MODULI SPACES OF RATIONAL CURVES ON FANO THREEFOLDS
ROYA BEHESHTI, BRIAN LEHMANN, ERIC RIEDL, AND SHO TANIMOTO

ABSTRACT. We prove several classification results for the components of the moduli space
of rational curves on a smooth Fano threefold. In particular, we prove a conjecture of
Batyrev on the growth of the number of components as the degree increases. The key to
our approach is Geometric Manin’s Conjecture which predicts the number of components
parameterizing free curves.

1. INTRODUCTION

While lines and conics on Fano threefolds have been extensively studied due to their role
in the classification theory, much less is known about rational curves of higher degree. Let
X denote a smooth Fano threefold and let Rat(X) denote the union of the components of
Moo(X) that generically parametrize stable maps with irreducible domain. An important
open question is to classify all components of Rat(X).

In this paper we develop a theoretical framework which reduces the classification problem
to understanding the components in a finite degree range. As an application, we prove a
conjecture of Batyrev that the number of components of the space of rational curves on a
Fano threefold is bounded by a polynomial in the degree of the curve.

Theorem 1.1. Let X be a smooth Fano threefold. There is a polynomial P(d) such that the

number of components of Rat(X) parameterizing rational curves of anticanonical degree < d
is bounded above by P(d).

Our approach to the classification problem is motivated by Geometric Manin’s Conjecture.
Just as Manin’s Conjecture for rational points predicts the asymptotic growth rate of the
number of rational points of bounded height, Geometric Manin’s Conjecture predicts the
growth rate of the dimension and number of components of Rat(X) parameterizing degree
d curves as the degree d grows large. By analogy with the rational point version, we must
distinguish two types of components: the accumulating components which do not contribute
to the counting function, and the Manin components which do contribute.

1.1. Accumulating components. There are two key perspectives on how to identify ac-
cumulating components for Fano threefolds. First, [LST22] gives a conjectural description of
the exceptional set in Manin’s Conjecture based on the negativity properties of the canoni-
cal divisor. Second, one can identify accumulating components based on their pathological
geometric behavior — for example, they could have higher than the expected dimension or
the evaluation map on the universal family could fail to have connected fibers.

In Theorem 7.3 and Theorem 7.7 we will show that these two approaches match up per-
fectly (with one possible exception). In particular, using techniques from the Minimal Model
Program we can explicitly identify all families of curves which exhibit pathological geometric
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behavior. Our first result identifies the families which have larger than expected dimension,
improving the implicit description of [LT19b]:

Theorem 1.2. Let X be a smooth Fano threefold. Let M be a component of Rat(X) such
that the curves parametrized by M sweep out a proper subvariety Y C X. Then either:

o Y is swept out by a family of —K x-lines, or

o Y is an exceptional divisor for a birational contraction on X.

Our second result identifies the dominant families of rational curves such that the evalu-
ation map for the universal family fails to have connected fibers.

Theorem 1.3. Let X be a smooth Fano threefold such that —Kx s very ample. Let M be
a component of Rat(X) and let C — M denote the corresponding component of Mo 1(X).
Suppose that the evaluation map ev : C — X s dominant but a general fiber is not irreducible.
Then either:

o M parametrizes a family of stable maps whose images are —K x-conics, or
o M parametrizes a family of curves contracted by a del Pezzo fibration w: X — Z.

1.2. Manin components. Manin components are the components of Rat(X) which are
included in the counting function. Our main tool for counting Manin components is the
following result.

Theorem 1.4 (Movable Bend-and-Break). Let X be a smooth Fano threefold. Let M be
a component of Rat(X) that generically parametrizes free curves. Suppose that the general
curve C' parametrized by M has anticanonical degree > 6. Then M contains a stable map of
the form f : Z — X where Z has two components and the restriction of f to each component
realizes this component as a free curve on X.

Using this theorem, we can apply the inductive approach pioneered by [HRS04] to classify
free curves on X. Suppose we identify the (finitely many) components of Rat(X) which
parametrize free curves of anticanonical degree < 5. Then we can classify all components of
Rat(X) parametrizing free curves of anticanonical degree > 6 by repeatedly gluing the low
degree free curves and studying the resulting components.

Note that the gluing and smoothing operation defines a binary product on the set of
components of Rat(X) whose evaluation maps are dominant and have connected fibers.
In many situations one can use Movable Bend-and-Break (Theorem 1.4) to show that this
monoid is finitely generated. In this way the irreducibility of the moduli space of rational
curves associated to each nef class can be reduced to showing the irreducibility of moduli
spaces in low degree. We demonstrate this technique in a couple examples in Section 8.

Example 1.5. Let X C P* be a smooth quartic threefold. In Section 8.1 we will show that
in every degree d > 3 there is a unique component of Rat(X) of degree d that parametrizes
birational maps onto free curves. All other components of Rat(X) with d > 3 parametrize
multiple covers of lines or conics. (Note that our results do not address the components of
Moo(X) which are not contained in Rat(X).) When X is general, such a statement has
been obtained in [LT21].

Example 1.6. Let X be the blow-up of Pp2(O & O(2)) along a quartic curve in a minimal

moving section. In Section 8.2 we will show that every nef curve class on X is represented by a
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unique component of Rat(X) and that every pseudo-effective curve class on X is represented
by at most one component of Rat(X). Since X is the unique Fano threefold which admits
two E5 contractions, it is in some sense the “most difficult” Fano threefold to handle using
our techniques.

1.3. Comparison to previous work. There are some examples of Fano threefolds for
which the components of Rat(X) were calculated previously. Lines and conics on Fano
threefolds are well studied due to their relations to the classification theory, and there is an
extensive literature initiated by works of Iskovskikh [Isk77], [Isk78|, and [Isk79]. See [IP99]
and [KPS18] for more information and references. For rational curves of higher degree,
cubic threefolds were addressed in [CS09] and intersections of two quadrics were handled by
[Cas04]. [LT19b] and [LT21] proved some partial results for Fano threefolds of Picard rank
1. There are more general results for homogeneous varieties ([Tho98], [KP01]) and for toric
varieties ([Boul2]) which can be applied to Fano threefolds of the appropriate type.

There are two technical advances which distinguish the results of this paper from previous
work. First, we fully describe the behavior of the a and b invariants for Fano threefolds
with —Kx very ample. By appealing to the Minimal Model Program for threefolds and the
classification results of [Kaw05], we give a complete classification of the generically finite
maps f: Y — X such that a(Y, —f*Kx) > a(X, —Kx) and —Kx is very ample, finishing a
project initiated in [LTT18] and [LT17]. This classification allows us to leverage the theory
of Geometric Manin’s Conjecture to classify pathological components of Rat(X). (Our work
can also be used to describe the conjectural exceptional set in Manin’s Conjecture for a Fano
threefold defined over a number field which is proposed in [LST22].)

Second, we give a general and conceptual proof of Movable Bend-and-Break for Fano
threefolds. In particular our work clarifies and greatly extends the ad hoc approach used to
prove a special case in [LT21]. To prove Movable Bend-and-Break for a family of free curves,
the key idea is to impose as many point and curve incidences as possible on a one-dimensional
subfamily. Using the geometry of these incidence correspondences we are able to constrain
the possible outcomes of Mori’s Bend-and-Break Lemma.
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2. PRELIMINARIES

We work over an algebraically closed field k of characteristic 0. A variety is an integral
separated scheme of finite type over k. Let X be a projective variety defined over k. Let
N'(X) be the space of R-Cartier divisors modulo numerical equivalence and let N;(X) be
the dual space of R-1-cycles modulo numerical equivalence. We denote the nef cone and the
pseudo-effective cone of divisors by

Nef!(X), Eff (X)
and we denote the nef cone and the pseudo-effective cone of curves by

Nef,(X), Effy(X).

2.1. Mori’s Bend-and-Break Lemma. We will use the following version of Mori’s Bend-
and-Break Lemma.

Lemma 2.1 ([LT19a] Lemma 4.1). Let 7 : S — C be a morphism from a smooth projective
surface to a smooth projective curve such that a general fiber of m is isomorphic to P!.
Suppose that we have a morphism f : S — X to a projective variety such that (i) the image
of [ is 2-dimensional, and (ii) there are two sections Cy, Cy of m contracted to distinct points
x1 and x9 on X respectively. Then there exists a singular fiber F' of m and two components
Fy and Fy of F such that (a) both Fy and Fy are not contracted by f, and (b) the image of
F; contains x;.

2.2. Classification results. For later analysis, we need the classification of divisorial con-
tractions for smooth projective threefolds developed by Mori in [Mor82]:

Theorem 2.2 ([Mor82]). Let X be a smooth projective threefold and f : X —Y be a Kx-
negative divisorial contraction. Let E be the exceptional divisor on X. Then f and E are
described by one of following list of possibilities:

e Fl1: f is the blow up along a smooth projective curve in a smooth projective threefold
Y. The divisor E is a ruled surface and any fiber C of f|g satisfies —Kx - C =1;

e F2: f is the blow up at a smooth point of a smooth projective threefold Y. The
polarized surface (E,—Kx|g) is isomorphic to (P2, O(2));

o F3: f is the blow up at an ordinary double point of Y which is locally analytically
isomorphic to % + y? + 2% + w? = 0 in A*. The polarized surface (E,—Kx|g) is
isomorphic to (Q,O(1,1)) where Q is a smooth quadric surface;

e F: f is the blow up of a point in Y which s locally analytically isomorphic to
22 +y? + 22+ w® = 0. The polarized surface (E,—Kx|g) is isomorphic to (Q, O(1))
where Q) is a quadric cone;

e Eb5: f is the blow up of a point in Y which is locally analytically isomorphic to
the quotient of A3 by the involution (z,y,z) — (—x, —y, —z). The polarized surface
(E,—Kx|g) is isomorphic to (P?,O(1)).

Given a contractible divisor £ on a smooth Fano threefold X, we will say that E has type
E1l, E2, E3, E4, or E5 according to the classification above. The following lemma allows us
to easily work with contractible divisors.



Lemma 2.3. Let X be a smooth Fano threefold. Let E; and Es be distinct contractible
divisors which have E2, E3, E4, E5 type or which have E1 type and are isomorphic to
P! x P! with normal bundle O(—1,—1). Then By N Ey = &.

The proof is well-known; for example, in [MMS83] it is proved for primitive Fano threefolds.

Proof. Suppose that E; N Es is not empty. Then the intersection must have dimension
1. Let C denote an irreducible curve lying in the intersection. Since both divisors have the
property that every curve in the surface deforms in a dominant family, we see that C' deforms
to sweep out F and also deforms to sweep out Fs. This implies that C' is a nef curve class
on X. However, we should also have F; - C' < 0 due to the antiampleness of F1|g,, giving a
contradiction. ([l

Smooth Fano threefolds of Picard rank 1 are classified by Fano-Iskovskih in [Isk77] and
[Isk78]. The classification of smooth Fano threefolds of Picard rank > 2 is given by Mori-
Mukai in [MM82], [MMS83], and [MMO03|. Finally, the computation of extremal rays for
smooth Fano threefolds has been carried out in [Mat95], [MMO04], and [Fuj16, Section 10.4].
According to these results, the following list classifies all smooth Fano threefolds which admit
an E5 type divisorial contraction.

Theorem 2.4. Let X be a smooth Fano threefold admitting an ES type divisorial contraction.
Then X 1is one of the following threefolds:

e Picard rank 2 case:
(1) the blow up of P3 along a smooth cubic plane curve;
(2) Pp2(O ® O(2)).
o Picard rank 3 case
(3) the blow up of P? along the disjoint union of a plane cubic in a plane P and a
point not on P;
(4) the blow up of P* x P? along a conic in a fiber of the first projection map;
(5) the blow up of BlyP? along a line contained in the exceptional divisor;
(6) the blow-up of Pp2(O @ O(2)) along a quartic curve Z contained in a minimal
mowving section D of the projective bundle.

Moreover the first five varieties admit a unique E5 divisorial contraction while the last one
admits exactly two.

We will also need the following results about Fano threefolds which follows directly from
the classification.

Theorem 2.5 ([Isk77]). Let X be a smooth Fano threefold such that | — Kx| is not base
point free. Then X s isomorphic to one of the following threefolds:

(1) Vi which is the double cover of the Veronese cone Wy C PS whose branch locus is a
smooth intersection of Wy and a cubic hypersurface not passing through the vertex of
the cone;

(2) the blow up of Vi along a smooth elliptic curve which is a complete intersection of
two members of | — $Kv,|;

(3) P! x Sy where Sy is a del Pezzo surface of degree 1.

Theorem 2.6 ([IP99]). Let X be a smooth Fano threefold such that | — Kx| is base point

free, but not very ample. Then X is isomorphic to one of the following threefolds:
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(1) the double cover of P® ramified along a smooth sextic surface;

(2) the double cover of a quadric hypersurface Q C P* ramified along a smooth intersec-
tion of Q) and a quartic hypersurface;

(3) the double cover of P! x P? ramified along a smooth hypersurface of bidegree (2,4);

(4) the blow up of Vo along an elliptic curve which is a complete intersection of two
members of | — $Kv,|, and;

(5) P! x Sy where Sy is a smooth del Pezzo surface of degree 2.

2.3. Deformation theory for stable maps of genus 0. Let X be a smooth projective
variety. We denote the coarse moduli space of stable maps of genus 0 on X by M,(X). In
this section we will use deformation theory to study Mg o(X) following [BM96], [BF97], and
[GHS03]. We will be interested in the components of M o(X) which generically parametrize
maps with irreducible domain; we denote the union of such components by Rat(X).

Let f: Z — X be a stable map of genus 0. Assume that f is an immersion on an open
neighborhood of each nodal point of Z. Then the deformation theory of f is controlled by
the normal sheaf Ny, x which fits into an exact sequence

0 — Homo (K,0c) = Nyjx — Exty,.(Q,0c) — 0

where K and @ are respectively the kernel and cokernel of f*QY — Qf.. Precisely, the space
of first-order deformations of f is H%(Z, Ny x) and the obstruction space is H'(Z, Ny/x).
We will often be in a situation where f is an immersion so that ) = 0.

Proposition 2.7 ([GHS03] Lemma 2.6). Let X be a smooth projective variety. Suppose that
f:Z — X s a stable map which is an immersion on an open neighborhood of each node of
Z. Suppose that Zy is an irreducible component of Z which meets components Zy, ..., Z. at
points py,...,pe. Letting fo = f|z, we obtain a short exact sequence

0 — Nyyx = Nyjxlz, — @k(pi) — 0,

where the quotient Nyx|z, — k(p;) is given by the tangent direction of Z; at p;.

We will mainly be interested in stable maps whose normal sheaves are positive along every
component.

Proposition 2.8. Let X be a smooth projective variety. Let f : Z — X be a genus 0
stable map such that f is an immersion. Suppose that Ny /x|z, is globally generated for every
component Z; of Z. Then f is a smooth point of the Kontsevich moduli space and there
are deformations of f which have irreducible domain and which map birationally onto free
curves i X.

Since this result is well-known we omit the proof. We next recall some deformation
theoretic properties of stable maps which will be familiar to experts.

Proposition 2.9. Let X be a smooth variety with D an arbitrary divisor on X and let
C C X be a free rational curve that is general in its deformation class. Then C' is not
tangent to D at any point of intersection.

Proof. The family of free curves gives a base M, a flat morphism 7 : C — M whose general

fiber is P!, and a morphism F : C — X sending a general fiber of 7 birationally onto a curve
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in X. After replacing M and C by open subsets and taking a base change over M, we may
assume that M and C are smooth and that F~'(D) with its reduced structure is the sum of
a finite union R of sections of 7 and a w-vertical divisor S. By generic smoothness, if p is
the intersection of R with a general fiber C' then p is a smooth point of F|r : R — D, and
therefore T'p f(,) is in the image of T¢ , — T'x f(). So F' is not smooth at p if and only if the
image of C' is tangent to D at F(p). On the other hand, since f := F|¢ is a free morphism,
for any point ¢ on C' the tangent space to the fiber of F' through ¢ is H*(C, N; x(—q)). This
has the expected dimension so F' is smooth at any point ¢ of C. Therefore, the image of C
is not tangent to D at f(p). O

Proposition 2.10. Let X be a smooth threefold carrying a smooth divisor D which admits
a fibration ¢ : D — PY. Let C be a very free curve on X that is general in its deformation
class. Then C' meets each fiber of ¢ in at most one point.

Proof. By [Kol96, 11.3.14 Theorem| such a curve C' is embedded in X. Let B be an open
set of the moduli space of curves parametrizing irreducible deformations of C' which are
embedded in X. Suppose that every general deformation of C' meets some fiber of ¢ in at
least two points. Consider the family U of tuples (p,q, Cy) such that Cy is a smooth very
free curve that is a deformation of C' and p, ¢ are distinct points in of Cy which both lie in
the same fiber of ¢. We have a map m; : Y — D x D. This map cannot dominate since p
and ¢ must lie in the same fiber of ¢.

We claim that in this situation & cannot dominate B. By Proposition 2.9, we see that a
general curve C' will meet D transversely at every point. Since C'is very free, the dimension of
Bis h’(C, N¢yx), while the dimension of the fiber of my containing C'is h°(C, No/x(—p—q)) =
h°(C,N¢/x(—2)) = dim B — 4. Since the image of 7 is at most 3-dimensional, it follows
that dimy < dim B. Thus, a general curve C' will not meet D multiple times in a fiber of

. O

Proposition 2.11. Let X be a smooth projective variety of dimension n equipped with a
dominant morphism m : X — Z such that dim(Z) > 2 and 7 is smooth away from a
codimension 2 subset V C X. Let C' be a general member of a family of very free curves on
X. Then w|c is birational and its image is a curve with at worst nodes in Z.

Proof. Let n denote the dimension of X and let M be an irreducible component of Rat(X)
whose general points correspond to very free curves. For any p in X and any tangent direction
at p, if there is an irreducible very free curve through p in our family with the given tangent
direction then the locus in M parametrizing such curves has codimension 2(n — 1). Since C
is a general very free curve, we may assume that it does not intersect V. For any p € X\V
the locus of very free irreducible curves through p whose tangent direction at p is in the
kernel of T'x |, — 7*T|, is of codimension > 2(n—1) — (n—rank 7, ,—1) =n—1+dim Z in
M. Hence the locus of curves in X\V whose tangent direction at a point goes to 0 under 7
has codimension > dim(Z) — 1. This shows that the image of a general curve parametrized
by M has at worst nodes.

To show 7|c is birational for a general C' parametrized by M, note that if 7|c is not
birational, then there should be a point at which 7|c is not an immersion, so the result

follows from the argument above. O
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3. THE INVARIANTS IN GEOMETRIC MANIN’S CONJECTURE

As mentioned in the introduction, Geometric Manin’s Conjecture predicts that the be-
havior of rational curves on a Fano variety X is controlled by two invariants, the a-invariant
and the b-invariant. The primary input into Manin’s Conjecture is the a-invariant.

Definition 3.1 (the a-invariant). Let X be a smooth projective variety and let L be a big
and nef Q-divisor on X. Then we define the Fujita invariant (or the a-invariant) by

a(X,L) =inf{t e R | tL + Kx € Bff (X)}.
By [BDPP13], a(X,L) > 0 if and only if X is uniruled. When L is nef but not big, we

formally set a(X, L) = oco. N
When X is singular, we pick a resolution 5 : X — X and define the a-invariant by

a(X,L) :=a(X,B°L).
[HTT15, Proposition 2.7] shows that this definition does not depend on the the choice of 5.

Using the boundedness of singular Fano varieties ([Bir19] and [Bir21}), [HJ17] established
the following theorem:

Theorem 3.2 ([HJ17] Theorem 1.1 and [LT19b] Theorem 3.3). Let X be a smooth uniruled
projective variety and let L be a big and nef Q-divisor on X. Let V be the union of all
subvarieties Y such that a(Y, L) > a(X, L). ThenV is a proper closed subset of X and each
component V; of V' satisfies a(V;, L) > a(X, L).

The secondary input into Manin’s Conjecture is the b-invariant.

Definition 3.3 (the b-invariant). Let X be a smooth uniruled projective variety and let L
be a big and nef Q-divisor on X. Let Fx denote the face of Nef;(X) consisting of curve
classes with vanishing intersection against Kx + a(X, L)L. We define

b(X, L) = dim(Span(Fy)).

When L is nef but not big, we formally set b(X, L) = oco.
When X is singular, we pick a resolution g : X — X and define the b-invariant by

b(X,L) :=b(X,3L).
[HTT15, Proposition 2.10] shows that this definition does not depend on the choice of j.
We will also need the following refinement of the b-invariant.

Definition 3.4. Let X be a smooth uniruled projective variety and let L be a big and nef
Q-divisor on X. Suppose that f : Y — X is a generically finite dominant morphism from
a smooth projective variety Y satisfying a(Y, f*L) = a(X, L). As in Definition 3.3 let Fy
denote the face of Nef;(X) perpendicular to Kx + a(X, L)L and let Fy denote the face of
Nef; (YY) perpendicular to Ky + a(Y, f*L)f*L. By [LST22, Lemma 4.25] the pushforward
f« takes Fy into Fx. We say that f is face contracting if the map f. : Fy — Fx is not
injective.
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4. NON-DOMINANT FAMILIES OF RATIONAL CURVES

In this section we will analyze non-dominant families of rational curves on a smooth
Fano threefold X. The first step is to classify the subvarieties Y such that a(Y, —Kx) >
a(X, —Kx). Their structure is given by the following theorem:

Theorem 4.1. Let X be a smooth Fano threefold. Suppose that Y is a 2-dimensional sub-
variety of X satisfying a(Y,—Kx) > a(X,—Kx). Let ¢ : Y — Y denote a resolution of
singularities and let ¢ denote the the composition of 1 with the inclusion map to X.
(1) If k(K3 —a(Y, —Kx)¢*Kx) =1 then Y is swept out by —Kx-lines.
(2) If K(Ky — a(Y,—Kx)¢p*Kx) = 0 then Y is a contractible divisor of type E1, E2,
ES3, E4, or E5. Moreover if Y has type E1 then (Y,—Kxl|y) is isomorphic to (P x
P, O(1,1)) and both rulings correspond to E1 contractions.

Proof. Case 1: k(Ky —a(Y,—Kx)¢p*Kx) = 1. Let p: Y — B denote the litaka fibration
for Ky —a(Y, —Kx)¢*Kx. A general fiber C satisfies

~Ky-C 2
alY,-Kx) a(Y,—Kx)

Since a(Y, —Kx) > a(X,—Kx) = 1 we conclude that the image of C'in X is a —Kx-line
that sweeps out Y. R
Case 2: k(Ky —a(Y,—Kx)¢*Kx) = 0. Let v : Y — Y be the normalization map.

Since a(Y, —Kx) > 1 and the pair is adjoint rigid, [LT21, Lemma 5.3] shows that Y has
only canonical singularities and that Ky ~g a(Y, —Kx)v*Kx. Using the classification of

~

[Hor10, Proposition 1.3], we see that the pair (Y, —v* Ky) is isomorphic to either (P?, O(1)),
(P2,0(2)), or (Q,0(1)|g) where @ is a smooth or a singular quadric hypersurface in P3.

First suppose that Y is normal so that v is an isomorphism. This implies that Ky ~q
a(Y,—Kx)Kx|y. By adjunction we conclude that Y|y is antiample. So there is an extremal
ray of Eff;(X) such that Y - R < 0. Then this extremal ray defines a divisorial contraction
contracting Y. We can identify the type of contraction by comparing against the classifi-
cation of exceptional divisors in Theorem 2.2. If (Y, —Kx|y) is isomorphic to (P? O(1))
the extremal contraction will have type E5. If (Y, —Kx|y) is isomorphic to (Q, O(1)) the
extremal contraction will have type E1, E3, or E4, and furthermore in the case of an E1 con-
traction () must be smooth so that both rulings correspond to E1 contractions. If (Y, —Kx|y)
is isomorphic to (P2, O(2)) the extremal contraction will have type E2.

It only remains to show that Y cannot be non-normal. We separate the argument into two
cases depending upon Whetheerr not —Ky is very ample. First suppose that —Kx is very
ample. Note that the map v : Y — Y must be defined by a sublinear series of | — v*Kx|. If

—§"Kx - C =

(Y, —v*Kx) is isomorphic to (P?, O(1)), then no strict sublinear series will define a birational

map and we conclude that Y =Y is normal. If (Y, —v*Kx) is isomorphic to (@, O(1)) then
again no strict sublinear series can define a birational map and we conclude that Y = Y is
normal. N

Finally suppose that (Y, —v*Kx) is isomorphic to (P?,0(2)). Let V C |O(2)| denote
the sublinear series defining the map v : Y > Y. We may concentrate on the case when
3 < dim(V') < 4. First suppose that V' is 4-dimensional. Thus Y is isomorphic to a projection

of the 2-Veronese surface from a point p € P°. Since v is a morphism, p cannot be on Y.
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Moreover, if p is not on the secant variety of Y then the projection defines an isomorphism
so that Y is normal. If instead p lies on the secant variety of Y, then Y is a singular surface
of degree 4 which is singular along a line /. Then the preimage C' = v~1({) is a line on P?
and C' — ¢ is a degree 2 cover. The surface Y can be realized as the complete intersection
of two quadrics in P* so that K2 = 4 and Ky is antiample on Y. Thus we conclude that
Ky + C ~ v*Ky. By adjunction, we conclude that Y|y is trivial. Then |Y| defines a pencil
p: X — P! and this must be a del Pezzo fibration of degree 4. Let ¢ € P! be the point
corresponding to Y. By the semicontinuity theorem p,O(—Kx) is locally free of rank 5 in a
neighborhood U of ¢ so that we have an embedding

p ' (U) = P(p.O(—Kx)|v)-

Thus after shrinking U there exist four quadrics Q1, @2, Q3, Q4 such that p~!(U) is defined
by

f(S)Ql(xO T ,$4) = Qz(mo, s ,$4), Q(S)Q?,(IEO T 71’4) = Q4(I0, T ,I4)

where s = 0 corresponds to ¢ and f, g are polynomials in s such that f(0) = g(0) = 0. Note
that s = Q2 = @4 = 0 is a complete intersection of two quadrics which is singular along a
line ¢. By arguing as in [LT21, Lemma 3.1}, one can prove that p~*(U) is singular. But this
contradicts with the fact that X is smooth.

Next we consider the case when the sublinear system V' is 3-dimensional. Then Y is the
image of a projection of the 2-Veronese surface from a line. In particular Y is a quartic
surface.

We claim that Y is isomorphic to a hyperplane section of a quartic threefold which is
smooth along Y. Since Ky is trivial it follows from adjunction that Y|y is very ample. It
follows from Kodaira vanishing that

0— H°(X,0x) = H(X,0x(Y)) = H(Y,Oy(Y]y)) = 0

is exact. We conclude that |Y| is base point free and h°(X,O(Y)) = 5. Furthermore
Y3 = 4, hence we conclude that |Y| defines a birational morphism f: X — X’ to a quartic
hypersurface X’ in P*. Note that there exists a Zariski open neighborhood U of Y C X’
such that f|p-1y) : f7H(U) — U is bijective. Let p € Y C X'. If this is a smooth point of
Y, then it is a smooth point of X’. This means that f is an isomorphism in a neighborhood
of p. On the other hand, if p is a singular point of Y, then the tangent space of Y at p is
the tangent space of X at p. Since Y|y is very ample, we conclude that |Y| is very ample in
a neighborhood of p. Thus after shrinking U we may conclude that f|;1y : f71(U) = U
is an isomorphism.

The proof of [LTT18, Lemma 6.14] shows that every hyperplane section of a quartic
threefold which is smooth along that hyperplane section is normal. Thus we conclude our
assertion when — Ky is very ample.

Next we discuss the case when —Kx is not very ample. Here we use the classification of
Fano threefolds whose anticanonical linear series are not very ample in Theorems 2.5 and 2.6.
For each threefold we show that there is no non-normal surface Y C X such that (Y, —Kx|y)
is adjoint rigid with a-invariant > 1.

First let us assume that X is V;. In this case it is proved in [LTT18, Proposition 6.11]

that there is no surface with higher a-invariant.
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Next let us assume that X is the blow up of V; along a complete intersection of two
members of | — 3Ky, |. We denote by H the pullback of the ample generator on Vi and by E
the exceptional divisor. For any divisor j(H — F) + kE we have

(—Kx)*(j(H — E) + kE) = (2H — E)*(jH + (k — j)E) = j + 2k.

If we have a divisor Y such that a(Y,—Kx) > 1 and (Y, —Kx|y) is adjoint rigid, then we
must have (—=Kx)?-Y = 1,2 or 4. If we write Y ~ j(H — E) + kE, then we must have

(4, k) € {(1,0),(2,0),(4,0),(0,1),(2,1),(0,2)}.

Since Y is integral, we must have j =1 and k =0, or j = 0,2 and k = 1. When j = 1 and
k =0, |H — E| defines a del Pezzo fibration p : X — P! of degree 1, and it follows from
[LTT18, Lemma 6.9] that Y is normal. When j =0 and k =1, Y is equal to E so that Y is
not rational. This contradicts with the fact that (Y, —Kx|y) is adjoint rigid. When j = 2
and k =1,Y ~2H — F ~ —Kx. We show that any integral member of | — Ky,| is normal
by mimicking [L.T21, Lemma 3.3]. Recall that V; is a subscheme of P(1,1, 1,2, 3) defined by
an equation

fo(zo, x1,2) + fa(xo, 21, 22)y + y* = 2°
and a member Y € | — Ky, | is defined by

f2=cy.

Let us assume that ¢ = 0 (since the case ¢ # 0 is easier). Then we may assume that
fo =22+ 22+ 22 Let C be a 1-dimensional component of the singular locus of Y. Since the
Jacobian of the two equations defining Y has rank 1 along C' we obtain a map C' — P(1,5)
recording the linear relation between the two rows. If this map is surjective, then the gradient
of the equation defining V; will vanish identically at some point of C', contradicting the
smoothness of V;. If it is not surjective, then there is some constant a such that along C' we
have az? = J(fs+ fiy)/Ox; for every i. O the other hand we must have 22,0( fs+ fay)/0x; =
22,;0( fo+ fay)/Ox; for any ¢, 7 which implies that Zaxzmg? = 2ax;x} along C. This is impossible
unless a = 0. But this means that X is singular, a contradiction.

Next let us assume that X the blow up of V5. This can be proved just like the case of the
blow up of V.

Next let us discuss the case X = P! x S; where S; is a degree 1 del Pezzo surface. We
denote the projections by p; : X — P; and ps : X — S;. We denote the pullback of
the hyperplane class from P! by h. Let Y C X be a divisor such that a(Y,-Kx) > 1
and (Y, —Kx|y) is adjoint rigid. Then there exists an effective class a on S; such that
Y ~ ah + pia with a > 0. Then we have

(—Kx)2 Y =a+ (—4K51 : a).

Since we must have (—Kx)?-Y = 1,2, or 4 and Y is integral, we conclude that either a = 1
and « =0 or a =0 and —Kg, -« = 1. The former case Y is a fiber of p; and thus normal.
In the latter case (Y, —Kx|y) is not adjoint rigid. Thus we conclude our assertion.

Next let us assume that X = P! x S, where S is a degree 2 del Pezzo surface. This can
be proved just like the case of P! x S;.

Next let us assume that X is the double cover of P? ramified along a smooth sextic.
Suppose Y is a divisor such that a(Y,—Kx) > 1 and (Y, —Kx|y) is adjoint rigid. Since
(—Kx)|? < 4 we have either Y € | — Kx| or | — 2Kx|. In the former case, [LTT18, Lemma
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6.6] shows that Y is normal. In the latter case, one may prove that Y is normal by mimicking
the argument of [LT21, Lemma 3.3] (as in the case of ;).

Next let us assume that X is the double cover of a quadric hypersurface. Suppose Y is a
divisor such that a(Y,—Kx) > 1 and (Y, —Kx|y) is adjoint rigid. Since (—Kx)|3- < 4 we
must have Y € | — Kx|. However, arguing as in [LT21, Lemma 3.3] (as in the case of V})
one can prove that Y is normal.

Finally let us assume that X is the double cover of P! x P? branched over a smooth
hypersurface of degree (2,4). Let H; be the pullback of the hyperplane class from P! and H,
be the pullback of the hyperplane class from P2. Then we have —Kyx ~ H; + H,. Suppose
Y is a divisor such that a(Y,—Kx) > 1 and (Y, —Kxly) is adjoint rigid. One can write
Y ~ jH, + kH, where j, k are non-negative integers. Then we have

(—Kx)*-Y =2j +4k.

Since Y is integral, we conclude that either 7 =1 and K =0 or j =0 and k£ = 1. When
= 1and k =0, Y is a fiber of a degree 2 del Pezzo fibration 7, : X — P!. Let us show
that every fiber of 7 is normal. We introduce coordinates (s : t) for P! and (x : y : 2) for
P2. Then there exist degree 4 homogenous polynomials f, g, h in x,y, z such that X is a GIT
quotient of a hypersurface defined by

G-

where the group action of G2, is given by
(t1,t2) - (8,1, 2,9, 2w) > (t18, L, tox, Loy, taz, titow).

Assume that the fiber corresponding to (s : t) = (1 : 0) is singular in codimension 1 and let C
denote a 1-dimensional irreducible component of the singular locus. Since such a curve must
lie in the ramification locus of the double cover mapping this fiber to P?, we see that the
equation f defining the branch divisor is non-reduced. The gradient of the above equation
along Y is

(2sf,2sh, s*0f |0, s*0f |0y, s*0f |0z, 2w).

Along C, we have f = 0f/0x = 0f /0y = 0f/0z = w = 0. Then C meets with the locus
defined by h = 0, but this contradicts with the fact that X is smooth. Thus we conclude
that Y is normal.

When j = 0 and k = 1, Y is the pullback of a line £ on P? via the conic bundle 75 : X — P2,
If o admits a non-reduced conic, then one can prove that X must be singular. Thus we
conclude that any fiber of 7 is either a smooth conic or the union of two distinct lines. This
implies that if the discriminant locus of 7y contains a line, then the pullback of that line is
reducible. However, this contradicts with the fact that all effective divisors on X are nef.
Thus we conclude that the discriminant locus of 75 does not contain a line. Thus it follows
from [LTT18, Lemma 7.2] that Y is normal. Thus our assertion follows. O

In order to translate this result to a theorem about rational curves, we will need a result
from [LT19b].

Theorem 4.2 ([LT19b] Theorem 1.1). Let X be a smooth weak Fano variety. As in Theorem

3.2 let V' denote the union of all subvarieties Y such that a(Y,—Kx) > a(X,—Kx). Then
12



any component M of Rat(X) parametrizing a non-dominant family of rational curves will
parametrize rational curves in V.

By combining Theorem 4.1 and Theorem 4.2 we obtain Theorem 1.2.

4.1. Low degree curves with higher than expected dimension. We will also need
some more precise information about low degree curves which deform more than expected.
We will focus on — K x-lines and — K x-conics, i.e. irreducible rational curves of anticanonical
degree 1 or 2.

Lemma 4.3. Let X be a smooth Fano threefold. Suppose that there is a family of — K x-lines
which has dimension > 1. Then these lines sweep out a contractible divisor Y of ES type.

If ¢ is a — K x-line whose parameter space has dimension > 1 we will say that ¢ is a line of
E5 type. This result was established in [Isk79, Ch. III Proposition 2.1] for non-hyperelliptic
Fano threefolds; we give a general proof using a-invariants.

Proof. Let M be a component of the Hilbert scheme parametrizing — K x-lines and let d =
dim M. Since any —Kx-line ¢ satisfies a(¢, —Kx) =2 > 1 = a(X, —Kx), by Theorem 3.2
the lines parametrized by M sweep out a surface Y. By applying Theorem 3.2 to a resolution
of Y we see that a(Y,—Kx) > a({,—Kx) = 2. By [H6rl0, Proposition 1.3] we have only
two possibilities: either a(Y, —Kx) = 2 or 3.

First suppose that a(Y, —Kx) = 2. Let ¢ : Y — Y be a resolution and let ¢ be the strict
transform of a general line . Then we have

Ky l—1=d.
On the other hand since ¢ is a nef class on Y we must have
0< (—20"Kx +Kg)-{=1—4d.

Thus we conclude that d = 1, showing that in this case M cannot have larger than the
expected dimension.

Thus under our assumptions a(Y, —Kx) = 3. [Hor10, Proposition 1.3] shows that (Y, —Kx|y)
is birationally equivalent to (P2, (1)), and in particular must be adjoint rigid. Theorem 4.1
shows that Y is a contractible divisor and it must have E5 type. U

We will need to strengthen this result to include non-rational curves:

Lemma 4.4. Let X be a smooth Fano threefold. Suppose that there is a family of curves C
of anticanonical degree 1 and dimension > 2 which sweeps out a surface Y. Then the curves
are rational and Y s a contractible divisor of E5 type.

Proof. By Lemma 4.3 it suffices to show that any such family of curves will parametrize
rational curves.

If | — Kx| is basepoint free, then the image of C' under the corresponding morphism will
be a line in projective space, hence rational. Furthermore, C' will be taken birationally onto
its image under this map since —Kx - C' = 1. Thus C will be rational.

We only need to address the Fano threefolds for which | — Kx| is not basepoint free. The
three types are listed in Theorem 2.5:

(1) If X = Vj then the anticanonical divisor has index 2 and thus there are no curves of

anticanonical degree 1.
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(2) Suppose X is the blow up of V; along a smooth elliptic curve which is the intersection
of two members of | — $Kv,|. If ¢ denotes the blow-up and E denotes the exceptional
divisor then we can write —Ky = —gb*%KVl + (—qS*%KVI — FE) where both terms are
nef. Thus the curves of anticanonical degree 1 admit the following descriptions:

(a) Curves with —¢*1Ky, - C =1 and (—¢*3Ky, — E) - C = 0. These curves are
contracted by the morphism ¢ : X — P! whose general fiber is a del Pezzo
surface of degree 1. By [LTT18, Lemma 6.9] every fiber of g is irreducible and
normal and is thus a Gorenstein del Pezzo surface. The fibers which are not
smooth either have canonical singularities or are isomorphic to a cone over an
elliptic curve. In the latter case, the only curves of anticanonical degree 1 in the
fiber are the lines in the cone which are rational. For all other fibers, any curve
of anticanonical degree 1 will either be a (—1)-curve or an element of | — Kp|.
Curves of the first type will be rational. Curves of the second type will form
a dominant 2-dimensional family on X. In particular, there is no subfamily of
dimension > 1 which sweeps out a surface Y.

(b) Curves with —¢*1Ky,-C =0 and (—¢*1 Ky, — E)-C = 1. These are the rational
curves contracted by the birational map to V.

(3) If X = P! x Sy, then the curves of anticanonical degree 1 are the (—1)-curves and
the curves in the anticanonical linear series in some fiber of the map to P*. Curves of
the first type are rational. The total parameter space for curves of the second type
has dimension 2 and this family sweeps out all of X. Thus there is no subfamily of
dimension > 1 which sweeps out a surface Y.

O

We will also need a statement concerning the geometry of families of — K x-lines of dimen-
sion 1.

Lemma 4.5. Let X be a smooth Fano threefold. Suppose that M is a family of —Kx-lines
on X which has dimension 1. There is a ruled surface w : S — C' equipped with a morphism
f 8 — X such that the fibers of m map birationally to the lines parametrized by M.

Proof. Let C' be the normalization of the reduced curve underlying M and let S be a minimal
resolution of the base-change of the one-pointed family over M to C'. Note that S is equipped
with an evaluation map f : § — X that maps each fiber of # : § — C onto a line
parametrized by M. More precisely, for every fiber F' of 7 there is a unique component
Fy of multiplicity 1 in F' which is mapped birationally onto a line parametrized by M and
every other component of F' is contracted by f. Since S is minimal, we may assume that no
(—1)-curve on S is contracted by f.

Suppose that the map 7 : S — C has a reducible fiber F'. Since all but one component of
F' is contracted by f we see that the unique component Fy of F' must be a (—1)-curve and
this must be the only (—1)-curve in F. But by [LT19a, Lemma 4.3] Fy must have multiplicity
> 2 in F'. This contradicts the construction above. We conclude that every fiber of 7 is
irreducible and has multiplicity 1 so that 7 : S — C is a P!-bundle. O

The situation for conics is very similar.

Lemma 4.6. Let X be a smooth Fano threefold. Suppose that there is a family of —Kx-

conics which has dimension > 2. Then these conics sweep out a contractible surfaceY which
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has E1, E3, E4, or E5 type. Moreover if Y has E1 type then (Y, —Kx|y) is isomorphic to
(P! x P, O(1,1)) and both rulings correspond to E1 contractions.

Thus if C'is a conic whose parameter space has dimension > 2 we will say that C'is a conic
of E1, E3, E4, or E5 type depending on the type of the surface swept out by deformations
of C. This result was established in many cases by [Isk79, Ch. III Proposition 1.3 and
Proposition 3.3]; we give a general proof using the a-invariant.

Proof. Let M be a component of the Hilbert scheme parametrizing these conics and let
d = dim M. Since M has larger than the expected dimension, the conics parametrized by
M sweep out a surface Y. By Theorem 4.2 we have a(Y, —Kx) > 1. By [Hor10, Proposition
1.3] we have only three possibilities: a(Y, —Kx) = 3/2, 2, or 3.

First suppose that a(Y, —Kx) = 3/2. Let ¢ : Y — Y be a resolution and C be the strict
transform of a general deformation of C'. Since the family of deformations of C' has the
expected dimension on Y we must have

~Ky-C—1=d

and d > 3. On the other hand since C is nef on Y we must have
—3 ~
0< <7¢*KX+K;) C=3-1-—d.

This gives a contradiction, showing that this case cannot happen.
Second suppose that a(Y, —Kx) = 2. Let ¢ : Y — Y be a resolution and C be the strict
transform of a general deformation of C. Then we must have

—Ky-C—1=d
and d > 3. On the other hand since C is nef on Y we must have
0< (—20"Kx+Kg)-C=4—1—d.

Thus in this case d = 3. Suppose that (Y, —K) is not adjoint rigid. Since we have verified
that C has vanishing intersection against Ky — 2¢*Kx it must be a general fiber for the
canonical fibration for Ky — 2¢*Kx. However such a fiber F' must satisfy —¢*Kx - F' =1,
yielding a contradiction.

Thus if a(Y,—Kx) = 2 then (Y, —Kx) must be adjoint rigid. By [H6r10, Proposition
1.3] this pair must be birationally equivalent to (@, O(1)|g) where @ is a (possibly singular)
quadric in P3. By Theorem 4.1 we see that Y is contractible, and thus must have E1, E3 or

E4 type.
Finally suppose that a(Y, —Ky) = 3. Arguing just as in Lemma 4.3 we see that Y is an
E5 divisor. In this case M parametrizes the family of conics on Y. 0

Although Lemma 4.3 and Lemma 4.6 show that any family of —Kx-lines or conics that
has higher-than-expected dimension sweeps out a contractible divisor, the following example
shows that the analogous statement is not true for higher degree rational curves. (Rather,
the correct analogue is that a family of degree d rational curves that moves in dimension
> 2d — 1 will sweep out one of the exceptional divisors in Lemma 4.6. The argument is

essentially the same as the proof of Lemma 4.6.)
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Example 4.7. [KPS18, Proposition 5.4.4] gives several examples of Fano threefolds of Picard
rank 1 and genus 12 for which the Hilbert scheme of lines is a union of rational curves.
Considering the universal family of lines over the desingularization of one of the irreducible
components of the Hilbert scheme, we get a Hirzebruch surface F, and a universal map
f : F, — X such that f sends the fibers of 7 : F,, — P! isomorphically onto lines in X.
Let F' denote the class of a fiber of 7 and C' denote the class of the section with negative
self intersection. Then f*(—Kx) = C + mF for some m > r. Pick any b > m. There are
sections of m whose class is C' + bF', so the moduli space of rational curves in F, with class
C + bF' is non-empty and has therefore the expected dimension

—Kp, - (C+bF)—1=(2C+ 2+ r)F)-(C+bF)—1
=-2r+2b+24+r—-1
=2b+1—r

as a family of curves of IF,. But the anticanonical degree of the image of these curves in X
is —f*Kx-(C+bF)=—r+b+m < 2b+1—r. The image of F, in X is a surface S which
is not contractible since X is of Picard rank 1, but S is swept out by a family of rational
curves of degree b + m — r which has higher-than-expected dimension.

5. a-COVERS

Definition 5.1. Let X be a smooth projective uniruled variety and let L be a big and nef
Q-divisor on X. An a-cover of (X, L) is a generically finite dominant morphism f:Y — X
from a projective variety Y satisfying a(Y, f*L) = a(X, L).

Definition 7.1 shows that a-covers play a key role in the description of the exceptional set in
Geometric Manin’s Conjecture. In this section our goal is to completely classify the a-covers
of Fano threefolds. Note that a(X, —Kx) = 1, so any a-cover will have a-invariant 1 as well.
We will separate the argument into cases based on the litaka dimension of Ky — f*Kx.

5.1. Titaka dimension 2.

Lemma 5.2. Let X be a smooth Fano threefold. Let f :' Y — X be an a-cover such that
Y is smooth and k(Ky — f*Kx) = 2. After applying a resolution we may assume that the
Litaka fibration for Ky — f*Kx is a morphism w: Y — Z. Then a general fiber of m maps
birationally under f to a —Kx-conic.

If p: C — M denotes the one-pointed family over the component of Rat(X) parametrizing
these conics on X, then m is birationally equivalent to a base change of p over a rational
map Z --+ M and f factors rationally through the evaluation map for C.

Proof. By running the (Ky — f*Kx)-MMP we obtain a birational contraction ¢ : Y --»
Y’ and a morphism #n’ : Y/ — Z where Z has dimension 2. Furthermore we know that
Ky — ¢, f*Kx is numerically trivial along a general fiber of 7/. As in the statement we
replace Y by a birational model which resolves the rational map to Z. Since a general fiber
O’ of 7’ is a — Ky-conic that avoids the locus where ¢! is not a morphism, we conclude that
the strict transform C' of such a curve on Y is a —Ky-conic contracted by 7. Furthermore,
we have
(Ky — f'Kx)-C = (Ky — ¢.fKx)-C"=0
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so that f,C has anticanonical degree 2. Since any dominant family of curves has anticanonical
degree at least 2, f.C' cannot be a multiple curve, and we deduce that f maps C' birationally
onto its image.

Since the morphism 7 yields a family of stable maps over an open subset of Z, we obtain
a dominant rational map Z --+» M. Since a dense open subset of M can be embedded in the
Hilbert scheme (and thus satisfies a universal property), the restriction of 7 to a non-empty
open subset of Z is obtained by base change from the universal family over an open subset
of M. O

5.2. Iitaka dimension 1. Let X be a smooth Fano threefold. Suppose that X admits a
morphism 7 : X — B with connected fibers to some curve B. Then the general fiber of 7 is
a del Pezzo surface. If we choose a finite map 7" — B and set Y = X xg T, then the induced
f Y — X is an a-cover such that k(Ky — f*Kx) = 1. Conversely, we will show that when
— K is very ample every a-cover f : Y — X such that x(Ky — f*Kx) = 1 comes from this
construction.

Theorem 5.3. Let X be a smooth Fano threefold such that —Kx is very ample. Let f 1Y —
X be an a-cover such that'Y is smooth and k(Ky — f*Kx) = 1. After applying a resolution
we may assume that the litaka fibration for Ky — f*Kx is a morphism w:Y — Z. LetY,
be a general fiber of m and S, be the image of Y, on X. Then S, is normal and the linear
system |S,| defines a del Pezzo fibration p : X — B and 7 is birational to a base-change of

P

Proof. Our assumption implies that a(Y,, —f*Kx) = 1 and (Y, — f*Kx) is adjoint rigid. By
[LST22, Lemma 4.9] this implies that a(S,, —Kx) = 1 and that (5., —Kx) is adjoint rigid
(after applying a resolution).

First suppose that S, is normal. By [LT21, Lemma 5.3] we see that S, has only canonical
singularities and that Kg, ~ v*Ky. Then by adjunction we conclude that S,|s. ~ 0 so that
two general S, are disjoint. Note that the S, are algebraically equivalent on X, and hence
linearly equivalent. Since two general S, are disjoint, [Tot00, Theorem 2.1| guarantees that
they are the fibers of a map p: X — B to a curve B. It is then clear that the general fiber
of p must be a smooth del Pezzo surface.

In this case we still must show that 7 is birational to a base-change of p. [LT17, Theorem
6.2] shows that a smooth del Pezzo surface does not admit any adjoint rigid a-cover of degree
> 2 so that f|y, : Y, — S, must be birational. Now consider the composition po f : Y — B.
The Stein factorization of this map must be Z, so that we obtain a finite map h : Z — B.
Thus we get an induced map g : Y — X xp Z. Using the birationality of fl|y,, we see that
g is also birational.

It onlyAremains to show that when —Kx is very ample then a general .S, must be normal.
Let v : S, — S, denote the normalization map. Again applying [LT21, Lemma 5.3] we

see that S has only canonical singularities and that Kg ~ v*Kx. Since S is a del Pezzo

surface with canonical singularities, we conclude that (—Kx)?- S, = (=Kg )* <9.
Since S, is movable it is nef, as the two properties are equlvalent for Fano threefolds. In
fact, we claim that a stronger property is true: assume that (—=Kx)?-S, > 5. Then there

is no curve C' C X such that a general S, will contain C'. We apply a relative MMP over Z
with respect to the divisor Ky — f*Kx. The result will be a fibration Y — Z whose general

fiber is a smooth weak del Pezzo surface. Note that for a general fiber of 7 this MMP will
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be contracting (—1)-curves which must satisfy — f*Kx - C' = 0. We conclude that over some
open subset Z° every curve contracted by this relative MMP will also be contracted by the
morphism f : Y — X. Thus the preimage Ve still admits a morphism f Ve = X. We
next replace Yo — 7° by its relative anticanonical model Y°. The curves contracted by this
operation satisfy —f*Kx - C = Ky - C' = 0, and so again arguing as above we get a map
f: Y° = X and a map T : Y° — Z. Since we assumed (-Kx)?-S. > 5, we can apply
[LT21, Lemma 5.3] to conclude that the restriction of f to a general fiber Y. will be the
normalization map for S,. Since Ky ~ f*K X|SA’Z the ramification divisor for fwill not meet

a general fiber }A/Z This means that there is no horizontal divisor contracted by J?, proving
our claim. Moreover when (—Kyx)?- S, =9, we have S, = P2

By the classification of Fano threefolds with —Kx very ample and by the classification of
their nef cones in [Mat95], [Fujl6], it is rare for a Fano threefold with —Kx very ample to
carry a nef divisor D such that (—Kx)?- D < 9. We will consider the different possibilities
one-by-one and conclude in each case that there cannot be a one-dimensional family of non-
normal surfaces S, as above. There are two general cases and also several exceptional cases
where X has low degree and Picard rank. We first consider the two general cases:

e Case 1: D is contracted by a del Pezzo fibration. Then by generic smoothness we
see that a general deformation of D will be normal.

e Case 2: D is contracted to a smooth curve by a conic fibration. Almost always
the base of the conic fibration will be P2, in which case we can conclude by [LTT18,
Lemma 7.2] that there is no one-parameter family of non-normal surfaces in this
linear series. In the few cases when the base is not isomorphic to P2, the argument
of [LTT18, Lemma 7.2] will still work.

There are also several additional possibilities when X has low degree and Picard rank:

e Picard rank 1: For low degree Fano threefolds of Picard rank 1 with —Kx very
ample, one needs to analyze the normality of elements in | — Kx| and (for quartic
hypersurfaces) in | — 2K x|. In the first case normality is proved by [LT21, Lemma
3.1], and in the second case [LT21, Lemma 5.1] proves that there cannot be any
family of non-normal surfaces S, as above.

e Primitive Picard rank 2: This situation is analyzed in [LTT18, Section 7]. In
every case but one the statements in [LTT18, Section 7] show that there cannot be a
family of non-normal surfaces S, as above. The last case is when X is a double cover
of P? x P! ramified over a (2,2)-hypersurface. But then the argument of [LTT18,
Section 7.6] shows that any family of surfaces S, as above must be contracted by a
del Pezzo or conic fibration, so we reduce to a previous case.

e Non-primitive Picard rank 2: There are four additional cases. The first is when
X is the blow-up of P? along the intersection Z of two cubics and the surface D is
the strict transform of a hyperplane H in P3. Recall that since (—=Kx)?- D =7, we
showed earlier that the family of surfaces S, cannot contain a fixed curve in common.
Thus it suffices to consider those hyperplanes H which does not contain a flex line of
Z. The only way that the strict transform of H can be singular is when H is tangent
to Z at a point of intersection. If H is simply tangent to Z, then at the blown-up
point D will be formal-locally isomorphic to the blow up of A% along the ideal (22, y).

If H meets Z with multiplicity 3, then at the blown-up point D will be formal-locally
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isomorphic to the blow up of A? along the ideal (23,y). But in both cases D will
be normal. We conclude that there cannot be a one-parameter family of non-normal
surfaces D as above which share no curve in common.

The second case is when X is a blow-up of a cubic hypersurface along a plane cubic
Z and D is the pullback of a hyperplane section not containing the plane cubic. In
this case we have (—=Kx)>- D = 9, so if we have a one-parameter family of non-
normal surfaces D satisfying the conditions above then their normalizations should
be isomorphic to P2. But this contradicts with the fact that D is the blow up of a
hyperplane section so that its normalization has Picard rank at least 2.

The third case is the double cover of V; = Pp2 (O®O(1)) branched over B € |— Ky |
and D is the pullback of a hyperplane from P3 such that the hyperplane does not
contain the blow up point of Vz — P3. In this case B is smooth, so one can show
that BN D’ is reduced where D’ is the pullback of a hyperplane not containing the
blow up point. Thus D is smooth in codimension 1, proving the normality of D.

The last case is the blow up of P along a curve Z of degree 7 and genus 5 which is
the intersection of three cubics and D is the pullback of a hyperplane from P3. Since
we have (—Kx)?- D =9, then the normalization of D is isomorphic to P2. But this
contradicts with the fact that D has Picard rank at least 2.

This exhausts all the possibilities. We conclude that when —Kx is very ample then a
general S, must be normal, completing the proof. 0]

In an earlier version of the current paper, we incorrectly stated Theorem 5.3 without the
assumption that —Kx is very ample. However the statement can fail if we do not assume
this property. The following example was pointed out to us by Eric Jovinelly.

Remark 5.4. Suppose X = P! x S where S is a del Pezzo surface of degree 2. The family of
rational curves in | — Kg| defines a finite morphism g : W — S such that a(W, —g*Kg) = 1
where W is a P!-fibration over a quartic curve. If we set Y = W x P!, then the induced
morphism f : Y — X will have the property that a(Y, —f*Kx) = 1 and the litaka fibration
7w :Y — T will be a quadric surface fibration over a quartic curve. However, there is no del
Pezzo fibration on X which contracts the images S, of the fibers of .

5.3. litaka dimension 0. Finally, we consider the case of a-covers which have litaka di-
mension 0.

Theorem 5.5. Let X be a smooth Fano threefold. There are no a-covers f :Y — X such
that Y is smooth and k(Ky — f*Kx) = 0.

In [Sen21] Sengupta shows that if X is a Fano variety then for any a-cover f : Y — X
such that k(Ky — f*Kx) = 0 the components of the branch divisor of f will have larger
a-invariant than X. We will use explicit threefold birational geometry from [Kaw05] to prove
a stronger restriction on the geometry of such branch divisors.

Suppose that Y and W are threefolds with Q-factorial terminal singularities and 7 : Y —
W is a divisorial contraction taking the exceptional divisor £ to a point P. Since we are
only interested in the local behavior near P, we will henceforth assume that W is a germ
near P. We can write

Ky ~ f*Kw + %E
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where n is the index of the singularity. In [Kaw05] Kawakita separates divisorial contractions
into two types: the exceptional cases and the ordinary cases. A key tool is the constants
d(, ) which record the Euler characteristic of the rank 1 S, sheaf on E obtained by restricting
iKy + jE. [Kaw05, Lemma 2.5] shows that when i% + j < 2 then the higher cohomology
of this sheaf vanishes and its sections are curves of anticanonical degree —(i% 4 j)2E®. We
will freely use this and other notations from [Kaw05].

Lemma 5.6. Let P be a germ obtained by a divisorial contraction of exceptional type from
a terminal threefold. Then either

e there is a family of (possibly reducible) curves C' in E such that —Ky -C <1 and C
deforms in dimension at least 1 in E, or;

e there is a family of (possibly reducible) curves C' in E such that —Ky - C < 2 and C
deforms in dimension at least 2 in E, or;

o P is an ed singularity with a = 3 and n = 1, in which case E carries a curve C
satisfying — Ky - C < 1.

Proof. We separate the proof into several cases. First suppose that P is an exceptional
singularity that occurs in a finite set of types (that is, any exceptional type except el, e2,
e7, el3). Since there are only finitely many possible invariants for such singularities, one can
just check the claim case-by-case. It turns out that in almost all cases there is some ¢ with
1 <4 < 6 such that d(—i,0) > 2 and i(2)*E® < 1. The values of ¢ are recorded in Table 1.

The one remaining case is an e3 singularity with a = 3 and n = 1. In this case d(0,—1) = 1
which defines a curve which has anticanonical degree < 1.

TABLE 1. Finite families of exceptional singularities

singularity type when a =1 when a > 1
e3 n=1= i=1,n=3 = i=2 ook
ed not possible not possible
ed n=1— 1=2n=2 — 1=3|a=2,n=1 = 1=1
eb 1=3 not possible
e8 n=1=— 1=2,n=3 — 1=4 not possible
e9 n=1=— 1=3,n=2 — 1=5|a=2,n=1 —= 1=3
el0 1=25 not possible
ell not possible a=2,n=2 = 1=4
el2 1=4 not possible
eld 1=3 not possible
elb 1 =4 not possible
el6 1=26 not possible

We next suppose that P is one of the exceptional singularity types that forms an infinite
family (el, €2, €7, ell). In most cases (i.e. when r is sufficiently large) there is some i with
1 <4 < 4 such that d(—i,0) > 2 and i(£)*E® < 1. Such situations are summarized in Table
2.

Note that for an e2 singularity with r < 4, the possibility (a,n) = (2,2) is ruled out by
[Kaw05, Lemma 3.3]. Thus the only remaining case with an e2 singularity is when r = 3,
a =2, n=1. In this situation d(0,—3) =4 and 3(2)E* = 2.
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TABLE 2. Infinite families of exceptional singularities

singularity type | a value | n value 1 value
1 1,2 |i=1lor2(r>4)
4 1=2
1 1=1(r>9
el 2 2 izlor(Q (7“2)5)
A 1 1=1(r>17)
2 i=1lor2(r>9)
1 1=1
e2 1 2 =2
2 1,2 |i=1lor2(r>4)
e’ 1 2 1=4
el3 1 1 1=2

There are also several remaining cases are of el type such that r is small. In the case
when r = 3, the possibilities (a,n) = (2,2),(4,1), (4,2) are ruled out by [Kaw05, Lemma
3.3]. In the case when r = 5, the possibility (a,n) = (4,2) is ruled out by [Kaw05, Lemma
3.3]. When (a,n) = (4,1) then r must be congruent to 3 or 5 mod 8 by [Kaw03, Erratum].
[Yam18, Theorem 2.3] rules out the case when r = 3 and (a,n) = (2,1). [Yam18, Theorem
2.1 and Theorem 2.2| rules out the case when r = 5 and (a,n) = (4,1). Otherwise we use
the construction summarized by Table 3. This finishes the proof of the claim for exceptional
type contractions.

TABLE 3. el type singularities with small r value

r value | a value | n value d(i,7) intersection number
; : 1 |d(-1,0=3 /3
7 [ d(—1,0) =2 273
5 2 T [d(—1,0)=3 8/5
§ 1 2 [d(—1,0)=3 1/3
- 2 1T d(0,-3) =3 12/7
1 2 [d(0,—3) =3 12/7
11 1 1 [d0,-5 =3 20/11
13 1 1 [d0,-6) =3 24/13

O

Lemma 5.7. Let P be a germ obtained by a divisorial contraction of ordinary type from a
terminal threefold. Then

e if P has ol type then there is either a family of (possibly reducible) curves C' in E
such that —Ky - C' < 1 and C deforms in dimension at least 1 in E or there is a
family of (possibly reducible) curves C in E such that —Ky - C < 2 and C deforms
in dimension at least 2 in E;

e if P has 02 type then either E carries a (possibly reducible) curve C' such that — Ky -
C' <1 or there is a family of (possibly reducible) curves C in E such that — Ky -C' < 2

and C' deforms in dimension at least 2 in E;
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e if P has 03 type then E carries a (possibly reducible) curve C' such that —Ky -C < 1.

Proof. First we consider the ol case. Suppose that n > 2. According to [Kaw05, Theorem
3.7] a and n are coprime. Then [Kaw05, Corollary 2.4] implies that a = 1. Thus we conclude
that (a/n)?E® < 1. Moreover we have d(—1,0) > 1. When n = 1, P is Gorenstein.
According to [Kaw03, Theorem 1.4] we are in the situations of O or IV and this means that
b = 1. In case our singularity has type O, we have (%)2 E3? =2 and d(—1,0) = 3. When our
singularity has type IV, we have %bE?’ = 2 and d(0,—1) = 3. This proves our assertion for
the ol case.

Next we consider the 02 case. First suppose that ¢ < 1. Then d(0, —1) > 3 so we obtain
a covering family of curves of anticanonical degree < 2 that deforms in dimension > 2. Next
suppose that ¢ > 1 and n > 2. Then the proof of [Kaw05, Theorem 4.5] shows that there
are integers s,t such that as +nt = —1. The argument also shows that d(s,t) > 1 and the
corresponding curve has anticanonical degree < 1.

Next suppose that we are in the 02 case with n = 1 and @ > 1. In this case [Kaw05,
Theorem 1.2] shows that E can be realized as the hypersurface in the weighted projective
space P(1,r,a,1) (where 1 + r is divisible by a) defined by the weight 1 + r equation

x1% + g(x3, 24) = 0

such that the monomial z{'™"/* occurs in g with non-zero coefficient. Consider the union of

curves given by V(g) NV (x;1). Each component C' will be defined by the equations z; = 0
and 3 = Az§ for some A, and such a curve will have H-degree % Since the restriction of H
to E coincides with —F|r when E is embedded in Y, we see that —Ky - C' = T <L
Finally we consider the 03 case. Then we have d(0, —1) > 1, yielding a curve of anticanon-
ical degree < 1. O

We are now prepared to prove Theorem 5.5. We separate into two cases based on whether
or not X admits an E5 divisor.

Theorem 5.8. Let X be a smooth Fano threefold which does not admit an E5 divisor. There
are no a-covers f Y — X such that Y is smooth and k(Ky — f*Kx) = 0.

Proof. We first run the relative Ky-MMP for f : Y — X. The result is a birational con-
traction ¢ : Y --» Y’ such that Y’ is a normal variety with terminal Q-factorial singularities
equipped with a morphism f": Y’ — X such that Ky is f’-relatively nef.

Note that every step of the relative Ky-MMP is also a step of the (Ky — f* Kx)-MMP. Thus
the ramification divisor R’ = Ky — f” Kx has litaka dimension 0. We will continue to run
the Ky — f"* Kx-MMP. The end result of the MMP is a birational contraction ¢ : Y/ --» Y
that contracts each component of R’

Consider the next step of the Ky, — f*Kx-MMP starting from Y’, denoted 7 : Y" — W.
We will consider the possible types of this contraction and rule them out one by one:

(1) Suppose 7 : Y' — W is a flipping contraction. By [Ben85, Théoreéme 0] every curve
C contracted by the flipping contraction satisfies —Ky+ - C' < 1. This implies that
—f"Kx -C =0 so that C' is contracted by f’. However, since Ky is f’-nef this is an
impossibility.

(2) Suppose that 7 : Y" — W is a divisorial contraction taking the exceptional divisor £

to a curve Z. Since terminal singularities have codimension > 3, we see that there
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is an open subset of Z that is smooth and is contained in the smooth locus of W.
The fibers of the exceptional divisor over this locus are rational curves C' satisfying
—Ky, - C = 1. Thus they satisfy —f"*Kx - C = 0. However, since Ky is f’-nef it is
not possible for such curves to have negative intersection against Ky — f*Ky.

(3) Suppose that 7 : Y’ — W is a divisorial contraction taking the exceptional divisor £
to a point P. We first claim that £ cannot contain any curve C' satisfying —Ky-C' < 1.
Indeed, in this case we must have — f* Kx -C = 0 but as discussed above Ky — f*Kx
does not have negative intersection with any curve contracted by f’. We next claim
that E cannot contain a > 2-dimensional family of curves C satisfying — Ky -C < 2.
In this case these curves satisfy — f*Kx - C' < 1. If the intersection number is 0 we
conclude as above. If the intersection number is 1 then Lemma 4.4 shows that the
images of the C' must sweep out an E5 divisor in X. However, by assumption X does
not contain any such divisors.

According to Lemma 5.6 and Lemma 5.7 every divisorial contraction will carry
a curve C satisfying one of the properties above, and thus no such contraction can
occur.

Altogether we see that there is no possible next step for the Ky — f*Kx-MMP. In other
words, we see that the ramification divisor R’ must be equal to 0. Since X is a smooth Fano
variety this implies that Y’ = X, showing that X admits no a-covers. U

Theorem 5.9. Let X be a smooth Fano threefold which admits an E5 contraction. There
are no a-covers f Y — X such that Y is smooth and k(Ky — f*Kx) = 0.

Proof. By Theorem 2.4 and Theorem 2.5 if X is a Fano threefold with an E5 contraction
then | — Kx| is basepoint free. This implies that every curve on X of anticanonical degree 1
is a rational curve. Thus, by the argument in the proof of [LT17, Theorem 1.9] (using [LT17,
Erratum] in place of [LT17, Proposition 7.2]) we see that for a map f : Y — X as above
every branch divisor for f will be a rational surface swept out by — K x-lines.

We next classify such divisors for the six Fano threefolds which admit an E5 contraction. In
cases (1-3) and (6), the only divisors which fit this description are the E5 divisors themselves.
In cases (4) and (5), in addition to the E5 divisor there are two additional divisors swept out
by the reducible members of the unique conic fibration on X. Let U denote the complement
of all such divisors, so that f defines a torsion element in the fundamental group of the
complement U. Using the numbering system of Theorem 2.4 we find the fundamental group
of each of these complements and use it to verify that there are no such a-covers f.

(1) X is the blow up of P? along a smooth cubic plane curve and the E5 divisor is the
strict transform of the plane containing the cubic. Let U denote the complement of
the E5 divisor. Then U contains an open subset U’ isomorphic to A®. Since there is
a surjection m(U’) — m(U) we conclude that U is simply connected.

(2-3) Each of these Fano threefolds admits a unique E5 divisor and is birational to a P!-
bundle over P2. Let U C X denote the complement of the E5 divisor. Using the
birational map to the P!-bundle, in every case we see that U contains an open subset
U’ which is the complement of a section of a P!-bundle over P?. Thus U’ and hence
U are simply connected.

(4-5) Each of these Fano threefolds admits a unique E5 divisor and is birational to a P!-

bundle over P2. In addition to the E5 divisor, there are two other rational surfaces
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swept out by lines, namely, the two divisors D, Do which lie over the image of the
blown-up curve in P2. Let U C X denote the complement of the union of the E5
divisor, D;, and D,. Using the birational map to the P!-bundle, we see that U
contains an open subset U’ which is the complement of a section in a P!-bundle
over an open set V' C P? which is the complement of a line or smooth conic. In
particular the fundamental group of U’ is isomorphic to the fundamental group of V.
This implies that any a-cover of X is induced via base change by a cover T — P2
While the corresponding maps f : Y — X will be a-covers they can never have litaka
dimension 0.

(6) The unique Fano threefold with more than one E5 structure is the blow-up of Pp2 (O ®
O(2)) along a quartic curve contained in a minimal moving section of the projective
bundle. Let U’ denote the complement of the union of the rigid section with a minimal
moving section in Pp2(O @& O(2)). Note that U’ is a toric variety; applying [Dan78,
9.3 Proposition| we see that m(U’) = Z/2Z. Let U C X denote the complement of
the E5 divisors. Since U’ is an open subset of U, we see that X admits at most one
a-cover (up to birational equivalence).

We next verify that this “potential” a-cover is not actually an a-cover. The non-
trivial element of 71 (U’) defines a double cover g : Pp2(O @ O(1)) — Pp2(O & O(2))
whose ramification divisor is the union of the rigid section and a minimal moving
section. Let Y be the blow-up of Pp2(O @ O(1)) along a quartic curve in the non-
rigid component of the ramification divisor. Then g lifts to a double cover f : Y — X.
However, the ramification divisor of f is big so that this map f is not an a-cover. We
conclude that X does not admit any a-cover as in the statement of the theorem.

O

Together the previous two results prove Theorem 5.5. They also complete the last piece
of Theorem 1.3.

Proof of Theorem 1.3: Consider a family of rational curves M and let C — M denote the
universal family over M. Let 8 : C — C be a resolution. By assumption the evaluation
map ev : C — X is dominant but does not have connected fibers. [LT19b, Proposition
5.15] shows that the evaluation map must factor rationally through a smooth a-cover f :
Y — X. Furthermore, M defines a dominant family of rational curves C' on Y which satisfy
(Ky — f*Kx)-C =0.

If K(Ky — f*Kx) = 2, then Lemma 5.2 shows that Y is the base change of a family of
conics on X. The condition (Ky — f*Kx) - C = 0 shows that C' is a finite cover of a general
fiber of the litaka fibration for Ky — f*Kx, and thus its image in X will be a conic.

If K(Ky — f*Kx) = 1, then Theorem 5.3 shows that Y is the base change of a del Pezzo
fibration on X. The condition (Ky — f*Kx)-C = 0 shows that a general C' will be contracted
by the litaka fibration for Ky — f*Kx. Thus its image in X will be contained in the fibers
of the corresponding del Pezzo fibration.

Theorem 5.5 shows that x(Ky — f*Kx) = 0 is impossible. O

6. MOVABLE BEND-AND-BREAK LEMMA

In this section we prove the Movable Bend-and-Break Lemma for arbitrary smooth Fano

threefolds.
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6.1. Multiple covers. [Kol96, I1.3.14 Theorem| shows that if a free curve f : P* — X has
the property that f*Tx has at least two positive summands then a general deformation of f
will be an immersion. In particular, such curves will have a locally free normal sheaf. The
following proposition identifies when this condition fails.

Proposition 6.1. Let X be a smooth Fano threefold. Let M be a component of Rat(X)
generically parametrizing stable maps of anticanonical degree > 3 which have irreducible
domain and map onto a free curve such that the restricted tangent bundle has exactly one
positive summand. Then the general map parametrized by M is a multiple cover of a free
curve of anticanonical degree 2 in X.

Proof. For a general map f : P* — X parametrized by M write f*Tx = O(a) ® O*. Note
that the tangent bundle of P! must map to the O(a) factor. Consider the sublocus of M
that sends a fixed point in P! to a fixed general point of X. Since a > 2 this locus is positive
dimensional, but the map can only deform in the tangent direction of the curve. We conclude
that f must define a multiple cover of a curve C. Since such C' form a dominant family they
must have anticanonical degree > 2. If the anticanonical degree of C'is d and the degree of
the multiple cover is r, then the dimension of M is d + 2r — 2. Since M is a component of
Rat(X) this must be at least the expected dimension rd, showing that d = 2. U

In particular, this implies that if M C Rat(X) generically parametrizes free curves f :
P! — X which are birational onto the image and have anticanonical degree > 3 then the
general curve parametrized by M will have locally free normal sheaf.

Proposition 6.1 allows us to easily prove Movable Bend-and-Break for stable maps for
which the restricted tangent bundle only has one positive summand.

Proposition 6.2. Let X be a smooth Fano threefold. Let M be a component of Rat(X)
generically parametrizing stable maps with irreducible domain that map onto a free curve
such that the restricted tangent bundle has exactly one positive summand and the maps have
anticanonical degree > 3. Then M contains a stable map f : Z — X such that Z is the
union of two P*’s and the restriction of f to both components is free.

Proof. By Proposition 6.1 M will parametrize multiple covers of free anticanonical conics.
Since the Kontsevich moduli space parametrizing degree d maps P! — P! includes stable
maps whose domains have two components, the statement follows by breaking the multiple
covers of a fixed anticanonical conic. O

6.2. Curves through general points. We now focus on stable maps for which the re-
stricted tangent bundle has at least two positive summands. Starting from a component M
of Rat(X), the idea is to consider the sublocus of M parametrizing curves through many
general points and meeting many general curves and to analyze how curves in this sublocus
break. The first step is to define precisely what we mean by a “general curve” in this context.

Definition 6.3. Let X be a Fano threefold and let p : U — B be a family of irreducible
reduced curves on X with evaluation map ev : U — X. We say that p is a basepoint free
family if the evaluation map is flat.

The key property of a basepoint free family of curves is that a general member will avoid
any fixed codimension 2 subset. One way of constructing a basepoint free family of curves is

to take intersections of general members of a very ample linear system |H| on X. In fact, this
25



construction also yields a basepoint free family of curves when H is only big and basepoint
free.

Lemma 6.4. Let X be a smooth projective threefold. Fixz a basepoint free family of curves
p:U — BonX. Let M be a component ofMQO(X) generically parametrizing maps onto free
curves such that the restricted tangent bundle has at least two positive summands. Suppose
that the normal sheaf to the general map parametrized by M has the form O(a) @ O(b) with
a < b. Let M° denote the open subset parametrizing such maps. Then for any positive
integer r < a + 1 and any non-negative integer s < a + b+ 2 — 2r the sublocus T, s of M°
parametrizing curves which intersect r general points and s general members of p satisfies

codim(7}.5) > 2r + s.

If the basepoint free family of curves is constructed by taking general complete intersections
of a big and basepoint free linear series on X, then this inequality is actually an equality.
Ifr>a+1o0rs>a+b+2—2r then T, 5 is empty.

Proof. Suppose we fix r points on a curve C' parametrized by our family. Then the defor-
mations of C' through the r points will form a dominant family of curves on X if and only
if Ny,x(—r) is globally generated. This shows that deformations of C' can go through a + 1
general points of X but no more. Since H'(Ny/x(—r)) = 0 for r < a + 1, we see that that
the subvariety of M° parametrizing curves through r general points is of codimension 2r for
any r < a+ 1.

Suppose we fix any subvariety W of M°. For any fixed curve parametrized by M° a general
member () of the family p will not intersect this curve. In particular, this implies that the
locus of curves in W which intersect () has codimension > 1. This verifies the first claim
and the last claim.

Finally, suppose that p parametrizes general complete intersections of a big and basepoint
free linear series. We must show that for any sublocus W of M parametrizing curves through
r general points and s general members of p, the sublocus of W which intersects an additional
general member @) of p will have codimension exactly 1. By induction on s, we may assume
that each component of W has the expected dimension. Thus, the curves parametrized by
W will sweep out either a surface Y or all of X. Furthermore, if W sweeps out a surface Y
then Y must contain a general point of X and thus cannot be contracted by any generically
finite morphism from X. We deduce that ) will intersect this surface in a finite number of
(general) points. This proves the statement. O

We now classify certain stable maps whose images contain many general points and curves
on X.

Proposition 6.5. Let X be a smooth Fano threefold. Construct a basepoint free family
of curves p : U — B on X by taking general complete intersections of elements of a big
and basepoint free linear series. Let M be a component of Rat(X) generically parametrizing
stable maps with 1rreducible domain that map birationally onto a free curve of anticanonical
degree > 5. Suppose that the normal sheaf of the general curve parametrized by M has the
form O(a)®O(b) with a < b. Let M° denote the dense open subset parametrizing such maps.

Consider the following families in M :
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o If a < b, consider the closure T in M of all one-dimensional components of the
sublocus of M° parametrizing curves which contain a + 1 general points and meet
b—a — 1 general members of p.

e [fa =0b, consider the closure T of all the one-dimensional components of the sublocus
of M° parametrizing curves which contain a general points and meet 1 general member

of p.

Suppose that f : Z — X s a stable map parametrized by T such that the domain Z is
reducible and there are at least two free components of f. Then f must fall into one of the
following categories.

(1) Z is the union of two P'’s and both curves map birationally to a free rational curve.

(2) The image of Z consists of a union of two disjoint free curves and one —Kx-line of
E5 type which connects the two free curves.

(8) The image of Z consists of a union of free curves with two —Kx-lines of E5 type.

(4) The image of Z consists of a union of free curves with a —Kx-conic of E1, E3, E/,
or E5 type.

Furthermore, cases (3) and (4) can only occur if a = b and in these cases one of the non-free
curves must meet a general member of p.

Remark 6.6. We briefly explain what “general” means in the context of Proposition 6.5.
First, we choose our points general so that they impose independent conditions on every
family of curves of degree at most a 4+ b+ 2. We also ensure that they do not lie on any line
or any contractible divisor on X. We can also guarantee that for any family of free curves
of degree < a + b+ 2 the points do not lie in the proper subset of X swept out by non-free
deformations of these curves.

Second, we choose our curves general so that they impose independent conditions on any
family of curves of degree < a+b+2 and also on any sublocus of curves of degree < a+0b+2
through some of our general points. Consider the proper closed subset W of X formed by
all non-free curves of degree < a + b+ 2; we also ensure that if the family of free curves of
a given degree through some of our general points sweeps out a surface Y then our curves
avoid the 1-dimensional subset Y N W.

Proof of Proposition 6.5: By assumption Z is reducible, so we can write

Z = Z Z; + (contracted components)
i=1

with » > 2. By assumption there are at least two components of Z which map onto free
curves. After relabeling indices we may assume that Z; is free if and only if 1 <14 < k where
k> 2. For 1 <i <k, we write f/ : Zl — X for a general deformation of f|z, : Z; - X in
its family. Suppose that for 1 < i < k we have the normal sheaves

Nfil/X = O(al) ©® O(bz) ) (tor)
with a; < b;. As mentioned before the torsion part vanishes unless a; = b; = 0. In particular

Z; can pass through at most a; + 1 general points due to Lemma 6.4.
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We let d; denote the anticanonical degree of Z;. By comparing anticanonical degrees we
see that

r k
atb+2=> di > (a;+b+2). (6.1)
i=1 i=1
First suppose that a = b. Thus we are considering a family of curves through a general
points and intersecting a general member () of our basepoint family of curves. The image of
each Z; for 1 < i < k can contain at most a; + 1 general points of X, and thus

k d.
< t
—a+1-— Z::§+1di

where the last equality follows from Equation (6.1) and the fact that @ = b. This means that
there are four possibilities for the non-free components of the image of Z:

(i) There are two — K x-lines.
(ii) There is one non-free — K x-conic.

(iii) There is one —K x-line.

(iv) There are no non-free components.
We analyze each case separately.

In case (i), all the inequalities of Equation (6.2) must achieve the equality. In particular,
each free component Z; must go through exactly a;+1 general points and have degree 2a;+ 2.
Thus there are only finitely many possibilities for each Z; and by generality we know that
Z;NZ; =@ for i # j (no matter which of the finite set of choices we pick). To ensure that
the total curve is connected, each Z; must meet one of the lines. Also, one of the lines must
meet (). Suppose that L is a component of the moduli space of lines that is 1-dimensional.
Then only finitely many lines parametrized by M intersect each Z; and @), and in particular,
any line parametrized by L can only intersect at most one of these curves. Thus, we see that
both lines must be of E5 type in order to connect the > 2 free components of the curve and
to meet with Q).

In case (ii), the same argument shows that every free component must contain the maxi-
mum number of general points and the points determine a finite set of possibilities for each
Z;. Thus the Z; must be disjoint. We claim that the conic must be of E1, E3, E4, or E5 type.
Otherwise the conic can move in at most dimension 2, but in this situation it is impossible
for the conic to connect the two free curves and to meet Q).

In case (iii), all but one of the free components Z; must contain a; + 1 general points and
have degree 2a; + 2. The last component Z; must contain a; + 1 general points and have
degree 2a; + 3. The general points determine a 1-dimensional set of possible choices of Zj
and a finite set of possibilities for each other Z;. Thus () must either meet with the — K x-line
¢ or with Z.. First suppose that () meets with Z,. Then the choice of a; + 1 general points
and ) determine a finite set of possible choices for Z,. Arguing as above, the only way Z

can be connected is if there are exactly two free components which are connected by a line
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of E5 type. Next suppose that () meets with ¢ and that ¢ does not have E5 type. Then @)
determines a finite set of possible lines ¢. But then it is impossible for the curve Z, to meet
¢ and to meet one of the other free curves Z;. We conclude that in this case as well the line
must have E5 type. Since the line meets @), it can only intersect one other component of
type Z;, and in this case Z can only have two free components.

In case (iv), all but two of the free components Z; must contain a; + 1 general points and
have degree 2a; + 2. For the last two components Z;_1, Z. either

e we have a = > (a;+1), Z,_1 contains ay_1 + 1 general points and has degree 2ay_1 +3
and Zj contains a; + 1 general points and has degree 2a; + 3, or

e we have a = > (a;+1), Z,_1 contains aj_1 + 1 general points and has degree 2ay_1 +2
and Z contains a, + 1 general points and has degree 2a; + 4, or

e we have a < > (a;+1), Z,_1 contains aj_1 + 1 general points and has degree 2ay_1 +2
and Z contains a; general points and has degree 2a; + 2.

In the first case, one of Z;_1, Z; must meet (), and this will restrict the number of options
for this curve to a finite set. In order to obtain a connected curve, the only possibility is that
our curve has exactly two components. In the second case, Z; must meet () and this will
determine a 1-dimensional family of possible curves. Thus again in order to be connected
we must have only two components. In the third case, the deformations of Z; through the
ay general points will form a dominant family of curves. In order to meet ) and have a
connected image we must have only two components. This finishes the argument in the case
when a = b.

Assume now that b > a+ 1. In this case we are considering a family through a 4 1 general
points py,...,pes1 and b — a — 1 general curves (q, ..., Qy_,_1 in the basepoint free family
p. Let Y be the closed set of X swept out by all the non-free rational curves of degree at
most a + b+ 2 and let ¥ be the surface swept out by the rational curves parametrized by
M?° which contain py,...,p.r1. Note that we have dimY < 2.

Note that the non-free components of Z lie on the intersection of Y and ¥ and that this
intersection is a proper subset of . Since we choose the p; general none of them lie on Y,
and in particular a non-free component of Z cannot meet any of the p;,. Since we choose
the @); general with respect to the p; (and hence with respect to Y'), we can ensure that the
intersection points with ¥ do not lie in Y N X, guaranteeing that a non-free component of Z
cannot intersect any of the @);.

Assume that for 1 < i < k the curve Z; passes through «; of the points and intersects (;
of the curves. By Lemma 6.4 we have

k k
i=1 i=1

Since the total degree of Z is a + b + 2, there can be at most one non-free component in 7
and if there is such a component it must have degree 1. In this case the above inequality
has to be an equality and therefore d; = 2a; + ; for each 1 < ¢ < k = r — 1. This means
that the general points and curves determine a finite number of possibilities for each of
the free components Z;. In particular the distinct free components of Z do not intersect.
By assumption there are at least 2 such components, so the line must intersect both of
these curves. This implies that the line must be of E5 type and there can only be two free

components in 2.
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Finally, if there is no non-free component of Z, then all free components of Z but one are
determined up to a finite set by the general points and curves that they meet. There is one
component of Z which can deform in dimension < 1. Thus by arguing as before we conclude
that Z has exactly two free components. 0

6.3. No E5 contraction. Movable Bend-and-Break has a particularly clean proof for Fano
threefolds which do not admit an E5 contraction.

Theorem 6.7. Let X be a smooth Fano threefold that does not admit an E5 contraction.
Let M be a component of Rat(X) that generically parametrizes free curves. Suppose that the
curves parametrized by M have anticanonical degree > 5. Then M contains a stable map
f:Z — X such that Z is the union of two P ’s and the restriction of f to both components
of Z is free.

Proof. By Proposition 6.1 and Proposition 6.2 it suffices to consider the case when the
general map parametrized by M has a restricted tangent bundle with at least two positive
summands. In particular we may suppose that the general map is an immersion and that
the normal sheaf is locally free.

Consider the set of contractible divisors on X which have E3, E4 type or which have E1
type and are isomorphic to P! x P! with normal bundle O(—1, —1). Lemma 2.3 shows that
all such divisors are disjoint. Thus there is a birational map ¢ : X — W contracting all such
divisors.

Let p : U — B be a basepoint free family of curves constructed by taking complete
intersections of the pullback of a very ample divisor on W. Then a general member of p does
not intersect any ¢-exceptional divisor. Suppose that T is the closure of a one-parameter
subfamily of curves C' as in the statement of Proposition 6.5. (Note that the existence of
such a locus 7' is guaranteed by Lemma 6.4.) As in Proposition 6.5 we will write O(a) ® O(b)
for the normal sheaf of C.

We claim that T" parametrizes a stable map f : Z — X with reducible domain and such
that at least two components of Z are free. First assume that a > 0. Then the curves
parametrized by T" will go through two general points z1, x5 of X. By applying Lemma 2.1
with the chosen points x1, z9, we see that T' contains a stable map f : Z7 — X with reducible
domain and such that at least two components of Z are free. Next suppose that a = 0. Then
we must have b > 3. Let X be the surface swept out by deformations of C' through a general
point x;. Since x; is general, a general point x5 in 3 will not lie on any non-free curve of
anticanonical degree less than the anticanonical degree of C'. Since the curves parametrized
by T must meet one general point and a general member of p, they will need to go through a
general point on X. Thus when we apply Lemma 2.1 with the chosen points x1, x5 we again
obtain a stable map with reducible domain and at least two free components.

We may now apply Proposition 6.5 to the stable map f : Z — X. Since X does not contain
any Eb5 divisors by assumption, the proposition guarantees that any non-free components of
Z must lie in an exceptional divisor contracted by ¢. In particular, such components cannot
meet a general element of the family p. Thus cases (2), (3), (4) of Proposition 6.5 cannot
occur and we deduce the desired statement. U

6.4. E5 contractions. We next turn to Fano threefolds which admit an E5 contraction.
By the classification [MM82] and [MMO3] and the computation of extremal rays in [Mat95],

[IMMO4], and [Fujl6, Section 10.4] there are six such Fano threefolds. We note that for
30



these threefolds Movable Bend-and-Break may no longer hold for families of curves with
anticanonical degree 5.

Example 6.8. Consider the Fano threefold Ppz(O & O(2)). The minimal family of moving
sections gives a dominant family of P?’s on X. The lines in these P?’s give a dominant
family of movable curves of anticanonical degree 5 which do not break into a union of two
free curves. Rather, as in Proposition 6.5.(2) these curves will break into the union of two
fibers of the P!-bundle structure connected by a line in the rigid divisor of E5 type.

Instead, the correct bound is given by the following theorem.

Theorem 6.9. Let X be a smooth Fano threefold which admits an E5 contraction. Let M be
a component of Rat(X) generically parametrizing stable maps with irreducible domain that
map birationally onto a free curve in X. Suppose that the curves parametrized by M have
anticanonical degree > 6. Then M contains a stable map f : Z — X such that Z is the
union of two P*’s and the restriction of f to both components of Z is free.

We prove this statement for the hardest case — the unique Fano threefold admitting two
E5 divisors — in Claim 8.14. For the remaining five cases, we will use the following argument.

Proposition 6.10. Let X be a smooth Fano threefold which admits a unique divisor E of
E5 type. Assume that every free rational curve T of anticanonical degree at most 4 satisfies
E-T <1. Then any family of free rational curves C' of anticanonical degree > 5 will satisfy
Mowvable Bend-and-Break except possibly families which satisfy E-C =0, —Kx-C <9, and
contain a stable map whose image consists of two disjoint free curves of anticanonical degree
< 4 connected via a line in the E5 divisor.

In particular, Movable Bend-and-Break holds for all families of anticanonical degree > 10.

Proof. By Proposition 6.1 and Proposition 6.2 it suffices to consider the case when the
general map parametrized by M has a restricted tangent bundle with at least two positive
summands. In particular we may suppose that the general map is an immersion and that
the normal sheaf is locally free.

By Lemma 2.3 there is a birational map ¢ : X — W contracting all E3, E4, E5 divisors
and all E1 divisors isomorphic to P! x P! with normal bundle O(—1,—1). Let p: U — B
be the basepoint free family of curves constructed by taking complete intersections of the
pullback of a very ample divisor on W. Then a general member of p does not intersect any
¢-exceptional divisor.

Consider a family of free rational curves C' of anticanonical degree d > 5. The proof is
by induction on d. Assume that this family does not satisfy the criteria of Movable Bend-
and-Break. Suppose that T" is a one-parameter subfamily of curves C' as in the statement of
Proposition 6.5. Note that our choice of basepoint free curve rules out cases (3) and (4) of
Proposition 6.5. Since we are assuming (1) does not hold, the only option is that C' breaks
into a union C; UfUCy where C, Cy are disjoint free curves and £ is a line in F that connects
C and C.

For ¢ = 1,2 the curve C; has non-vanishing intersection with E. By induction, it either
satisfies —Kx - C; < 4 and F - C; = 1 or its family satisfies Movable Bend-and-Break. First
assume that both € and C5 have anticanonical degree at most 4. Then —Kx - C' < 9 and

E-C=E-(Ci+(+Cy)=0.
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Otherwise, without loss of generality we may assume that C; satisfies Movable Bend-and-
Break. Note that the two components C; and C5 must be general in their deformation classes
by construction. Thus, Proposition 2.9 guarantees that they intersect E transversally. We
deduce that the stable map corresponding to our broken curve is a smooth point of Mo,o (X)
by Proposition 2.8 and is thus contained in a unique component. This component also
contains a stable map whose image has the form (C] U CY) U ¢ U Cy where C] U CY is a
general union of free curves obtained by applying Movable Bend-and-Break to C';. Note that
this new stable map defines a smooth point of M(X). By Proposition 2.8 we can smooth
the subcurve C7 U ¢ U Cs, and the resulting stable map will lie in our original component of
M o(X), verifying Movable Bend-and-Break for this component. 0

Proposition 6.11. Let X be a smooth Fano threefold which admits a unique E5 divisor.
Then Movable Bend-and-Break holds for free rational curves of anticanonical degree > 6.

Together with Claim 8.14 this proves Theorem 6.9. Theorem 1.4 follows immediately from
Theorem 6.9, Theorem 6.7, and Proposition 6.2.

Proof. For each of the five types of Fano threefold as in Theorem 2.4 we prove two things.
First, we check that every free rational curve of anticanonical degree < 4 has intersection at
most 1 against the E5 divisor. This verifies the hypotheses for Proposition 6.10. Second, we
verify Movable Bend-and-Break by hand for families of rational curves with anticanonical
degree between 6 and 9 which have vanishing intersection against the E5 divisor. Together
these verify the desired statement.

(1) Suppose X is the blow up of P along a smooth cubic plane curve Z. The E5 divisor
E is the strict transform of the plane P containing Z. We let H denote the pullback
of the hyperplane class on P2. Then —Kx = 3H + E. Thus any free rational curve
of anticanonical degree < 4 must map to a line in P? and satisfy £ - C < 1.

We must verify Movable Bend-and-Break for the families of rational curves C' which
satisfy £ - C = 0 and H - C = 2 or 3. These are families of conics or cubics in P3
which meet P only along Z. It is easy to see that in either case we can break off a
line in P? meeting P only along Z.

(2) Suppose X is Pp2(O & O(2)). The E5 divisor E is the rigid section of the projective
bundle. We let H denote the pullback of the hyperplane class on P?. Then —Kx =
2E +5H. Any free rational curve of anticanonical degree < 4 must be contracted by
the P!-bundle map. Thus the only such curves are the fibers of the projective bundle.

There are no families of curves that satisfy £F-C =0and 6 < —Kx -C <9.

(3) Suppose X is the blow up of P? along the disjoint union of a plane cubic Z in a
plane P and a point ) not on P. The E5 divisor E is the strict transform of P.
Let Ey denote the exceptional divisor lying above the point. Let p : X — P? be the
composition of the birational map to Bl,P? with the projective bundle map and let
H denote the pullback of the hyperplane class on P?. We have —Kx = Ey+ E +3H.
Thus the free rational curves of anticanonical degree < 4 will either be fibers of p or
will satisty £ - C' < 1.

We next discuss the remaining cases with anticanonical degree between 6 and 9. If
Ey - C' = 0 then the corresponding family of curves is the strict transform of a family

of rational curves from (1) and we have already verified Movable Bend-and-Break.
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Any other irreducible moving curve which satisfies £ - C' = 0 and has anticanonical
degree between 6 and 9 will satisfy either:

(a) Bg-C=1,H-C=2,FE-C=0.

(b) Eo-C>2,H-C=2 E-C=0.

However (a) is the only one which is also numerically equivalent to the sum of an E5
line with two free curves of anticanonical degree < 4. Thus it suffices to consider this
case.

Note that the blow-up of P? at a point has a C*-action fixing the exceptional
divisor and the plane P. This induces a C*-action on X. Let C' be a general curve
in one of the families above and use the C*-action to take a limit in the direction
of the exceptional divisor. Then the limit curve will be the union of a conic in Ej
with three p-vertical curves which meet the exceptional divisor over Z but are not
contained in it.

Suppose we deform the conic in Ej while fixing these three points plus one more

intersection point with the curve in Ey beneath Z. This one-parameter family of
curves will break into a curve which is the union of two lines in Ey with the same
three or four vertical curves. Furthermore, since at most two distinct points on a
conic can be collinear, each line will meet at most two of these vertical fibers. We
can then smooth the union of a line with the vertical curves it meets to obtain two
free curves. All the stable maps obtained in this construction are smooth, showing
that the resulting union of two free curves is in the same component of M o(X) we
started with.
Suppose X is the blow up of P! x P? along a conic Z in a fiber Iy of the first projection
map. The E5 divisor E' is the strict transform of the plane containing the blown-up
conic. Let H; be the pullback of the hyperplane class from P! and let H, be the
pullback of the hyperplane class from P2. We have —Kx = H; + 3H, + E. Thus the
free rational curves of anticanonical degree < 4 will either be contained in a fiber of
X — P? or will satisfy £-C = 0.

By Proposition 6.10 Movable Bend-and-Break holds for all families of degree > 5

which do not contain a reducible curve of the form Cy UfUCy where C7, Cy are fibers
of the map to P? and / is a line in the E5 divisor. Since this curve has anticanonical
degree 5, we conclude that Movable Bend-and-Break holds in all degrees > 6.
Fix a point p € P? and suppose X is the blow up of BL,P? along a line ¢ contained in
the exceptional divisor. The E5 divisor E is the strict transform of the exceptional
divisor over p. Let F, denote the exceptional divisor for the map to BL,P3. Let
p : X — P? be the composition of birational map to BL,P? with the projective
bundle map and let H denote the pullback of the hyperplane class on P2. We have
—Kx =4H +2F + FE,. Thus the free rational curves of anticanonical degree < 4 will
either be a fiber of X — P? or will satisfy E - C = 0.

By Proposition 6.10 Movable Bend-and-Break holds for all families of degree > 5
which do not contain a reducible curve of the form Cy UZUCy where C, Cy are fibers
of the map to P? and / is a line in the E5 divisor. Since this curve has anticanonical
degree 5, we conclude that Movable Bend-and-Break holds in all degrees > 6.
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7. GEOMETRIC MANIN’S CONJECTURE

Let X be a smooth Fano threefold. In this section we explain how to interpret Geometric
Manin’s Conjecture for Fano threefolds. We then use Movable Bend-and-Break to obtain a
polynomial bound on the number of components of Rat(X) as predicted by Batyrev. This
yields an asymptotic upper bound on the counting function in Geometric Manin’s Conjecture.

7.1. The exceptional set. Let X be a smooth Fano variety equipped with the anticanonical
divisor —Kx. When X is defined over a number field, [LST22, Section 5] gives a conjectural
description of the exceptional set for Manin’s Conjecture using the geometry of the a and b
invariants. Loosely speaking, one should remove the contributions of any generically finite
morphism f : Y — X such that the a,b invariants for Y are larger than for X. In our
setting, this exceptional set should be interpreted as follows:

Definition 7.1. Let M C Rat(X) be a component. Suppose that f : Y — X is a generically
finite morphism from a smooth projective variety Y with one of the following types:

(1) f:Y — X satisfies a(Y, —f*Kx) > a(X, —Kx).

(2) f:Y — X is dominant, k(Ky — f*Kx) > 0, and

(G'(Y> _f*KX)7 b(}/a _f*KX)) > (CL(X, _KX)a b(Xv _KX))

in the lexicographic order.
(3) f:Y — X is dominant, face contracting, and satisfies k(Ky — f*Kx) = 0.

Suppose that for such a map f : Y — X there is a component N of Rat(Y) such that
composition with f defines a dominant rational map f, : N --+ M. Then we say that M
is an accumulating component. If M is not an accumulating component, we call it a Manin
component.

We would like to understand how to differentiate accumulating and Manin components
using geometric properties of the families.

Definition 7.2. Let X be a smooth Fano threefold such that —Kx is very ample. We say
that a component M of Rat(X) is a good component if it satisfies the following conditions:

(1) M parametrizes a dominant family of rational curves C' of anticanonical degree > 3,

(2) the general map parametrized by M is birational onto its image, and

(3) there is no morphism g : X — W with dim(W) > 1 such that the curves parametrized
by M are contracted by g.

Theorem 7.3. Let X be a smooth Fano threefold such that —Kx is very ample. Every good
component M of Rat(X) is a Manin component.

Proof. Suppose that M is an accumulating component. According to Definition 7.1 there are
three possible types for the morphism f : Y — X which verifies the accumulating condition.

(1) Suppose f : Y — X satisfies Definition 7.1.(1). Theorem 4.2 shows that this case
will occur if and only if M does not parametrize a dominant family.

(2) Suppose f:Y — X satisfies Definition 7.1.(2). In this case the map f : Y — X is an
a-cover which has litaka dimension > 0. Let C' denote a general curve parametrized by
N. Since dim(N) > dim(M) and both families of curves are dominant, by comparing
the expected dimensions of deformation we see that

—Ky -C>—-Kx - f.(C).
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Rearranging, we obtain (Ky — f*Kx)-C < 0. However, Ky — f*Kx is pseudo-effective
and C' deforms in a dominant family so that we must have equality (Ky — f*Kx)-C =
0. In particular C is contracted by the litaka fibration for Ky — f*Kx.
If the litaka dimension is 2, then by Lemma 5.2 N parametrizes a family of curves
whose set-theoretic images in X are — K x-conics. Thus either:
(a) the curves parametrized by M have anticanonical degree 2 in X, or
(b) the maps parametrized by M are multiple covers.
If the Titaka dimension is 1, then by Theorem 5.3 N parametrizes curves whose images
in X are contained in the fibers of a del Pezzo fibration on X.
(3) Suppose f:Y — X satisfies Definition 7.1.(3). In this case Ky — a(Y, —f*Kx)Kx
has litaka dimension 0. By Theorem 5.5 this cannot happen for Fano threefolds.

We conclude that every accumulating component must fail one of the three criteria in the
definition of a good component. OJ

Remark 7.4. The converse of Theorem 7.3 is false: not every Manin component is good.
For example, multiple covers of conics can sometimes be Manin components when p(X) > 1.
Similarly, curves contracted by a del Pezzo fibration may or may not be Manin components
depending on the comparison between p(X) and p(F) for a general fiber F' of the fibration.

In Theorem 7.7 we will show that these “pathological” Manin components make a neg-
ligible contribution to the asymptotic growth of the counting function. Thus to analyze
Geometric Manin’s Conjecture it suffices to focus on the good components.

7.2. Counting function. In order to emphasize the analogies between Geometric Manin’s
Conjecture and Manin’s Conjecture, it is helpful to introduce the following counting function.
Let X be a Fano variety and let r(X, —Kx) denote the minimal positive integer of the form
Kx - a for some o € N1(X)z. Fix a positive constant ¢ > 1. We define

d
NX,=Kx,q,d)=>_ Y ™"

1=1 We&Manin;

where Manin; denotes the set of Manin components which parametrize curves of anticanonical
degree i-7(X, —Kx). Note that this counting function encodes both the dimensions and the
number of components of Manin;; the dimension will determine the dominant term in the
asymptotic growth of N(X,—Kx,q,d) and the number of components will determine the
subdominant term. Geometric Manin’s Conjecture predicts that

i) 80 (X —Ky) dr(X,~Kx) go(X)~1
1 o q—T(X,—KX) q

where a(X, —Kx) = p(X) - Vol,(Nef; (X) N {a € Ni(X)| - Kx -a <r(X,—Kx)}) and p is
the Lebesgue measure normalized with respect to the lattice Ny (X)z.

For a Fano threefold X the counting function takes a particularly easy form. Each
Manin component will have the expected dimension —Kx - C. Thus, we can compute
N(X,—Kx,q,d) by summing up the terms C,q"® as we vary a € Nef,(X)z over all lattice
points which have anticanonical degree between 2 and d - (X, —Kx) where C,, denotes the
number of Manin components of a given class and ¢(«) is the linear function —Kx - a. In

this way we see that the behavior of the counting function is entirely controlled by the values
of C,.

N(X7 _KX7 q, d) ~d—oo
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The following lemma gives a lower bound on the asymptotic growth of the counting func-
tion.

Lemma 7.5. Let X be a smooth Fano threefold such that — K x is very ample. There is a full-
dimensional subcone K C Nefi(X)z and an element 7 € Kz such that for every a € T + Ky,
we have Cy, > 1.

Proof. By [TZ14, Theorem 1.3] N;(X)z is generated by classes of rational curves. By gluing
on sufficiently many copies of a very free rational curve C' to these generators, smoothing,
and gluing, we can in fact (after adding in the class of C') find a generating set consisting
of very free curves. Let K denote the cone generated by these very free curves. Applying
[Kho92, §3 Proposition 3] we see there is some translate of K such that every Z-class in the
translate is represented by a family of very free curves. By Theorem 7.3 each such family
will be a Manin component. O

Remark 7.6. In fact, using the classification of Fano threefolds one can show that that
every extremal ray of Nef;(X) is represented by the class of a free rational curve. So one
can take IC = Nef;(X) in the statement of Lemma 7.5.

Using standard lattice counting techniques, Lemma 7.5 shows that there is some constant
I' such that for sufficiently large d

N(X,-Kx,q,d) > qu’”(Xv—Kx)dp(X)—y
We are now equipped to analyze the “pathological” Manin components.

Theorem 7.7. Let X be a smooth Fano threefold such that —K x is very ample. The Manin
components M which are not good components will make a negligible contribution to the
asymptotic growth of the counting function, except possibly those components contracted by
a del Pezzo fibration whose fibers have degree 1.

The proof uses the results of [Tes09] which count components of the moduli space of
rational curves on del Pezzo surfaces. Since [Tes09] does not address arbitrary del Pezzo
surfaces of degree 1, we must include these as a possible exception.

Proof. Tt suffices to consider only the Manin components of anticanonical degree > 3. Defi-
nition 7.2 identifies three defining properties of good components. Theorem 4.2 shows that
every Manin component parametrizes a dominant family of curves, so it is not possible for
a Manin component to fail (1).

Suppose that a Manin component M fails condition (2). A dimension count shows that M
must parametrize multiple covers of a family M’ of — K x-conics. Note that for any degree d
there are only finitely many families of multiple covers of conics which have degree d. Lemma
7.5 shows that such contributions will have a negligible contribution to the counting function
if p(X) > 1.

If p(X) =1, let Y be a resolution of the one-pointed family of conics over M’ equipped
with the evaluation map f : Y — X. After perhaps taking a base change over a suitable
morphism 7" — M’, we may ensure that Ky — a(Y, —f*Kx)f*Kx has Iitaka dimension 2.
By [LST22, Corollary 4.16] we have a(Y, —f*Kx) = 1 and b(Y,—f*Kx) = 1. This implies
that Y satisfies condition (2) of Definition 7.1. Furthermore composition with f will map the
parameter space of multiple covers of conics on Y dominantly onto M. Thus when p(X) =1

every component M parametrizing multiple covers of conics is an accumulating component.
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Finally, suppose that a Manin component M fails condition (3) but not condition (2).
Then M will parametrize a dominant family of curves which are contained in the fibers of
a del Pezzo fibration ¢ : X — P!. To show that such contributions are negligible, we must
calculate how many Manin components represent the classes of curves contracted by f.

Let T — P! be a base change which kills the monodromy action on the Néron-Severi
space of the general fiber and let Y be a resolution of 7" xp1 X. After perhaps replacing
T by a finite cover we may suppose that the Ilitaka dimension of Ky — f*Kx is 1. There
is a bijection between the families of free curves on Y contracted by the map ¥ — T and
the families of free curves on a general fiber F' of Y — T. Since F' is a del Pezzo surface
of degree > 2, by [Tes09] there is a constant () such that any nef numerical class on F
is represented by at most () families of free curves. By pushing forward, we see that the
asymptotic contribution of curves contracted by f to the counting function on X is at most
Q'¢%d")=1 for some constant . If p(F) < p(X) then by Lemma 7.5 the contribution
to the counting function is negligible. If p(F) > p(X) then by [LST22, Corollary 4.16]
f Y — X satisfies condition (2) of Definition 7.1 showing that every family contracted by
g is an accumulating component. 0

7.3. Upper bounds. To give an upper bound on the asymptotic growth of the counting
function we must bound the values of the function C, counting Manin components represent-
ing a. The following result proves the conjectural bound occurring in Batyrev’s heuristic.

Theorem 7.8. Let X be a smooth Fano threefold. There is a polynomial P(d) such that
the number of components of Rat(X) parametrizing curves of anticanonical degree < d 1is
bounded above by P(d).

Proof. We separate the components of Rat(X) into two types: the non-dominant families
and the dominant families. The existence of a polynomial bound on the number of dominant
families follows from Movable Bend-and-Break combined with [LT19b, Theorem 5.13].

By Theorem 1.2 there is a finite set of surfaces {Y;} in X which contain all non-dominant
families of rational curves on X, and each such family will sweep out one of these surfaces.
Let S; denote the resolution of Y;. It suffices to verify that for each S; there is a polynomial
P,(d) bounding the number of dominant components of Rat(.S;) which have degree at most
d against the big and nef divisor —Kx|g,.

The possibilities for S; are recorded in Theorem 4.1. When S; corresponds to a contractible
divisor as in Theorem 4.1.(2), by examining the finite list of possibilities we see that the space
of rational curves parametrizing any numerical class on S; is irreducible and the existence
of the desired polynomial P;(d) follows. The other possibility is that S; maps to a family of
lines on X as in Theorem 4.1.(1). In this case by Lemma 4.5 we may suppose that S; is a
ruled surface. If S; is ruled over a curve of genus > 1, then the only rational curves on S; are
the fibers of the P!-bundle structure. If S; is a Hirzebruch surface, then in particular it is
a toric variety so by [Boul6, Theorem 1.10] (plus an easy argument dealing with classes on
the nef boundary) there is at most one family of rational curves representing any numerical
class on S;. Thus the number of components with a fixed intersection against —Kx|g, grows
at most linearly in the degree. 0

Theorem 7.8 implies that we obtain an upper bound on the counting function of the
expected form
N(X, =K, q.d) = O(¢" ¥ 0a)
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for some positive integer s. Conjecturally the optimal bound is s = p(X) — 1. The following
conjecture would imply that the counting function has the conjectural asymptotic growth
rate and has the expected leading constant.

Conjecture 7.9. Let X be a smooth Fano threefold such that —Kx is very ample. There
is some 7 € Nef;(X)z such that for every a € 7 + Nef;(X)z there is at most one good
component representing c.

Remark 7.10. In fact, we do not know of any curve class which lies in the interior of the nef
cone of a Fano threefold and is represented by more than one good component of Rat(X).

Note however that it is not true that every curve class in the interior of the nef cone of a
Fano threefold is represented by at most one family of free rational curves. [11i94, Proposition
2.1.2] shows that the general Gushel threefold (i.e. a double cover of a codimension 3 linear
section of G(2,5) branched over the intersection with a quadric hypersurface) carries two
different families of anticanonical conics.

8. EXAMPLES

As explained in the introduction, in principle one can use our main theorems to classify
all families of rational curves on a Fano threefold. In this section we compute a couple of
examples.

8.1. Quartic threefolds. We classify the components of the moduli space of rational curves
on every smooth quartic threefold X in P*. In particular, we show that for every e > 3 there
is only one irreducible component of M (X, ¢) whose general points parametrize generically
injective morphisms of degree e from P! to X.

Lemma 8.1. Let X be a smooth hypersurface of degree 4 in P* and S C X a rational surface.
There are at most finitely many lines, conics, or smooth twisted cubics on S.

Proof. Assume to the contrary that there is a 1-parameter family C of smooth rational curves
of degree < 3 on S. Let S — S be a desingularization and D C S the strict transform of a
general curve in this family. Suppose the space D of deformations of D in S is k-dimensional.
Since D is a smooth rational curve, we have D* = —Kg-D —2 =k — 1. If Y is the blow up
of Sat k—1 general points, then the strict transforms of the rational curves parametrized
by D through these k£ — 1 general points give a 1-parameter family of rational curves on
Y of self intersection 0. Since Y is a rational surface, this gives morphisms 7 : ¥ — P!
and f : Y — X such that a general fiber of 7 is a smooth rational curve mapped by f
isomorphically onto a curve of degree < 3 in X. Since there is an injective map Ty — f*Tx,
we conclude that A%f*Tx ® wy has a non-zero section. This contradicts [BS08, Proposition
2.4]. O

We will say that a rank 2 vector bundle O(a) & O(b) on P! is balanced if [b — a| < 1.

Lemma 8.2. Let X be a smooth hypersurface of degree 4 in P* and let M be an irreducible
component of Moo(X,e) parametrizing a dominant family of stable maps whose general
members are generically injective and have irreducible domains. If e > 2 then Ny /x is
balanced for a general map parametrized by M. If e > 4 then a general map parametrized by

M is very free.
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Proof. The arguments of [LT21, Lemma 8.1] combined with Lemma 8.1 show that if e > 5
then a general map must be very free. The balanced property for the normal bundle follows
from [Shel2]. So we only need to consider 2 < e < 4.

The statement is trivial for e = 2,3, so we assume e = 4. Suppose Ny/x = O @ O(2).
Consider a general point p in X. Then the family of stable maps parametrized by M whose
images pass through p is of dimension 2 and it sweeps out a surface S in X. Since S contains
a 2-parameter family of irreducible rational curves, it is a rational surface. Let g be a general
point on S, then there is a 1-parameter family of quartic rational curves through p and ¢ in
S. By Lemma 2.1, this family parametrizes a reducible curve with two distinct components
through p and ¢. Since p is a general point of X, there is no line on X through p, and
since there are finitely many lines on S, there is no line on S through g. So the reducible
curve consists of two conics, and therefore there is a 1-parameter family of conics on S
contradicting Lemma 8.1. U

For a smooth hypersurface X in P4 and for e > 1,k > 0, let N, (X, e) C Mox(X,e) be the
locus of free stable maps with £ marked points such that the domain is irreducible and the
map is generically injective. Denote by N (X, e) the closure of Ni(X,e) in Mgx(X,e) and
by age @ Np(X,e) — X*F the evaluation map. For any 2-plane H in P*, let N(X, e, H)
denote the divisor in N(X,e) parametrizing stable maps whose image intersect H and let
aye,m be the restriction of the evaluation map to Ni(X,e, H).

Lemma 8.3. Fiz k < n, and let py,...,px be k points in general linear position in P". If
the evaluation map ev : Mg x(P™, e) — (P™)** is dominant, then the fiber over (p1,...,px) is
non-empty and irreducible.

Proof. Since automorphisms of P" act transitively on the set of k-tuples of points in general
linear position, the fiber over (pi,...,px) is non-empty. Note that since the moduli stack
M (P, e) is smooth, general fibers of the evaluation map Mg 1, (P", e) — (P")** are smooth,
hence it is enough to show they are connected. Let Mg (P, e) — Y — (P")** be the Stein
factorization. Since Mg (P", e) is normal, Y is normal, and therefore the branch locus of
Y — P is either empty or of codimension 1. Since automorphisms of P™ act transitively on
the set of k-tuples of points in general linear position and since the locus of k-tuples which
are not in general linear position is of codimension greater than 1, the branch locus must be
empty. 0

Lemma 8.4. Suppose X is a general hypersurface of degree 4 in P* and H a general 2-plane.
(i) General fibers of ay3: N1(X,3) = X and ags : Nao(X,5) — X x X are irreducible
curves.
(i1) General fibers of ayam and ase g are irreducible curves.

Proof. We first prove (i). Note that the space of singular irreducible rational cubics on a
general quartic hypersurface in P* is 1-dimensional, so there is no such cubic through a
general point of X. Therefore it is enough to show the space of twisted cubics through a
general point of X is irreducible. Fix a point p in P*, and denote by T the space of all smooth
twisted cubics in P* through p. Let 7 : C — T be the universal curve over T" and o : C — P*
the universal map. Let D = o '(p). Then E := m,(o*O(4) ® Ip,c) is a locally free sheaf
on T, and for any hypersurface X = {f = 0} containing p, o0 := m.a*f is a section of F

whose zero locus is the space of twisted cubics through p on X. Since any twisted cubic C'
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is linearly normal, H°(O(4)) — H°(O(4)|c) is surjective and hence E is globally generated.
The fibers of a are connected by Lemma 8.3, so we can identify sections of E with sections
of Opa(4) ® I,ps. The desired result now follows since the zero locus of a general section of
a globally generated locally free sheaf on T is irreducible.

The proof for ays is similar if we fix two general points p; and p, in P* and consider
the space of smooth non-degenerate quintic rational curves through p; and p,. If E =
T (a*O(4) @ Io—1(p,ups)/c), then since any non-degenerate quintic C' in P* is 2-normal, E is
globally generated. Note that the space of degenerate quintic rational curves on a general
X is of dimension 3 and therefore there is no such quintic through two general points of X.

We next prove (ii). A similar argument as in part (i) shows that general fibers of a4 4 are
irreducible surfaces, and since H is general, the result follows. Similarly for asg, if C is a
smooth non-degenerate degree 6 rational curve in P*, then C is 3-normal. So E is globally
generated, and the zero locus of a general section is an irreducible surface. ([l

Corollary 8.5. Suppose that X is an arbitrary smooth hypersurface of degree 4 in P*. Then
all fibers of an 3, (a5, 0141, and ase g are connected curves.

Proof. Denote by P° the space parametrizing smooth hypersurfaces of degree 4 in P* and
consider the incidence correspondence Z = ([X], (f,q1,---,qr)) C P° x Myx(P* e) where
f : P! — X is a generically injective map. If e < 6, the fibers of the projection of Z to
My (P4, e) are irreducible of codimension 4e + 1 in P° since any curve of degree < 5 and
any non-planar curve of degree 6 in P* is 4-normal. Therefore Z is irreducible. Denote
by Z the closure of Z in P° x Mg(P* e). Denote by PP and PY the space of smooth
hypsersurfaces of degree 4 with one and two marked points, respectively. By the previous
lemma when (k, e) = (1, 3), general fibers of the projection map Z — P sending ([X], f, q1)
to ([X], f(q1)) are connected, and when (k,e) = (2,5) the general fibers of Z — PY sending
([X], f, q1,q2) to ([X], f(q1), f(g2)) are connected. Since Z is irreducible in these two cases,
all the fibers should be connected. A similar argument shows the statement for ay 4 g and
Q2,6,H - O

Theorem 8.6. For any smooth hypersurface of degree 4 inP*, the moduli space of generically
injective stable maps P* — X onto free curves of degree e is irreducible for e > 3.

Proof. First we > prove the statement for 3 < e < 6. Let My,..., M, be all the irreducible
components of Mg (X, e) whose general points parametrize generically injective stable maps
from P! to X whose image is free, and suppose to the contrary that k > 2.

e ¢ = 3: Consider a general point p in X and the curves in each M, parametrizing
stable maps through p. By Corollary 8.5 the space of such curves is connected, so
there should be a singular point [f] of Mgo(X,3) whose image passes through p.
The domain of f cannot be irreducible since any irreducible rational curve through a
general point is free. The only other possibility is that the domain has two irreducible
components, one mapped isomorphically to a line L and one mapped isomorphically
to a conic C' through p intersecting L. The normal bundle of a free conic in X is
O @ O, and the normal bundle of L in X is either O & O(—1) or O(1) ® O(-2).
Varying p we get a 2-parameter family of conics and a 1-parametric family of lines.
Let Y C X be the surface swept out by such lines. Then by Proposition 2.9, for a

general C' in a 2-dimensional family of conics, C' intersects Y transversally. So by
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Proposition 2.7, Nflc = O(1) @ O, and Ny¢|, = O & O or O(1) ® O(—1). Therefore
[f] is a smooth point of Mo(X, 3), a contradiction.
e = 4: Let p be a general point of X and H a general 2-plane in P*. Consider
the curves in each M; parametrizing stable maps whose images intersect H and pass
through p. By Corollary 8.5 the space of such curves is a connected curve, so there
is a map f parametrized by this curve which is a singular point of M(),O(X ,4). Since
any irreducible rational curve through a general point is free, there are only two
possibilities:
(1) the domain of f has one component mapped birationally onto a cubic C' through
p and intersecting H and one component mapped to a line L on X, or
(2) the domain of f has two components, one mapped to a free conic Cy through p
and one mapped to a non-free conic Cy intersecting H.
In the first case, arguing as for e = 3 we see that [f] is a smooth point of the moduli
space. In the second case, C5 should belong to a 2-parameter family of non-free conics
since it intersects both a general 2-plane and a conic through a general point. By
Lemma 8.1 there is no 2-parameter family of non-free conics on X so C5 should be
free and therefore f is a smooth point of the moduli space.
e = 5: The proof is similar to the case e = 3 by looking at quintics through 2 general
points. Note that by Lemma 8.2, the locus of stable maps through two general points
in every M; is 1-dimensional.
e = 6: The proof is similar to the case e = 4 by looking at degree 6 rational curves
through two general points intersecting a general 2-plane in P*. By Corollary 8.5,
the locus parametrizing stable maps through two general points in every M; is 2-
dimensional, so there is a connected curve parametrizing stable maps through two
general points and intersecting a general 2-plane. Since we assume HQO(X ,€) has
at least two irreducible components there is a map f parametrized by this curve
such that [f] is a singular point of the moduli space, so the restriction of f to the
irreducible components of its domain cannot all be free. The only possibilities are:
(1) the domain of f has two components, one mapped to a quintic and one to a line
intersecting the quintic, and
(2) the domain of f has two components, one mapped to a quartic through two
general points and one to a conic intersecting both the quartic and a general
2-plane.
In the first case, the line has to be general in its deformation class so the same
argument as in cases e = 3,4 gives a contradiction. In the second case, the conic
has to be general in its deformation class, so it has to be free and again we get a
contradiction.

Now we prove the statement for e > 7 using induction. Fix any component M C No(X,e).
By definition M generically parametrizes a dominant family of free curves, and in particular
it has the expected dimension.

Next we claim that M contains a stable map whose domain consists of two irreducible
curves, one mapping to a degree 3 free curve and another mapping to a degree e — 3 free
curve. Indeed, using Movable Bend-and-Break we see that M contains a chain of free curves
where every component has degree < 4. Using the irreducibility of No(X,4), we can further
break each quartic into a chain of two conics. By smoothing a subcurve consisting of all but

41



one component of the chain of free curves, we see that M contains a stable map consisting of
either (i) a degree 3 free curve and a degree e — 3 free curve or (ii) a free conic and a degree
e — 2 free curve. In the latter case, since e —2 > 5, by induction on the degree we can break
a degree e — 2 free curve into the union of a free cubic and a degree e — 5 free curve. Then
using [LT19b, Lemma 5.11] we may change the order of three free curves while remaining in
M so we may assume that M contains the union of a free conic, a degree e — 5 free curve,
and a free cubic such that a degree e — 5 free curve is attached to a conic and a cubic. Then
we smooth the conic and the degree e — 5 free curve to deduce our assertion.

By Theorem 1.3 the evaluation map for any family of free rational curves of degree > 3 will
have connected fibers. Thus by the inductive assumption there is a unique main component
of

N1<X, 3) Xx Nl(X,e — 3)

and this locus is contained in M. Because the union of two free curves is a smooth point of
My o(X,e), we deduce that there is a unique component M. |

Finally, we can complete the classification of components Rat(X) of anticanonical degree
> 3. Theorem 8.6 handles all dominant families which are generically birational. An easy
dimension count shows that any dominant family which is generically non-birational must
parametrize multiple covers of a dominant family of conics. Finally, suppose we have a non-
dominant family of rational curves on X. Theorem 4.1 shows that this family is contained
in a surface Y in X swept out by lines. Furthermore Lemma 8.1 shows that Y cannot be
rational. Thus the only rational curves in Y are the lines in Y and a general member of our
family must define a multiple cover of a line.

8.2. The Fano threefold with two E5 contractions. Let X be the blow-up of Ppz(O @
O(2)) along a quartic curve in a minimal moving section.

Theorem 8.7. There is a unique family of free curves representing each nef curve class a on
X. For any pseudo-effective curve class o on X there is at most one component of Rat(X)
representing this class.

The rest of this section will be devoted to the proof of Theorem 8.7. We let ¢ : X —
Pp2 (O @ O(2)) denote the blow-up of a quartic curve Z contained in a minimal moving
section D of the projective bundle. Let E denote the exceptional divisor for ¢, let Ey denote
the strict transform of the rigid section of the projective bundle, and let E., denote the strict
transform of D. Let p : X — P? denote the composition of ¢ with the projective bundle
map and let H denote the pullback of the hyperplane class under p. The two E5 divisors
are Fy and E.

We let E' denote the component of the p-preimage of the quartic curve p(E) which is
different from E. Note that F + E' ~ 4H. It turns out that E’ is a contractible divisor and
contracting it yields the variety Pp2(O @ O(2)) (in a different way from ¢).

The divisors Ey, Fw, E, E' generate the pseudo-effective cone of divisors. Dually, the nef
cone of curves on X has 4 extremal rays. These extremal rays are generated by the following
curve classes:

Ry: the class of a general fiber of p.
Ry: the class of the ¢-strict transform of a line in a minimal moving section of

Pp2 (O & O(2)) — P? that meets the quartic curve Z in two points.
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R3: the class of the ¢-strict transform of a general line in a minimal moving section
of Pp2(O @ O(2)) — P2.

Ry4: the class of the construction analogous to Rj3 that uses the other birational
contraction to Ppz (O & O(2)).

These together with the following curve classes

Rs: the class of the ¢-strict transform of a line in a minimal moving section of
Pp2(O & O(2)) — P? that meets the quartic curve Z in one point.

Rg: the class of the construction analogous to Rj that uses the other birational
contraction to Pp2 (O & O(2)).

generate the monoid Nef;(X)z. Besides the R; there is exactly one other nef curve class
which has anticanonical degree < 5, namely, Ry + Rs.

Let R denote the commutative monoid generated freely by the formal symbols R;. We
have a natural numerical class homomorphism R — Nef;(X)z, and wish to understand
precisely when two elements of R are identified by this map.

Proposition 8.8. Two elements in R are identified by the homomorphism R — Nefy(X)z if
and only if they can be identified using a sequence of the following relations while remaining
Ry + R3 = 2R;5 Ry + Ry = 2Ry Ry + 2Ry = Rs + Ry
Ry +Ry+ Rs = Rs+ Rg Ri+Ry+ Rs=Ry+ Rs

R1+R5+R6 :R3+R4

Proof. To see this, let

6 6
Z a; R; = Z b; R;
i=1 i=1
be a relation between the R; in Nef;(X) with a;, b; non-negative integers. We show by
induction on the anticanonical degree m that the right hand side can be obtained from the
left hand side after a finite number of substitutions using the above relations. If m = 0,
there is nothing to prove. Suppose we know the statement for every positive integer up to
m — 1. If for some ¢ both a; and b; are positive we can use our induction hypothesis to show
the statement, so we may assume no R; appears on both sides of the equation. Suppose
az > 0 and b3 = 0. Then at least one of as, a4, ag should be nonzero. The reason is that Rs
is the only class among the R;,1 < i < 6 with negative intersection with H + Fy — F,, the
intersection of both R; and R5 with H + Ey — E, is zero, and the intersection of Ry, R4, Rg
with H 4+ Fy — E is positive. Using the above 6 relations, we can replace any of R3 + Ro,
R3 + R4, R3 + Rg with a combination which does not involve R3. Repeating the argument,
we get to a relation which does not involve R3. (Note that this operation does not change
the value of our induction variable m.)

Now if R, appears on one side of the equation at least one of Ry or R5 should appear on
that side because Ry is the only class with negative intersection with H + E,, — Fy and R,
and Rg have intersection 0 with it. Just as before, we can use the above relations to reduce
to the case when ay = by = 0. So we are left with a relation involving Ry, R, Rs and Rg. In
this case we consider the intersection with Eq— E., to conclude that R5 and Rg should both

appear on one side of the equation with the same multiplicity since the intersection of R;
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and Ry with Ey — E, is zero, Ry has intersection —1 with Fy — E, and Rg has intersection
1 with it. So by replacing Rs + Rg by R; + 2R, we get the desired result. O

We will classify the families of curves on X in a sequence of four claims:

(1) We first classify non-dominant families of rational curves. In particular, we will show
that there is at most one such family representing any pseudo-effective curve class
and that such families never have nef numerical classes.

(2) We then prove there is a unique family of free curves representing any nef numerical
class of anticanonical degree at most 9, and for one particular nef class of anticanonical
degree 10.

(3) We prove Movable Bend-and-Break for families of free curves of anticanonical degree
at least 6.

(4) We use the two previous properties to prove there is a unique family of free curves
representing any nef numerical class.

Together (1) and (4) show Theorem 8.7.

Claim 8.9. Let X be as above. Then any non-dominant family of rational curves will
sweep out either Fy, E, E, or E'. Every numerical class is represented by at most one
non-dominant families and there is no non-dominant family with nef numerical class.

We start by classifying — K x-lines. Since —Kx = 3H + Ey + E, every —K x-line will

satisfy one of the following:

(1) H-¢ =0,

(2) E0'€<O, or

(3) Ex - £ <0.
Thus we see that ¢ must be contained in one of E, E’, Ey, E,. Furthermore, these four
divisors are the only contractible divisors on X. By Theorem 4.1 we see that any non-
dominant family of curves will sweep out one of these four divisors.

If this divisor is E then the family must be a multiple cover of the unique family of lines
contained in the divisor. There is a unique such family in any numerical class. Since these
curves satisfy E - C' < 0 they are not nef and cannot have the same numerical class as a
family of curves sweeping out any other divisor. A similar argument works for E’.

If this divisor is Ej then the family must be the unique family of rational curves in P? of
the appropriate degree. There is a unique such family in any numerical class. Since these
curves satisfy Fy - C' < 0 they are not nef and cannot have the same numerical class as a
family of curves sweeping out any other divisor. A similar argument works for F.

Claim 8.10. Let X be as above. Suppose that « is a nef numerical class of anticanonical
degree < 9 or a« = R3+ R4 of anticanonical degree 10. Then there is only a single component
of the parameter space of rational curves representing that class whose general element is a
free rational curve.

Note that Pp2(O & O(2)) admits a C*-action which acts on the fibers of the projective
bundle and fixes the rigid section and the section D. Thus we obtain a compatible C*-action
on X that fixes pointwise the divisors Fy and E.,. (If we instead use the other birational
contraction to Pp2 (OB O(2)) to obtain an induced C*-action the resulting action is the inverse

of the first.) Our general strategy is to use this C*-action to show that any component must
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contain a particular type of curve in its smooth locus. We will then analyze curves of that
type and conclude that there can only be one component.

We start by classifying the rational curves on X which are free but not very free. Let C
be a general member of such a family; in particular, we may ensure that C' avoids the locus
ENE" where p fails to be smooth. Thus along C' we have a relative tangent bundle sequence

0— Ox<Eoo + Eo)‘c — Txlc — p*T[P’2|C —0

Since we are assuming C' is not very free, the restriction of either the first or the last term
to C' must have a non-positive summand. If the restriction of the last term to C' has a
non-positive summand, then C' is a fiber of p. If the restriction of the first term to C' is
non-positive, then F, -C =0 and Ey - C = 0. We will systematically handle curves of these
types in Lemma 8.12. Thus for the remainder of the argument we may assume that C' is
very free.

Let C' be a general member of a family of very free rational curves on X. We first claim
that C'N (Ex U E) consists of reduced points which lie in distinct C*-orbit closures. By
[Kol96, 11.3.7 Proposition] a general free curve avoids any fixed codimension 2 locus, so we
may ensure that C' avoids F,, N E. Thus it suffices to show the statement separately for
CNEy and CNE. To see the statement for C'N E,, note that by Proposition 2.9 C' is not
tangent to E.,. To see the statement for C'N E, note that by Proposition 2.9, we know that
C is not tangent to E at any point of intersection and by Proposition 2.10 the intersection
points lie in different fibers of the P!'-bundle structure.

We now split the argument into two parts, depending upon whether or not £'-C > E - C.
If this inequality is satisfied, we will next act on C' by the C*-action in order to deform the
curve into Fj. If this equality is not satisfied, we will instead take the inverse limit to deform
the curve into F.,. Since the situation is entirely symmetric, it suffices to consider the case
when £/ -C > E - C.

Let C’ denote the limit of C. Let s = E-C and let t = E, - C. Then C’ will be a union of
an irreducible rational curve Cy contained in Ej, s curves S; that are p-vertical with normal
bundle O @ O(—1), and ¢ curves 7; that are p-vertical and free. By the analysis above
we know that the intersection points of the p-vertical curves with Cj are distinct points.
Furthermore, Proposition 2.11 shows that Cj is a rational curve of degree d := H - C in P?
with at worst nodes. Since we are in the case when E' - C' > E - C we see that 2d > s.

We next verify that the limit stable map is a smooth point of Moo(X). Let f: W — X
denote the stable map whose image is C’. Since f is an embedding in a neighborhood of
each node of W, we can calculate the restriction of Ny/x to each component of Z using
(GHS03, Lemma 2.6]. Using the fact that each S;, T} intersects £y transversally, we see that
the restriction of Ny, x to every component of W is globally generated, and we conclude that
f is a smooth point by Proposition 2.8.

The following lemma shows that there are relatively few combinatorial types for these
limit stable maps.

Lemma 8.11. Choose positive integers s and d such that d <2, s <4 if d =2, and s < 2
if d = 1. Fiz distinct points p1,--- ,ps of P2. Then the subset of Moo(P?) parametrizing
degree d immersions with irreducible domains passing through py,--- , ps 1s irreducible and is

smooth.
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Proof. The smoothness part follows from a normal bundle calculation. Indeed, for f an
immersion from P!, N;p2 = Op1(3d — 2). If we twist down by s points, we still have that
N¢p2(—p1 — - -+ — ps) has vanishing H' for s and d in the range described by the theorem.

For irreducibility, note that since d = 1 or 2 we are simply considering an open subset of the
linear system of degree d curves passing through s points, and this is clearly irreducible. [

Fix a nef curve class « and set d = H -, s = F-«, and t = E,, - a. Since Ey-a > 0
we have 2d < s +t. We are also assuming that s < 2d. Finally, we are either in the case
when d+ s+ 2t < 9or, if « = R3+ Ry, when d =t = 2 and s = 4. In all these cases except
possibly if « is a multiple of Ry (which we will handle in Lemma 8.12) we conclude that s
and d satisfy the conditions of Lemma 8.11.

We would like to show that the space of free rational curves parametrizing « is irreducible.
Let M be any component of Mo(X) which generically parametrizes free curves of class a.
We know that M contains a stable map whose image is a limit curve f': C" — X as before,
and furthermore we know that each such f’is a smooth point and is uniquely determined by
C'". Thus, it suffices to show that the parameter space P of limit curves C’ is irreducible. By
sending a general curve to its C*-limit, the parameter space P admits a rational map 1 to the
moduli space of tuples (Co, {p;},{¢;}) where Cj is a point in the Hilbert scheme of rational
degree d plane curves, {p;}:_, are points which lie in Cy N Z representing the attachment
points with the S;, and {g;}}_, are points which lie in C;\Z representing attachment points
with the 7;. Note that the limit curve C” is determined by Cj and the attachment points
pi, ¢;- In fact, v is birational, since for general choices of Cy, p;, g; the corresponding stable
map has globally generated normal sheaf and can thus be smoothed back into a free curve.

Next consider the forgetful map to the moduli space @ of tuples (Co, {p;}). The fibers of
this map are open subsets of (P*)**. Thus, to show that P is irreducible it suffices to prove
that the moduli space @ is irreducible. Note that () admits a forgetful map to Sym?®(Z).
This map is dominant: since we are in the case when s < 2d, there exists a rational curve of
degree d through any s points of Z. By Lemma 8.11 the general fiber of this forgetful map
is irreducible. We deduce that @), and hence P, is irreducible. This finishes the proof of the
claim for very free curves; it only remains to handle the curves that are free but not very
free. Since the desired statement is clear for multiple covers of fibers of p, we only need to
consider the curves with vanishing intersection against Fy and E.

Lemma 8.12. Fach of the numerical classes Ry, 2Rs, and 3Ry is represented by a unique
family of free curves.

Proof. First consider a family of free curves with numerical class Ry or 2R;. Under the
birational map to Pp2(O @ O(2)) the images of such curves will be lines or conics contained
in a minimal moving section of the projective bundle. Using this fact, we see that the image
of such a curve C' under the projection map to P? will be smooth and will meet the quartic
curve lying under Z transversally. By applying Lemma 8.11 and arguing as above using the
C*-action we deduce irreducibility in these two cases.

The argument for 3R, is similar but requires more care with details.

Lemma 8.13. General fibers of the evaluation morphism ev : Mog(P? 3) — (P2)*¢ are
irreducible.

Proof. Consider the gluing morphism gl : Mo 3(P?, 1) x p2y2 Mo 5(P%, 2) — Mo s(P? 3). Gen-

eral fibers of ev o gl are irreducible since the maps in the fiber over a general 6-tuples
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(p1,...,pe) are parametrized by conics through ps, ..., ps. Any such map is a smooth point
of ev™(p1,...,ps), so general fibers of ev are irreducible by [dJS06, Lemma 3.2]. O

Let I C Mg(PP?,3) be the fiber of the evaluation morphism over Z*6. The dimension of
every irreducible component of I is 8. If py,...,pg are such that no 4 of them are on the
same line then the fiber of ev over (pi,...,ps) is 2-dimensional. So if we denote by U the
open subset of Z*% of tuples of points such that no 4 of them are on the same line, then any
irreducible component of ev™'(U) should map dominantly onto U. By the above lemma a
general fiber of the evaluation map is irreducible, so ev™'(U) is irreducible.

Suppose M is an irreducible component of Rat(X) whose general points parametrize free
irreducible curves of class 3Ry. If C' is a general curve parametrized by M, then applying
the C*-action to C' we get a curve parametrized by M which is the union of an irreducible
cubic C" in F,, and 6 non-free lines intersecting C” at the points of intersection of C’ with
the quartic. We claim that the 6 lines are disjoint. Indeed, the only way that the 6 lines
could fail to be disjoint is if C' met the same fiber of E at least twice so that the image of
C in Pp2(O @ O(2)) is singular. In particular, the image of C' under the map to P® cannot
be a rational normal curve and so must be degenerate. This implies that C' is contained in
the strict transform in X of a minimal moving section of Pp2(O & O(2)). We then have the
normal bundle sequence

0— NC/S = O(l) — NC/X — NS/X|C = O(6> — 0

where S is the strict transform of the minimal moving section. This shows that C' is very
free in X, a contradiction.

Since the six non-free lines intersecting C” are distinct, the broken curve is a smooth point
of M. Since no 4 points of the intersection can be on the same line, by the irreducibility
result above we can conclude there is only one such component M. ([l

Claim 8.14. Let X be as above. Then Movable Bend-and-Break holds for free curves on X
of anticanonical degree at least 6.

We first prove the claim for curve classes of anticanonical degree between 6 and 9 and for
the class R3+ R4 of anticanonical degree 10. Suppose « is a nef class within this degree range.
Since Ry, ..., Rg form a Z-generating set for the nef cone, we can write a as a sum of the R;.
Thus by gluing a chain of free curves representing the R; we obtain a smooth point in the
moduli space of stable maps of class a. A general point of the corresponding component will
parametrize free curves, and thus by Claim 8.10 will be the unique component of Mg (X))
that generically parametrizes free curves of class a. After smoothing all but two components
of the chain we find a point in this component representing a sum of two free curves.

We next prove the claim for curve classes of anticanonical degree at least 10. By Proposi-
tion 6.5 every component of MQO(X ) that generically parametrizes free curves in this degree
range will either contain a union of two free curves or will contain a point C; U ¢ U Cy
parametrizing a union of two free curves connected by a line in an E5 divisor. In the latter
case, the two components C; and Cs must be general in their deformation classes by con-
struction. Thus, Proposition 2.9 guarantees that they intersect E transversally. We deduce
that the stable map corresponding to our broken curve is a smooth point of Mgo(X) by
Proposition 2.8 and is thus contained in a unique component.

In most cases at least one of the two free curves — say €'} — will have anticanonical degree

> 6. Thus it can again be broken into a union of two free curves, yielding a curve of the form
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(CTUC!)ULUCy where C7]UCY is a general union of free curves obtain by applying Movable
Bend-and-Break to C;. Note that this new curve underlies a smooth point of Mg (X).
By Proposition 2.8 we can smooth the subcurve C7 U ¢ U Cy, and the resulting stable map
will lie in our original component of Mg (X)), verifying Movable Bend-and-Break for this
component.

The remaining cases will be classes of anticanonical degree 10 which break into a chain
C1 Ul U (Cy where 7 and (5 have anticanonical degree 4 and 5 respectively, or classes
of anticanonical degree 11 which break into a chain C; U £ U Cy where C; and C5 have
anticanonical degree 5. If the curve of anticanonical degree 5 lies in the class R; + Ry then
we can argue similarly as before. It only remains to consider the cases when all curves of
anticanonical degree 5 lie in R3 or R4. Such curves can be deformed to the chain CLU¢' UCY
where Cf and CF are fibers of p and ¢ lies in the E5 divisor not containing ¢. This broken
curve with five components is a smooth point of M(X), and we can glue C; U £ U C4 to
find a chain C3 U ¢ U Cy where C3 has anticanonical degree 7 or 8. We have then reduced
to the situation where we can apply the earlier argument.

Claim 8.15. Let X be as above. Then there is a unique family of free curves representing
any nef class a.

We have already verified the statement for curves of anticanonical degree < 5, so it suffices
to prove the statement for anticanonical degree > 6.

Recall that each of Ry, ..., Rg is represented by a unique family of free curves. Since every
nef class is a sum of these classes, we see that every nef class is represented by at least one
family of free curves.

Conversely, we have already shown that each R; is represented by a unique irreducible
family M; of free curves. As above denote by R the commutative monoid of non-negative
linear combinations of the formal symbols Ry, ..., Rs.

Let M denote the components of M o(X) which generically parametrize free curves.
By Theorem 5.9 the evaluation map for the universal family over each component M &
M has irreducible general fibers. Thus if we identify two families of free curves on X
then by gluing and smoothing we can only obtain a unique component in M. By [LT19b,
Lemma 5.11] M admits the structure of an R-module where the R-action is given by gluing
the corresponding curve classes and smoothing. By applying Movable Bend-and-Break in
anticanonical degree > 6, we see that every component M € M contains a point which is a
chain of free curves from the components M, ..., Ms. In other words, there is a surjective
R-module homomorphism R — M.

As discussed above, two elements in R are identified under the numerical class homomor-
phism R — Nef;(X)z if and only if they can be identified using some sequence of relations
while remaining in R. Each of these relations has anticanonical degree < 9 except for the
relation Ry + Rs + Rg = R3 + R4 in anticanonical degree 10. Claim 8.10 shows that there
is a unique family of free rational curves parametrizing any of these classes, so we conclude
that the surjection R — M factors through Nef;(X)z. In other words, there is at most one

family representing any nef numerical class, finishing the proof of the claim.
48



REFERENCES

[BDPP13] S. Boucksom, J.-P. Demailly, M. Paun, and T. Peternell. The pseudo-effective cone of a compact

[Ben85]

[BF7]
[Bir19]

[Bir21]
[BM96]

[Boul2]
[Boul6]

[BSO8]
[Cas04]
[CS09]

[Dan78]
[JS06]

[Fuj16]
[GHSO03]
[Hor10]
[HJ17]
[HRS04]
[HTT15]

[1194]
[IP9Y]

[Isk77]
[Isk78]
[Isk79]
[Kaw03]

[Kaw05]

Kéhler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom., 22(2):201-248,
2013.

X. Benveniste. Sur le cone des l-cycles effectifs en dimension 3. Math. Ann., 272(2):257-265,
1985.

K. Behrend and B. Fantechi. The intrinsic normal cone. Invent. Math., 128(1):45-88, 1997.

C. Birkar. Anti-pluricanonical systems on Fano varieties. Ann. of Math. (2), 190(2):345-463,
2019.

C. Birkar. Singularities of linear systems and boundedness of fano varieties. Ann. of Math. (2),
193(2):347-405, 2021.

K. Behrend and Yu. Manin. Stacks of stable maps and Gromov-Witten invariants. Duke Math.
J., 85(1):1-60, 1996.

D. Bourqui. Moduli spaces of curves and Cox rings. Michigan Math. J., 61(3):593-613, 2012.

D. Bourqui. Algebraic points, non-anticanonical heights and the Severi problem on toric varieties.
Proc. Lond. Math. Soc. (3), 113(4):474-514, 2016.

R. Beheshti and J. M. Starr. Rational surfaces in index-one Fano hypersurfaces. J. Algebraic
Geom., 17(2):255-274, 2008.

A .-M. Castravet. Rational families of vector bundles on curves. Internat. J. Math., 15(1):13-45,
2004.

I. Coskun and J. M. Starr. Rational curves on smooth cubic hypersurfaces. Int. Math. Res. Not.
IMRN, (24):4626-4641, 20009.

V.I. Danilov. The geometry of toric varieties. Russian Math. Surveys, 33(2):97-154, 1978.

J. de Jong and J. M. Starr. Low degree complete intersections are rationally simply connected.
preprint, 2006.

K. Fujita. On K-stability and the volume functions of Q-Fano varieties. Proc. Lond. Math. Soc.
(3), 113(5):541-582, 2016.

T. Graber, J. Harris, and J. M. Starr. Families of rationally connected varieties. J. Amer. Math.
Soc., 16(1):57-67, 2003.

A. Horing. The sectional genus of quasi-polarised varieties. Arch. Math. (Basel), 95(2):125-133,
2010.

Chr. Hacon and C. Jiang. On Fujita invariants of subvarieties of a uniruled variety. Algebr. Geom.,
4(3):304-310, 2017.

J. Harris, M. Roth, and J. M. Starr. Rational curves on hypersurfaces of low degree. J. Reine
Angew. Math., 571:73-106, 2004.

B. Hassett, S. Tanimoto, and Y. Tschinkel. Balanced line bundles and equivariant compactifica-
tions of homogeneous spaces. Int. Math. Res. Not. IMRN, (15):6375-6410, 2015.

A. Tliev. The Fano surface of the Gushel'threefold. Compositio Math., 94(1):81-107, 1994.

V. A. Iskovskikh and Y. G. Prokhorov. Algebraic geometry. V, volume 47 of Encyclopaedia of
Mathematical Sciences. Springer-Verlag, Berlin, 1999. Fano varieties, A translation of 1t Algebraic
geometry. 5 (Russian), Ross. Akad. Nauk, Vseross. Inst. Nauchn. i Tekhn. Inform., Moscow,
Translation edited by A. N. Parshin and I. R. Shafarevich.

V. A. Iskovskih. Fano threefolds. I. Izv. Akad. Nauk SSSR Ser. Mat., 41(3):516-562, 717, 1977.
V. A. Iskovskih. Fano threefolds. II. Izv. Akad. Nauk SSSR Ser. Mat., 42(3):506-549, 1978.

V. A. Iskovskih. Anticanonical models of three-dimensional algebraic varieties. In Current prob-
lems in mathematics, Vol. 12 (Russian), pages 59-157, 239 (loose errata). VINITI, Moscow,
1979.

M. Kawakita. General elephants of three-fold divisorial contractions. J. Amer. Math. Soc.,
16(2):331-362, 2003.

M. Kawakita. Three-fold divisorial contractions to singularities of higher indices. Duke Math. J.,
130(1):57-126, 2005.

49



[Kho92]

[Kol96]

[KPO1]

[KPS18]
[LST22)
[LT17]

[LT19a]
[LT19b]

[LT21]
[LTT18]
[Mat95]

[MMS3)]

[MMO03]

[MMO04]
[MM82]
[Mor82]
[Sen21]
[She12]
[Tes09)]

[Tho98]
[Tot00]

[TZ14]

[Yam18]

A. G. Khovanskii. The Newton polytope, the Hilbert polynomial and sums of finite sets. Funkt-
sional. Anal. i Prilozhen., 26(4):57-63, 96, 1992.

J. Kollar. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag,
Berlin, 1996.

B. Kim and R. Pandharipande. The connectedness of the moduli space of maps to homogeneous
spaces. In Symplectic geometry and mirror symmetry (Seoul, 2000), pages 187-201. World Sci.
Publ., River Edge, NJ, 2001.

A. G. Kuznetsov, Y. G. Prokhorov, and C. A. Shramov. Hilbert schemes of lines and conics and
automorphism groups of Fano threefolds. Jpn. J. Math., 13(1):109-185, 2018.

B. Lehmann, A. K. Sengupta, and S. Tanimoto. Geometric consistency of Manin’s Conjecture.
Compos. Math., 2022. to appear.

B. Lehmann and S. Tanimoto. On the geometry of thin exceptional sets in Manin’s conjecture.
Duke Math. J., 166(15):2815-2869, 2017.

B. Lehmann and S. Tanimoto. Classifying sections of del Pezzo fibrations, I. submitted, 2019.
B. Lehmann and S. Tanimoto. Geometric Manin’s conjecture and rational curves. Compos. Math.,
155(5):833-862, 2019.

B. Lehmann and S. Tanimoto. Rational curves on prime Fano threefolds of index 1. J. Algebraic
Geom., 30(1):151-188, 2021.

B. Lehmann, S. Tanimoto, and Y. Tschinkel. Balanced line bundles on Fano varieties. J. Reine
Angew. Math., 743:91-131, 2018.

K. Matsuki. Weyl groups and birational transformations among minimal models. Mem. Amer.
Math. Soc., 116(557):vi+133, 1995.

Sh. Mori and Sh. Mukai. On Fano 3-folds with By > 2. In Algebraic varieties and analytic varieties
(Tokyo, 1981), volume 1 of Adv. Stud. Pure Math., pages 101-129. North-Holland, Amsterdam,
1983.

Sh. Mori and Sh. Mukai. Erratum: “Classification of Fano 3-folds with By > 2” [Manuscripta
Math. 36 (1981/82), no. 2, 147-162; MR0641971 (83f:14032)]. Manuscripta Math., 110(3):407,
2003.

Sh. Mori and Sh. Mukai. Extremal rays and Fano 3-folds. In The Fano Conference, pages 37-50.
Univ. Torino, Turin, 2004.

Sh. Mori and Sh. Mukai. Classification of Fano 3-folds with By > 2. Manuscripta Math.,
36(2):147-162, 1981/82.

Sh. Mori. Threefolds whose canonical bundles are not numerically effective. Ann. of Math. (2),
116(1):133-176, 1982.

A. K. Sengupta. Manin’s conjecture and the Fujita invariant of finite covers. Algebra Number
Theory, 15(8):2071-2087, 2021.

M. Shen. On the normal bundles of rational curves on Fano 3-folds. Asian J. Math., 16(2):237—
270, 2012.

D. Testa. The irreducibility of the spaces of rational curves on del Pezzo surfaces. J. Algebraic
Geom., 18(1):37-61, 2009.

J. F. Thomsen. Irreducibility of My ,,(G/P,3). Internat. J. Math., 9(3):367-376, 1998.

B. Totaro. The topology of smooth divisors and the arithmetic of abelian varieties. volume 48,
pages 611-624. 2000. Dedicated to William Fulton on the occasion of his 60th birthday.

Z. Tian and H. R. Zong. One-cycles on rationally connected varieties. Compos. Math., 150(3):396—
408, 2014.

Y. Yamamoto. Divisorial contractions to ¢cDV points with discrepancy greater than 1. Kyoto J.
Math., 58(3):529-567, 2018.

50



DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY IN ST. Louils, St. Louis, MO 63130
FE-mail address: beheshti@wustl.edu

DEPARTMENT OF MATHEMATICS, BOSTON COLLEGE, CHESTNUT HiLL, MA 02467
E-mail address: 1lehmannb@bc.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, 255 HURLEY HALL, NOTRE DAME,
IN 46556
FE-mail address: eriedl@nd.edu

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, FUROCHO CHIKUSA-KU, NAGOYA, 464-
8602, JAPAN
E-mail address: sho.tanimoto@nath.nagoya-u.ac.jp

51



