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SCALAR CURVATURE DEFORMATION AND MASS RIGIDITY
FOR ALH MANIFOLDS WITH BOUNDARY

LAN-HSUAN HUANG AND HYUN CHUL JANG

ABSTRACT. We study scalar curvature deformation for asymptotically locally
hyperbolic (ALH) manifolds with nonempty compact boundary. We show
that the scalar curvature map is locally surjective among either (1) the space
of metrics that coincide exponentially toward the boundary, or (2) the space
of metrics with arbitrarily prescribed nearby Bartnik boundary data. Using
those results, we characterize the ALH manifolds that minimize the Wang-
Chrusciel-Herzlich mass integrals in great generality and establish the rigidity
of the positive mass theorems.
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1. INTRODUCTION

Let n > 3 and (N, h) be any closed (n — 1)-dimensional Riemannian manifold.
For k € {-1,0,1}, we define a reference manifold M = (ry,00) x N and b =
2+k dr? —|—r2h where rp, =0if £k =0,1, and rp, =1 if K = —1. A reference manifold
is conformally compact with the conformal infinity (N, h) and has an asymptotically
locally hyperbolic (or ALH for short) end where the sectional curvature goes to —1
as r — o0o. Our reference manifolds include

e Locally hyperbolic manifolds, i.e., the sectional curvature of b is identically
—1, by letting (N, h) have constant sectional curvature k.

e Birmingham-Kottler manifolds which are Poincaré-Einstein, i.e. Ric, =
—(n—1) b, by letting (N, h) have constant Ricci curvature Ricy, = k(n—2)h).
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This paper concerns a general class of ALH manifolds (not necessarily conformally
compact) that are asymptotic to a reference manifold. By default (Definition 2.6),
our ALH manifold has one end. While the results here can be modified to accom-
modate multiple ALH ends, we will not pursue in this paper.

In prior joint work with D. Martin, we have established the results on scalar
curvature deformation for asymptotically hyperbolic manifolds without boundary
and characterized the hyperbolic space as the equality case in the positive mass
theorem for asymptotically hyperbolic manifolds [27]. To extend those results to
more general ALH manifolds, it is necessary to take into account of nonempty
(compact) boundary because a reference manifold can have a “cuspidal” end as
r — 0 when k£ = 0 or contain a minimal hypersurface “neck” when k = —1.
In order to characterize those reference manifolds, we will consider them as ALH
manifolds with nonempty boundary by chopping off the cuspidal end or cutting
along the minimal hypersurface boundary.

A fundamental problem in the study of scalar curvature is that given a smooth
manifold M and a scalar function R, whether one can find a Riemannian metric y
whose scalar curvature realizes R; namely, R, = R. We will address this problem
for small deformation of an ALH manifold. That is, given an ALH manifold (M, g)
and R sufficiently close to R4, we shall find an ALH metric v, close to g, such
that Ry = R. When the manifold has nonempty boundary X, one can further
impose boundary conditions for v. We will mainly consider two types of boundary
conditions for ~:

e The metric v converges to g toward ¥ exponentially, as well as their deriva-
tives up to (at least) the second order.

e For sufficiently small (7, ¢), v satisfies (y7, H,) = (g7, Hy) + (7, ¢), where
T denotes the restriction on the tangent bundle of ¥ and H, is the mean
curvature.

The pair (y7, H,) is often called the Bartnik boundary data, so the second boundary
condition is to prescribe the Bartnik boundary data of ~.

Sign convention for the mean curvature. Given a unit normal v along a
hypersurface ¥, the second fundamental form A, is the tangential part of Vv and
the mean curvature H, = divy v. For an ALH manifold, we fix v to point to infinity.

We now state the scalar curvature deformation results in the next two theo-
rems, subject to either boundary condition. We refer to the precise definitions of
the weighted linear spaces in Section 2.2. In a loose sense, CQZ(M ) consists of

Cfg)g (M) functions or tensors that decay to zero at the rate ¢ toward infinity, and

B4%(M) consists of Cﬂg(M ) functions or tensors that are essentially comparable
to exp(—ﬁ) toward X, where d(x) is the distance function to X. (In particular,
a function (or tensor) in B%* decays exponentially to zero toward X.) We note the
number ¢ € (§,n) throughout the paper.

Let Ly be the linearized scalar curvature at g given by Lyh = —Ay(trgh) +

div, divg h — h - Ric, where h is a symmetric (0, 2)-tensor.

Theorem 1. Let (M, g) be an ALH manifold (at rate q). Given any scalar function
[ € BY(M), there exists a symmetric (0,2)-tensor h € B>*(M) solving

Lgh = f.
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Furthermore, there exists e > 0 and an open subsetU C g+B>*(M) such that given
any scalar function f with || f||go.«(ary < €, there exists v € U such that Ry = Ry+ f
i M.

Our approach to Theorem 1 uses the variational method for compact manifolds
with boundary of J. Corvino [18]. But we note that the no-kernel assumption in
[18] is not needed in Theorem 1 because we can derive the coercivity estimate on
an ALH end without the no-kernel assumption (see Proposition 3.1).

Theorem 2 concerns scalar curvature deformation with prescribed Bartnik bound-
ary data. An analogous statement, see Theorem 4.2 in Appendix A, for asymptot-
ically flat manifolds is established by M. Anderson and J. Jauregui [4] for n = 3.
We give a different proof for general dimensions n > 3 in Appendix A. We use
Theorem 4.2, together with Theorem 1 and a “gluing” lemma that constructs an
asymptotically flat manifold from an ALH manifold, to prove the Theorem 2.

Theorem 2. Let (M,g) be ALH at rate q. Then the map from a symmetric (0,2)-
tensor h

h e Ch¥(M) — (Lgh,hT, DH|4(h)) € C22 (M) x C**(2) x C1*(2)
is surjective, where DH|, denotes the linearized mean curvature at g.
By Local Surjectivity Theorem, there exists € > 0 and an open subset U C g +
c’ig‘(M) such that given any (f,1,¢) with ||(f, T, ¢)||C(1,21(M)Xc2,o(2)xcl,m(2) < e,
there exists v € U such that

Ry=Ry+f inM
(YT, Hy) = (g7, Hy) + (1,¢) on X.

We give several applications related to the Wang-Chrusciel-Herzlich mass inte-
grals from those scalar curvature deformation results. (Note that those applications
use only the results concerning the linearized operators in Theorem 1 and Theo-
rem 2.) We recall that a Riemannian manifold (M, g) is static if it admits a function
V solving —AV g+ V2V — V Ric, = 0. Such V is called a static potential. When
(M, g) is ALH with respect to a reference manifold (M, b) that is static with a static
potential Vp, one can define the deficit of (M, g) from (M, b) by the Wang-Chrusciel-
Herzlich mass integral m(g, Vp). See Definition 2.11. Our goal is to characterize an
ALH manifold that minimizes m(g, Vj) among suitable classes of competitive ALH
metrics.

To set the stage, we let (M, g) be an ALH manifold with boundary ¥, having
mean curvature Hy < Hy for some function Hy (can be constant). Let U be a small
open neighborhood of g in ¢ —|—C2_’3(M ) that contains only Riemannian metrics and
define
- U= {y€U: (v H,) = (g7, H,) on £}

' Ut = {y e : H, < Hy on }.
Note that U, is a strictly smaller subset of ¢,

Theorem 3. Let (M,b) be a static, reference manifold with a static potential V.
Let (M, g) be an ALH manifold with respect to (M,b), having nonempty boundary
Y. Suppose (M, g) is a mass minimizer in the following sense:
(x) There is U, such that for any v € U, with Ry = R, in M, we have
m(v, Vo) > m(g, Vo).
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Then (M, g) is static with a static potential V satisfying V —Vy = O(r=4) for some
number d > 0.

The proof of Theorem 3 relies on a variational argument of R. Bartnik for the
Regge-Teitelboim functional among the scalar curvature constraint in [7]. That
approach has led to other applications, such as establishing the equality case in the
spacetime positive mass theorem by the first author and D. Lee [28]. See also the
recent work of D. Lee, M. Lesourd, and R. Unger [31] for spacetime positive mass
theorem with nonempty boundary.

Separately, Theorem 3 has an immediate corollary that a Bartnik mass minimizer
must be static. See Section 6.1.1.

A version of Theorem 3 would also hold for boundaryless ALH manifolds by re-
placing (%) with the following assumption (by a similar argument as in [27, Theorem
4.3]):

(x % %) There is i such that for any v € U with R, = R, in M, we have m(v, Vy) >

m(g, Vo).

A main advantage in the boundaryless case is that the static potential V must
be positive by maximum principle, provided that V is positive near infinity. On
the other hand, with nonempty boundary, there are plenty of examples of ALH
static manifolds whose static potentials have zeros and are positive near infinity.
From that regard, the Theorem 4 is particularly interesting as the mass minimizing
condition (xx)py, enables us to obtain a positive static potential which satisfies
additional boundary conditions.

Theorem 4. Let (M,b) be a static, reference metric with a static potential Vo >
0 near infinity. Let (M,g) be an ALH manifold with respect to (M,b), having
nonempty boundary X, and let Hy be a function (can be constant) such that Hy <
Hy. Suppose that

(%x)p, For any v € U with R, = R, in M, we have m(v, Vo) > m(g, Vo).
Then the following holds:
(1) (M, g) is static with a static potential V satisfying V — Vo = O(r=%) for
some number d > 0.
(2) VA, =v(V)gT on X where v is the unit normal on X pointing to infinity.

(3) V > 0 everywhere in M.
(4) ¥ has mean curvature Hy = Hy.

It is clear that the assumption (*x)g,, together with the assumption H, < Hy,
would imply (%), and thus Item (1) in Theorem 4 directly comes from Theorem 3.
So the new content is Items (2)— (4). Our proof is inspired by Anderson-Jauregui [4]
(with different analytical details as discussed in Remark 5.2) where they analyze
the boundary terms from the first variation of the Regge-Teitelboim functional for
asymptotically flat manifolds.

Theorem 4 also reveals an interesting phenomenon relating to the Penrose in-
equality for ALH manifolds (see the work of D. Lee and A. Neves [32] and references
therein). In Lemma 5.4, we show that a static manifold with the static potential
V' > 0 near infinity and having a locally outermost, locally area-minimizing, min-
imal hypersurface boundary ¥ must have V' = 0 on 3. Note that the generalized
Kottler metrics (see Example 2.4) satisfy those properties. However, by Theorem 4,
such a static manifold cannot be a mass minimizer in the sense of (xx)g as stated in
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Corollary 5. Corollary 5 can also be compared with Corollary 1.4 in [32] in which
they show that a 3-dimensional ALH manifold whose boundary is an outermost
minimal surface must have the mass strictly greater than the critical mass.

Corollary 5. Let (M,g) be a static, ALH manifold with V' > 0 near infinity
and having nonempty boundary . Suppose ¥ is a locally outermost, locally area-
minimizing, minimal hypersurface. Then (M,g) cannot be a mass minimizer, in
the sense that given any € > 0, there exists an ALH metric v on M such that
Iy — g\lc@;(M) <€ Ry =-n(n—1), Hy <0, and m(y,V) <m(g,V).

The consequences obtained in Theorem 4 enable us to establish static unique-
ness. There are several existing static uniqueness for ALH manifolds assuming
various boundary conditions by, for example, X. Wang, G. Galloway and E. Wool-
gar, P. Chrusciel, G. Galloway, and Y. Potaux [15,24,41]. It appears that the
boundary conditions which naturally arise in our mass minimizing problem are dif-
ferent. See Corollary 6.3. Together with the static uniqueness, Theorem 4 gives
the following consequence.

Theorem 6. Let (M,b) be a static, reference metric with a static potential Vo > 0
near infinity. Let (M, g) be an ALH manifold with respect to (M,b) possibly with
nonempty boundary. Suppose (M,g) has zero mass m(g,V) = 0 and is a mass
minimizer in the following sense:

e If M has no boundary, we assume (***) to hold.

o If M has boundary ¥, we assume Hy < n — 1 and (x*)n—1 to hold, i.e.

letting Hy = n — 1 in the assumption (%),

Then we must have k = 1,0, and (M, g) is characterized as follows:

(1) k=1: (M,g) is the standard hyperbolic space without boundary.

(2) k=0: (M,g) is isometric to a Birmingham-Kottler manifold ([1,00) x N,
r=2dr? + r2h) whose conformal infinity (N, h) is Ricci flat. (In particular,
g itself is Poincaré-Finstein and the boundary has mean curvature H, =
n—1.)

We can put Theorem 6 in the more concrete context by using the established
positivity in the positive mass theorems. In the case of asymptotically hyperbolic
manifolds, the reference manifold is the standard hyperbolic space, whose space of
static potentials is spanned by {vr? + 1,21,...,2,}. They give the mass integrals

po=m(g,Vr2+1) and p;=m(g,z;), i=1,...,n.

There has been much progress toward the positive mass theorem for asymptotically
hyperbolic manifolds, by X. Wang [40], P. Chrusciel and M. Herzlich [16], L. Ander-
sson, M. Cai, and G. Galloway [6], Chrusciel and E. Delay [12], D. Martin with the
authors [27], A. Sakovich [36], and Chrusciel-Galloway [13]. The combined efforts
give the following statement.

Theorem 7 ([6,12,13,16,27,36,40]). Let3 <n < 7 and (M, g) be an n-dimensional
asymptotically hyperbolic manifold (possibly with nonempty boundary)' with scalar
curvature Ry, > —n(n — 1). In the case that M has a nonempty boundary X, we

assume X has mean curvature Hy <n —1. Then po > \/p? + -+ p2.

1For the case of boundaryless M, the theorem also holds for spin manifolds in dimensions n > 3.
The spin assumption can be removed if the spacetime positive mass theorem for asymptotically
flat initial data sets holds in those dimensions (see [33]).
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If (M, g) has no boundary and po = \/p? + - - + p2, then (M, g) is isometric to
hyperbolic space.

Theorem 6 and Theorem 7 give the following consequence.

Theorem 8. Let (M,g) satisfy the assumptions in Theorem 7. If pg =
P2+ -+ p2, then (M,g) has no boundary and thus is isometric to hyperbolic

space.

Positivity of the mass for general ALH manifolds seems to be less understood
(perhaps more intriguing at the same time) in light of examples of the generalized
Kottler metrics with negative mass when & = —1. Assuming the conformal infinity
is either the flat torus or a nontrivial quotient of the unit sphere, the following
positivity of mass is proven by Chrusciel, Galloway, L. Nguyen, and T. Paetz [14,
Theorem 1.1] (see also the remark from [15, Theorem VI.4] on the mean curvature
assumption).

Theorem 9 (Chrusciel-Galloway-Nguyen-Paetz [14]). Let 3 <n < 7. Let (M,g)
be an n-dimensional ALH manifold with conformal infinity (N, h) and M be diffeo-
morphic to [1,00) x N. Suppose that:

(1) The boundary ¥ = {1} x N has mean curvature Hy <n — 1.

(2) The scalar curvature satisfies Ry, > —n(n — 1).

(3) The conformal infinity (N,h) is either a flat torus or a nontrivial quo-
tient of the standard sphere. Define the mass m(g) = m(g,Vr2) (may
be up to a positive normalizing constant) in the former case and m(g) =

m(g, Vr? + 1) in the later case.
(4) When n = 3, assume the mass aspect function has a sign.

Then m(g) > 0.

Theorem 6 and Theorem 9 give the following consequence. Note that Theorem
10 implicitly implies that if (M, ¢g) has boundary with mean curvature < n —1 and
if (N, h) is a nontrivial quotient of the standard sphere, then necessarily m(g) > 0.

Theorem 10. Let (M, g) satisfy the assumptions in Theorem 9. If m(g) = 0, then
(M, g) must be a locally hyperbolic manifold whose conformal infinity (N, h) is the
flat torus. Namely, (M, g) is isometric to ([1,00) x N,r=2dr? 4+ r2h).

2. PRELIMINARIES

In Section 2, we discuss background materials, definitions, and basic facts. Most
parts of Section 2 are already known to the experts. The main purpose is to set the
stage for later sections, as we will frequently refer back to Section 2. We may include
some proofs to extend classical results to our current setting of ALH manifolds.

2.1. Reference manifolds and Birmingham-Kottler metrics. Let (N, h) be
an (n — 1)-dimensional connected, closed (compact without boundary) Riemannian
manifold. From it, we can define an n-dimensional manifold M := (ry, 00) x N with
the metric

(2.1) b= dr? +rh,

r2 +k
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where k is a constant normalized so that k € {—1,0,1}. We also set r, = 0 for
k=0,1, and rp, = 1 for K = —1. By changing the coordinate s = ﬁ, the
metric b can be alternatively re-expressed as

b= s72(ds? + (1 - 5s%)"n).

Because the metric b := ds? + (1- %sQ)Qh can be trivially extended on {s =0} x N
with the induced metric h (which corresponds to the “infinity” r = 00), the metric b
is said to be conformally compact, and the “extended” boundary-at-infinity (N, h)
is called the conformal infinity. One computes |ds\% = 1, and thus a computation
says that the metric b has asymptotically constant sectional curvature —1 as s — 0
(see [25, p. 192] and [35]). For that reason, the metric b is said to be asymptotically
locally hyperbolic (or ALH for short).

Convention. We refer to (M, b) defined above as a reference manifold (of type k
and with conformal infinity (N, h)). We denote by B, = (rg, r|xN and S, = {r}xN
the closed subsets in (M, b) respectively as the coordinate “ball” and “sphere”
(although they may not be topologically a ball nor a sphere).

We discuss some basic properties of a reference manifold and formulate them as
“examples” below, so we can refer them later.

Example 2.1 (Reference manifolds in geodesic polar coordinates). While the ref-
erence manifold written in the r-coordinate in (2.1) may seem to have singularity
at 7 = rg, the manifold may be made complete (possibly after extension). To see
this, we change the r-coordinate in (2.1) to the “geodesic” coordinate t:

e k=1. We let t = sinh'(r) and rewrite b as
b = dt* + (sinht)h,

defined on ¢t € (0,00). When the conformal infinity (IV,h) is the stan-
dard unit sphere, (M,b) is just the standard hyperbolic space and can be
extended at 7 = 0 (or ¢t = 0) as a complete manifold without boundary.

e k=0. We let t =Inr. After changing coordinate from r to ¢,

b= dt® + e*h

which is defined on t € (—00, 0). The reference manifold has an “expand-
ing” end as t — oo (i.e. r — o00) and the other end is “shrinking” as
t — —oo (i.e. r — 0), which is usually called the hyperbolic cusp. See
Figure 1.

e k= —1. We let t = cosh™*(r) and write the metric in the t-coordinate as
b = dt?+ (cosht)?h. The metric can be obviously extended from its original
range t € (0,00), i.e. 7 € (1,00), to ¢ € (—00,00). The extended manifold

(2.2) Mext = (—00,00) X N and  beyy = dt? 4 (cosht)?h

is complete, has reflectional symmetry with respect to t — —t, and has
two isometric ALH ends. The “neck” {¢t = 0}, i.e. {r = 1}, is a minimal
hypersurface. See Figure 2.

O

Example 2.2 (Constant mean curvature foliations). The reference manifold is
foliated by r-level hypersurfaces of constant mean curvature. In fact, each S, is
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umbilic, and the second fundamental form is given by A, = ¥=*= Tz k bT. In particular,
the mean curvature Hg,_ of S, satisfies
e k=1 Hg =(n-— 1)—”":"’1, strictly decreasing to (n — 1) as r — oc.
e k=0: Hg =n—1foranyr.
e k=-1:. Hg = —”’21(71 — 1), strictly increasing to (n — 1) as r — oo.
(]

t — 400
t — 400

= 0 (minimal)

t— —o0

FIGURE 2. k= -1
FIGURE 1. k=0

Consider the scalar curvature as a map from a Riemannian metric g on a smooth
manifold M to its scalar curvature Ry. The linearized scalar curvature map Ly :=
DR), at a metric g is given by the formula

Loh = —A,(try h) + divydivgh — b - Ricy,

where h is a symmetric (0, 2)-tensor. (We note that A, is the trace of the Hessian.)
Denote by Lj the formal L?-adjoint operator of L,. For a scalar function V/,

(2.3) LYV = (=AgV) g+ V.V — VRic, .

A Riemannian manifold (M, g) is said to be static if it admits a nontrivial function
V solving L7V =0, and such V' is called a static potential. Note that a connected,
static mamfold necessarily has constant scalar curvature, and thus an n-dimensional
static, ALH manifold must have constant scalar curvature Ry = —n(n — 1). Then
taking the trace of L7V = 0 and replacing the Laplace term, the static equation
L3V =0 is equivalent to
V2V — V(Ric, +ng) =0

AV —nV =0.
While Section 3 and Section 4 hold for any reference manifolds regardless of the
geometry nor topology of (N, h), we will work on a reference manifold that is static

in Section 5 and Section 6. So it may be helpful to have concrete examples of static
reference manifolds in mind.

(2.4)

Example 2.3 (Birmingham-Kottler metrics). We say a reference manifold (M, b) is
Birmingham-Kottler if b is Poincaré-Einstein, i.e. Ric, = —(n—1) b. It is equivalent
to requiring that its conformal infinity (N, h) has constant Ricci curvature, Ric, =
k(n — 2)h. A Birmingham-Kottler manifold (M, b) is static with a static potential

V=vr2+k.
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It is discussed in [17, Appendix B] that for the case k = 0, —1 any static potential
is a multiple of V', and for the case kK = 1 there may be additional static potentials
from the isometries of (INV,h). For example, when (N,h) is a round sphere S"~ 1,
the additional static potentials are {x1,...,2,}, the restriction of the Cartesian
coordinates in R™ on S™"~!. Since b is Poincaré-Einstein, for any static potential
V', we shall see that the mass integral, as defined in Definition 2.11 below, is zero,
and also that V' satisfies the Obata equation:

(2.5) m(b,V) =0
(2.6) ViV =Vb.
O

In view of Corollary 5, we give examples of static manifolds whose boundary is
an outermost, area-minimizing minimal hypersurface.

Example 2.4 (Generalized Kottler metrics). Let (N,h) be a closed (n — 1)-
dimensional Riemannian manifold with constant Ricei curvature Ricy, = k(n — 2)h.
Define the metric

1
= dr* +r%h
Im =2 g 2m,
on (r,,,00) x N where r,, is the largest zero of 72 + k — T?]g =0. If r,,, > 0, the

manifold has an outermost minimal hypersurface ¥ = {r,;,} x N. The manifold is
static with a static potential

2m

V=u/r2+k-— 5
rn-

From computing as in Definition 2.11 below, the mass m(gm, V) = 2(n—1)m where
the volume of (N, h) is normalized as 1. We note that when k = —1, it is possible
to have examples of generalized Kottler metrics with r,,, > 0 and negative mass
m < 0. g

2.2. ALH manifolds and weighted function spaces. Before we specify the
class of ALH metrics considered in this paper, we first define the weighted Holder
norms (with respect to a fixed reference manifold (M, b)).

Definition 2.5. For « € [0,1), £ = 0,1,2,..., and ¢ € R, the weighted Holder
space Cég‘(l\/l \By) is the collection of C:*(M\B,)-functions f that satisfy

loc

Hf”cﬂa(M \Ba) ‘= Z sup r‘l|VIf(x)| + sup 7«(1+a[vzf]a;31(z) < o0,
! 11=0,1,....k TEM\B2 2EM\ B,

where the covariant derivatives and norms are taken with respect to the reference
metric b, Bi(x) C M is a geodesic unit ball centered at z, and

lei, - ei, (f)(y) —ei, ..., (f)(2)]

[V flaiBi(@) == sup sup
B i <n ytee B () d(y, z)"
with respect to a fixed local orthonormal frame {eq,...,e,} on (M,b), where e; =
r2 4+ k%, ea = 1 1y for @ = 2,....n and {é,...,é,} is a local orthonormal

frame of (N, h).

Let M be an n-dimensional smooth manifold such that there is a compact set
K C M and a diffeomorphism ® : M\By — M \ K. For a function f, we de-
fine the weighted Hélder norm Hf”c’ﬁ‘;(M) to be the sum of the weighted norm
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”fHCﬂg(M\K) =|fo CI)”cﬂ;‘(M\Bz) and the usual C“® norms on the compact set K

with respect to a fixed atlas on M. Define the space C{’Z‘ (M) to be the completion
of smooth compactly supported functions with respect to the Cﬁg‘ (M)-norm. We
shall also write O%%(r~%) for functions in Cﬁz (M) to emphasize the fall-off rate,
and simply O(r~9) for C(lq(M). With respect to the fixed atlas, we can extend the
definition to tensor fields. For instance, we say a tensor field is Cﬁz(M ) if all of its

components belong to Cﬁ‘; (M).

Definition 2.6. Let (M, g) be a smooth, connected n-dimensional manifold and
g be Ciy.. We say that (M, g) is asymptotically locally hyperbolic (ALH) (at rate
q and with respect to the reference manifold (M, b)) if there exists a compact set
K C M and a diffeomorphism ® : M\ By — M \ K such that, with respect to the
coordinate chart of @,

(2.7) gij — by € CQ_’?(M \ K)
(2.8) r(Ry+n(n—1)) € L"(M\ K).

We will slightly blur the distinction between M\ By and M \ K. For example, we
write b in M\ K also for the pull-back metric from (M \Bg, b) and denote by B,, S,
for 7 > 1 as the subsets in M such that M \ B, and S, are the ®-image sets of
M\ B, and S, in M, respectively.

If the reference manifold is the standard hyperbolic space, (M, g) is called asymp-
totically hyperbolic.

Throughout the paper, we will assume « € (0,1) and the fall-off rate ¢ to stay

in the range:

n

5 <g<n.

The lower bound ensures that the mass integral in Definition 2.11 below is well-
defined, while the upper bound is to avoid the “critical exponent” that usually
comes up in analysis as in Section 2.3.

For an ALH manifold (M, g) with nonempty boundary ¥, we will consider the
weighted spaces to describe functions that decay to zero exponentially fast toward
Y. Let d(x) be the distance function to ¥, defined in a collar neighborhood of ¥.
We define a weight function p(x) on M such that p > 0 in Int M and

)

p(x) = exp (—ﬁ) in a thin collar neighborhood of X
r(x)~20tn=%  in M\ K

where ¢ is a fixed number such that

2(v/12 —9_
(2.9) 56( (Vn? n),1>-
n—2
Note that the lower bound 2(Yn2tn—2-n) W is a number between 0 and 1 for any

n > 3 and is used for the estimates in the proof of Proposition 3.1 below. Define
the weighted L2(M) norm by

e
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The dual space Li_l(M) to Lf)(M) is the main interest here. Roughly speaking,
Li,l(M ) contains functions that (in an integral sense) decay to zero at the rate
exp( — %) toward ¥ and decay to zero toward infinity at a rate just a little
bit slower than r~9. More specifically, the assumption § < 1 implies ng(M \
Bgr) C Li,l (M \ Bg) (noting the volume measure dug, = (1+ o(1)) % drdoy, =
O(r"=2) drdoy). We also define the H}(M )-norm by

k
HUH?LIL;(M) = Z |||V§u|y||i§(M)'
|I]=0

Let H%(M) be the completion of C;°(M) with respect to the H}(M)-norm. For
any B, C M with r sufficiently large, we can decompose the integral over B, and
the exterior M \ B,:

k k
”uH?{g(M) = Z /B |V1u|2pdug+ Z / |V1u|2r_2q+”_5 dyig

1120 120/ M\Bx
(2.10) =: HUHQHL;'(BT) + ||U||§J§(M\BT)~

Clearly, we have

1

— 2 2 2

< (Il + lllmgans,) ) < 2l on-

Those Hilbert spaces will be used to describe weak solutions to an elliptic PDE in
the variational argument in Section 3.

We will also use the weighted Holder spaces to describe Cﬁ;‘Z(M )-functions that
can be, roughly speaking, bounded by the weight function p%. We follow closely
the definition Ci,?o from [19] (see also [10]):

¢
||UHcfp'f;(M) s Z ()¢ (@) IVIullco (s, ., (o) + (@) T (@) [ViulaiBy ) @) | -

where the “scaling” ¢ is a function on M such that ¢ > 0 in Int M, ¢(z) = d(x)?
near ¥, and ¢(r) = 1 outside a larger compact set.? We define
2, Y P/NeY 2 2,
B> (M) = C¢,¢2+%p‘% (M)N Ly (M)NCZy (M)
0, _ 0, 2 0,
BY(M) = C¢7¢4+%p7% (M) N Lp,l(M) NCZy (M).

The definition of Cff;(M ) is quite technical, but we will not explicitly use its def-
inition but just the results stated in those norms from [19]. Therefore, it suffices to
recognize some general properties in order to make sense of the proofs in Section 3.
In particular, B4*(M) is a subset of Cfc’)g-functions whose (¢, «)-th derivatives, for

2The scaling function ¢ only appears in Section 2 and the reader should not confuse it with
the same notation that is used differently to prescribe the mean curvature in Theorem 2 and the
rest of the paper.
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¢ =0,1,2, decay to zero toward 3 exponentially (at least at the rate exp (—ﬁ))

and decay to zero toward infinity at least at the rate r—9.

2.3. Basic analysis. To study the scalar curvature map on an ALH manifold, we
will frequently encounter the operator Ay — n on scalar functions and will use the
following result.

Lemma 2.7. Let s € (—1,n) and (M, g) be an n-dimensional ALH manifold with
nonempty boundary . Denote Tu = Agu —nu. Then the following holds:

(1) T: {u eC**(M):u=0 on E} — C¥*(M) is an isomorphism.

(2) T: {u € C>*(M) : v(u) =0 on E} — CY%(M) is an isomorphism, where
v 1s a unit normal vector on X.

Therefore, giwen any f € CV%(M) and n, where n € C>%() for the Dirichlet
boundary problem and n € CH*(X) for the Neumann boundary problem, there exist
unique uy,uy € C>%(M) such that

Tuy = f in M with u; =n on X,
Tug = f in M with v(uz) =n on X.

As a direct consequence, if f is compactly supported, then uy,us € C%? (M) for any
s<mn.

Remark 2.8. We shall use an equivalent statement to Item (2) that u € C*%(M)
to (Tu,v(u)) € C%(M) x C**(£) is an isomorphism. We also note that if M
is boundaryless, the same argument shows that T : C**(M) — C%%(M) is an
isomorphism.

Proof. The proof follows similar arguments as in [25, Section 4] where they study
conformally compactifiable manifolds whose conformal infinity is a sphere and, in
the case of nonempty boundary, with the Dirichlet boundary condition. (Note that
our Ay is the trace of the Hessian and has the opposite sign from that in [25]. Also,
their manifold is of dimension n + 1.) The numbers {—1,n} that defines the range
of s are known as the characteristic exponents. Each of them corresponds to the
rate that a nontrivial solution to Tu = 0 can exist so the isomorphism theorem
would fail if s = —1 or n.

We now describe how slight modifications of their arguments can prove the
lemma in the ALH setting and for the Neumann boundary condition. As in
[25, Proposition 3.9], for any fixed s € (—1,n), one can construct a bounded positive
radial function ¢(z) on M such that ¢(z) = r~° near infinity, ¢ is constant in a
collar neighborhood of ¥, and T¢ < —ep for some constant € > 0. Then we will
proceed as in [25, Proposition 3.8] to derive the basic estimate: there is a constant
C > 0 such that for u € C*%(M) with u =0 on ¥,

l[ulleo (ary < CllTullco (ar)-

We sketch their proof so we can highlight the necessary modification for the
Neumann boundary condition in the next paragraph. It is direct to compute that

(2.12) A, <3> T oVlegy- v (E) _u (E) .
v) @ v) e\y
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Because ¢ > 0 and ¢ = r~° near infinity, % is bounded in M. We may assume

without loss of generality that sup M% > 0. The Dirichlet boundary condition
u = 0 on ¥ ensures that the supremum is not attained on the boundary. As in
[25, Theorem 3.5], we apply Yau’s maximum principle so that there is a sequence

of points {xy} such that (%) (zk) = supy 3, |V (%)‘ (k) — 0 as k — oo, and

liminfy .o Ay (%) (zr) < 0. Taking liminf on (2.12) along the sequence of points,
we then get

T
0> liminfM + € <sup E) ,
k—o0 Lp(l’k) M @

where we use — 12 > e. Rearranging the inequality, we can see that it implies

the basic estimate. From there, it is standard to show isomorphism from the basic
estimate (see [25, Proposition 3.7]). This complete the proof for Item (1).

We now see how to expand the above argument for Item (2). The only difference
is that supM% can be attained at a boundary point p € ¥. Since ¢ is constant
near p, when we evaluate (2.12) at p, the term involving V log ¢ vanishes. Equation
(2.12) at p becomes

> (3)w=3 - (wd) (T)

To derive the basic estimate as above, it suffices to show that A, (%) (p) < 0.

Since  is constant near p, the function u itself also reaches a local maximum at p.
The condition v(u) = 0 implies Aju = Asu + v(v(uv)) + v(u)Hy = Asu + v(v(u))
(we may without loss of generality assume V,v = 0 in a collar neighborhood of ¥).
At the local maximum point p, we have Asu(p) < 0 and v(v(u))(p) < 0, and thus

Ay (%) (p) = ﬁAgu(p) < 0. The rest of the argument is as above.

For the last statement in the lemma, given n € C**(X) and f € C“%(M), we
extend 7 to be a compactly supported C**-function in M, still denoted by 7. Let
uw e C*Y(M) with u = 0 on ¥ solve Tu = =Ty + f. The desired solution u; is
obtained by setting u; = u + 7. We can find us by a similar argument. ]

Lemma 2.9 deals with the asymptotics of a static potential and, more generally,
the asymptotics of solutions to an inhomogeneous static equation LyV = 7. An
unbounded open subset of M\ K is called a cone if it can be expressed as [r,, 00) x W
for some r, > 1 and W an open subset of N. The proof of the lemma follows closely
the argument in [27, Section 3| for asymptotically hyperbolic manifolds without
boundary. For the last statement in Lemma 2.9 about 7 = 0, the more precise
asymptotics of V' can be obtained in [11, Appendix A], in which one can also find
an alternative argument for the conclusion that V' is identically zero.

Lemma 2.9 (Cf. [11,27]). Let (M,g) be ALH with possibly nonempty boundary.
Let V € C} (M) solve

L)V =1,
where T € C(l)_q(M), Then either there is a cone U such that V' grows linearly in U,

i.e., there is a positive constant C' such that C~1|z| < |V (z)| < Clz| for all x € U
where |z| = r(x), or V.= O(r~%) for some d > 0.
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Furthermore, if T = 0, then either V' grows linearly in a cone or V is identically
zero in M.

Remark 2.10. This lemma and the key coercivity estimate (Proposition 3.1 below)
give the main motivation behind the definition of the weight function p so that
p = r~29t"=% pear infinity. It is direct to check that if V' grows linearly in a
cone U, then V ¢ (Li,l(M))* = L2(M): For any number a > 0, let f > 0 be a
smooth function supported in U such that f = r797% in a smaller cone Uy, and
then f € Li,l (M). If we further choose a < n — ¢ (recall ¢ < n), then

/ Vfdug > C’/ T2 dg, = C/ r" 1 drdo, = oo,
M Ug Uo
where we use that du, = O(r"=2)drdo,.
Of course one can choose f as above in C(i’g(M ). Then the same computation

shows that if V' grows linearly in a cone, then V ¢ (Cg’? (M))*

Proof. The proof of the first statement follows by considering the asymptotics of
V(y(t)) where () is a radial geodesic emitted from S, for some r large. The
equation LyV = 7 is reduced to an inhomogeneous ODE for V(v(t)). One can
verify that the same ODE argument in Section 3 of [27] for complete asymptotically
hyperbolic manifolds does extend for ALH manifolds, as the ODE argument is
indifferent to the geometry and topology of N. For the case 7 = 0, the maximum
principle was used in [27, Corollary 3.6] to conclude V = 0 if V' decays to zero at
infinity, but that argument doesn’t apply in our case of manifolds with boundary.
Nevertheless, we show how to expand the above argument and derive the same

conclusion for the case 7 = 0. From the first part of the lemma, we just need to
show that if V' ((t)) decays to zero at infinity along every radial geodesic y(t), then
V is identically zero: The static equation implies that the restriction V' (vy(t)) along
any radial geodesic satisfies a homogeneous ODE

d2

oV (1) = 1+ M)V((®),

with |Q(¢)| < Ce™ 7 because |y(t)| is comparable to e! (see Equation (3.13) in [27]).
Since we assume that V(y(t)) decays to zero at infinity, Lemma 3.3 of [27] implies
that either (1) V(y(t)) is identically zero, or (2) C~le™" < V(y(t)) < Ce™t for
some positive constant C, or equivalently C~1|z|~! < V(z) < CJz|~!. On the
other hand, the static equation implies AyV —nV = 0, and thus by Lemma 2.7,
V € C>%(M) for any s < n. It implies that V() must decay at a faster rate toward
infinity, excluding Case (2). We can then conclude that V is identically zero. O

2.4. The Wang-Chrusciel-Herzlich mass integrals. Recall the definition of
a static ALH manifold in (2.3) or (2.4). When the reference manifold (M,b) is
static, one can define mass integrals for an ALH manifold (M, g) that essentially
measure the deficit of (M, g) from (M, b) at infinity. A definition is first given by
X. Wang [40] for conformally compact, asymptotically hyperbolic manifolds with
certain asymptotics. The definition below is by Chrusciel-Herzlich [16].

Definition 2.11 (Wang-Chrusciel-Herzlich mass integrals). Let (M, b) be a static,
reference manifold with a static potential V. Let (M, g) be ALH with respect to
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(M, b). We define

(2.13) m(g,V) = lim [V((dive)(v) —v(tr e)) + (tr e)v(V) — e(VV,v)] do,
r—00 S,

where e = g — b; the outward unit normal v to S, and div, tr, V,do are all with

respect to b. The integral has an alternative formula (see, [26, Theorem 3.3] and

[8, Equation (4.40)]):

—22m(g,V) = ILm (Ricg +(n —1)g)(VV,v) do.
r—oo g
We note the fundamental fact that the limit in the Definition 2.11 does converge
on an ALH manifold. See [16, Proposition 2.2]. Since we will use some of the
computations later in Lemma 5.1, we include the proof below. In fact, the proof
includes an explicit formula for the boundary integral on ¥ for Lemma 5.1, which
is not needed in proving Lemma 2.12.

Lemma 2.12 ([16]). Let (M, b) be a static, reference manifold with a static potential
Vo. Let (M,~) be ALH with respect to (M, b) (possibly with nonempty boundary 3)
and V be a function on M such that V —Vj € C?fq(M). Then m(y,V) < .

Proof. We extend b in M \ K to a smooth Riemannian metric everywhere in M.
We fix an arbitrary ALH metric g with respect to (M,b). In this proof, we can
simply let g = b; this generality of g is used later in Lemma 5.1. Let e =y —b. We
apply integration by parts (twice) and get

/ VLged,ug:/ e- LyVdu,
M M '

+ lim [V((dive)(v) —v(tre)) + (tr e) (V) — e(VV,v)] doy

r—00 s,
- /E [V((dive)(v) — v(tre)) + (tr e)v(V) — e(VV,v)] doy,

where the unit normal v (pointing to infinity), and div, tr, V are all with respect to
g. The boundary integral on S, limits to m(y, V') as those terms from the difference
of g and b vanish in the limit. Re-arranging the above integrals, we get

m(y, V) :/ VLgedu, —/ e LyVdu,g
M M
_|_

(2.14)
/E [V((dive)(v) — v(tre)) + (tr e) (V) — e(VV,v)] doy.

For the first volume integral, by Taylor expansion we have
Lge = Ly(v—g) — Lg(b—g)
=Ry — Ry + V(7 = g)I* = (Rb = Ry) + O([V(b—g)|?
=R, +n(n—1)+0(r ).
By Lemma 2.9, we know that Vj grows at most linearly, so does V. Thus, the
assumption that r(R, + n(n — 1)) € L! implies V Le is also integrable. That is,

the first volume integral converges. The second integral also converges because
L}V = LiVy 4+ O(r'~9) = O(r'~9). This completes the proof. O
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3. DEFORM SCALAR CURVATURE AND FIX BOUNDARY GEOMETRY

In Section 3, we prove Theorem 1, which is recalled below. To see how this
theorem is used to prove other main results, skip to Section 4.

Theorem 1. Let (M, g) be an ALH manifold (at rate q). Given any scalar function
f € B%(M), there exists a symmetric (0,2)-tensor h € B>*(M) solving Lyh = f.

Furthermore, there exists € > 0 and an open subset U C g + B*>*(M) such that
given any scalar function f with || f|go.«y < €, there exists v € U such that
R,=R;+ fin M.

The majority of the proof is to solve the linearized equation Lsh = f. Our
strategy of proof follows the approach of Corvino [18] in which compact manifolds
with boundary are considered, with the main difference: we do not assume that
L7 has the trivial kernel because we deal with an ALH end and the key coercivity
estimate can be derived without that assumption, see Proposition 3.2 below.

In Proposition 3.1 and Proposition 3.2, we derive the coercivity estimate. Propo-
sition 3.1 concerns only an exterior region, but it is the key estimate.

Proposition 3.1 (Coercivity estimate on an exterior region). Let (M,g) be ALH
with respect to a reference metric b. There exists constants Ry, C > 0 such that
for all R > Ry and for any function u € C5°(M) (not necessarily vanishing on the
boundary Sgr), the following estimate holds

lull 2By < CllLgull Lz Br)s
where C' depends on n, 4.

Proof. 1t suffices to obtain the desired estimate for g identical to the reference
metric b = ﬁdr2 +72h on M \ Bg. Once it is obtained for the reference metric,
the estimate for a general ALH metric g can be derived automatically (by enlarging
Ry if necessary) since the error terms from the difference of g and b are negligible.
In fact, we can further assume k = 0 since the difference from the presence k is
also negligible. For the rest of the proof, all the geometric quantities (covariant
derivatives, volume forms, ...) are computed with respect to b.

Define the differential operator
Tu=V*u—ub.

We can rewrite Tu = Lju — —5(tr Liju)b+(— Ricp, + 7Ry b+b)u. Since
— Ricy, —|—ﬁRb b + b goes to zero at infinity, we just need to show that there exist
constants Ry, C' > 0 such that for all R > Ry,

lull 2\ Br) < ClITullL2(an\BR)-

Furthermore, because HVQUHLg(M\BR) can be bounded from above by [ Tu|[ 2 a1\ 5y)
and a constant multiple of ||uHL3(M\BR), it suffices to derive the following H'-
estimate:

lullzr(anBr) < CllTull 20\ BR)-
Recall the definition of H?(M \ Bg) in (2.10). We can re-express the desired
estimate as

Gy [ @t e [ rap ey
M\Br M\Br
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Set the exponent a = —2¢ +n — 0. Then the range for ¢ € (§,n) implies that
(3.2) —n—4<a< I

We proceed to prove (3.1). We denote v = % = r0r to be the unit radial vector.

Note that v(r®) = ar®, Vr* = ar®v, and Ar® = a(a — 1 + n)r®. As preparation,
we compute the following boundary integrals using integration by parts or Green’s
formula (note the v on Sg is the unit normal pointing to infinity):

/ u? Lv(r*) do
Sr

= —/ %uzAr‘l du —/ Vu? - éVra du
M\Br M\Br

= /M\BR ( —u?(a—1+n)— 2uv(u)>r“ du
/SR (uzu(r‘l) - V(uz)r“) do

= _ /M\BR (uzAr“ — r”Auz) du

:/ ((—a(a—1+n)+2n)u2+2\Vu|2+2utr(TU))T”dﬂ
M\Bgr

/SR (|Vu|2 - u2) %V(r“) do

= —/ (|Vu|2 - uz) LAr*dp — / V(|Vul* —u?) - LVrtdp
M\Br M\Br

= /M\BR <(u2 - |Vu\2) (a—1+mn)—2 (Tu)(Vu,l/))r“ dp.

Let 8 be a real number depending on a to be determined. Our estimate is based
on this inequality

0< /s (Bu —v(u))*r* do = /S (BQUQ — Bu(u?) + (V(u))Q)ra do

- /S ((BQ + Dt = fu() + (vl - “2))Ta do  (using that [v(u)| < |Vul)
(33)
N /SR ((/82 - aﬁ)u2r“ + /B(UQV(TG) - V(UQ)TG) + (|Vu\2 - u2)7““> do.

Since the polynomial 32 +1 — a3 = (B - %)2 +1- % > 0 provided —2 < a < 2.

Together with the assumption (3.2) for a, we separate the cases into —2 < a < —0
and —n—46 <a< -2
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Case 1. =2 < a < —J. Note that we have 32 + 1 — a8 > 0 in this case. Use
(3.3), substituting r* = %l/(r“)7 and replace the boundary integrals on Sg by our
previous computations:

o< [ (541 a0 8 (atr?) o) (19 ) bt o
_ /M\BR (5(2n —Bla—1+n))u®+ (28— (a—1+n)) |W|2)Ta "
+ /M\BR (= 206> + 1~ aByuw(u) + (2Butr (Tu) — 2 (Tw)(Vu,v)) )r* d
= /M\BR (ff(% —Bla=1+n))+5%+1- aﬂ)uQT" di

+ /M\B <2Bu tr(Tu) — 2 (Tu)(vu7y)),ra dp,

where we use the Cauchy-Schwarz inequality for the term —2uv(u) < |u|? + |Vul|?
and that 3% +1 — aB > 0. We denote the “coefficients” of u?r® and |Vu|*r¢ by,
respectively:

ci(a,B):=pB(2n—Bla—1+n)) + B +1—ap
co(a,B) =28 —(a—1+n)+p*+1—ap.

Let 8 = § so that B2 — aB + 1 takes the minimum value 1 — “742. We verify that
c1,co are negative constants depending on n, d:

%(2n—%(a—1+n))+1—‘1—2
=an—G(a+n)+1
<an—G(n—-2)+1

)
i
—
\.Q
|
~—
Il

2 2
= —n32 (a—ﬂ) + IS+ 1

n—2

The right hand side, as a polynomial of a € [—2, —4), has an upper bound at a = —4.

2
Evaluating the polynomial at a = —§, one can verify that —"772 (— - %) +

'IL2

- +1 < 0, provided that § stays in the range (2.9). The estimate for c; is obvious
since we have

CQ(a,%)za—(a—1+n)+1—‘141—222—71—%§2—n.

Licensed to Univ of Conn, Storrs. Prepared on Fri Aug 25 16:12:08 EDT 2023 for download from IP 132.174.250.220.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SCALAR CURVATURE DEFORMATION AND MASS RIGIDITY 8169

Case 2. —n — 6 < a < —2. We will consider 8 so that 2 —af +1 < 0 (e.g., we
will set 8 = —1 shortly), and thus the first integrand in (3.3) can be dropped:

0< /S B(uzy(r“) - V(uQ)ra) + (\Vu|2 - u2)ra do
:/ (ﬂ(—a(a—l—i—n)—i—Qn)+(a—1—|—n))u2r‘1d/¢
+ /M\B (QB —(a—1+ n)) |Vu|?r® du

+ /M\B (ZButr(Tu) —2(Tu)(Vu, ,/)>Ta dp.

We denote the “coefficients” of u?r® and |Vu|?r® by, respectively,
cs(a,B):==B(—ala—1+n)+2n)+ (a—1+n)
cq(a,B) =28 —(a—14+n).

Let 8 = —1. Then
cs(a,—1):=—(—ala—14+n)+2n)+(a—1+n)

=(a+1)(a—1+n)—2n
ca(a,—1):=-2—(a—1+mn)
=—a—n-—1

One can verify that for —n — d < a < —2, both ¢3 and ¢4 are negative constants
that can depend on n,d.

To complete the proof for both cases, we find a constant € := ¢(n,d) > 0 such
that

0< —26/ (u® 4 |Vu?)r® du —|—/ <2ﬂu tr(Tu) — 2 (Tu)(Vu, 1/))7’“ dp.
M\Br M\Br
Noticing that by Cauchy-Schwarz, there exists a positive constant C(e) such that
2Bu(tr(Tu)) < eu? + C(e)|Tul?
—2Tu(Vu,v) < e|Vul? + C(e)|Tul*.
Combining the above inequalities, we obtain the desired estimate (3.1):
/ (u? + |Vul?)r* du < C/ |Tu|?r® dp.
M\Bgr M\Br
O

Proposition 3.2 (Coercivity estimate). Let (M, g) be ALH. There exists a positive
constant C' such that for all w € H2(M)

(3.4) lullzar) < CllLgullzz an-

Proof. We claim that there exist constants Ry, C' > 0 such that for R > Ry and for
all w € H2(M), the following estimate holds:

(35) lullzzan < € (Ezullzzan + lullacsn ) -
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We just need to derive the estimate for u € Co°(M). Let R > Ry where Ry is from
Proposition 3.1. By (2.11) and applying Proposition 3.1 in the second line below:

||UHH3(M) < ||UHH3(BR) + ||UHH§(M\BR)
< ullaz(r) + CllLyull Lz Bg)-

For the norm in Bg, we have the standard elliptic estimate

lullmz sy < C (1E5ulliama + Iz s ) -

See [19, Lemma 5.1], which follows the proof of [18, Proposition 3.1-3.2, Theorem
3]. (Technically speaking, [19, Lemma 5.1] does not directly apply since our weight
function p does not decay to zero toward the “outer” boundary Sg, but the estimate
toward Sg is a more standard estimate because the weight function p is positive
there.) Combining the previous two inequalities and enlarging the constant C, we
have the following estimate:

lullmzan < € (Igullzzon + lulzzsn )

where we use (2.11) to combine the integrals of Lyu on Bg and on M \ Bg.

To prove the theorem, we argue by contradiction. Suppose the estimate (3.4)
does not hold for all u € H?(M). Then there exists a sequence u; € H7(M), which
we normalize to make [[u; || r2(ar) = 1, such that

(3.6) I LguillLz () < ;HuiHH/%(M) —0 asi— oo,

It is direct to verify that there is C' > 0 such that [|u;p'/?| g1 (p,) < Clluilla(Bg)
(see, e.g. [19, Proposition 2.10]). By the assumption ||ui\|H§(M) = 1 and Rellich
compactness theorem (with respect to the usual, unweighted norms), after passing
to a subsequence, u;p'/? converges to some f in L?(Bg). It implies that |ju; —
fp71/2||L§(BR) — 0 as ¢ — co. We can now use (3.5) to show that the sequence w;
is a Cauchy sequence in H?(M):

i = ujllmzany < C (||LZ(W = uj)llzz(ar) + llui — ujHLg(BR>>

< C (ILguillzzoan + 1 E5uslgan + s = wslliz s ) =0

as i,j — 00.

Denote by u € Hg (M) the limit of the sequence u;. So we have that Hu||H§(M) =1
and u is a weak solution to Lyu = 0 by (3.6). By elliptic regularity, u € Ci (M) and
by Lemma 2.9, either u is identically zero or u grows linearly in a cone. The latter
cannot occur since u € H2(M) (see Remark 2.10), so u must vanish identically, but
it contradicts that [[u|grz(ar) = 1. O

Once the coercivity estimate is derived, we can use the variational argument as in
[18] for any given f to construct a weak solution h to Lyh = f. Given f € Li_l (M),

we define the functional G : H2(M) — R by
6w = [ (3oiLul? = fu) duy
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Theorem 3.3. Let (M, g) be ALH. For any | € Lz_l(M), G has a global minimizer
ue H2(M), and u weakly solves

Ly(pLyu) = f in M
with the estimate
(3.7) lull azeary < 2C||fHL2 (M)
where C' is the constant from Proposition 3.2.
Proof. We use Proposition 3.2 in the second line below:
G(u) > %HLZUH%g(M) - ”fHszl(M)Hu”Lg(M)
> %Hulli]g(m - ||fHLi71(M)Hu||L,%(M)-

One can argue as in [18, pp. 150-152] that the infimum of G is negative and bounded
from below. By taking a minimizing sequence, there is a unique global minimizer
u and u solves the Euler-Lagrange equation Ly(pLju) = f. The estimate for u
follows that G(u) < 0. O

Since we are interested in solving Ly(pLju) = f when the source term f has
better regularity, i.e. f € B%»¥(M), we shall see how to use elliptic regularity to
show that the weak solution u has better regularity. To be more specific, we can
obtain that u € B4*(M), where

e} 4, 4,
BY(M) = €Y% () (M) NS, (M),
(cf. the definition of B4(Q2) in [19, p. 42].) It then implies that h := pLiu €
B%2(M). (Recall p(x) = r~2¢t"=% outside a compact set, so v € C{’Z‘(M) if and
only if p~1lv € Cq S ts(M).)

By the interior Schauder estimate, we know already u € Cﬁ)?(M ). Since the
weight function p in the equation for L, (pL;u) results in degeneracy near Y and
at infinity, so we consider the following differential operator

Pu:=p 'L, (pLyu) = p LS

One can verify that the leading order terms of P is of the form L,Lju and hence is
uniformly elliptic near ¥. Therefore, [19, Theorem 5.6] takes care of the estimates
near X, and we conclude that u € 5’4“( ) and pLiu € B>*(Q) for any compact
subset 2 C M. So our main task is to estimate outside a compact subset. In
fact, it suffices to show that u € C* tonts(M), the norm that is “unweighted” near

the boundary . (One should readily check that C**, , (M) and H2(M) in the
0% p3 g

definition of B*® impose less restricted asymptotics at infinity). Near infinity the
differential operator P becomes a 4th order, uniformly degenerate operator in the
sense of [25]. We explain how to apply their estimate to our case.

Proposition 3.4. Let f € B®®(M). There is a constant C > 0 such that for any
u € LZ(M) weakly solving Ly(pLiu) = f, we have u € Cq Crs(M) and

—1
lullgse oy < € (107 Flleosary + iz an ) -
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Consequently, the solution u obtained in Theorem 3.3 is in B**(M), and as a
result, h := pL%u is in B>*(M). Together with the estimate (3.7) to replace the
Li-norm of w in the right hand side of the above estimate, we obtain

(3.8) [ullgeary < Clf o= (ar)
IhllB2.ary < CllfllBo.e(ary-

Proof. Tt suffices to show the Holder estimate. The desired estimate restricted in
a compact subset of M including 3 becomes the Schauder estimate in the stan-
dard (unweighted) Holder norms, which is implied by the stronger estimate near
boundary obtained in [19, Appendix C]. Therefore, it suffices to find compact sub-
sets ' CC Q both containing Bg for R sufficiently large such that the following
estimate holds for some C' > 0 (letting Pu = p~1f):

(3.9) lullese aney < C (1Puleos  anan + lullzaney)

We just need to derive (3.9) when g is the reference metric b because the error
terms from the difference from g and b can be absorbed into the left hand side for
sufficiently large R. Using that b is conformally compact, the differential operator
Pu = p~'Ly(pLiu) is a 4th order uniformly degenerate operator in the sense of
Graham and Lee [25]. Therefore, we can apply the rescaling argument [25, Propo-
sition 3.4] to show that, for any real number s and any « € Bpg, there is a constant
C > 0, independent of x, such that

llleve sy @y =€ (|P“|c‘i:<B Lt |“||Li_n+2s(B(1)<w))) :
Note that the C°-norm in the original estimate in [25] can be replaced by the L2-
norm using an interpolation inequality, just as in [19, Appendix C]. (Also note the
space Aj , used in [25] is equivalent to our weighted space CY*) Let —s = g—n+36

and note ||u|| 2 (B_1 () < llullr2(s_,_(x)) for such s. Taking the supremum
" (@) (@)

—n+2s

of the local estimates among = and letting
r_
1 (z)and Q' =M\ Br(lx) (),

Q=M)\ U B_._

zEBR rEBR

this completes the proof. ([l
We combine the above arguments to complete the proof of Theorem 1.

Proof of Theorem 1. Given f € B%*(M), by Theorem 3.3, there is a weak solu-
tion u € HZ(M) to Ly(pLiu) = f. We let h = pLiu € Li,l(M). Then by
Proposition 3.4, we see that h is a strong solution and belongs to the desired space
B2 (M).

To solve for the nonlinear problem, we adapt the iteration scheme of Corvino [18]
(see also [19, Theorem 5.10]), together with the estimates (3.8). The argument
follows verbatim as [19, Theorem 5.10]), which we outline below. We would like to
show that there is € > 0 small such that for given f with || f||go.« () < €, there is
v € B4*(M) solving R, = R, + f. Let ug € B»*(M) be the variational solution
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from Theorem 3.3 to the following:
Lg(PLZUO) =f
ho := pLjug
Y1 =g+ ho.

From the estimates (3.8), we know that for e small, v, is still a Riemannian metric
and

lwollga.aary < Cllf llso.e(ar)
Iholl 2o ary < Clfllso.(an)
IRy + f = Roull < Cllf B0y
We then proceed recursively and let, for m =1,2,...,

LQ(PLZum) =Ry+f—-R,,
B i= pLyum,

TYm+1 =9+ Z hyp.
p=0
Following [19, Lemma 5.11], for e sufficiently small the estimates ensure the series
Z;O:O u, converges to some u in B+*(M). Let h := pLju. Then v = g + h satisfies
the nonlinear equation R, = R, + f. ([l

4. DEFORM SCALAR CURVATURE AND PRESCRIBE BARTNIK BOUNDARY DATA

For a Riemannian manifold (M, ¢g) with boundary X, the Bartnik boundary data
on X is (g7, H,) where g7 is the induced metric on ¥ and H,; = divsv. (Note that
for an ALH manifold (M, g) we fix the unit normal v to point to infinity.) If h is
a variation of ¢ in M, then the linearized Bartnik boundary data is (hT, DH|4(h)),
where hT denotes the restriction of & on the tangent bundle of ¥ and DH|,(h) is
the linearized mean curvature, given by the formula (see, e.g. [3, Lemma 2.1])

(4.1) DH|4(h) = iv(tr AT) — divsw — $h(v,v)H,,

where w(e,) = h(v, e,) is a one-form on the tangent bundle of ¥.
Let (M, g) be an ALH manifold at rate ¢q. For a (0,2)-tensor h € CQ_’S‘(M), we
define the linear operator

(4.2) T(h) = (Lgh,h™, DH|,(R)).

Recall that L, denotes the linearized scalar curvature operator. The main goal in
Section 4 is to prove Theorem 2. We just need to show that the map 7' is surjective
as follows.

Theorem 4.1. Let (M,g) be ALH at rate q. Then T : C%?(M) — C(l’f;(M) X
C*(X) x CH™(X). is surjective.

Then Theorem 2 follows from the Theorem 4.1: Consider an open neighborhood
U of gin g+ C%?(M) of Riemannian metrics and the smooth map F : U —
C(ff;(M) xCH*(2)xCh*(2) defined by F(v) = (R,,,~7, H,). Since the linearization
DF|, =T is surjective, by Local Surjectivity Theorem, F is locally surjective.
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An analogous statement for asymptotically flat manifolds, Theorem 4.2 below,
was first obtained by Anderson-Jauregui for n = 3 in [4, Proposition 2.4]. In
Appendix A we provide a different proof for general dimensions n > 3.

Theorem 4.2 (Cf. [4]). Let (M',g') be an n-dimensional asymptotically flat with
compact boundary . Then the map from a symmetric (0,2)-tensor h € C>%(M’)
to (Lgh, hT, DH|,(R)) € CO%(M') x C**(£) x C*(X) is surjective.

We will not explicitly use the definitions of asymptotically flat manifolds nor
the corresponding weighted Holder spaces as stated in Theorem 4.2, because we
essentially use a “localized” version of Theorem 4.2 to prove Theorem 4.1. We
outline the approach:

(1) From an ALH manifold (M, g) with boundary 3, we construct an asymp-
totically flat manifold (M’,¢’) that contains an isometric copy of a collar
neighborhood of the boundary ¥ in (M, g). Since we do not require g’ to
satisfy any curvature condition, this step is fairly easy.

(2) We can then apply a “localized” version of Theorem 4.2: Given any (f, 7, @),
we find a compactly supported, symmetric (0,2)-tensor hg in the collar
neighborhood of the boundary M’ such that L, hg is identical to f in a
collar neighborhood of ¥ and (h{, DH|y (ho)) = (7,¢) on X. We then
apply Theorem 1 to solve the linearized scalar curvature equation with the
source term f — L hg.

Lemma 4.3 is an exact statement of Step (1).

Lemma 4.3. Let (M,g) be ALH. Given any bounded open subset U C M, there ex-
ists an asymptotically flat manifold (M’,g") such that (M', g') contains an isometric

copy of (U, g).

Proof. We “chop off” an exterior region M\ B for R sufficiently large such that Br
contains U. Then we perform a connected sum on Bg\ U with the Euclidean space
(R™, gg). By smoothly extending the Riemannian metric across the neck region
where the connected sum is performed, the resulting manifold M’ = Br#R" with
the extending metric is an asymptotically flat manifold that contains a isometric
copy of (U, g). See Figure 3. O

In Proposition 4.4, we carry out Step (2) for the zero Bartnik boundary data.

Proposition 4.4. Let (M,g) be ALH. Then the linearized scalar curvature L :
{he CE?(M) :hT =0,DH|4(h) =0 on X} — C(i’?(M) is surjective.

Proof. Given f € €% (M), we will find h € C> (M) with hT = 0, DH|4(h) = 0 on
Y such that Lyh = f.

Fix two nonempty bounded open subsets Uy, Uy C M with ¥ C Uy and U; C Us.
By Lemma 4.3, there exists an asymptotically flat manifold (M’, ¢') that contains
an isometric copy of (Us,g). We still denote the isometric image in (M’,g') by
(Uz,g) and thus ¢’ = g on Us. Let fy be a function supported in U; such that
fo = f in a collar neighborhood of . With respect to the asymptotically flat
manifold (M’, g’), Theorem 4.2 says that there exist hg satisfying

Lg/(ho) = f() in MI
(4.3) hl =0, DH|,(ho)=0 onZX.
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0Br

FIGURE 3. M’ = Br#R" in Lemma 4.3

Since hp may not be compactly supported, we multiply ho by a smooth bump
function 7 satisfying 7 = 1 in Uy and n = 0 outside Us. Since ¢’ = g in Us, with
respect to the ALH metric g, we have

o fo in U1
Ly (nho) = { 0 outside Uy

Therefore, we can view Lg(nhg) as a scalar function on the ALH manifold (M, g)

with support in Us, which we smoothly extend to be zero outside Uy. Therefore,
J—Lg(nho) vanishes in a collar neighborhood of ¥, and thus f—L,(nho) € B»*(M).
By Theorem 1, there exists hy € B>%(M) such that

Lg(hl) =f- Lg(nho)-

That is, we obtain a solution hj 4+ nhg solving Lg(hl +nho) = f. It is direct to see
that hq + nho € CQ_’qa (M) and has vanishing linearized Bartnik boundary data. It
completes the proof. O

We combine the above results to prove the main theorem in Section 4, Theo-
rem 4.1.

Proof of Theorem 4.1. We will show that for arbitrarily fixed (7,¢) € C**(%) x
(%) and for a given f € C(l’qa(M)7 there is h € CQ_Z’(M) solving

Ly(hy=f inM

(4.4) { BT —

DH\g(h):qb on X.

The following argument is standard (see, e.g. Corollary 2.6 in [4]). Let {ey =
v,e1,...,en—1} be a local orthonormal frame near ¥. We can find a compactly

supported (0,2)-tensor 7 such that for a, 8 = 1,...,n — 1, 7o = Tap, Tao =
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0,700 = 0, and (3, Taa) = 2¢ on . By construction and using (4.1),
(7T, DH|y(7)) = (7, ¢)-
For this 7, we can find hg € CQ_Z’(M) with (hl, DH|4(ho)) = 0 on X that satisfies
the equation Ly(ho) = —L4(7) + f in M by Proposition 4.4. We then let
h=ho+7.

5. MASS MINIMIZERS ARE STATIC

We will apply Theorem 2 to characterize a mass minimizer and prove Theorem 3
and Theorem 4. We let (M, b) be a static, reference metric with a static potential
Vo. We let (M, g) be an ALH manifold with respect to (M,b). Denote by U an
open neighborhood of ¢ in C%Z(M ) that contains only Riemannian metrics.

Let V be a scalar function such that V —V; € C%fq(M ). Define the functional
Fy for v € U by

(5.1) Fv(y) =m(y,V) — /M V (R, +n(n—1))dpu,,

where we recall the definition of the mass integral m(y, V') in (2.13).

The above functional does not obviously take finite values since, without further
assuming 7(R, +n(n—1)) € L'(M), m(v, V) and the volume integral may individ-
ually diverge. Lemma 5.1 gives an alternative expression (5.2) for Fy, from which
one can see that Fy does take finite values (see the proof of Lemma 2.12).

Lemma 5.1 (Cf. [27, Lemma 4.1] and [5]). The functional Fy : U — R can be
alternatively expressed as

Fv(v) = /M (V(Lge ~R,—n(n-1) —e- L;V) dyug
(5.2)
-|-/Z [V(div e(v) — v(tr e)) + (tr e) v(V) — e(VV, 1/)] dag,

where e = y—b (we extend b to be a smooth Riemannian metric everywhere on M ),
the unit normal v with respect to g points to infinity, and the geometric operators
are all with respect to g.

Furthermore, the first variation of Fy at g is given by, for any symmetric (0,2)-
tensor h,

(5.3)
DFy|,(h) = —/ h- L7V dp, +/ (— V(2DH|4(h) + Ay - hT) + (V) tr hT) do.
M b
Proof. By (2.14), we have
m(y,V) :/ VLgedu, —/ e LyVdug
M M ‘
—I—/ [V (dive(v) —v(tr e)) + (tr e) v(V) — e(VV,v)] doy.
by
Substituting the above formula for m(vy,V) into (5.1) gives the desired expres-

sion (5.2).
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From (5.2), we compute the first variation:

DFy|y(h) = —/ h- LV dpg
(5.4) M
+ /E [V (div h(v) — v(tr h)) + (tr h) v(V) = L(VV,v)] doy,.

One can re-express the boundary integrands as follows (see e.g. [5, Proposition
3.1]):
V(divh(v) —v(tr h)) = V(-2DH|,(h) — Ay - AT — divsw)
(tr h) (V) = h(VV,v) = (tr AT)v(V) —w((VV)T),
where w is the one-form on the tangent bundle of ¥ defined by w(-) = h(v,-).

Substituting the right hand sides above into (5.4) and applying integration by parts
to eliminate the term involving w gives the stated first variation formula. (I

We prove Theorem 3. We restate the statement and also spell out the assump-
tion (x); the neighborhood U, in the statement is defined in (1.1).

Theorem 3. Let (M, b) be a static, reference metric with a static potential V. Let
(M, g) be an ALH manifold with respect to (M,b), having nonempty boundary X.
Suppose
(%) There is a neighborhood U, of g such that for any v € U, with R, = Ry in
M, we have m(vy, Vo) > m(g, Vo).
Then (M, g) is static with a static potential V satisfying V —Vy = O(r~4) for some
number d > 0.

Proof. We extend Vj to be defined everywhere in (M, g), and define the functional
Fv, as in (5.1). The subscript Vp will be omitted for the rest of proof.

Let U be a small open neighborhood of g in g + C**(M). The assumption (%)
implies that the functional F : 4 — R achieves a local minimum at g subject to
the constraints R, = R, in M and (v7,H,) = (¢7, Hy) on X. Theorem 2 implies
that the linearization of the constraints

. 2,0 0,a 2, 1,
T:C2 (M) — C25 (M) x C%(X) x C(%)
is surjective, where recall that T'(h) = (Lgh, hT, DH|4(h)) as defined in (4.2).

We can then apply the Method of Lagrange Multiplier (see, e.g. [28, Theorem
D.1]) and find a “Lagrange multiplier” (A, u,v) € (ng‘(M))* X (C2’Q(E))* X
(Ch*(¥))" so that

DF|y(h) = A(Lgh) + p(hT) + v(DH|y(h))  for any h € C23(M).
Taking h € C°(Int M) yields
DF|4(h) = X(Lgh) for any h € C°(M).

Together with the first variation formula of F in (5.3), it follows that A is a weak
solution (as a distribution) to the equation
* * 0,
LoX = —LyVo € C7° (M).
By elliptic regularity, A € Cfo’?(M), see e.g. [21, Lemma 6.33]. By Lemma 2.9, we
have either A grows linearly in a cone or A = O(r~%) for some d > 0. But A cannot
grow linearly in a cone U because A € (CO’O‘ (M))* and by Remark 2.10.
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To conclude, we show that V' :=V{ + \ is a static potential of (M, g).
O

We next prove Theorem 4. The previous theorem already shows a mass mini-
mizer must be static, but in order to characterize a static metric, we would like to
obtain a positive static potential with additional boundary properties. We recall
the statement and also spell out the assumption (%), .

Theorem 4. Let (M,b) be a static, reference metric with a static potential Vo >
0 near infinity. Let (M,g) be an ALH manifold with respect to (M,b), having
nonempty boundary X, and let Hy be a function (can be constant) such that Hy <
Hy. Suppose that

(%%)m, There is an open subsetU of g in g—l—Cz;g‘(M) such that for any v € U with
R, =R, in M and H, < Hy on X, we have m(vy, V) > m(g, Vo).
Then the following holds:
(1) (M,g) is static with a static potential V satisfying V — Vo = O(r~¢) for
some number d > 0.
(2) VA =v(V)gT on L.
(3) The static potential V > 0 everywhere in M.
(4) ¥ has mean curvature Hy, = Hy.

Remark 5.2. Our proof of V' > 0 is inspired by the variational argument in [4,
Theorem 2.10] for asymptotically flat manifolds, some of which also originated
from the rigidity proof of [37]. The proof in [4] uses that the scalar curvature map
is a submersion, which seems unknown yet in our setting. So we use an alternative
argument by conformal transformation, stated as Claim inside the following proof.

Remark 5.3. For applications in Section 3, we will mainly be concerned with Hy =
n — 1. Then the above conclusions imply that V' = v(V) and A, = ¢7 on X.

Proof of Theorem 4. Since (xx) g, implies (x) in Theorem 3, Item (1) follows. In
particular, we have R, = —n(n —1). We first prove a general fact that we can vary
g to get a family of metrics of the same constant scalar curvature and prescribe the
variation of the Bartnik boundary data.

Claim. Given an arbitrary pair of a symmetric (0,2)-tensor 7 € C**(X) and a
scalar function ¢ € C**(X) on X, there is a differentiable family of metrics g(t), for
|t| small, such that

9(0) =g, Ryy =Ryg=-n(n—1) inM

5.9
(5:5) wr=7, and DH|,(w)=¢ onX,

where w = ¢’(0). As a consequence of Lemma 5.1, the first variation of the mass
integral for g(t) is given by

6O G memw = [

: (=2ve+r- (= VA, +v(V)g7)) do,

Proof of Claim. By Theorem 2, there is a symmetric (0, 2)-tensor h € C%Z‘(M) such
that

(Lgh, T, DH|y(h)) = (0,7, ).
Define §(t) = g + th. For each t, we would like to solve for a scalar function u with
u—1¢€ CE?(M) and vy (u) = 0 on ¥ such that g(t) := uﬁf](t) has constant
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scalar curvature —n(n — 1). By conformal transformation formula, it is equivalent
to solving the following system for v € 1 + CQ_?(M)

n—2 _ n(n—2) :4:2 .
(5.7) Agoyt — g-pllawmu= "7 ur> M
Vgty(u) =0 on 3.
It is clear that at t = 0, w = 1 is a solution. We show how to obtain w(t) for |¢|
small by the inverse function theorem: Fix ¢ and rewrite the above system as the
map T : 1+ C>0 (M) — C%0 (M) x CV* ()

n— n(n— nt2
T(w) = (Agwu — iy Ry — 4202, vy ()

Denote the linearization of T at u = 1 by DT : Cz,f;(M) — Cg’f;(M) x Ch*(%)
and compute

n— n(n+2
DTY1(v) = (Aﬁ(t)” - (—4&31)3@(:&) + ot ))Ua ’/g(t>(v))~

Since DT|; converges to (Ayv — nv,vy(v)) as ¢ — 0 and the latter map is an
isomorphism by Lemma 2.7 and Remark 2.8, we conclude that for [¢| sufficiently
small, each DT, is an isomorphism and thus the corresponding map T is a local
diffeomorphism at 1 by the inverse function theorem. Therefore, there is u(t) solv-
ing (5.7). The family of solutions u(t) is differentiable in ¢ by smooth dependence,
sois g(t) = u(t)ﬁg(t).

We have shown ¢(t) has constant scalar curvature —n(n — 1). We now compute
variations of the Bartnik boundary data in (4.3). We begin by computing u’(0).
Differentiating (5.7) in ¢ at t = 0 and using u(0) = 1, %|t:0 Ry = Lgh = 0, we
get,

Agu'(0) —nu'(0)=0 inM
vy(u'(0)) =0 on X.
Thus «/(0) is identically zero (see Lemma 2.7). It is then direct to see that
w:=g'(0) = §'(0) = h.

In particular, wT = AT = 7 on X. To compute the mean curvature, we apply
conformal transformation formula and use v (u(t)) = 0:

=2 - _ =2
Hoyey = u(t) ™2 (Hy) + 20520u() " w0 (u(t) ) = u(t) =2 Hyqp.

Differentiating the mean curvature identity in ¢ gives DH|4(w) = DH|4(h) = ¢.
Let Fy be defined as (5.1). Since g(t) has constant scalar curvature —n(n — 1)
and V' is asymptotic to V{, we have

Fv(g(t)) =m(g(t),V) = m(g(t), Vo).
Then the first variation formula (5.3) says

d

&l m(g(t), Vo) =

Fv(g(t)) = DFy|g(w)
( —V(2DH|4(w) + Ay - w™) + v(V) tr wT) dog

— V(2¢+ Ay "7') +v(V) tr 7') dog,
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where we use that LyV = 0 in the second line and (wT, DH|,(w)) = (7, ¢) in the
third line. Rearranging the integrands gives (5.6). O

The rest of the proof will proceed as follows: If, to get a contradiction, the
desired conclusions do not hold, we can choose suitable 7 and ¢ in (4.3) to make
(5.6) strictly negative and also to ensure Hyy < Hy for ¢ > 0. Then we get
contradiction to the assumption (%*) g,

Item (2). We prove VA, = v(V)gT on ¥. Suppose on contrary that —V A, +
v(V)gT is not identically zero. We can find 7 on ¥ such that

/ T (=VAg+v(V)g") doy <O0.
b
Then let ¢ < 0 on ¥ with |#| sufficiently small such that (5.6) is also negative:

1 g(t), Vo) = /

dt S

( —oWehtr(— VA + I/(V)gT)) doy < 0.
t=0

Let g(t) be a family of metrics as in (4.3) for the above choice of (7, ¢). Therefore,
for t > 0, Hyyy < Hy < Hy (because ¢ < 0) and m(g(t), Vo) < m(g, Vo). It
contradicts (%) g, -

Item (3). We prove V' > 0 in M. Note that V' > 0 near infinity (because V5 > 0
near infinity by assumption). We first show that V' > 0 on ¥, and thus V' > 0 in
Int M by applying strong maximum principle to AgV —nV = 0. Suppose, to get
contradiction, that V' < 0 somewhere in . We can find a function ¢ < 0 on X and

/ 2V do, < 0.
b

We let g(t) be the family of metrics from (4.3) with 7 = 0 and ¢ as chosen. A
similar argument as above gives contradiction to (*)m,. To show that V' > 0 on
¥, we note that if V(p) = 0 for some p € X, then v(V)(p) = 0 by Item (2), and the
static equation implies that V' (v(t)) = 0 is along the normal geodesic y(¢) in Int M
emanating from p, which violates that V' > 0 in Int M.

Item (4). We prove that 3 has mean curvature H, = Hy. Suppose on the contrary
H, < Hy somewhere. Choose a function ¢ on ¥ such that ¢ < 0 on the set where
H, = Hy and the zero set of ¢ is contained in the subset where H, < Hy (in other
words, {p € ¥ : Hy(p) = Ho(p)} < supp(¢~)), and

/ —2V¢doy <0 (note that V' > 0 from Item (3)).
by

Note that ¢ is necessarily positive somewhere in the subset where H,; < Hy, in
order for the above integral condition to hold. Let g(t) be a family of metrics as
in (4.3) for 7 = 0 and the above choice of ¢. The conditions on ¢ ensure that
Hgyy < Hy for t > 0 small. We again get a contradiction. O

A main conclusion of Theorem 4 is to show positivity of a static potential. We
note in the next lemma that under the given special boundary condition, one may
be able to obtain positivity of V' in Int M. The proof is a direct generalization of
an argument for asymptotically flat manifolds (see, e.g. [29, Section 1]). Note that
this result is not used elsewhere in the paper.
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Lemma 5.4. Let (M,g) be a ALH manifold with boundary ¥. Suppose (M, g) is
static with a static potential V' satisfying V' > 0 near infinity. Suppose ¥ is a locally
outermost, locally area-minimizing, minimal hypersurface. Then V > 0 in Int M
and V =0 on X.

Proof. We describe how the arguments in [29, Section 1] for asymptotically flat
manifolds apply in our setting. The static equation for V' and that X has zero
mean curvature imply

0=A,V—nV =AgV +V?*V(r,v) —nV = AsV + Ric(v,v)V.

Since ¥ is in particular a stable minimal hypersurface, the stability implies that the
least eigenvalue of —Axu— (|A4|>+Ric(v, v))u is non-negative, and thus either V' is
its first eigenfunction (thus V' has no zeros on ¥ and the second fundamental form
A, =0o0nX)orV is identically zero on 3. We will rule out the former case: we may
without loss of generality assume V' > 0 on X, as the case V < 0 on X can be argued
similarly. By Galloway’s monotonicity formula [22, Lemma 3], consider the family
hypersurfaces {X;} with ¥y = ¥ and (‘%Zt = Vv where v points to infinity. Then

% (H‘ff) = —|Ay4|? on X for all ¢ > 0 small. The locally area-minimizing property

implies that 3, for ¢ > 0, form a foliation of totally geodesic hypersurfaces, but
that contradicts the locally outermost property. To conclude, we show that V =0
on X, and thus V > 0 in Int M by the strong maximum principle. O

6. STATIC UNIQUENESS AND RIGIDITY OF THE POSITIVE MASS THEOREMS

The goal in Section 6 is to characterize a mass minimizer and prove Theorem 6,
which then implies Theorem 8 and Theorem 10. By Theorem 4, it suffices to
establish static uniqueness, Corollary 6.3 below. There have been various static
uniqueness results by, for example, [15,24,41]. The boundary conditions that natu-
rally arise in our setting seem to be different from theirs, but the proof is also based
on the following fundamental identity of Y. Shen [38] and X. Wang [41] (see also
Lemma 4.4 and Proof of Theorem 2 in [27]): Let (M, g) be a static, ALH manifold
with boundary 3. Suppose the static potential V' > 0 in Int M. Then

(6.1) /M VHVAV = Vg2 dpy = —252m(g, V) —/2 (Ric+(n—1)g)(VV,v)doy,

where the unit normal on ¥ points to infinity.
We shall see that boundary conditions obtained from Theorem 4 and Remark 5.3
imply the boundary integral vanishes.

Lemma 6.1. Let (M,g) be a static, ALH manifold with a static potential V > 0.
Suppose that ¥ is umbilic with mean curvature (n — 1) and that V.= v(V) on X.
Then

/ (Ric+(n—1)g)(VV,v)do, = 0.
b
As a consequence, if m(g,V) =0, then V satisfies V2V — Vg =0 in M.
Proof. Let {v,e1,...,en—1} be a local orthonormal frame near ¥ and «,f €
{1,...,n — 1}. We will show that, on %,
Ric(eq,v) =0

(6.2) /E‘/(Ric(,/7 v)+(n— 1)) dog = 0.
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Using that V = v(V) and A, = ¢7 on 3, we compute
0=ca(V—-v(V)) =ea(V) —ea(v(V))
=eo(V) = V*V(eq,v) — Vv, ,V
ea(V) — VRic(eq,v) — Aapes(V)
—V Ric(eq, v),

where we use the static equation V2V = V(Ric+ng). Since V > 0, we get
Ric(eq, ) = 0. Next, we use again V2V = V(Ric+ng), V =v(V), and H, =n —1
to compute

0=A,V —nV
= AsV + V3V (v,v) + Hp(V) —nV
= AsgV + V(Ric(v,v) + (n — 1)).

Integrating the previous identity gives the second identity in (6.2). We now use
(6.2) to compute the boundary integral:

/ (Ric+(n—1)g)(VV,v)do, = / v(V)(Ric+(n —1)g)(v,v) doy
b )

= /EV(Ric(y, v)+ (n—1))dog = 0.

To complete the proof, we use (6.1) to get that the volume integral over M is
identically zero and hence V2V — Vg = 0. O

A manifold that admits a positive function satisfying V2V — Vg = 0 can be char-
acterized as in [30,39] for complete manifolds without boundary and in [23, Propo-
sition 4.1] for manifolds with boundary. We show how to extend their argument
for the boundary conditions in our applications.

Lemma 6.2 (Cf. [23,30,39]). Let (M, b) be a reference manifold with the conformal
infinity (N, h) of type k. Let (M,g) be ALH with respect to (M,b) with possibly
nonempty boundary . Suppose there is a function V satisfying V> 0 in Int M
and V*V = Vg in M
(1) If M is boundaryless, then k = 1 and (M, g) is isometric to the standard
hyperbolic space.
(2) Suppose the boundary ¥ is nonempty, and suppose V is constant on X.
Then (M, g) is isometric to the manifold [c,00) X N for some ¢ € R with
the warped product metric of the form

dt* + £(t)?h,

where
sinht fork=1
)= € for k=0
cosht fork= -1
(3) Suppose the boundary 3 is nonempty with mean curvature Hy, = (n — 1),

and suppose v(V) >0 onX. Then k =0, V is constant on , and Item (2)
holds.
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Proof. Ttem (1) is from [30,39]. We just note how to exclude the cases k = 0, —1.
A complete manifold without boundary in the case £ = 0 has a cuspidal end, and
in the case k = —1 has two ALH ends, both are excluded by our assumption that
(M, g) has one ALH end.

Item (2) is obtained in [23, Proposition 4.1]. We discuss how Item (3) can be
obtained from their argument and Item (2). It is shown that V' — oo as ¢ — o
and V has no interior critical point in [23, Proposition 4.1]. Let ¢ = maxs V. Since
V has no interior critical point, together with the assumption that v(V) > 0, we
see that V~1(a) is a regular hypersurface. Let ¥, be the part of V~!(a) that is
homologous to X, and let Q, be the open set bounded between ¥, and . (Here
we use that V — 0o so X must be separated from the infinity by V~1(a).) We can
apply Item (2) to (M \ Qq,¢). In particular, its boundary ¥, must have constant
mean curvature Hy, (see Example 2.2), which according to the type k,

>n—1 fork=1
Hs, ¢ =n—1 fork=0
<n—1 fork=-1

Because X, is tangent to X from outside, by maximum principle, the mean curvature
Hga § HE =n-—1

with equality if and only if ¥, is identical to X. That excludes the case kK = 1. For
the case k = 0, we see that 3, = 3, so the conclusion follows. For the case k = —1,
we can apply the flow argument [23, Proposition 4.1] on ¥, into , and the same
argument show that ), is isometric to a subset of the reference manifold (M, b) of
type k = —1, but that reference manifold cannot contain a closed hypersurface %
with mean curvature n — 1 because it is foliated by hypersurfaces of constant mean
curvature < n — 1. We then exclude the case k = —1. (]

Corollary 6.3 (Static uniqueness for zero mass). Let (M, b) be a reference manifold
with the conformal infinity (N,h) of type k. Let (M,g) be ALH with respect to
(M,b). Suppose (M,g) is static with a static potential V. > 0 in M and with
m(g,V) = 0. In the case that M has nonempty boundary X, we assume® that ¥ is
umbilic with mean curvature (n— 1) and that V = v(V) on X. Then we must have
k=1,0, and (M, g) is characterized as follows:
(1) k=1: (M,g) is the standard hyperbolic space without boundary.
(2) k=0: (M,g) is isometric to a Birmingham-Kottler manifold ([1,00) x N,
r~2dr? + r2h) whose conformal infinity (N, h) is Ricci flat. (In particular,
g itself is Poincaré-Finstein.)
Proof. By (6.1) (if M is boundaryless) or Lemma 6.1 (if M has boundary), the pos-
itive static potential satisfies V2V — V¢ = 0, which also implies that g is Poincaré-
Einstein by the static equation. The conclusion follows from Lemma 6.2. ]

We now prove Theorem 6. Theorem 8 and Theorem 10 are direct consequences
as discussed in Introduction.

Proof of Theorem 6. By Theorem 4, (M, g) is static with a static potential V' > 0
in M, and in the case that M has nonempty boundary X, we also have that %
is umbilic with mean curvature n — 1 and V' = v(V) on 3. The conclusion then
follows from Corollary 6.3. O

3See Remark 5.3 for the motivation of the boundary assumption.
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6.1. Miscellaneous results. We include results of independent interest. They are
not used elsewhere in the paper.

6.1.1. Bartnik mass minimizers. Given a static, reference manifold (M,b) with a
static potential V and a compact manifold (€2, go) with boundary X, we define the
(hyperbolic) Bartnik mass with respect to (M, b) to be

mp(Q, go) = inf {m(g, Vo) : (M, g) is admissible},
where (M, g) is said to be admissible if the following holds
e (M,g)is ALH with respect to (M, b) and has scalar curvature Ry > —n(n—
1).
e The boundary M is diffeomorphic to 3, and the Bartnik boundary data
match along OM = X:

g7 :gg, Hy = Hyg,.

e (M, g) satisfies a non-degeneracy condition N that is “open” among small
deformations of g. As an example, the condition N can say that oM
is strictly outward-minimizing in (M, g), in the sense that it has volume
strictly less than any hypersurface enclosing it.

We also refer the definition to [34, Section 3] and [9]. We say that an admissible
(M, g) is a Bartnik mass minimizer of (€, go) if m(g, Vo) = mp(, go). As a direct
consequence of Theorem 3, we see that a Bartnik mass minimizer must be static. A
different proof with a slightly different conclusion has been given by [34, Theorem
3.0.1].

Corollary 6.4 (Cf. [34, Theorem 3.0.1]). Let (M,b) and (2, go) be as above. If
(M, g) is a Bartnik mass minimizer of (2, go), then (M,g) is static with a static
potential V satisfying V — Vo = O(r=%) for some number d > 0.

6.1.2. Static uniqueness. We have seen in Example 2.2 that the reference manifolds
are foliated by hypersurfaces of constant mean curvature. We shall see that those
hypersurfaces have further global properties:

e k= 0: Since (M, b) is foliated by hypersurfaces with constant mean curva-
ture (n — 1), the “exterior region” [r,00) relative to S, cannot contain any
closed hypersurface with mean curvature strictly less than (n — 1).

e k=—1: At r =1, S; is a minimal hypersurface, and the “exterior” region
M = (1,00) X N is foliated by hypersurfaces of positive mean curvature and
thus cannot contain any other minimal hypersurface.

Those global properties are captured by the following “outermost” condition.

Definition 6.5. Let (M, g) be ALH with boundary ¥ having mean curvature Hy.
We say that X is locally weakly outermost if there is a collar neighborhood U of X
such that there are no hypersurfaces in U homologous to ¥ with mean curvature
< Hy.

A similar result by a similar proof is obtained Chrusciel, Galloway, and Potaux
in [15, Theorem VI.7] with the difference is that the “locally weakly outermost”
condition here is replaced by their assumption that 3 is a (strongly) stable CMC
hypersurface with mean curvature n — 1 and that V is constant on 3. The point
of this proposition is to find the boundary conditions entirely on ¥ but not on the
static potential V.
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Proposition 6.6. Let (M,g) be ALH with boundary ¥. Suppose that (M,g) is
static with a static potential V' satisfying V- > 0 in Int M and has the mass integral
m(g,V) = 0. Suppose the following boundary conditions hold:

(6.3) % has the mean curvature Hy < n — 1, is locally weakly outermost, and

does not admit a metric of positive scalar curvature.

Then the induced metric h := g7 on ¥ is Ricci flat, and (M, g) is isometric to
([1,00) x X, dt? 4 €*h).

Proof. It is shown by Galloway and the second author in [23, Theorem 1.3] that (6.3)
implies that there is a collar neighborhood U of ¥ such that (U, g|y) is isometric
to the warped product ([0, g) X 3, dt? + ezth) and (X, h) is Ricci flat. From that,
we can compute (U, g|y) has constant Ricci curvature Ric = (n — 1)g. Therefore,
the boundary integral in (6.1) vanishes

/ (Ric+(n —1)g)(VV,v)do, = / v(V)(Ric+(n—1)g)(v,v)do, = 0.
b by

Together with the assumption m(g, V) = 0, we see that V satisfies V2V = Vg
in M. The local splitting of (U, g|yy) and that V2V = Vg in U also imply V =
constant on X, proven in [23, Theorem 1.5]. The proof follows by Lemma 6.2. O

APPENDIX A. AN ALTERNATIVE PROOF TO ANDERSON-JAUREGUI’S SCALAR
CURVATURE SURJECTIVITY

In Section A we discuss Theorem 4.2. All the notations in Section A are self-
contained, and should not be confused with the rest of the paper. (The weighted
Holder spaces here are for asymptotically flat manifolds, whose definition is referred
to, e.g. [20, Section 2].) Let n > 3, s € (%52,n — 2) and let (M,g) be an n-
dimensional asymptotically flat manifold. We define the Banach space of symmetric
(0, 2)-tensors by

S={heC*¥(M):hT=0and DH|,(h) =0 on T}.
We recall the formulas for the linearized scalar curvature DR|, and linearized mean
curvature DH| 4
DR|y(h) = —Agtrg h + divgdivyh — h - Ric,
DH|4(h) = iv(tr A7) — divsw — $h(v,v)H,

g»

where v is the unit normal on ¥ pointing to infinity, w is the one-form on the
tangent bundle of ¥ defined by w(-) = h(v,-).

Theorem 4.2 is obtained by Anderson and Jauregui for n = 3 in [4, Proposition
2.4]

Theorem 4.2. Let (M, g) be an n-dimensional asymptotically flat manifold. Then
the linearized scalar curvature map DRy : S — C%S‘_S(M) is surjective. As a
consequence, the map

h € (M) — (DR|y(h),hT, DH|,(h)) € CV5_ (M) x C**(X) x C1(%)

18 surjective.

Licensed to Univ of Conn, Storrs. Prepared on Fri Aug 25 16:12:08 EDT 2023 for download from IP 132.174.250.220.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8186 LAN-HSUAN HUANG AND HYUN CHUL JANG

The key to prove Theorem 4.2 is to show that the map DR|, has closed range,
as stated in Lemma A.1. An alternative proof of the lemma is given by Zhongshan
An [2, Section 2.1] (stated for n = 3). We thank her for explaining her proof to
us. It appears that both proofs introduce an auxiliary scalar function to obtain
a one-dimensional higher warped product with h in a “spacetime.” Their proofs
consider the linearized Einstein tensor on the spacetime (so that the equation for
DR, appears as the “time” component) and use the result of Anderson and Khuri
on ellipticity of the system under some subtle gauge conditions [5, Lemma 3.2].
Here we provide an elementary and self-contained proof for general n > 3 that
analyzes the operator DR)|, directly.

Lemma A.1. Let (M, g) be an asymptotically flat manifold with compact boundary
Y. Then the map DR|,: S — C%S_ (M) has finite-dimensional cokernel, and hence
it has closed range.

Proof. For any scalar function v and any symmetric (0, 2)-tensor h, we define the
differential operator L and the boundary operator B on (v, h) by

(1 —n)Av—vR, + DR|,(h)

L(v,h) = A in M
Qing g Lip— 1 ) —di _lh( VH, :
B(v,h) = h(zy?f)g—'ﬂ(” D) hT) = divsw =g hle, )y on ¥
(divh — dv)T

We note that the first component in L(v, h) is exactly DR|,(vg+ h) and the second
component in L is the tensor Laplacian on h. We also note that the first two
components in B(v, h) are exactly the Bartnik boundary data of vg 4+ h, while the
rest of components in B(v, h) are somewhat arbitrary — they are chosen so that the
fact (A.2) below holds.

We will verify that L(v, h) is elliptic and that the boundary operator B(v, h) sat-
isfies the corresponding complementing boundary condition in the sense of Agmon-
Douglis-Nirenberg [1]. Once we verify those, we then have that L is a Fredholm
operator on the space of (v,h) € C>%(M) subject to the boundary condition
B(v,h) = 0, so Range L is of finite codimension. To complete the proof, we note
that Range DR|, (from the space S) contains the range of the first scalar component
of L and hence Range DR, is also of finite codimension.

Let {e1,...,e,} be an orthonormal local frame so that e, = v along . Denote
the number

1
N:1+%+n.

For the purpose to assign an order for the unknowns (v, h), let ¢ be a bijection from
the index space {(j,k) : 1 < j < k <n} to the integers {2,..., N}. With respect to
the local frame, we write (v, h) as (uq,...,uy) where U, (j,k) = Njr. We express the
i-th (scalar) differential equation of Lu and the h-th (scalar) differential equation
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of Bu respectively by, for i,h =1,..., N,

N
(Lu); = Z £i5(0)u

N
(Bu)y, = Zth(a)uj.

To identify the symbols, we substitute? the differential operator 9 in ¢;;(9) and
B},j(0) with the polynomials of § = (&1,...,&,). Let £;(£) consist of the homo-
geneous polynomials in ¢;;(§) of degree 2. The principle symbol of the differential
operator L, denoted by L'(§), is the square matrix of size N whose (i, j)-th entry
is £;;(£). We express the principal symbol L’(¢) in the following [1] 4 [N — 1] block
form:

L-n)lgf | =
Al L' = ( ,
( ) (5) 0 ’ |£|2I(N—1)
where |£| = /&7 + - -+ + €2, Iy is the identity matrix of size (N — 1), and the as-
terisk represents the row that contains polynomials in £ (homogeneous of degree 2).
Since the L'(§) is an upper triangular matrix, we compute

det L'(€) = (1 —n)|¢]*N #0  for any real £ # 0.

Thus, L is an elliptic operator as in [1, p. 39]. (Implicitly, we use the weights
s; =0, t; = 2 for all ¢, j where the weights s;,t; (as well the rj, that appears below)
are defined as in [1].)

We now identify the principal symbol of the boundary operator B. Let B;Lj(f)
consist of the polynomials in Bp;(§) of the highest degree in each (Bu); equation.
More precisely, the highest degree in the first and third equations in B is 0 (which
corresponds to the weight r, = —2) and the highest degree in the other equations
of B is 1 (which corresponds the weight r, = —1). The principal symbol, denoted
by B’(€), is an N x N matrix whose (h, j)-th entry is By,;(€). Instead of writing

Uy
out B'(£) in the matrix form, we list all the rows of the matrix B'(§) | : | (and
un
substitute (u1,...,uy) with (v,h)): for o, =1,...,n—landi=1,...,n:

U(Sag + haﬁ

n—1 n—1
%(n - 1)571/0 + %gn Z haa - Z gahna
a=1 a=1

h’l’l/ﬂ

(Z fihia> —&av.
=1

Before we proceed, we verify the fact to be used later that

(A.2) det B'(€) #0 for all ¢ = (¢,i) with || =1 (and &, =),
4Recall that the substitution of 8 by ¢ to get £;5(€), Bp;(§) means that for any multi-index
I = (I,...,In), the partial derivative e{l .. e,Il" is substituted by the polynomial 5{1 .. TI{”.
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where & := (&1,...,&,—1) are real and i denotes a unit imaginary number. Since
B'(€) is a square matrix, it is equivalent to directly verifying that the only solution
(v, h) to the following linear system is the zero solution:

U(Saﬁ + hag =0

n—1
%(n—l |11—|——|Zh(m Zfahna =0
a=1
hpn =0
n—1
> &shsa | +ihna —av =0.
B=1

For the rest of the proof, we show how (A.2) implies that the boundary operator
B satisfies the complementary boundary condition of [1, pp. 42-43]. As preparation,
we compute the adjoint matrix of L'(€):

. . / ’ -1 _ (1 _ 2N (1i_n) |£‘72 ’ 1:1n|f|72*
adj L'(§) == det L'(§)(L'(£)) ™" = (1 = n)[¢] =
0 G

1 -1
(A.3) = (1—n)lgPN-1 [ (I—n) ‘ Tn* ] ’
0 [In—y

where in the first line {=L-|¢| =2 denotes {==|¢|~% multiplying the asterisk row in
(A.1), and similarly for the second line. From now on, we assume [¢'| = 1 and
¢, = 7. Denote the polynomial M*(7) = (7 —i)¥ in 7. (The polynomial is defined
so that it has the root i with multiplicity N where i is the root (with multiplicity
N) of det L’ (£) = 0 that has positive imaginary part.)

The boundary operator is said to be complementary if for any £ = (&, 7) with

|¢'| = 1 and for any constants C1,...,Cy satisfying
O

(A.4) B'(§)adjL'(§) | : | =MT(1)P(r),
Cn

where P(7) is a column vector whose entries are polynomials in 7, we must have
Ci=---=Cy=0.
The expression of the adjoint matrix in (A.3) now takes the form for |¢/| = 1:

1 -1
. AN AN — —x
adj L'(¢',7) = (1= n)(r — )V} (r i)Y 1{ mo | =

So we can cancel out the common factor (7 — i)V ~! from the both sides of (A.4)
and get

(- nr +" B [T ] | | = - ipo)
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To solve for C1,...,Cy, we set 7 =i to get the homogeneous system:
o (11 ) ’ 1__1* Ol
B'(&i [ —n —n } | =0.
( ) O | I(N_l) .

We have shown that the first matrix in the left hand side is nonsingular in (A.2)
and the matrix in the block form is clearly nonsingular, so we conclude that C; =
-.=Cn=0. |

We explain how to obtain Theorem 4.2 from the Lemma A.1. Once DR|, has
closed range, it suffices to show that the adjoint operator has trivial kernel, i.e.
for any V e (C*5_,(M))* solving DR[;(V) = 0 weakly, we have V' = 0. Elliptic
regularity implies that a weak solution V is at least C2* and thus DR[3(V) =0

loc
in the pointwise sense; that is, V is a static potential. Recall that a nonzero static

potential on an asymptotically flat manifold must be asymptotic to a nontrivial
linear combination of {1,x1,...,x,} (see, e.g. [29, Proposition B.4]), which, how-
ever, cannot be a bounded functional on C”§ _(M). We then conclude that V is
identically zero.
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