploid ant colonies, even with limited sample sizes.

Here, we used small sample sizes and whole-genome sequencing in three Camponotus
species in the subgenus Camponotus—C. herculeanus, C. laevissimus, and C. modoc—to
address the effectiveness of large SNP panels to estimate relatedness and kinship. We chose
these three species for several reasons: (1) these species have either no intracolony genetic
relatedness estimates published in the literature or none from the Nearctic (see C. herculeanus
reference below). (2) The nest structure of this subgenus is suggestive of monogynous colonies
(Akre, et al. 1994; Fowler 1986; Pricer 1908), and this generality is supported by one
relatedness study in Palearctic colonies of C. herculeanus (Seppa and Gertsch 1996). This sets
up our expectations of finding full sisters in intracolony sampling. Finally, (3) these species are
some of the focal taxa in our research program for future population genomics and genome
evolution studies, and it will be useful to know if we can identify closely related individuals, even
when including small sample sizes for any given population or species.

Overall, our goals for this study are threefold. First, we aimed to determine whether
allele-frequency free methods could clearly identify full sisters within colonies with low sample
sizes. Second, we aimed to assess the correlation between allele-frequency free kinship
estimates with genetic relatedness measures that use estimated allele frequencies. Third, we
compiled genetic relatedness estimates in the Formicinae from the literature (1) as a resource
for future studies looking at genetic relatedness in this group, (2) to identify whether patterns of
relatedness exhibited phylogenetic signal, and (3) to place the relatedness estimates from our

three focal species in context with previous studies.

METHODS

Sampling, lab work, and sequencing
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For this study, we sampled three colonies each from three Camponotus species: C.
herculeanus, C. laevissimus, and C. modoc (Table 1). Within species, all colonies had a
minimum of 400 km distance between them. All colony identification numbers in Table 1 are
associated with voucher specimens housed in the Invertebrate Zoology Collection of the Natural
Science Research Laboratory, Museum of Texas Tech University. Specimens were identified
using a combination of known habitat associations and published keys (Mackay 2019).

We used six major worker ant specimens per colony for genetic analyses. Whole ant
specimens were destructively sampled by pulverization with liquid nitrogen, followed by DNA
extraction with a QIAGEN (Hilden, Germany) DNeasy blood and tissue kit per manufacturer
recommendations. We used an Invitrogen (Carlsbad, California) Qubit to quantify DNA
extractions, followed by concentration standardization. We sent standardized DNA extractions
to the Texas Tech University Center for Biotechnology and Genomics for standard lllumina
shotgun sequencing library creation. Sequencing libraries were checked via quantitative PCR
and a trial sequencing run on an lllumina MiSeq (nano run). After quality checks, the samples

were sequenced on a partial lane of an S4 flow cell on an lllumina NovaSeq6000.

Genotyping and variant filtering

We quality filtered our raw sequencing data using the ‘bbduk’ command of the bbmap package
(Bushnell 2014). We extracted mitochondrial DNA (mtDNA) reads using the ‘bbsplit command
from the bbmap package and several Formicinae mitochondrial genomes (Table S1). We
aligned our filtered reads to a Camponotus sp. reference genome (Manthey, et al. 2022) using
the ‘BWA-MEM’' command in BWA (Li and Durbin 2009). We used samtools v1.4.1 (Li, et al.
2009) to convert the BWA output SAM file to BAM format and measure sequencing coverage
depth per individual. Next, we used the Genome Analysis Toolkit (GATK) v4.1.0.0 (McKenna, et

5
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al. 2010) to clean, sort, and add read groups to the BAM files. To genotype our samples, we
used GATK in three steps: (1) genotype each individual (function: ‘HaplotypeCaller’), (2) create
a database for each chromosomal segment (function: ‘GenomicsDBImport’), and (3) group
genotype all individuals together (function: ‘GenotypeGVCFs’). We then used VCFtools v0.1.14
(Danecek, et al. 2011) to filter our sites with the following restrictions: (1) minimum site quality of
20, (2) minimum genotype quality of 20, (3) minimum depth of coverage of five for a variant to
be included per individual, (4) a maximum mean depth of coverage across all individuals of 50,
and (5) sites that were biallelic. From this filtering, we kept only single nucleotide polymorphisms
(SNPs) and thinned our dataset to have two output SNP datasets: (1) thinned to a minimum
distance between SNPs of 50 kbp or (2) 100 kbp. We thinned our datasets to reduce the
impacts of linkage on relatedness estimates and to assess how different thinning strategies

impacted our results.

Relatedness and kinship estimation

For each species, we estimated relatedness using methods that both do and do not rely on
allele frequency estimates. First, we used the R package ‘related’ (Pew, et al. 2015) to estimate
relatedness among all individuals sampled per species using the methods of Li et al. (1993) and
Wang (2002). These methods incorporate estimated allele frequencies from the empirical SNP
datasets for each species for estimating relatedness. We used these two measures of
relatedness because they are relatively more reliable for use with biallelic loci (Gruber, et al.
2012).

We also estimated relationships between individuals using an allele-frequency free
method (Waples, et al. 2019) that uses three ratios: R0, R1, and the KING-robust kinship
estimator (Manichaikul, et al. 2010). Each ratio represents different relationships of genome-

wide allelic patterns between pairs of individuals (Waples, et al. 2019). RO is a ratio with fixed



157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182

difference counts in the numerator; barring genotyping errors, we expect RO to equal zero when
estimated between full sisters from a singly mated queen because they should always share
their paternal haplotypes. R1 is a ratio with shared heterozygous site counts in the numerator;
R1 should have higher values the more closely related individuals are. The KING-robust kinship
estimator is a ratio that incorporates both fixed difference counts and shared heterozygous sites
in the numerator to estimate kinship on a continuous scale. In diploids, we would expect values
of the KING-robust kinship estimator around 0.25 for parent-offspring or full sibling pairs, values
around zero for unrelated individuals, and negative values for pairs of individuals in different,
structured populations. Here, we may expect full sisters from a singly mated queen to have
KING-robust kinship estimator values higher than 0.3.

We categorized pairs of individuals with the RO ratio < 0.01 and the KING-robust kinship
> 0.3 as full sisters, and pairs with RO > 0.1 and the KING-robust kinship < 0.1 as weakly related
or unrelated.

To assess the robustness of relatedness estimates based on allele frequency estimates,
we measured the association between the Li et al. (1993), Wang (2002), and KING-robust
kinship estimators. If the estimators reliant on allele frequencies are still robust with large
numbers of SNPs and small individual sample sizes (here, N = 18 per species), we would

expect a strong positive association between each of these measures.

mtDNA haplotypes

We created haplotype networks for the cytochrome oxidase subunit 1 (COI) mtDNA gene for
each species in this study for two reasons. First, as a sanity check for pairwise relatedness
values similar to full sibling expectations, we’d expect the individuals would have the same
mtDNA due to having the same female parent. Second, in pairwise comparisons with

relatedness estimates less than expectations for full siblings, we would expect they’d have the
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same mtDNA haplotype if they had the same female parent, but they may or may not have the
same mtDNA haplotype if they have the same male parent.

We used mtDNA reads for each individual—previously extracted using the ‘bbsplit’
script—in Geneious (BioMatters Ltd.) to assemble mitogenomes. We used the Geneious “Live
Annotate” feature with the reference Formicinae mitogenomes (Table S1) to annotate the new
assemblies. We extracted 1481 bp of the COl region for all individuals to create haplotypes
because (1) these regions had high sequencing coverage and (2) the COI gene is common in
mtDNA barcoding studies in ants. We only used 1481 bp of the COI gene because of
incomplete mtDNA assemblies in a couple individuals. We aligned the COI gene fragment for
each of the three species separately using MAFFT (Katoh and Standley 2013) and created a
minimum spanning haplotype network for each species’ COIl sequences using PopArt (Leigh

and Bryant 2015).

Non-comprehensive Formicinae relatedness literature review

From January to March 2021, we performed a literature review of relatedness studies in the ant
family Formicinae for several reasons. First, we wanted to compile a relevant list of literature
about genetic relatedness estimates that will be useful in the future to researchers interested in
estimating genetic relatedness in ants. Second, this would help inform us how our relatedness
estimates in three Camponotus species correspond with previous research in the subfamily.
Lastly, we wanted to test if there was phylogenetic signal of relatedness at the genus-level
across this clade.

For each of 51 extant genera in this ant family (Ward, et al. 2016), we searched Google
Scholar with the search terms ‘[genus]’ and ‘relatedness’ including only results that contained
both terms. We manually scanned search results for those potentially relevant to within-colony

relatedness for each genus. We looked at a maximum of the first 500 results for each search.
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We compiled these results (Appendix 1) and plotted per genus relatedness using ggplot2
(Wickham 2011) and ggtree (Yu, et al. 2017).

We estimated the phylogenetic signal of the mean and variance of relatedness values
for each genus using the R package ‘picante’ and the function “phylosignal.” For the phylogeny,
we used a pruned genus-level phylogenetic hypothesis from Blaimer et al. (2015). We did not
estimate phylogenetic signal at the species level because of the lack of a species-level

phylogeny for the Formicinae.

RESULTS

Relatedness and kinship in three Nearctic carpenter ant species in the subgenus Camponotus

We sequenced between ~5 Gbp to 13 Gbp per individual, resulting in ~9 to 26x alignment
coverage relative to the reference genome (Table S1). From these reads, we extracted
mitochondrial DNA (mtDNA) and created haplotype networks for each species. We found that
each colony exhibited a single COI haplotype (Fig. S1), suggestive but not conclusive of
monogynous colonies.

We estimated relatedness and kinship between workers using two SNP datasets:
thinned so SNPs were separated by a minimum of (1) 50 kbp or (2) 100 kbp (Table S2 for
datasets’ characteristics). Most colonies exhibited pairwise relatedness between workers
around 0.75 (Fig. 1; Table 2), similar to expectations of full siblings. Two colonies of C.
laevissimus showed worker-worker relatedness values higher than that expected from full
siblings (Fig. 1; Table 2; samples C-088, C-092), suggestive of some inbreeding.

Using allele frequency-free methods, all intracolony pairwise comparisons clearly
showed full-sister relationships, with a lack of fixed differences and KING-robust kinship

estimates > 0.3 (Fig. 2; Table 2). Intercolony comparisons indicated the members of the
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different colonies were either unrelated or exhibited population genetic structure (Fig. 2; Table
2).

All relatedness and kinship estimates were consistent between the differently thinned
SNP datasets (all r > 0.99; Fig. S2). The two relatedness estimators (Wang 2002 and Li et al.,
1993) were strongly positively associated (Fig. 3). Additionally, the allele frequency-based
relatedness and allele frequency-free kinship estimators were strongly positively associated
(Fig. 3). Overall, the conclusions drawn from the allele frequency-based relatedness estimates

and the allele frequency-free ratio tests were consistent.

Literature review of Formicinae relatedness

We searched the scientific literature for studies using genetic markers to estimate within-colony
worker-worker relatedness in the Formicinae. In total 15 of 51 extant genera in the Formicinae
have genetic worker-worker relatedness estimates in the literature (Fig. 4; Appendix 1). Per
genus, we found between one and 20 species with relatedness estimates, ranging from <1% to
~75% of described species in each genus (Fig. 4; Appendix 1). In total, we recovered 63
species with genetic-based worker-worker relatedness estimates.

Using tests for phylogenetic signal, we did not find a quantitative trend across the
phylogeny for mean or variance of relatedness estimates at the genus level (Fig. 4; mean
relatedness k = 0.432, p = 0.859; relatedness variance k = 0.696, p = 0.396). Qualitatively,
within genera, there were some notable trends; for example, all studied Camponotus species
exhibited > 50% mean worker-worker relatedness values within colonies (Fig. 4). In contrast,
most species studied in Formica showed mean worker-worker relatedness values below 60%
(Fig. 4). The Formicinae species studied to date show a wide range of reproductive strategies,
with some species exhibiting strict monogyny and monandry, and others showing widespread
polygyny. Of note, some species showed some colonies with high relatedness and others with

10



261 low relatedness. Because we only report species’ mean within-colony relatedness values here,
262  species with mixed reproductive strategies generally exhibit intermediate mean values of

263  relatedness (Fig. 4).

264

265 DISCUSSION

266

267  Here, we used genome-wide SNPs to show that all sampled intracolony workers from three
268  Nearctic Camponotus species are full sisters (Fig. 1; Fig. 2; Table 2). Even with small sample
269  sizes per colony, this is suggestive that C. herculeanus, C. laevissimus, and C. modoc often
270  have colonies founded by a lone, single-mated queen. Furthermore, each of the colonies

271  showed a single mtDNA COI haplotype, indicative of a single matrilineage (Fig. S1). Here, we
272  use these results to further discuss (1) the utility of different estimators for identifying closely
273  related individuals with small sample sizes, and (2) the context of these three species’

274  relatedness estimates in overall trends of relatedness in the Formicinae.

275

276  Identifying closely-related individuals with small sample sizes

277

278  Using methods that do and do not use allele frequencies, we identified concordant results that
279  allintracolony workers sampled are full sisters (Fig. 1; Fig. 2; Table 2). Even with our small

280  sample sizes—17-18 individuals per species—we could unambiguously identify pairwise

281  comparisons of individuals that were full sisters. Notably, the allele frequency-free method,

282  particularly the combination of the RO and KING-robust kinship ratios, demonstrated

283  unambiguously that all intracolony samples were full sisters. In haplodiploid mating systems, we
284  expect that workers will lack any fixed differences at biallelic SNPs if they are full sisters; this
285  pattern manifests in a RO ratio of zero barring any genotyping errors. Using thousands of SNPs,
286  we clearly showed this trend across all intracolony comparisons (Fig. 2). These results suggest
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the utility of using large SNP panels, even with small sample sizes, to identify parent-offspring or
full sister pairs in haplodiploid systems.

We additionally found that conclusions drawn from the methods reliant on estimated
allele frequencies were generally consistent with conclusions from the allele frequency-free
methods (Fig. 1; Fig. 3). The relatedness estimates and KING-robust kinship values were
strongly positively associated (Fig. 3). In C. laevissimus, some intracolony comparisons had
higher relatedness values suggestive of inbreeding, but the KING-robust kinship values were
not equally inflated (Fig. 1; Fig. 3); this is suggestive of a potential bias in the genetic
relatedness estimates in C. laevissimus due to small sample sizes. Notably, C. laevissimus has
lower effective population sizes and genome-wide genetic diversity than the two other species
studied here (Manthey, et al. 2022); this relatively lower diversity may be associated with this

potential bias.

Relatedness trends across Formicinae

In the Formicinae, a relatively small proportion of the genera (~30%) and very few species
(~2%) have published estimates of relatedness (Appendix 1). Many of the species with
relatedness estimates have been studied because they are of management interest or have
unusual ecological traits. For example, Formica lugubris was studied in a conservation genetics
context (Gyllenstrand and Seppa 2003) and several other species—including Anoplolepis
gracilipes, Lasius neglectus, and Nylanderia fulva—have been studied in regions where they
are introduced or invasive (Boomsma, et al. 1990; Drescher, et al. 2007; Eyer, et al. 2018;
Gruber, et al. 2012). In other cases, within-colony relatedness has been studied to better
understand population structure and variation in mating strategies in relatively common ant
species from different regions of the world (e.g., several species of Formica studied by
Helantera and Sundstrém 2007).

12
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There is a broad range of variation in within-colony relatedness estimates across the
Formicinae, with no clear trends (i.e., no phylogenetic signal) of relatedness at the genus level
(Fig. 4). Within genera with relatively more species with relatedness estimates—Formica (n =
20), Camponotus (n = 10), and Cataglyphis (n = 6)—there are some qualitative trends; most
Formica have within-colony worker-worker relatedness estimates below 60% and all
Cataglyphis estimates exhibit below 50% within-colony relatedness. In contrast, all within-colony
relatedness estimates in Camponotus are above 50%. Several genera with within-colony
relatedness estimates for three or four species showed a wide range of values, including Lasius
(0.14 — 0.65), Polyrhachis (0.12 — 0.67), and Proformica (0.14 — 0.67). Even within the
Camponotini tribe (Camponotus and Polyrhachis here) within-colony relatedness values range
between 0.12 and 0.87. Additionally, in some species, there may be variation in mating system
in different parts of their geographic ranges. For example, in Nylanderia fulva, within-colony
relatedness was estimated as 0.57 in the native geographic range versus 0.04 in areas where
the species has been introduced.

Highly variable within-colony relatedness estimates, even between closely-related
species and populations, may be representative of both biological reality and imprecise
relatedness estimates. The Formicinae are highly variable in life history traits and reproductive
strategies (Holldobler and Wilson 1990), and much of the within-colony relatedness variation
likely reflects real differences in mating strategies and within-colony population structure.
Additionally, because most relatedness estimates for formicines have been obtained using
microsatellites or allozyme data (see Appendix 1), there are likely wide bands of uncertainty
around most of these relatedness estimates due to the small amount of total genetic variation
measured.

Within Camponotus, previous work has quantified within-colony worker-worker
relatedness in ten Camponotus species belonging to four subgenera: Myrmothrix, Myrmamblys,
Tanaemyrmex, and Camponotus (Appendix 1). Mean relatedness estimates across the genus

13
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range from 0.551 to 0.873 (Fig. 4; Appendix 1). Genetic relatedness estimates in our three focal
Nearctic species in the subgenus Camponotus are consistent with generally high intracolony

relatedness estimates in this genus.
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376 relationships (modified from Manthey, et al. 2022). (B + C) Within-colony worker-worker pairwise
377  kinship (B) and relatedness (C) estimates for each of the colonies sampled here. Values shown
378  for the 50 kbp thinned SNP dataset. If colonies have a lone, singly mated queen producing

379  workers, we expect a kinship value > 0.3 and relatedness values ~ 0.75. Ant photos by JCG and
380 JDM from specimens housed at the Invertebrate Zoology Collection of the Museum of Texas

381  Tech University.
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Figure 2. Kinship using allele frequency-free methods. Combinations of RO, R1, and the KING-

robust kinship ratios were used to classify relationships in pairwise comparisons (see

METHODS). If colonies have a lone, singly mated queen producing workers, intracolony

pairwise comparison values should be ~0 for the RO ratio, higher R1 values for more closely

related individuals, and KING-robust kinship values > 0.3. Values shown for the 50 kbp thinned

SNP dataset.
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Figure 3. Associations among relatedness and kinship estimators. Positive values indicate

comparisons among related individuals, values near zero indicate comparisons among

unrelated individuals, and negative values indicate comparisons among individuals in different

genetically structured populations.
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Figure 4. Within-nest worker-worker relatedness estimates from literature review. Estimates are
mean values per species (see Appendix 1 for specific values and references). A slight y-axis
jitter was added to values to reveal multiple points with similar values. The phylogeny is a
pruned genus-level phylogenetic hypothesis from Blaimer et al. (2015), including only genera
with genetic relatedness estimates from the literature. At the tips, we present the number of
species with genetic relatedness estimates, and the approximate percentage of the described
species in each genus with genetic relatedness estimates. In Nylanderia, two estimates are
presented for the same species, one in the native range (R = 0.57) and one in the introduced
range (R = 0.04; arrow). Of note, only 15 of 51 extant genera in the Formicinae have within-

colony worker-worker genetic relatedness estimates in the literature.
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436  Table 1. Species and localities of colonies used for this study. For each colony, we genotyped

437 six individuals.

Catalog # Colony Species Latitude Longitude = Elevation
ID

TTU-Z_247357 C-095 C. herculeanus 40.551 -110.993 2762
TTU-Z_247360 C-106 C. herculeanus 43.874 -114.637 2341
TTU-Z_247362 C-116 C. herculeanus 41.347 -106.184 2838
TTU-Z_247355 C-088 C. laevissimus 33.577 -108.914 1955
TTU-Z_247356 C-092 C. laevissimus 40.309 -110.699 2153
TTU-Z_247359 C-101 C. laevissimus 43.822 -115.338 1448
TTU-Z_247358 C-097 C. modoc 40.592 -110.992 2480
TTU-Z_247361 C-109 C. modoc 44.631 -113.789 1936
TTU-Z_247363 C-122 C. modoc 38.837 -105.997 2612
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451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

Table 2. Relatedness and kinship estimates per colony. Mean pairwise intracolony worker-

worker relatedness and kinship estimates for nine colonies studied here (see METHODS).

Values in parentheses indicate full range of pairwise values for each colony. Values shown for

the 50 kbp thinned SNP dataset.

Colony ID

C-095
C-106
C-116
C-088
C-092
C-101
C-097
C-109

C-122

Species

C. herculeanus
C. herculeanus
C. herculeanus
C. laevissimus
C. laevissimus
C. laevissimus
C. modoc
C. modoc

C. modoc

Relatedness
Wang (2002)
0.76 (0.72-0.80)
0.70 (0.64-0.75)
0.75 (0.68-0.80)
0.87 (0.83-0.90)
0.83 (0.81-0.84)
0.75 (0.74-0.78)
0.75 (0.71-0.80)
0.78 (0.75-0.80)

0.76 (0.74—-0.82)

Relatedness
Li et al. (1993)
0.76 (0.71-0.79)
0.68 (0.62-0.74)
0.74 (0.67-0.79)
0.86 (0.82-0.90)
0.82 (0.80-0.84)
0.74 (0.72-0.76)
0.75 (0.70-0.80)
0.77 (0.73-0.79)

0.76 (0.73-0.81)

KING-robust
Kinship
0.38 (0.37-0.41)
0.38 (0.36-0.40)
0.36 (0.32-0.39)
0.39 (0.36-0.42)
0.37 (0.35-0.38)
0.39 (0.38-0.40)
0.38 (0.36-0.40)
0.39 (0.37-0.40)

0.38 (0.36-0.41)
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467  Appendix 1. Summary of the scientific literature review for studies using genetic markers to

468  estimate within-colony worker-worker relatedness in the Formicinae.

# Colonies Mean
Genus Species References
Genotyped Relatedness
(Drescher, et al. 2007; Drescher, et al. 2010;
Anoplolepis gracilipes 93 0.805
Gruber, et al. 2012; Thomas, et al. 2010)
Brachymyrmex patagonicus 50 0.63 (Eyer, et al. 2020)
Camponotus chilensis 16 0.733 (Eaton and Medel 1994)
Camponotus consobrinus ? 0.61 (Fjerdingstad and Crozier 2006)
Camponotus festinatus 31 0.69 (Goodisman and Hahn 2005)
Camponotus herculeanus 45 0.589 (Seppa and Gertsch 1996)
Camponotus klugii 10 0.81 (Muna 2008)
Camponotus nawai 1 0.83 (Satoh, et al. 1997)
Camponotus ocreatus 16 0.74 (Goodisman and Hahn 2004)
Camponotus renggeri 22 0.551 (Azevedo-Silva 2017)
Camponotus rufipes 35 0.685 (Azevedo-Silva 2017)
Camponotus yamaokai 4 0.873 (Satoh, et al. 1997)
Cataglyphis aenescens 18 0.48 (Cronin, et al. 2016)
(Fournier, et al. 2008; Pearcy and Aron
Cataglyphis cursor 69 0.394
2006)
Cataglyphis emmae 74 0.43 (Jowers, et al. 2013)
Cataglyphis niger 12 0.02 (Leniaud, et al. 2011)
Cataglyphis sabulosa 29 0.49 (Timmermans, et al. 2008)
Cataglyphis savignyi 20 0.26 (Leniaud, et al. 2011)
(Helantera and Sundstrom 2007; Maki-
Petays, et al. 2005; Pamilo 1982, 1993;
Formica aquilonia 424 0.078
Pamilo, et al. 2005; Schultner, et al. 2014;
Schultner, et al. 2016; Vanhala, et al. 2014)
Formica aserva 14 0.42 (Savolainen and Seppa 1996)
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Formica

Formica

Formica

Formica

Formica

Formica

Formica

Formica

Formica

cinerea

exsecta

fennica

fusca

lemani

lugubris

paralugubris

picea

podzolica

417

712

10

449

216

171

83

145

137

0.315

0.459

0.09

0.477

0.566

0.146

0.096

0.216

0.336

(Goropashnaya, et al. 2001; Helantera and
Sundstrém 2007; Schultner, et al. 2014;
Zhu, et al. 2003)

(Brown and Keller 2000; Goropashnaya, et
al. 2007; Haag-Liautard, et al. 2008;
Helanteréd and Sundstrém 2007; Kiimmerli
and Keller 2007a, b, 2008; Liautard and
Keller 2001; Martin, et al. 2012; Pamilo
1991; Pamilo and Rosengren 1984; Sepp3,
et al. 2004; Seppa, et al. 2012; Sundstrém,
et al. 2003; Vitikainen, et al. 2011;
Vitikainen, et al. 2015)

(Schultner, et al. 2014)

(Bargum, et al. 2007; Bargum and
Sundstrom 2007; Chernenko, et al. 2013;
Hannonen, et al. 2004; Hannonen and
Sundstrom 2003; Helantera, et al. 2011;
Helantera and Sundstrom 2007; Pamilo
1983; Schultner, et al. 2014)

(Gardner, et al. 2007; Schultner, et al. 2014;
Seppa, et al. 2009)

(Bernasconi, et al. 2005; Gyllenstrand and
Seppa 2003; Maki-Petays, et al. 2005;
Procter, et al. 2016)

(Chapuisat, et al. 1997; Chapuisat and
Keller 1999; Holzer, et al. 2009)
(Helantera and Sundstréom 2007; Pamilo
1982; Rees, et al. 2010)

(DeHeer and Herbers 2004)
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Formica

Formica

Formica

Formica

Formica

Formica

Formica

Formica

Formica
Lasius
Lasius

Lasius

Lasius

Melophorus

polyctena

pratensis

pressilabris

rufa

sanguinea

selysi

subintegra

truncorum

yessensis
austriacus
flavus

neglectus

niger

bagoti

96

133

10

101

315

123

19

415

16

62

558

14

0.325

0.527

0.21

0.54

0.459

0.536

0.7

0.328

0.195

0.6

0.596

0.139

0.647

0.44

(Gyllenstrand, et al. 2004; Helantera and
Sundstrém 2007; Pamilo 1982; Seifert, et al.
2010)

(Beye, et al. 1998; Helantera, et al. 2016;
Helanterd and Sundstréom 2007; Pirk, et al.
2001)

(Pamilo and Rosengren 1984; Schultner, et
al. 2014)

(Gyllenstrand, et al. 2004; Helantera and
Sundstrém 2007; Seifert, et al. 2010;
Skaldina and Sorvari 2020)
(Fernandez-Escudero, et al. 2002; Pamilo
1981; Pamilo and Seppa 1994; Pamilo and
Varvio-Aho 1979; Schultner, et al. 2014;
Seppa, et al. 1995)

(Chapuisat, et al. 2004; Rosset, et al. 2007)
(Savolainen and Seppéa 1996)

(Elias, et al. 2005; Gyllenstrand, et al. 2005;
Helanterd and Sundstrém 2007; Schultner,
et al. 2014; Seppa, et al. 1995; Sundstrom
1993)

(Kidokoro-Kobayashi, et al. 2012)

(Steiner, et al. 2007)

(Boomsma, et al. 1993)

(Boomsma, et al. 1990)

(Boomsma and Van der Have 1998;
Fjerdingstad, et al. 2002; Van der Have, et
al. 1988)

(Lecocq de Pletincx and Aron 2020)
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469

470

471

472

Myrmecocystus

Myrmecocystus

Myrmecocystus

Myrmelachista
Nylanderia
Nylanderia
Plagiolepis

Plagiolepis

Plagiolepis

Plagiolepis
Polyergus
Polyergus
Polyrhachis
Polyrhachis
Polyrhachis

Proformica

Proformica

Proformica
Rossomyrmex
Rossomyrmex

Rossomyrmex

depilis

mendax

mimicus

schumanni
fulva (introduced range)
fulva (native range)
barbara

pallescens

pygmaea

schmitzii

breviceps

rufescens
australis
moesta
robsoni

korbi

longiseta

sp.
anatolicus
minuchae

quandratinodum

57

139

36

21

66

26

112

60

14

37

269

0.685

0.539

0.572

0.431

0.04

0.57

0.71

0.47

0.513

0.34

0.49

0.751

0.42

0.674

0.12

0.14

0.417

0.67

0.72

0.72

0.53

(Hoelldobler, et al. 2011; Kronauer, et al.
2003)

(Eriksson, et al. 2019; Eriksson 2018)
(Hoelldobler, et al. 2011; Kronauer, et al.
2003)

(Malé, et al. 2020)

(Eyer, et al. 2018)

(Eyer, et al. 2018)

(Thurin, et al. 2011)

(Thurin, et al. 2011)

(Thurin, et al. 2011; Trontti, et al. 2005;
Trontti, et al. 2007)

(Thurin, et al. 2011)

(Savolainen and Seppa 1996)

(Brunner, et al. 2005)

(Fjerdingstad and Crozier 2006)
(Sasaki, et al. 1996)

(van Zweden, et al. 2007)

(Tinaut, et al. 2010)

(Fernandez-Escudero, et al. 2002;

Sanllorente, et al. 2015; Seppa, et al. 2008;

Tinaut, et al. 2010)
(Tinaut, et al. 2010)
(Tinaut, et al. 2010)
(Tinaut, et al. 2010)

(Tinaut, et al. 2010)
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473  SUPPLEMENTAL FIGURES AND TABLES

474

475  Figure S1. Haplotype networks for each species. Each color indicates a single colony. Size of
476  circles is proportional to sample size for each haplotype. Number of dashed lines indicate

477  number of inferred substitutions differing between haplotypes.

C. herculeanus

C. modoc
C-116 C-122

C-097

C. laevissimus C-106

C-092
C-088

C-101
C-109
478

479
480
481
482
483
484
485
486
487
488

489



490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

kinship estimator.

Figure S2. Comparison of relatedness and kinship estimates using differently thinned

SNP datasets (see METHODS). All correlation coefficients > 0.99. KrK = KING-robust
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509

Table S1. Sequencing statistics per sample.

Colony ID
C-095
C-095
C-095
C-095
C-095
C-095
C-106
C-106
C-106
C-106
C-106
C-106
C-116
C-116
C-116
C-116
C-116
C-116
C-088
C-088
C-088
C-088
C-088
C-088
C-092
C-092
C-092
C-092
C-092
C-092
C-101
C-101
C-101
C-101
C-101

C-101

Species
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
herculeanus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus
laevissimus

laevissimus

Sample ID
C-095
C-095a
C-095b
C-095¢c
C-095d
C-095e
C-106
C-106a
C-106b
C-106c
C-106d
C-106e
C-116
C-116a
C-116b
C-116¢c
C-116d
C-116e
C-088
C-088a
C-088b
C-088c
C-088d
C-088e
C-092
C-092a
C-092b
C-092c
C-092d
C-092e
C-101
C-101a
C-101b
C-101c
C-101d

C-101e

Raw sequence data (bp)
6,884,113,333
5,344,017,062
6,813,163,404
5,984,530,885
10,096,288,436
9,172,078,656
8,687,618,088
9,497,098,316
7,299,825,046
8,619,653,770
6,607,632,043

Sequencing failed
9,423,248,439
3,181,714,943
4,850,845,534
5,918,138,516
6,187,512,196
3,980,655,088
6,584,943,680
9,424,621,193
9,350,617,342
9,904,710,527
12,783,729,092
10,624,473,784
5,116,756,831
5,019,481,301
5,691,738,472
5,484,193,249
6,538,601,012
6,123,363,638
8,735,030,990
7,462,639,389
8,011,113,415
10,302,510,623
7,693,626,535

6,108,382,699

Filtered sequence data (bp)
6,289,614,831
4,867,019,761
6,209,974,203
5,441,695,623
9,182,885,465
8,368,135,999
7,922,501,236
8,677,970,369
6,641,355,479
7,833,284,173

6,010,847,688

8,596,132,014
2,951,470,727
4,479,574,519
5,432,153,146
5,734,529,419
3,735,319,242
6,004,692,294
8,572,019,325
8,509,902,581
9,033,912,200
11,648,916,842
9,666,437,636
4,594,063,722
4,548,939,153
5,124,410,369
4,980,860,124
5,912,815,535
5,545,179,453
7,945,820,696
6,808,880,802
7,231,701,738
9,305,741,985
7,025,130,258

5,562,432,646

Alignment mean coverage
16.25
10.42
15.70
13.36
19.84
21.08
18.68
20.33
16.60
18.79

14.73

24.01
8.36
13.33
12.49
15.46
10.99
12.93
20.87
17.50
21.67
26.39
22.93
12.21
10.86
12.73
12.87
14.99
13.06
18.47
14.51
14.61
16.86
17.02

11.02
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511

512

513

514

515

516

517

518

519

C-097 C.

C-097

O

C-097

C-097

C-097

C-097

C-109

C-109

C-109

C-109

C-109

C-109

C-122

C-122

C-122

C-122

C-122

C-122

Table S2. Number of variants used in each of the species’ datasets for estimating

O 60 o 6 6 6o 6o o6 o o

O o0 6 6 o o

modoc

. modoc

. modoc

. modoc

modoc

modoc

modoc

modoc

modoc

modoc

modoc

modoc

modoc

modoc

modoc

modoc

. modoc

. modoc

C-097

C-097a

C-097b

C-097¢

C-097d

C-097e

C-109

C-109a

C-109b

C-109¢

C-109d

C-109e

C-122

C-122a

C-122b

C-122¢

C-122d

C-122e

relatedness and kinship.

Species
C. herculeanus
C. laevissimus

C. modoc

# SNPs 50 kbp thinned dataset

5207

5053

5542

10,565,548,393
7,702,785,822
9,378,487,743
6,764,312,919
4,441,991,610
7,499,517,385
9,580,081,261
6,342,771,909
7,835,246,228
8,193,488,427
7,598,334,411
7,915,383,182
9,868,337,227
12,148,093,213
6,975,068,618
8,622,956,121
7,502,300,355

8,591,283,854

2787

2698

2880

9,656,064,137
7,013,756,336
8,555,174,594
6,164,745,321
4,051,010,711
6,831,441,669
8,737,342,219
5,745,212,275
7,152,151,315
7,468,695,618
6,924,598,228
7,217,992,060
8,995,488,735
10,809,515,553
6,354,731,693
7,855,038,060
6,851,899,827

7,867,382,368

# SNPs 100 kbp thinned dataset

23.93

16.66

20.93

14.96

15.99

22.41

11.56

16.41

15.29

16.96

18.16

22.54

26.36

14.27

20.53

15.68

18.42
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