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Abstract. We study the space of rational curves on del Pezzo surfaces in positive charac-
teristic. For most primes p we prove the irreducibility of the moduli space of rational curves
of a given nef class, extending results of Testa in characteristic 0. We also investigate the
principles of Geometric Manin’s Conjecture for weak del Pezzo surfaces. In the course of
this investigation, we give examples of weak del Pezzo surfaces defined over F2(t) or F3(t)
such that the exceptional sets in Manin’s Conjecture are Zariski dense.

1. Introduction

Let S be a del Pezzo surface over an algebraically closed field k. Let M0,0(S) be the
Kontsevich moduli space of stable maps of genus 0 and let Rat(S) denote the union of
the irreducible components of M0,0(S) which generically parametrize stable maps from ir-
reducible domains. (Here we endow each component with its reduced structure.) We are
interested in the “discrete” invariants of Rat(S): the number of irreducible components of a
given degree, the dimension of the components, and so on.

In characteristic 0, the behavior of these invariants is predicted by Geometric Manin’s
Conjecture as formulated in [LT19]. [Tes05] and [Tes09] classified the components of Rat(S)
for “most” del Pezzo surfaces; in particular, Testa’s work verifies Geometric Manin’s Conjec-
ture for such surfaces. (As a secondary result, in this paper we extend Testa’s classification
to all del Pezzo surfaces in characteristic 0.)

Our main focus is del Pezzo surfaces in characteristic p. In particular, we would like
to analyze whether the framework of Geometric Manin’s Conjecture can be extended to
cover such surfaces. We classify the components of Rat(S) for “most” del Pezzo surfaces in
characteristic p and verify that the principles of Geometric Manin’s Conjecture hold in these
examples.

1.1. Summary of main results. Our first statement addresses the components of Rat(S)
which have larger than the expected dimension. We show that most weak del Pezzo surfaces
do not carry any dominant families of this type.

Theorem 1.1. Let S be a weak del Pezzo surface over an algebraically closed field such that
a general member of | − KS| is smooth. Then the only components of Rat(S) which have
greater than the expected dimension will parametrize multiple covers of rational curves C
satisfying −KS ·C ≤ 1. In particular, there are no dominant families of rational curves with
larger than the expected dimension.

The weak del Pezzo surfaces S for which Theorem 1.1 does not apply – that is, the surfaces
S such that every member of | − KS| is singular – are classified by [KN20b]. There are 3
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infinite families and 11 sporadic examples; these examples only occur in characteristic 2 or
3 and when S has degree at most 2. Note that for such a surface S the curves in | −KS| are
all rational and thus Theorem 1.1 must fail. We will discuss these examples in more depth
in Section 3.1 and Section 8.2.

Under more restrictive conditions, we show the stronger result that there are no dominant
irreducible components of Rat(S) yielding an inseparable family of rational curves.

Theorem 1.2. Let S be a smooth del Pezzo surface of degree d over an algebraically closed
field k of characteristic p. Assume that either d ≥ 2 or d = 1 and p ≥ 11. When d = 3, we
assume furthermore that S is not the following exception:

(1) char(k) = 2 and S is the Fermat cubic surface x3 + y3 + z3 + w3 = 0.

When d = 2, we assume furthermore that S is not one of the following list of exceptions:

(2) char(k) = 3 and S is the double cover of P2 ramified along the Klein quartic curve,
i.e., the curve defined by zx3 + xy3 + yz3 = 0.

(3) char(k) = 2 and S is a double cover of P2 defined by the equation w2 +wy2 +g4 where
g4 is a homogeneous polynomial in x, y, z.

Then every dominant component of Rat(S) is separable and generically parametrizes free
rational curves.

Remark 1.3. The surfaces described in the exceptions above do actually contain a dominant
inseparable family of rational curves.

Remark 1.4. It is interesting to note that the exceptional cases in Theorem 1.2 are exactly
the del Pezzo surfaces of degree ≥ 2 that are not Frobenius split. [Har98, Example 5.5]
shows that the Fermat cubic surface in characteristic 2 is the unique smooth cubic surface
that is not F-split. [Sai17, Theorem 0.3] shows that the smooth degree 2 del Pezzos that are
not F-split are the double cover of P2 branched over the Fermat quartic in characteristic 3
and the double covers of P2 branched over the double line in characteristic 2. (The Fermat
quartic in P2 in characteristic 3 is projectively equivalent to the equation given above by
[Par86, Proposition 3.7]. See also [Elk99, Formula (1.11)].)

If we impose some further restrictions on the characteristic then we can completely classify
components of Rat(S). Let δ(d) be the function defined by

δ(d) =


2 if d ≥ 4

3 if d = 2, 3

11 if d = 1.

(1.1)

The following statement extends results of [Tes05] and [Tes09] to positive characteristic:

Theorem 1.5. Let S be a smooth del Pezzo surface of degree d over an algebraically closed
field k of characteristic p. Assume that p ≥ δ(d). Furthermore when d = 2, we assume that
S is not isomorphic to the surface listed in Theorem 1.2.(2).

Let β be a nef class on S satisfying −KS · β ≥ 3. Then:

• If β is not a multiple of a −KS-conic, then there is a unique component M of
M0,0(S, β) generically parametrizing stable maps with irreducible domains. The gen-
eral map parametrized by M is a birational map onto a free curve.
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• If β is a multiple of a smooth rational conic, then there is a unique component M
of M0,0(S, β) generically parametrizing stable maps with irreducible domains. The
general map parametrized by M is a finite cover of a smooth conic.
• If d = 2 and β is a multiple of −KS, or d = 1 and there is a contraction of a

(−1)-curve φ : S → S ′ such that β is a multiple of the pullback of −KS′, then there
are exactly two components of M0,0(S, β) parametrizing stable maps with irreducible
domains. One component generically parametrizes birational maps onto free curves,
the other generically parametrizes multiple covers of −KS-conics.
• If d = 1 and β is a multiple of −2KS, then there are at least two components of
M0,0(S, β) parametrizing stable maps with irreducible domains. There is a unique
component that generically parametrizes birational maps onto free curves, and the
other components generically parametrize multiple covers of −KS-conics.

Finally, we extend the results of [Tes05] to finish the classification of components of Rat(S)
of anticanonical degree ≥ 3 on arbitrary del Pezzo surfaces S of degree 1 in characteristic
0. Theorem 6.6 finishes the proof of the analogue of Theorem 1.5 in characteristic 0; in
particular:

Theorem 1.6. Let S be a smooth del Pezzo surface of degree 1 over an algebraically closed
field of characteristic 0. Let α be a nef curve class on S satisfying −KS ·α ≥ 3 which is not
a multiple of a smooth rational conic. Then Rat(S) contains a unique component generically
parametrizing birational maps onto free curves of numerical class α.

1.2. Geometric Manin’s Conjecture. In his unpublished notes [Bat88], Batyrev devel-
oped a heuristic for Manin’s conjecture for Fano varieties over finite fields. (This heuristic
inspired Batyrev-Manin’s conjecture over number fields as formulated in the series of papers
[BM90], [Pey95], [BT98], [LST22].) Batyrev’s heurstic relies on several geometric assump-
tions about the structure of the moduli space of curves on a Fano variety. When working
over an algebraically closed field of characteristic 0, these assumptions were further revised
and were systematized as Geometric Manin’s Conjecture in [LT19].

Our main motivation for this paper is to test whether the principles of Geometric Manin’s
Conjecture hold for surfaces in characteristic p. In brief, Geometric Manin’s Conjecture pre-
dicts that the discrete invariants of Rat(S) – the number of components and their dimensions
– are controlled by a geometric quantity known as the Fujita invariant.

Definition 1.7. Suppose that X is a smooth projective variety over an algebraically closed
field equipped with a nef divisor L. The Fujita invariant a(X,L) is defined as follows. If L
is not big, we set a(X,L) =∞. Otherwise, we define

a(X,L) := min{t ∈ R | KX + tL is pseudo-effective}.

Definition 1.8. Let X be a smooth weak Fano variety over an algebraically closed field.
We say that a generically finite morphism f : Y → X from a smooth projective variety Y is
a breaking map if a(Y,−f ∗KX) > a(X,−KX).

Suppose that X is a weak Fano variety over an algebraically closed field of characteristic
0. [LT19, Theorem 1.1] proves that for any component M of Rat(X) with larger than the
expected dimension, there is a breaking map f : Y → X and a component N of Rat(Y ) such
that pushforward under f maps N birationally onto M .
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The techniques used to prove [LT19, Theorem 1.1] do not work in characteristic p. The
main new obstruction is the existence of inseparable maps. On the one hand, inseparable
maps provide new “unexpected” examples of dominant breaking maps. On the other hand,
inseparable maps provide new “unexpected” families of rational curves. The key question is
whether such phenomena match up to preserve the relationship between the two.

The following theorem verifies this correspondence for surfaces in characteristic p.

Theorem 1.9. Let S be a weak del Pezzo surface over an algebraically closed field of char-
acteristic p. Then the following are equivalent:

(1) S admits a dominant family of rational curves with larger than the expected dimen-
sion.

(2) There is a dominant breaking map f : Y → S.

Remark 1.10. Note that Theorem 1.9 is slightly weaker than [LT19, Theorem 1.1] because it
does not address whether each family of rational curves with larger than expected dimension
factors through a breaking map. We expect this to be the case.

Remark 1.11. The example of Shioda hypersurfaces suggests that in higher dimensions the
correct interpretation of Geometric Manin’s Conjecture may be more subtle. We plan to
return to this question in future work.

In fact, for a weak del Pezzo surface S we can completely classify all breaking maps
f : Y → S. The existence of such maps is closely related to the geometry of the linear series
| −KS| and | − 2KS|.

Theorem 1.12. Let S be a weak del Pezzo surface of degree d and suppose that f : Y → S
is a dominant generically finite morphism such that a(Y,−f ∗KS) > a(S,−KS). Then we
are in one of the following situations:

(1) char(k) = 2 or 3, d = 1, and f is birationally equivalent to the base change of
a quasi-elliptic fibration by a non-separable map to the target curve. In this case
a(Y,−f ∗KS) = 2 and the linear series | − KS| defines the quasi-elliptic fibration
(after blowing-up the base point).

(2) char(k) = 2, d = 2, and f is birationally equivalent to a purely inseparable mor-
phism of degree 2 from P2 to the anticanonical model of S. In this case, we have
a(Y,−f ∗KS) = 3/2 and | −KS| defines a purely inseparable degree 2 cover.

(3) char(k) = 2, d = 1, and f is birationally equivalent to a purely inseparable morphism
of degree 2 from the quadric cone Q to the anticanonical model of S. In this case, we
have a(Y,−f ∗KS) = 2 and | − 2KS| defines a purely inseparable degree 2 cover.

(4) char(k) = 2, d = 1, and f is birationally equivalent to a non-separable morphism of
degree 4 from P2 to the anticanonical model of S. In this case, we have a(Y,−f ∗KS) =
3/2 and | − 2KS| defines a purely inseparable degree 2 cover.

When S is a del Pezzo surface then none of (1)-(4) can occur.

As shown by Theorem 1.9, the possible weak del Pezzo surfaces S in Theorem 1.12 are the
same as the weak del Pezzo surfaces classified by [KN20b, Theorem 1.4]. These examples
are quite interesting; they show that over a function field there can be a Zariski dense set
of rational points which outpaces the exponential term in the rate predicted by Manin’s
Conjecture. (Conjecturally there is no Zariski dense set with the analogous property over a
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number field. From the perspective of the Fujita invariant, this discrepancy is predicted by
the fact that [HJ17, Theorem 1.1] fails in positive characteristic even in dimension 2. This
is in contrast to positive results for surfaces obtained in [LTT18] and [LT17].)

Example 1.13 ([KN20a, Table 2]). Let the ground field k be F3. Let S ′ be the surface in
the weighted projective space P(1, 1, 2, 3)(x:y:z:w) defined by

w2 + z3 − x2y2(x+ y)2 = 0.

Then this is a du Val del Pezzo surface with four A2 singularities. ([KN20a, Table 2]) We
denote its minimal resolution by S so that S is a weak del Pezzo surface of degree 1.

Let β : S̃ → S be the blow up of the base point for | − KS|. Then | − KS̃| defines a

quasi-elliptic fibration, i.e., a fibration π : S̃ → B = P1 such that a general fiber is a cuspidal
rational curve. To construct the component of M0,0(S) parametrizing fibers of π, one needs
to take a purely inseparable base change by the Frobenius map F : B′ = P1 → B = P1. Set

Y = S̃ ×B B′ and let Ỹ → Y be the normalization map. We denote by ρ : Ỹ → B′ the

induced generically smooth fibration and by f : Ỹ → S the induced inseparable generically
finite map.

Now we take the base change to the field K = F3(t). We are interested in the asymptotic
growth of the number of K-rational points of SK of bounded height. We claim that the

images of the points on ỸK under fK yield a Zariski dense set which grows faster than the
expected growth rate (even in the exponential term).

Let CK be a geometrically integral fiber of ρK : ỸK → B′K defined over K so that CK ∼= P1
K .

Note that we have a(CK ,−f ∗KKSK
) = 2 > a(SK ,−KSK

) = 1. Thus the points on each
such fiber CK grow at faster than the expected rate: there will be ∼ q2d points on CK of
anticanonical height ≤ d compared to the “expected” number ∼ qddρ(SK)−1 for SK .

Since B′K
∼= P1

K there will be a Zariski dense set of deformations of CK defined over the
ground field. Also note that CK(K) is Zariski dense as CK is isomorphic to P1

K . Thus we
need to remove a Zariski dense set of rational points on SK in order to obtain the desired
growth rate for rational points. (Although the set we must remove is Zariski dense, it is a
thin set since it comes from fK : YK → SK .)

Example 1.14. We work over F2. We will recall an example of a surface considered in
[KM99, end of Section 9] and in [CT18] due to the failure of the Kawamata-Viehweg vanishing
theorem.

Suppose we blow-up P2 at all seven F2-points. We will obtain a weak del Pezzo surface S
of degree 2. [CT18, Proposition 5.3] shows that the (−2)-curves on S will be precisely the
strict transforms of the seven F2-lines on P2. [CT18, Theorem 4.1] shows that |−KS| defines
a purely inseparable degree 2 map to P2. This map factors through the anticanonical model
S ′ of S which has seven A1-singularities.

Let w2 = f4(x, y, z) be the defining equation of S ′ in the weighted projective space
P(1, 1, 1, 2) where f4 is a homogenous polynomial of degree 4. By construction f4 has coef-
ficients in F2. We define the morphism

f : P2 → S ′ : (s : t : u) 7→ (x : y : z : w) = (s2 : t2 : u2 : f4(s, t, u)).

Then the Frobenius map F : P2 → P2 factors through f .
Since −KS′ is the pullback of O(1) under the map S ′ → P2, we see that −f ∗KS′ = O(2).

Thus a(P2,−f ∗KS′) = 3
2

while a(S ′,−KS′) = a(S,−KS) = 1. Again working over K = F2(t),
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the exceptional set for SK must contain a Zariski dense subset of rational points fK(P2
K(K))

which have an asymptotic growth rate of q
3
2
d.

1.3. Our methods. To prove Theorem 1.1, first we check that components parametrizing
stable maps of anticanonical degree ≤ 2 have expected dimension by classifying these low
degree rational curves. (Lemma 3.2, Lemma 3.3, Lemma 3.4) Then by employing Bend
and Break argument (Lemma 5.1), we prove that every dominant component of Rat(S) has
expected dimension by using an inductive proof on the degree of rational curves. (Proposi-
tion 5.2).

A proof of Theorem 1.2 is similar. We first analyze separability of families of −KS-conics
and cubics in Section 4 then we use Bend and Break argument (Lemma 5.1) to prove that
every dominant component of Rat(S) parametrizes a free rational curve. (Proposition 5.3).

To achieve Theorem 1.5, we first prove that under the assumption on char(k) every dom-
inant family of rational curves of anticanonical degree ≤ 3 contains a free rational curve
using some deformation theory of rational curves in positive characteristic proved in [IIL20].
(Theorem 4.4) To this end, one needs to bound the arithmetic genus of rational curves of low
degree on a del Pezzo surface S and this is the main reason why our assumption on the char-
acteristic of the ground field depends on the degree of S. Then we look at 1-dimensional loci
of stable maps of anticanonical degree e passing through e−2 general points, and prove that
these loci are contained in the smooth locus of M0,0(S) using an inductive argument whose
base case is settled by Theorem 4.4. (Lemma 7.3) Finally we lift everything to characteristic
0 and use a specialization argument combined with [Tes09] to conclude our main theorem.
Theorem 1.6 is also obtained using a similar idea: the irreducibility is known for general del
Pezzo surfaces of degree 1 by [Tes05] and we use a specialization argument to obtain the
main theorem. We believe that this specialization argument is new, and it has potential to
be applicable to problems on the space of rational curves on other Fano varieties.

Finally to obtain Theorem 1.12, we use the 2 dimensional Minimal Model Program and
classify smooth projective polarized surfaces with higher a-invariants (Theorem 8.10). Then
we use this result to deduce Theorem 1.12. Finally we found examples of weak del Pezzo
surfaces satisfying Theorem 1.12 in [KN20b] and [KN20a] which classified pathological exam-
ples of Du Val del Pezzo surfaces. Theorem 1.9 follows from Theorem 1.12 and the analysis
of low degree rational curves in Section 3.

1.4. Previous works. There is a vast literature studying the space of rational curves on
various Fano varieties in characteristic 0. The most relevant results to this paper are [Tes05]
and [Tes09] which classified components of Rat(S) for most del Pezzo surfaces S in char-
acteristic 0. [LT21] addressed this problem for curves of genus ≥ 1 on del Pezzo surfaces.
Readers interested in other classification results should consult [BLRT22] and the references
therein.

Let us focus on results in positive characteristic. First of all, there are many papers which
study the separable rational connectedness of smooth Fano varieties in characteristic p (for
example [She10], [Zhu11], [CZ14], [GLP+15], [Tia15], [CR19], [ST19], and [CS21]). János
Kollár asked whether any smooth Fano variety is separably rationally connected, but this
question is wide open at this moment. On the other hand there are only a few results on the
classification of irreducible components of moduli spaces of rational curves on Fano varieties
in characteristic p. [BS18] discussed the irreducibility of moduli spaces of rational curves
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on low degree hypersurfaces in positive characteristic using a function field version of the
circle method. Moduli spaces of rational curves on toric varieties are classified by Bourqui
in [Bou16] using the Cox ring method.

Examples of (weak) Fano varieties such that the exceptional set for Manin’s conjecture
is Zariski dense are well-documented over number fields. The first example was found by
Batyrev and Tschinkel in [BT96], and recently more examples have been found and proved
in [LR19] and [BHB20]. [LST22] proposed a geometric description of these exceptional sets
over number fields and proved that they are thin sets using the Minimal Model Program.
The analogue of [LR19] in positive characteristic has been studied in [M1̂9].

Notation: We will work throughout over a field denoted by k; usually k will be algebraically
closed. A variety over k is an integral separated scheme of finite type over k.

For a smooth projective variety X over k, N1(X)Z denotes the space of divisors up to
numerical equivalence and N1(X)Z denotes the space of integral 1-cycles up to numerical
equivalence. For a projective morphism f : X → Y of schemes, N1(X/Y )Z denotes the
relative numerical Néron-Severi group of X over Y .

For a scheme X, a component of X means an irreducible component of X endowed with
its reduced structure.

Let X be a smooth projective variety over k and L be an ample line bundle on X. An
L-line (L-conic, or L-cubic) is a birational stable map f : P1 → X such that deg f ∗L = 1
(resp. = 2, or 3).
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2. Preliminaries

We restrict our attention to dimension ≤ 3. In these dimensions we have resolutions of
singularities over any perfect field of characteristic p by [Abh56], [CP08], and [CP09]. We
also can run the Minimal Model Program freely in dimension 2 by [Mum69], [BM77], and
[BM76], and in dimension 3 if p > 5 by [HX15], [CTX15], [Bir16], and [BW17].
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2.1. Classes of singularities. Let p be a closed point of a reduced (possibly reducible)
curve C over an algebraically closed field k. We say that p is a node if we have a formal-local
equivalence

ÔC,p ∼= k[[x, y]]/(xy)

If f : Z → X is a stable map which is birational onto its image and the image is a nodal
curve then the normal sheaf Nf/Z is locally free.

We say that p is a cusp if C is unibranch at p and we have a formal-local equivalence

ÔC,p ∼= k[[x, y]]/(y2 + g3(x, y))

for some homogeneous cubic g3. If the characteristic is not 2, then every cusp is formally-
locally equivalent to the cusp defined by y2 = x3. If the characteristic is equal to 2, then the
family of cusps has moduli.

Suppose that f : Z → X is a birational map from an irreducible smooth curve Z and
p ∈ Z maps to a cusp in f(Z). If the characteristic is not 2, then the normal sheaf Nf/X

has a torsion subsheaf of length 1 at p. If the characteristic is equal to 2, then the normal
sheaf Nf/X has a torsion subsheaf of length 2 at p. Indeed, the curve defined by the equation
y2 + ax3 + bx2y + cxy2 + dy3 has rational parametrization

x =
t2

a+ bt+ ct2 + dt3
y =

t3

a+ bt+ ct2 + dt3

and thus dx is either 0 or divisible by t2 and dy is divisible by t2.

Remark 2.1. Note that an irreducible arithmetic genus 1 curve C in a smooth surface can
only have nodes and cusps as singularities. Indeed, a cohomological argument shows that
the normalization of C must have genus 0, C can have at most one singular point p, and the
preimage of p under the normalization map must have length 2. Letting ν : P1 → C denote
the normalization map, there is a three-dimensional subspace of |O(3)| which is constant on
ν−1(p). This subspace defines a map P1 → P2 whose image is a cubic isomorphic to C.

2.2. Deformation theory of stable maps. Fix an algebraically closed field k and let X
be a smooth projective variety defined over k. We denote the Kontsevich moduli space of
stable maps of genus 0 by M0,0(X). (See [BF97], [Beh97], and [BM96] for the foundational
theory of this coarse moduli space.)

Much of the theory of normal bundles to maps in characteristic 0 goes through in character-
istic p. We highlight here some useful previous results. Suppose that C is a nodal arithmetic
genus 0 curve mapping to X via a birational morphism f which is a local immersion at each
node of C. Under these hypotheses, the normal sheaf is defined as an extension

0→ Ext1OC
(Q,OC)→ Nf/X → HomOC

(K,OC)→ 0,

whereK andQ are the kernel and cokernel of f ∗Ω1
X → Ω1

C . When C is irreducible, the normal
sheaf Nf/X is simply the cokernel of TC → f ∗TX . The space H0(C,Nf/X) is the tangent

space to the moduli space M0,0(X) at the point corresponding to f and H1(C,Nf/X) is the
obstruction space for the moduli space at [f ] ([BF97], [Beh97], and [BM96]). In particular,
the expected dimension of M0,0(X) at C is given by

h0(C,Nf/X)− h1(C,Nf/X) = −KX .C + dimX − 3,
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and this is always a lower bound for the dimension of an irreducible component containing
C. It is natural to study Nf/X by comparing it to the normal sheaves of the restriction of f
to the components of C. We have the following theorem which we use frequently:

Theorem 2.2 ([GHS03] Lemma 2.6). Let C be a nodal curve of arithmetic genus 0 mapping
to X via a birational morphism f that is a local immersion at every node. Let g be the
restriction of f to a component Ci. Then sections of the normal sheaf Nf/X restricted to
a component Ci are sections of Ng/X with simple poles allowed at each node point in the
direction of the other component. In particular, if Ng/X is rank 1 (i.e. if X is a surface)
then Nf/X |Ci

will simply be Ng/X with the degree of the free part increased by the number of
components meeting Ci.

Proof. The problem is local so we may assume that C is an embedded LCI curve. Then the
assertion follows from the discussion of [HT08, the bottom of Page 1265]. �

Proposition 2.3. Let E be a sheaf on a nodal curve C of arithmetic genus 0 satisfying the
following two conditions:

• For each component Ci in C, H1(Ci, E|Ci
) = 0.

• Every component Ci, except possibly one component C0, satisfies that E|Ci
is globally

generated.

Then H1(C,E) = 0.

Proof. Recall the exact sequence

0→ E → ⊕iE|Ci
→ ⊕jE|pj → 0.

The hypothesis that every component except C0 satisfies that E|Ci
is globally generated

shows that the map H0(
∑

iE|Ci
)→ H0(

∑
j E|pj) is surjective. Thus, we see that H1(C,E)

is isomorphic to ⊕iH1(Ci, E|Ci
), which vanishes by hypothesis. �

3. Low degree curves with higher than the expected dimension

Let S be a weak del Pezzo surface. Our first goal is to analyze when a family of rational
curves of anticanonical degree ≤ 2 has larger than the expected dimension. This analysis will
form the base case of an inductive argument which addresses curves of arbitrary anticanonical
degree.

Theorem 3.1. Let S be a weak del Pezzo surface of degree d over an algebraically closed
field k. When d = 2, we assume furthermore that S is not the following exception:

(1) char(k) = 2 and | − KS| defines a purely inseparable generically finite morphism
f : S → P2.

When d = 1, we assume furthermore that S is not one of the following exceptions:

(2) char(k) = 2 or 3 and a general member of | −KS| is singular, or;
(3) char(k) = 2 and | − 2KS| defines a purely inseparable generically finite morphism

f : S → Q where Q is a quadric cone, or;
(4) char(k) = 2 and S admits a birational morphism to a surface as in (1) above.

Let M be a component of M0,0(S) generically parametrizing a family of birational maps to
curves C with −KS · C ≤ 2. Then M has the expected dimension unless C is a (−2)-curve.

We will prove Theorem 3.1 by analyzing each anticanonical degree ≤ 2 separately.
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Lemma 3.2. Let S be a weak del Pezzo surface. Every rational curve C satisfying −KS ·C =
0 is a smooth (−2)-curve on S.

Proof. By the Hodge Index Theorem we see that C2 ≤ 0. The arithmetic genus formula
tells us that C2 = 2pa(C)− 2, so that C2 is even and is at least −2. If C2 = 0 then by the
Hodge Index Theorem C must be proportional to −KS, an impossibility. Thus C2 = −2.
We deduce that C has arithmetic genus 0 and thus is smooth. �

Lemma 3.3. Let S be a weak del Pezzo surface of degree d. Suppose that M is a component
of M0,0(S) that parametrizes rational curves C with −KS · C = 1. Then either:

(1) C is a (−1)-curve.
(2) d = 1, dim(M) = 0, and C is a rational curve in | −KS|.
(3) d = 1, dim(M) = 1, and the curves parametrized by M yield a quasielliptic fibration

on the blow-up of S along the basepoint of |−KS|. Furthermore in this case S cannot
be a del Pezzo surface.

Proof. The Hodge Index Theorem tells us that dC2 − 1 ≤ 0. The arithmetic genus formula
tells us that C2 − 1 = 2pa(C)− 2, so that C2 is odd and is at least −1. We deduce that the
only options are:

• C2 = −1, d arbitrary: in this case the arithmetic genus of C is 0, so C is a (−1)-curve.
• C2 = 1, d = 1: in this case C ∈ | − KS| by the Hodge Index Theorem and C has

arithmetic genus 1. One possibility is that the general element of |−KS| is a smooth
elliptic curve, in which case we are in (2). The other option is that every element of
|−KS| is a singular rational curve. Note that |−KS| is not basepoint free, since any
pencil of cubic curves in P2 will have nine base points. Moreover since (−KS)2 = 1,
two general members of |−KS| intersect at one point which is not a singular point of
either curve. Thus when we resolve the base locus of | −KS| by blowing up a single
point the resulting fibration must be a quasi-elliptic fibration so that we are in (3).

Finally, we note that families as in (3) do not exist on a del Pezzo surface of degree 1. It
suffices to note that any quasi-elliptic pencil in the anticanonical system must contain a
non-integral curve. Indeed, by pushing these curves forward to P2 we obtain a family of
rational curves through 9 fixed points and Bend-and-Break guarantees that this family on
P2 parametrizes a non-integral curve. �

Lemma 3.4. Let S be a weak del Pezzo surface of degree d. Suppose that M is a component
of M0,0(S) that generically parametrizes rational curves f : P1 → C ⊂ S with −KS · C = 2
and f is birational. Then either:

(1) the component M parametrizes the fibers of a conic fibration. In this case M has the
expected dimension.

(2) d = 2 and M parametrizes curves in | − KS|. If M has larger than the expected
dimension then | −KS| does not define a separable map.

(3) d = 1 and there is a birational map φ : S → S̃ where S̃ is a weak del Pezzo surface
of degree 2 such that M parametrizes rational curves in | − φ∗KS̃|. If M has larger
than expected dimension then | − φ∗KS̃| does not define a separable map.

(4) d = 1 and M parametrizes curves in |−2KS|. If M has larger than expected dimension
then either | − KS| defines a quasielliptic fibration or | − 2KS| does not define a
separable map.
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Proof. The Hodge Index Theorem tells us that dC2 − 4 ≤ 0. The arithmetic genus formula
shows that C2 − 2 = 2g − 2, so that C2 is even and is at least 0. We deduce that the only
options are C2 = 0, 2, 4.

Case 1: C2 = 0, d arbitrary: in this case the arithmetic genus of C is 0 and H0(S,O(C)) =
2. Thus curves of this type are the fibers of a conic fibration.

Case 2: C2 = 2, d = 1, 2: in this case the arithmetic genus of C is 1 and deg(Nf/S) = 0.
Suppose that d = 2. By the Hodge Index Theorem, C is a member of | −KS|. If Φ|−KS | is
separable, then [KN20b, Proposition 4.4] shows that a general element of | −KS| is smooth
and we conclude that M has the expected dimension.

Next suppose that d = 1. In this case, we claim that C is the pullback of a curve under
a birational map to a degree 2 weak del Pezzo surface. To see this, it suffices to find a
(−1)-curve which has vanishing intersection with C. We claim that KS + C will be linearly
equivalent to such a curve. Indeed, we have

(KS + C) · C = 0 (KS + C) ·KS = −1 (KS + C)2 = −1

Since H2(S,KS +C) vanishes by Serre duality, Riemann-Roch shows that H0(S,KS +C) is
non-zero. This means that KS +C is linearly equivalent to an effective divisor and it follows
from the above intersection numbers that it has the form of E +D where E is a (−1)-curve
and D is a non-negative linear combination of (−2)-curves. Then since C is nef, we have
C · D = E · D + D2 = 0. We also have −1 = (E + D)2 = −1 + 2E · D + D2. Thus we
conclude that D2 = 0 proving that D = 0 by the Hodge Index Theorem. Finally note that
the deformations of C on this degree 2 weak del Pezzo yield a family satisfying (2). Thus
on our original surface we are in situation (3).

Case 3: C2 = 4, d = 1: in this case the arithmetic genus of C is 2 and C ∈ | − 2KS|.
We will let g : S → Q denote the morphism to the quadric cone defined by | − 2KS|. We
let S ′ denote the anticanonical model of S and g′ : S ′ → Q the corresponding finite degree
2 morphism.

To show that (4) holds, we must show that M has the expected dimension if | − KS|
does not define a quasielliptic fibration and | − 2KS| defines a separable map. From now
on we assume both these conditions. Let B ⊂ Q denote the branch locus of g : S → Q.
If char(k) ≥ 3 then B is the disjoint union of the cone vertex with a curve B1 of degree
6. (If B1 contained the cone vertex then one can show that S ′ would have worse than
canonical singularities, a contradiction.) If char(k) = 2 then the cone vertex is contained in
a dimension 1 component of B whose reduced part is a degree 3 curve B1.

Every irreducible rational curve C ∈ |−2KS| will be singular, and thus the restriction g|C
cannot realize C as a simply branched cover of a smooth curve. We conclude that C must
satisfy one of the following conditions:

(1) g(C) goes through a singular point of B1.
(2) g(C) is a hyperplane section of Q which is tangent to the divisor B1 at a smooth

point of B1.

We first show that there cannot be a 2-dimensional family of rational curves as in (1) above.
In fact, we claim that there is not a 2-dimensional sublocus of M parametrizing rational
curves through a fixed point p ∈ S. Indeed, if there were such a family, then by applying
Bend-and-Break we would obtain a 1-dimensional family of rational curves with class |−KS|.
But Lemma 3.3 would then contradict our assumption on | −KS|.
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We next rule out a 2-dimensional family of rational curves as in (2) above. If C is a nodal
rational curve then its normal sheaf is locally free and thus the deformations of C have the
expected dimension. We conclude that if we have a 2-dimensional family of deformations of
C then a general deformation must have a cusp. The rest of the argument depends on the
characteristic.

Case 3a: First suppose that char(k) ≥ 3. If C is a cuspidal rational curve in | − 2KS|
then its g-image is a hyperplane section of Q ⊂ P3 which has a point of tangency of order
≥ 3 with B1. In other words, if M fails to have the expected dimension then there is a
two-dimensional family of planes meeting the curve B1 to order at least three at some point.
Since there is only a two-dimensional space of planes containing a tangent line of B1, it
follows that every tangent line to B1 must be a flex. Thus the tangent lines to B1 meet Q
to order at least 3 at a given point, and in particular are all contained in Q. In other words,
the lines of the ruling are all tangent to B1, and this implies that every member of | −KS|
is singular. This contradicts with our assumption.

Case 3b: Next suppose that char(k) = 2. Since by assumption g is separable, the
anticanonical model S ′ of S is defined by an equation of the form w2 +wf3 + f6 where f3, f6
are homogeneous functions on P(1, 1, 2). We will use coordinates x0, x1, y on the weighted
projective space. First suppose that f3 is irreducible and reduced. Then by applying the
automorphism group of P(1, 1, 2) we may suppose that

f3 = x0y − x31.
Just as before, we rule out the possibility that every hyperplane section of the quadric
cone that is tangent to the curve defined by f3 = 0 has a cuspidal curve as a preimage. The
hyperplane sections of the quadric cone have equations of the form a20x

2
0+a11x0x1+a02x

2
1+cy.

Since we are interested in the general tangent plane, without loss of generality we may
suppose that c = 1. Eliminating y and computing the discriminant, we see that a plane will
be tangent to f3 = 0 precisely when a20 = a11a02. When this condition is met, the tangency

point is (x0 : x1 : y) = (1 : a
1/2
11 : a

3/2
11 ).

From now on we will work on the affine patch x0 6= 0 isomorphic to A2. Locally near the

point p = (a
1/2
11 , a

3/2
11 ) the curve admits the rational parametrization

t 7→
(
t+ a

1/2
11 , a02t

2 + a11t+ a
3/2
11

)
sending 0 7→ p. Pulling back the defining equation for the double cover to this rational curve,
we see that the preimage is defined by the equation

w2 + w(t3 + (a
1/2
11 + a02)t

2) + f̃6(t)

where the constant term of f̃6 is

b600 + a
1/2
11 b510 + a11b420 + a

3/2
11 (b330 + b401) + a211(b240 + b311) + a

5/2
11 (b150 + b221)+

a311(b060 + b131 + b202) + a
7/2
11 (b041 + b112) + a411b022 + a

9/2
11 b003

and the linear coefficient is

b510 + a11(b330 + b401) + a211(b150 + b221) + a311(b112 + b041) + a411b003.

Note that this double cover of P1 defines a cuspidal curve if and only if the constant and
linear coefficients vanish. If a general hyperplane section (i.e. a general choice of a11, a02)
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defines a cuspidal curve, we must have

b600 = b510 = b420 = b022 = b003 = 0

b330 = b401 b150 = b221 b112 = b041 b240 = b311

b060 + b131 + b202 = 0

Equivalently, we have f6 = (x0y − x31)g3 for some cubic equation g3. Thus the defining
equation has the form

w2 + (x0y − x31)w + (x0y − x31)g.
Then replacing w by w + g, the equation becomes

w2 + (x0y − x31)w + g2.

Replacing w by w + c(x0y − x31), we may assume that g is a homogeneous polynomial in
x0, x1. Then (x0 : x1 : y : w) = (0 : 0 : 1 : 0) is a singular point of the surface. On the patch
where y = 1, locally analytically the equation looks like

w2 + (x0 − x31)w + g(x0, x1)
2

in A3/µ2.
Now we will prove that the singularity at (0, 0, 0) is worse than canonical. First we claim

that A3/µ2 has a terminal singularity. Indeed, A3/µ2 is isomorphic to

Spec(k[x20, x
2
1, w

2, x0x1, x0w, x1w]).

Let β : W → A3/µ2 be the blow up of the origin and E be the exceptional divisor. Then

the discrepancy of E is 1/2. Let S̃ ⊂ W be the strict transform of S ′ ⊂ A3/µ2. Since the
equation for S ′ has no constant term and no odd degree monomial term, we can conclude

that S ′ is Cartier in A3/µ2 so that β∗S ′ = S̃ + nE with a positive integer n. Then the

discrepancy of E ∩ S̃ in S̃ over S ′ is 1
2
− n which is negative, proving the claim. But the

anticanonical model S ′ must have only canonical singularities, and we conclude that any S ′

of this type cannot admit a 2-dimensional family of rational −KX-conics.
Case 3b’: The other possibility is that char(k) = 2 and that f3 is reducible or non-

reduced. Then by applying the automorphism group of P(1, 1, 2) we may suppose that
either

f3 = x0y or f3 = g(x0, x1)

for some cubic g. First suppose f3 = x0y. Writing as before a20x
2
0 + a11x0x1 + a02x

2
1 + cy

for the equation of a general hyperplane section, we see that the sections tangent to f3 = 0
will satisfy either a02 = 0, c = 0, or a11 = 0. The tangent point for every hyperplane section
satisfying a02 = 0 is the point (0 : 1 : 0); since we have already ruled out the case where each
curve goes through the same point, we cannot get a 2-dimensional family in the first case.
In the second case the hyperplane section is not integral, thus we do not need to consider
this case. It only remains to consider the case a11 = 0.

Assuming that a11 = 0, then arguing as before we see that if every tangent to f3 = 0 yields
a cuspidal curve then f6 is divisible by y. We next need to check whether every member of
this 2-dimensional family of cuspidal curves on S is rational. Since c 6= 0, by rescaling we

may suppose without loss of generality that c = 1 so that y = (αx0 + βx1)
2 where α = a

1/2
20
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and β = a
1/2
02 . We then eliminate the variable y so that the equation of our singular curve in

Px0,x1,w(1, 1, 3) is given by

w2 + x0(αx0 + βx1)
2w + (αx0 + βx1)

2g4(x0, x1)

for some degree 4 equation g. Since these curves have arithmetic genus 2, if they are rational
then they must have at least one other singularity besides the cusp. (It is not possible for
the equation above to define a worse-than-cuspidal singularity.) The only option is that we
have a singularity at x0 = 0, in which case g4 must be divisible by x20 for any α, β. This
implies that

b003 = b022 = b041 = b060 = b112 = b131 = b150 = 0.

Hence we conclude that f6 is divisible by x20y. Thus the point (0 : 0 : 1 : 0) in P(1, 1, 2, 3) is
contained in S and this is a singularity worse than canonical by the argument above.

Suppose that f3 is reduced but f3 is a union of three lines. Then the only hyperplane
sections which are tangent to f3 = 0 will go through one of the singular points. But we have
already ruled out the case where each curve goes through the same point, so this situation
cannot give a 2-dimensional family of rational curves.

When f3 is non-reduced, we may assume that f3 = x20x1 or x30. When f3 = x20x1, a
hyperplane section tangent to f3 is given by

a20x
2
0 + a11x0x1 + a02x

2
1 = y

such that the tangent point is given by (0 : 1 : a02). If we can find a 2-dimensional family
of rational curves such that a02 is fixed, then we can conclude a contradiction as before. So
we may assume that a02 is generic. Then a rational parametrization of the above section is
given by

(x0 : x1 : y) = (t : s : a20t
2 + a11ts+ a02s

2).

For the resulting rational curve

w2 + t2sw + f6(t, s, a20t
2 + a11ts+ a02s

2)

to have a cusp, by arguing as above we see that f6 is divisible by x20. Thus the point
(0 : 0 : 1 : 0) is contained in S and this is a singularity worse than canonical by the argument
above.

Finally assume that f3 = x30. In this case by arguing as the case of f3 = x20x1, we may
conclude that f6 is divisible by x20. Thus one can deduce a contradiction as before. �

Altogether Lemma 3.2, Lemma 3.3, and Lemma 3.4 immediately imply Theorem 3.1.

3.1. Pathological weak del Pezzo surfaces. We next classify the weak del Pezzo surfaces
S which admit a dominant family of rational curves of low degree which has larger than the
expected dimension. In view of later applications, we will split these surfaces into 3 different
types. We emphasize that these three types are not mutually exclusive.

Our description will be based upon [KN20b] and [KN20a] which classify the weak del
Pezzo surfaces in characteristics 2 and 3 such that the anticanonical model has Picard rank
1. [KN20a, Table 1] gives a complete list of such surfaces based on the type of singularities
of the anticanonical model; we will refer to this table in our discussion.
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3.1.1. Type 1. The first type of pathological weak del Pezzo surface will satisfy the following
equivalent conditions:

Claim 3.5. Let S be a weak del Pezzo surface. Then the following are equivalent:

(1) S admits a dominant family of rational curves of anticanonical degree 1.
(2) S is a weak del Pezzo surface of degree 1 such that every element of |−KS| is singular.
(3) S is a weak del Pezzo surface of degree 1 and if we blow-up the basepoint of | −KS|

we obtain a quasi-elliptic fibration.

In particular such surfaces can only occur in characteristic 2 or 3.

Proof. The equivalence of (1) and (2) is an immediate consequence of Lemma 3.3. To prove
the equivalence of (2) and (3), we just need to note that if every element of |−KS| is singular
then it is not possible for all the singularities to coincide (since the intersection number of
two curves in the family should be 1). �

Over an algebraically closed field of characteristic 2 or 3, such surfaces have been classified
by [KN20b, Theorem 1.4]. In characteristic 2 there are 3 infinite families and 4 other surfaces
whose singularity types are:

E8, D8, A1 + E7, 2A1 +D6, 2D4, 4A1 +D4, 8A1

In characteristic 3 there are three surfaces whose singularity types are:

E8, A2 + E6, 4A2

3.1.2. Type 2. The second type of pathological weak del Pezzo surface will satisfy the fol-
lowing equivalent conditions:

Claim 3.6. Let S be a weak del Pezzo surface. Then the following are equivalent:

(1) S has degree 2 and admits a family of rational curves of anticanonical degree 2 with
larger than the expected dimension.

(2) S has degree 2 and every element of | −KS| is singular.
(3) | −KS| defines a purely inseparable morphism g : S → P2.
(4) The anticanonical model S ′ of S admits a purely inseparable map f : P2 → S ′ of

degree 2 such that f ∗(−K ′S) ∼= O(2).

In particular such surfaces can only occur in characteristic 2.

Proof. Lemma 3.4 shows that the only possible family of conics with larger than expected
dimension on a weak del Pezzo surface of degree 2 must lie in |−KS|. Since this linear series
has dimension 2, we see that (1) implies (2). Lemma 3.4 shows that (2) implies (3).

We next show that (3) implies (4). Let S ′ denote the anticanonical model of S. (3) asserts
that |−KS| defines a purely inseparable morphism g : S → P2. This necessarily implies that
S has degree 2 and that g has degree 2. The Stein factorization of g will be the anticanonical
model S ′ of S; in other words, S ′ will be the normalization of P2 inside the function field
of S. Since K(S) is obtained by adjoining a single square root to K(P2), we see that the
Frobenius morphism P2 → P2 factors through g. In this way we obtain a purely inseparable
degree 2 map f : P2 → S ′. Furthermore we have

f ∗(−KS′) = f ∗g∗O(1) = O(2).
15



Finally, we show that (4) implies (1). By taking intersection numbers it is clear that S has
degree 2. The lines on P2 will map to a two-dimensional family of curves on S ′ of anticanonical
degree ≤ 2 with no basepoints. Since there is no such family on S ′ of anticanonical degree
1 by Lemma 3.3, we see that the restriction of f to each line is birational. Thus S admits a
two-dimensional family of rational curves of anticanonical degree 2. �

Over an algebraically closed field of characteristic 2, the surfaces satisfying (2) have been
classified by [KN20b, Theorem 1.4]. There are exactly 4 such surfaces, whose singularity
types are:

E7, A1 +D6, 3A1 +D4, 7A1

3.1.3. Type 3. The third type of pathological weak del Pezzo surface will satisfy the following
equivalent conditions:

Claim 3.7. Let S be a weak del Pezzo surface. Then the following are equivalent:

(1) S has degree 1 and every element of | − 2KS| is a singular rational curve.
(2) S has degree 1 and the morphism to the quadric cone g : S → Q defined by | − 2KS|

is purely inseparable.
(3) The anticanonical model S ′ of S admits a purely inseparable map f : Q → S ′ of

degree 2 from the quadric cone Q such that f ∗(−K ′S) ∼= O(1).

In particular such surfaces can only occur in characteristic 2.

Proof. We first show that (1) implies (2). Suppose for a contradiction that the morphism
g : S → Q is separable. Note that g is finite on the complement of the (−2)-curves in S.
Let U ⊂ S be the open set which is the complement of the (−2)-curves and the preimage of
the singular locus of the branch divisor. Then U admits a decomposition into locally closed
subsets L1, L2 where L1 is the ramification divisor and L2 is its complement. By construction
L1, L2 are smooth and the restriction of g to both L1 and L2 is a smooth morphism. By
[Spr98, Corollary 4.6] we conclude that the pullback of a general hyperplane in Q to U will
be smooth. Since we only removed the (−2)-curves and a codimension 2 set, the general
pullback of a hyperplane in U is also projective. Altogether we see that a general element
in | − 2KS| is smooth, contradicting (1).

The proof that (2) implies (3) follows from a Frobenius factoring argument as in Claim
3.6.

Finally, to see that (3) implies (1) we note that Q admits a 3-dimensional family of
rational curves of degree 2. These map to a 3-dimensional family of rational curves on
S ′ of anticanonical degree ≤ 2 with no basepoints. Since by Lemma 3.3 there is no such
family on S ′ of anticanonical degree 1, we see that the restriction of f to each rational
curve is birational. Lemma 3.4 shows that a three-dimensional family of rational curves of
anticanonical degree 2 must lie in |− 2KS| and we conclude that all the curves parametrized
by | − 2KS| are singular. �

It turns out that Type 3 surfaces are exactly the same as the Type 1 surfaces which have
characteristic 2. We will demonstrate this in Proposition 8.13 after developing the theory of
a-covers.

For now, it will suffice to show that every Type 3 surface also has Type 1. Suppose that
Y is a Type 3 surface so that its anticanonical model S ′ admits a purely inseparable degree
2 map f : Q→ S ′ from the quadric cone. Each line on Q maps birationally onto a −KS-line

16



in S ′. In particular by pulling back to S we see there must be a one-dimensional family of
−KS-lines. Thus Type 3 surfaces are a subclass of Type 1 surfaces.

Combining this classification with Theorem 3.1, we obtain:

Corollary 3.8. Let S be a weak del Pezzo surface. If S carries a dominant family of rational
curves of anticanonical degree ≤ 2 with larger than the expected dimension then S has Type
1, Type 2, or Type 3. In particular every curve parametrized by | −KS| is singular.

Proof. Let us start with the first claim. According to Lemma 3.3 and Lemma 3.4 the only
case which needs consideration is when S is a weak del Pezzo surface with degree 1 that
admits a birational map φ : S → T to a surface of Type 2 that contracts a (−1)-curve. In
this case every integral member of | − KT | is a rational curve. Thus S also has this same
property, and in particular must have Type 1.

Note that both Type 1 and Type 2 surfaces have the property that every element of
| − KS| is singular. Furthermore, every Type 3 surface also has Type 1 and thus has the
same property. This proves the second claim. �

4. Low degree curves and inseparable families

In this section first we focus our attention on del Pezzo surfaces S of degree ≥ 2. Our goal
is to classify the inseparable families of rational curves C on S which satisfy −KS · C ≤ 3.

Theorem 4.1. Let S be a del Pezzo surface of degree ≥ 2. Let M be a component of M0,0(S)
generically parametrizing a dominant family of curves C with −KS · C ≤ 3. When d = 3,
we assume furthermore that S is not the following exception:

(1) char(k) = 2 and S is the Fermat cubic surface w3 + x3 + y3 + z3 = 0.

When d = 2, we assume furthermore that S is not one of the following list of exceptions:

(2) char(k) = 3 and S is the double cover of P2 ramified along the curve zx3 +xy3 + yz3.
(3) char(k) = 2 and S is a double cover of P2 defined by the equation w2 +wy2 +g4 where

g4 is a homogeneous polynomial in x, y, z.

Then M parametrizes a separable family of curves

To prove Theorem 4.1, first note that by Lemma 3.2 and Lemma 3.3 we only need to
consider dominant families of rational curves of anticanonical degrees 2 and 3. We will
analyze each case separately.

Lemma 4.2. Let S be a del Pezzo surface of degree d ≥ 2. Suppose that M is a component
of M0,0(S) that parametrizes a dominant family of rational curves C with −KS · C = 2.
Then either:

(1) the component M parametrizes the fibers of a conic fibration and the general fiber is
a free rational curve.

(2) d = 2, dim(M) = 1, and either
(a) M parametrizes a separable family of rational curves in | −KS|, or
(b) char(k) = 3, S is the double cover of P2 ramified along the curve zx3 +xy3 +yz3,

and M is the dual curve of this quartic parametrizing an inseparable family of
rational curves in | −KS|, or

(c) char(k) = 2, S is a double cover of P2 defined by the equation w2+wg2+g4 where
g2 = `2 is a double line, and M parametrizes the preimages of a 1-dimensional
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family of lines in P2 where for any point p ∈ V (`) the slope of the line through
p is determined by the derivatives of g4 at p. This family is inseparable.

Proof. Since M parametrizes a dominant family, a general member f : P1 → C ⊂ S param-
eterized by M cannot be a multiple cover of a line. Thus f : P1 → C is birational.

As in Lemma 3.4 the Hodge Index Theorem implies that C2 = 0, 2, 4. Furthermore, as
explained in Lemma 3.4 in the C2 = 0 case the curves are fibers of a conic fibration. Since
a general fiber is smooth, the normal sheaf is locally free which implies that such a rational
curve is free. The C2 = 4 case can only occur when d = 1 and thus is not a concern for us.

The only remaining case to consider is when C2 = 2 and d = 2. In this case the curve C
lies in | −KS|; the arithmetic genus of C is 1 and deg(Nf/S) = 0. We will argue separately
the cases when char(k) > 2 and when char(k) = 2.

Case 1: First suppose that the ground field k has characteristic p ≥ 3. The anticanonical
linear series defines a double cover f : S → P2 that is ramified along a smooth quartic curve
B. The f -images of the curves parametrized by M will be the lines in P2 which are tangent
to B and thus M will be the dual curve to B. This family of lines will define a non-separable
cover if and only if the general curve has normal bundle O(−1)⊕k(p), and hence is a cuspidal
curve. This occurs precisely when the line is flex to the branch curve B. By [Hef89, (4.5)],
this is equivalent to the curve being non-reflexive (which means that the Gauss map to the
curve B is purely inseparable).

[Par86] analyzes the smooth plane curves B in characteristic p ≥ 3 which are non-reflexive.
[Par86, Corollary 2.2] shows that if B is smooth and non-reflexive of degree 4 then char(k) =
3. [Par86, Proposition 3.7] shows that every smooth reflexive curve of degree 4 is projectively
equivalent to zx3 + xy3 + yz3.

Case 2: Next suppose that the ground field k has characteristic 2. In this case it is still
true that the anticanonical linear series defines a separable double cover f : S → P2 whose
branch divisor B is a double conic. (However, it is possible for this conic to be singular.)
The equation for S has the form w2 + wg2 + g4 where g2, g4 are homogeneous functions of
degree 2, 4 respectively and B is defined by g22.

Suppose we take a line ` ⊂ P2 not contained in B and set C = f−1`. We wish to know
when C is cuspidal. Since the map C → ` is generically étale, C can only be singular along
` ∩ B. We claim that C can only have a cusp when it is tangent to the conic defined by
g2 = 0. Indeed, suppose that p ∈ B ∩ ` and change coordinates via w 7→ w − α so that
w vanishes at p. (Note that this coordinate transformation might change g4 but will not
change g2.) Let x be a local coordinate for p on `. If g2|` is not x2, then locally g2 can be
taken to be proportional to x, but then the curve w2 + wx + g4 will have at worst a nodal
singularity. Thus if the preimage of ` is cuspidal then ` must be tangent to the conic defined
by g2 = 0 along the image of the cusp.

We now separate into three further subcases:
Case 2a: g2 defines a smooth conic. After a coordinate change we may suppose that the

equation for S has the form w2 + w(yz − x2) + g4. We will write g4 =
∑

i+j+k=4 aijkx
iyjzk.

The family of tangent lines to yz − x2 = 0 have equations of the form b1y + b2z = 0.
Since we are interested in what happens to a general line in this 1-parameter family, we may
for simplicity assume that the equation of the line is z = by. Then the restriction of the
equation defining S to the line ` can be written as

w2 + w(by2 − x2) + a400x
4 + (a310 + a301b)x

3y + (a220 + a211b+ a202b
2)x2y2
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+ (a130 + a121b+ a112b
2 + a103b

3)xy3 + (a040 + a031b+ a022b
2 + a013b

3 + a004b
4)y4

The tangency point p has coordinates (
√
b : 1) on the line and over this point

w2 = a004b
4 + a103b

3
√
b+ (a202 + a013)b

3 + (a301 + a112)b
2
√
b+ (a400 + a211 + a022)b

2

+ (a310 + a121)b
√
b+ (a220 + a031)b+ a130

√
b+ a040.

Rewriting the equation around the point (
√
b : 1) and substituting w′ = w − α where α is

the square root of the righthand side of the previous equation, we obtain

w′2 + w′(x−
√
b)2 + a400(x−

√
b)4 + (a310 + a301b)(x−

√
b)3

+ (a220 + a310
√
b+ a211b+ a301b

√
b+ a202b

2)(x−
√
b)2 + α(x−

√
b)2

+ (a130 + (a121 + a310)b+ (a112 + a301)b
2 + a103b

3)(x−
√
b)

For this equation to define a cusp, the coefficients of (x−
√
b) must vanish. Furthermore, we

can only have a purely inseparable family when each of these lines yields a cusp regardless
of the value of b. This forces the coefficients to be identically zero:

a130 = a103 = 0 a121 = a310 a112 = a301

However, any surface S defined by an equation whose coefficients satisfy these conditions
will be singular. Indeed, consider the chart where z = 1. On this chart we have

d/dw = y − x2

d/dx = a310y(x2 − y) + a301(x
2 − y)

d/dy = w + a310x
3 + a211x

2 + a031y
2 + a112x+ a013

and we are looking for points on S where all three equations simultaneously vanish. Note
that the vanishing of d/dw implies the vanishing of d/dx. Thus S will always have a singular
point; indeed, isolating y in the equation for d/dw and w in the equation for d/dy and
substituting into the equation for S we obtain a polynomial in x whose roots will correspond
to singular points of S.

Case 2b: g2 defines a reducible conic. After a coordinate change we may suppose that
the equation for S has the form w2 + w(yz) + g4. We will write g4 =

∑
i+j+k=4 aijkx

iyjzk.
The family of tangent lines to yz = 0 have equations of the form by+ cz = 0. Since we are

interested in what happens to a general line in this 1-parameter family, we may for simplicity
assume that the equation of the line is by = z. Then the restriction of the equation defining
S to the line ` can be written as

w2 + w(by2) + a400x
4 + (a310 + a301b)x

3y + (a220 + a211b+ a202b
2)x2y2

+ (a130 + a121b+ a112b
2 + a103b

3)xy3 + (a040 + a031b+ a022b
2 + a013b

3 + a004b
4)y4

We are interested in the behavior over the point (1 : 0) so that w =
√
a400. Rewriting the

equation so that it is centered around this point, we see that every line will yield a cusp
precisely when a310 = a301 = 0. However, these conditions force S to be singular over the
point (1 : 0 : 0).

Case 2c: g2 defines a non-reduced conic. After a coordinate change we may suppose that
the equation for S has the form w2 + wy2 + g4. We will write g4 =

∑
i+j+k=4 aijkx

iyjzk.
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Note that every line is tangent to the curve y2 = 0. We would like to understand the
situation when there is a 1-parameter family of lines whose preimages are cuspidal. Since
the equation of S is symmetric in x and z, without loss of generality we may assume that
the general line in our family has an equation of the form z = bx+ cy. Then the restriction
of the equation defining S to the line ` can be written as

w2 + wy2 + (a400 + a301b+ a202b
2 + a103b

3 + a004b
4)x4

+ (a310 + a301c+ a211b+ a112b
2 + a013b

3 + a103b
2c)x3y

+ (a220 + a211c+ a121b+ a202c
2 + a022b

2 + a103bc
2 + a013b

2c)x2y2

+ (a130 + a121c+ a031b+ a112c
2 + a103c

3 + a013bc
2)xy3

+ (a040 + a031c+ a022c
2 + a013c

3 + a004c
4)y4

Arguing as in the other cases, this equation will define a cusp precisely when the coefficient
of x3y vanishes. Furthermore, we want to ensure that there is a 1-dimensional family of lines
for which these coefficients vanish. This gives the condition

c(a301 + a103b
2) = a310 + a211b+ a112b

2 + a013b
3

for our 1-dimensional family. Note that the intersection of the line z = bx+ cy with the line
y = 0 is given by the point p = (1 : 0 : b). Then it is easy to check that

c =
dg4/dy(p)

dg4/dx(p)
.

�

Next we turn to rational curves of anticanonical degree 3.

Lemma 4.3. Let S be a del Pezzo surface of degree d ≥ 2. Suppose that M is a component
of M0,0(S) that parametrizes a dominant family of rational curves C with −KS · C = 3.
Then either:

(1) the component M defines a separable family of stable maps which are generically
birational maps to smooth free curves.

(2) d = 3, dim(M) = 2, and either
(a) M parametrizes a separable family of rational curves in | −KS|, or
(b) char(k) = 2, S is the Fermat cubic surface in P3, and M is the dual variety

parametrizing hyperplanes tangent to S. In this case, the family is inseparable.
(3) d = 2, dim(M) = 2 and either

(a) M parametrizes a separable family of rational curves, or
(b) char(k) = 2, S is the blow-up of the Fermat cubic surface S ′ in P3, and M is

birational to the dual variety of S ′ and parametrizes the pullbacks of rational
members of | −KS′ |. In this case, the family is inseparable.

Proof. Since M parametrizes a dominant family, a general member f : P1 → C ⊂ S param-
eterized by M cannot be a multiple cover of a line. Thus f : P1 → C is birational.

The Hodge Index Theorem tells us that dC2 − 9 ≤ 0. The arithmetic genus formula tells
us that C2 − 3 = 2g − 2, so that C2 is odd and is at least 1. Since by assumption d ≥ 2, we
also have that C2 ≤ 3. We deduce that the only options are:
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Case 1: C2 = 1, d arbitrary: in this case the arithmetic genus of C is 0, so C is free. In
fact, C must be the strict transform of a general line under a birational map to P2. Such
families are separable and have the expected dimension.

Case 2: C2 = 3, d = 2, 3: In this case the arithmetic genus of C is 1 and deg(Nf/S) = 1.
Since C is a deformation of an elliptic curve, this implies that either Nf/S = O(1), Nf/S =
O ⊕ k(p), or (in characteristic 2 only) Nf/S = O(−1) ⊕ k[t]/(t2) where the torsion part is
supported on p. If k has characteristic > 2 then the normal sheaf of a general stable map is
globally generated and thus M is a separable family.

We also need to address separability when char(k) = 2, d = 2 or 3, and S is a del Pezzo
surface. First suppose that d = 3. In this case S is a smooth cubic hypersurface defined by
an equation f =

∑
yijklx

i
0x

j
1x

k
2x

l
3. By Section 2.1 the family of rational curves obtained by

singular hyperplane sections of S will be inseparable if and only if the general such curve is
cuspidal.

Suppose P is the plane defined by the equation
∑3

i=0 zixi = 0. Using standard facts about
elliptic curves (see for example [Tat74]), we see that intersection P ∩ S will be singular if
and only if the discriminant ∆ of f |P vanishes and in this case it will be cuspidal if and only
if c4 vanishes. A computation shows that

c4 = y40111z
4
0 + y41011z

4
1 + y41101z

4
2 + y41110z

4
3 = (y0111z0 + y1011z1 + y1101z2 + y1110z3)

4.

If every singular hyperplane section of S is cuspidal, then the dual variety must contain the
plane defined by c4 = 0 or c4 must be identically zero. However, the first option is impossible
due to the classification of “strange hypersurfaces” in [KP91, Theorem 7]. Thus the cubic
surfaces S for which every singular hyperplane section is cuspidal are exactly those which
satisfy

y0111 = y1011 = y1101 = y1110 = 0.

We then claim that every smooth cubic satisfying this condition is projectively equivalent
to the Fermat cubic surface. Note that the locus of cubic surfaces satisfying this condition
is invariant under the action of PGL4(k). For any cubic surface S, Aut(S) injects into
the group of automorphisms of configurations of (−1)-curves on S, so Aut(S) is a finite
group. (See [DD19] for this claim.) Therefore the orbit of S under PGL4(k) will be 15-
dimensional. Since the projective space of cubic surfaces satisfying the above condition is
also 15-dimensional, the claim follows.

Next suppose that d = 2. We claim that in this case C is the pullback of a curve under a
birational map to a degree 3 del Pezzo surface. To see this, it suffices to find a (−1)-curve
which has vanishing intersection with C. We claim that KS + C will be linearly equivalent
to such a curve. Indeed, we have

(KS + C) · C = 0 (KS + C) ·KS = −1 (KS + C)2 = −1

Since H2(S,KS +C) vanishes by Serre duality, Riemann-Roch shows that H0(S,KS +C) is
non-zero, finishing the argument. We conclude that the family of rational curves containing
C is separable unless S is the blow-up of the Fermat cubic surface. �

Proof of Theorem 4.1: Combining Lemma 4.2 and Lemma 4.3, we only need to show that if
S is a degree 2 del Pezzo surface in characteristic 2 obtained by blowing-up the Fermat cubic
surface then the ramification locus of the map S → P2 defined by | −KS| is a double line.
Note that every smooth hyperplane section of the Fermat cubic surface is a supersingular
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elliptic curve (see [Hom97, Theorem 1.1]). Thus every smooth curve in | −KS| also has the
same property. Then [Sai17, Theorem 0.3] proves the desired property of the anticanonical
linear series of S. �

We next show that there are no issues with separability when the characteristic is suffi-
ciently large. Recall from (1.1) that the function δ(d) is defined by:

δ(d) =


2 if d ≥ 4

3 if d = 2, 3

11 if d = 1.

Theorem 4.4. Let k be an algebraically closed field of characteristic p. Let S be a del Pezzo
surface of degree d over k. Assume that p ≥ δ(d). When d = 2 and p = 3, we further assume
that S is not isomorphic to the del Pezzo surface listed in Theorem 4.1.(2).

Then any dominant family of rational curves on S of anticanonical degree ≤ 3 contains a
free rational curve. In particular, any dominant component parametrizing rational curves of
anticanonical degree ≤ 3 is separable so that it has expected dimension.

Proof. Since the surfaces under consideration do not admit a dominant family of −KS-lines,
we see that a general map in a dominant family of maps of degree ≤ 3 must be birational
onto its image.

When d ≥ 3, every −KS-conic is smooth and every −KS-cubic has at most 1 cusp. Thus
it follows from a normal bundle calculation that such curves are free. When d = 2 and p = 3,
−KS-conics are handled by Lemma 4.2 and every −KS-cubic has at most one cusp and thus
is free. So we only need to consider when d = 1 and p ≥ 11 or d = 2 and p ≥ 5. Let us
discuss the case of d = 1 as the other case is similar.

Let M be any component of M0,0(S) which parametrizes a dominant family of stable
maps of anticanonical degree ≤ 3 such that the general map has irreducible domain and is
birational onto its image in S. Let T be the normalization of a curve in M which parametrizes
a dominant family of irreducible curves. It suffices to show that the restriction of the tangent
bundle of S to a general curve parametrized by T is globally generated.

Let C denote the normalization of the one-pointed family over T equipped with the eval-
uation map ev : C → S. By [IIL20, Lemma 6.1] we have a diagram

C
s

��

g // C ′

s′

��

ev′ // S

T
h // T ′

that satisfies the following properties:

(1) C ′ and T ′ are normal.
(2) k(T ′) is algebraically closed in k(C ′).
(3) s′ is a proper flat morphism such that the reduced subscheme underlying the fiber

over a general closed point is a (possibly singular) irreducible rational curve.
(4) g and h are finite morphisms.
(5) ev = ev′ ◦ g and ev′ is a separable map.

We claim that every fiber of s′ over a general closed point of T ′ is smooth. First, [B0̆1, Lemma
7.2] shows that condition (2) above implies that k(C ′) is a separable extension of k(T ′). In
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particular this implies that a general fiber C ′ of s′ is reduced. Next, by [IIL20, Proposition
5.2] the sum of the δ-invariants at the closed points of a general fiber C ′ is the same as the
arithmetic genus. Thus by [IIL20, Theorem 5.7] it suffices to show that the arithmetic genus
of C ′ is strictly less than (p− 1)/2. Since the map ev takes a general fiber of s birationally
onto its image, the same is true of ev′. This implies that the arithmetic genus of a fiber of s′

is at most the arithmetic genus of its image in S. By the Hodge Index Theorem, a curve of
anticanonical degree ≤ 3 on a weak del Pezzo surface satisfies dC2 ≤ (−KS · C)2 and thus
has arithmetic genus < 11−1

2
= 5. Since by assumption p ≥ 11 we conclude that the general

fiber of s′ is smooth.
Since ev′ is a dominant separable morphism and the general fiber of s′ is smooth, we

deduce that the restriction of the tangent bundle of S to a general fiber of s′ is globally
generated. Since g takes a general fiber of s birationally onto the corresponding fiber of s′,
the same property holds for the general fiber of s. �

As a corollary, we have the following statement:

Corollary 4.5. Let k be an algebraically closed field of characteristic p. Let S be a del Pezzo
surface of degree d over k. Assume that p ≥ δ(d). When d = 2 and p = 3, we further assume
that S is not isomorphic to the surface listed in Theorem 4.1.(2). Then any rational curve
of anticanonical degree ≤ 3 containing a general point is a free rational curve.

Let us add the following lemma for a later application:

Lemma 4.6. Let S be a del Pezzo surface of degree 1 over an algebraically closed field k of
characteristic p. Assume that p ≥ 11. Then a general member of a dominant family of −KS-
conics meets with any −KS-line transversally and meets with any −KS-conic transversally.

Proof. First of all, note that by Theorem 4.4 all components of M0,0(S) parametrizing −KS-
lines and conics have the expected dimension and all dominant components of M0,0(S)
parametrizing −KS-conics are separable.

Let C1 be a −KS-conic and C2 be a −KS-line. Then note that C2
1 = 0, 2, or 4. We also

have C2
2 = −1 or 1. By the Hodge Index Theorem the determinant of the intersection matrix

of −KS, C1, C2 is non-negative (regardless of the rank of this matrix). Combining this fact
with the above consideration, we conclude that C1 · C2 < 11.

Let p : C → N be a component of M0,0(S) parameterizing C1 with the evaluation map
f : C → S. A general curve parametrized by N is free and so after shrinking N we may
assume that the separable morphism f is unramified. Indeed, after shrinking N so that N
only parametrizes free curves, the evaluation map f is étale by [Kol96, II.3.5.4 Corollary]
and a flat descent argument. Thus we conclude that f−1(C2) is reduced. Since C1 ·C2 < 11,
our assumption on the characteristic implies that every dominant component of f−1(C2)
maps separably to N , so the intersection of f−1(C2) and a general fiber of p is reduced. This
implies that a general C1 meets with C2 transversally.

Next let C1, C2 be two −KS-conics. Then one can prove that C1.C2 < 11. Repeating the
argument above, we obtain transversality for a general conic meeting a conic. �

The statement of Lemma 4.6 fails in characteristic 2:

Example 4.7. It is possible on a del Pezzo surface S that there is a fixed −KS-line which
is tangent to every −KS-conic in a given 1-dimensional family. For example, let k be an
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algebraically closed field of characteristic 2. Consider the curve C ⊂ P1
x × P1

y defined by

x20y1 = x21y0.

This is an integral smooth rational curve. Consider the morphism π : P1×P1 → P1 mapping
(x, y) 7→ y. Then every fiber of π|C : C → P1 is non-reduced. We blow up 5 general points
on C and obtain a smooth cubic surface β : S → P1 × P1. Then the strict transform of C is
a (−1)-curve and every irreducible fiber of π ◦ β is a −KS-conic which is tangent to C.

5. Inductive arguments using Bend and Break

Let k be an algebraically closed field (of arbitrary characteristic). We would like to classify
all dominant families of rational curves on a weak del Pezzo surface S which either have larger
than the expected dimension, or (more generally) fail to be separable. Using Bend-and-Break
we will reduce the classification problem to smaller degrees, eventually working downward
to the base cases discussed in Section 3 and Section 4.

The following lemma is the key tool.

Lemma 5.1. Let S be a weak del Pezzo surface over k. Fix a positive integer d ≥ 4. Assume
that every irreducible component of M0,0(S) that generically parametrizes a dominant family
of birational maps onto irreducible curves with anticanonical degree < d has the expected
dimension.

Suppose that M ⊂ M0,0(S) is an irreducible component that generically parametrizes a
dominant family of birational maps onto irreducible curves of anticanonical degree d. Fix
dim(M) − 1 general points of S. Then M parametrizes a stable map f : Z → S where Z
has two different irreducible components Z1, Z2 ⊂ Z such that f(Z1) ∪ f(Z2) contains all
dim(M)− 1 distinguished points and f |Z1, f |Z2 are general members of dominant families of
birational stable maps in lower anticanonical degree.

If furthermore S is a del Pezzo surface, then we can ensure that Z1, Z2 are the only
components of Z.

The proof is modeled on [Tes09, Lemma 1.14].

Proof. Set r = dim(M). If we fix r − 1 general points of S then by Bend-and-Break M
parametrizes a stable map f with reducible domain whose image contains these r−1 points.
Furthermore, by [LT22, Lemma 4.1] (which works in arbitrary characteristic) we may find
such a stable map f such that there are at least two different irreducible components of
the domain of f such the image of each component contains one of our fixed points, and
moreover the two points contained by the two components are different. In particular, due to
the generality of the points there must be at least two irreducible components of the domain
of f whose deformations dominate S.

Let Z1, . . . , Zs be the irreducible components of the domain of f whose images deform in
a dominant family and let C1, . . . , Cs be their images in S. The previous paragraph shows
that s ≥ 2. By assumption every family of birational stable maps with irreducible domains
of lower degree has the expected dimension. In particular, if we define di := −KS · Ci then
Ci can contain at most di− 1 general points of S. On the other hand, we know that all r− 1
general points must be contained in the image of f . Since r ≥ d−1 ≥ (

∑
di)−1, we see that

there can be at most two such components Ci. We conclude that s = 2. Furthermore, since
each Ci is going through the maximal possible number of general points in S, by choosing
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our points general we may ensure that C1 and C2 are general in their respective families.
Since d = d1 + d2 by the argument above, we must have that f |Zi

is birational for i = 1, 2.
Suppose furthermore that S is a del Pezzo surface. Since the argument above shows that

d = d1 + d2 we see that there can be no other curves in the image of f . �

We can now address the existence of families of rational curves with larger-than-expected
dimension.

Proposition 5.2. Let S be a weak del Pezzo surface over k. Assume that every dominant
component of M0,0(S) generically parametrizing birational maps to rational curves of an-
ticanonical degree ≤ 2 has the expected dimension. Let M ⊂ M0,0(S) be any component
that generically parametrizes a dominant family of birational maps onto irreducible curves
C. Then M has the expected dimension.

Proof. We prove the statement by induction on the anticanonical degree. The base case
when −KS · C ≤ 2 is true by assumption.

Suppose that −KS · C = 3. If the deformations of C had larger than the expected
dimension, then by applying Bend-and-Break as in the proof of Lemma 5.1 we see that S
must also carry a dominant family of rational curves of degree ≤ 2 which has higher than
the expected dimension. This gives a contradiction.

Suppose that −KS · C ≥ 4. Set r = dim(M). By Bend-and-Break we find a stable map
parametrized by M with reducible domain through r − 1 general points of S. By Lemma
5.1 there are two curves C1, C2 in the image of f which deform in a dominant family and
contain all r−1 general points. Letting d1, d2 denote the anticanonical degrees of the curves,
we have

r − 1 ≤ (d1 − 1) + (d2 − 1) ≤ −KS · C − 2 ≤ r − 1

and thus r = −KS · C − 1. �

Proof of Theorem 1.1: Combine Corollary 3.8 and Proposition 5.2. �

Next we consider whether or not families of high degree rational curves are separable.

Proposition 5.3. Let S be a del Pezzo surface over k. Assume that every dominant
component of M0,0(S) generically parametrizing birational maps to rational curves of an-
ticanonical degree ≤ 3 is separable. Let M ⊂ M0,0(S) be any component that generically
parametrizes a dominant family of birational maps onto irreducible curves C. Then M
generically parametrizes a free curve.

Proof. Let C be a general member of M and let −KS · C = d. We prove our statement by
induction on d. By assumption the desired statement holds when d ≤ 3.

When d ≥ 4, we apply Bend-and-Break and Lemma 5.1 to find a stable map f : Z → S
parametrized by M whose domain has exactly two irreducible components. Furthermore
Lemma 5.1 guarantees that the images C1, C2 are general in their respective families, hence
free.

Let B be a general curve in M0,0(S) through f . After perhaps replacing B by a cover,
we obtain a universal family U over B equipped with a map g : U → S such that the
central fiber is Z and g|Z = f . Since a general fiber of U → B is isomorphic to P1, this
map admits a section. Thus there is a line bundle L on U which has degree −1 against one
component of Z and degree 0 against the other. Then we have H1(Z, g∗TS ⊗ L|Z) = 0. By
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upper semicontinuity of cohomology groups we deduce that the general map parametrized
by M is free. Indeed, let h : C → S be a general stable map parametrized by B. Then
H1(C, h∗TS ⊗ O(−1)) = 0. Thus if we write h∗TS = O(a1) ⊕ O(a2), then we must have
ai ≥ 0 proving that h : C → S is free. �

Proof of Theorem 1.2: Combine Theorem 4.1 and Proposition 5.3. �

6. Del Pezzo surfaces of degree 1 in characteristic 0

In this section we work over a fixed algebraically closed field k of characteristic 0. Let S

be a del Pezzo surface over k and β a class in N1(S)Z. Denote by M
bir

(S, β) the closure of
the locus in the Kontsevich space M0,0(S, β) parametrizing generically injective maps with

irreducible domains. Our goal in this section is to prove the irreducibility of M
bir

(S, β).
[Tes05] proved this result when S has degree ≥ 2 or when S is general of degree 1:

Theorem 6.1 ([Tes05] Section 2.2 and Theorem 4.5). Let S be a del Pezzo surface of degree
d over an algebraically closed field of characteristic 0. Suppose that either d ≥ 2 or d = 1

and S is general in moduli. Then for every numerical class β on S the scheme M
bir

(S, β) is
either irreducible or empty.

We focus on the last case of arbitrary del Pezzo surfaces of degree 1. We will use the
following result:

Proposition 6.2 ([Tes05] Proposition 4.6). Let S be a del Pezzo surface over an algebraically
closed field of characteristic 0. Suppose that β is a nef numerical class on S. If β is not the

multiple of a −KS-conic, then M
bir

(S, β) is non-empty.

We will prove the irreducibility of M
bir

(S, β) by deforming to a general del Pezzo surface
of degree 1. The key construction is the following:

Lemma 6.3. Suppose that S is a del Pezzo surface over an algebraically closed field of

characteristic 0 and β ∈ N1(S)Z is such that e := −KS · β ≥ 3 and M
bir

(S, β) is non-empty.

Let q1, . . . , qe−2 be general points in S and let B be the locus in M
bir

(S, β) parametrizing
morphisms whose images pass through q1, . . . , qe−2. Then B is of dimension 1 and lies in the
smooth locus of M0,0(S, β). There are finitely many maps parametrized by B with reducible
domains.

Proof. Let f : Z → S be a stable map parametrized by B. If Z is irreducible, then f is free
and so (Z, f) a smooth point of the moduli space. Suppose Z is reducible. Let Z1, . . . , Zm,
m ≥ 2 be the irreducible components of Z not contracted by f and let ei = deg f |Zi

and
fi = f |Zi

. Suppose f1, . . . , fk are free maps and fk+1, . . . , fm are non-free. Then the image
of Zi, 1 ≤ i ≤ k, can pass through at most ei− 1 general points. So e− 2 ≤ e1 + · · ·+ ek− k.
On the other hand

∑m
i=1 ei = e, so there are two possibilities: either 1) m = k = 2 or 2)

k = 1,m = 2, e1 = e−1, e2 = 1. And in either case there cannot be a contracted component.
In the first case, the image of Zi, i = 1, 2, has to pass through ei − 1 of the points, and
so there are finitely many choices for each fi. Since the images of f1 and f2 pass through
general points, they are free and so f is a smooth point of the moduli space.

In the second case, the image of Z2 is a −KS-line, and the image of Z1 passes through
q1, . . . , qe−2, so f1 is general in its moduli and Nf1 = O(e− 3). Since there are finitely many
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lines on S, [BLRT22, Proposition 2.8] shows that the images of Z1 and Z2 meet transversally.
Thus f is a local immersion in an open neighborhood of the node of Z. If the image of Z2 is a
(−1)-curve or a nodal curve, then Nf1 = O(e−3) and Nf2 = O(−1), so Nf |Z1 = O(e−2), and
Nf |Z2 = O. If the image of Z2 has a cusp, then Nf1 = O(e−3) and Nf2 = O(−2)⊕k(p) where
p is the point at which f is ramified. Therefore, Nf |Z1 = O(e−2), and Nf |Z2 = O(−1)⊕k(p).
In both cases (Z, f) is a smooth point of the moduli space. �

Proposition 6.4. Suppose S is a del Pezzo surface over an algebraically closed field of
characteristic 0 of degree 9− d ≥ 1. Fix β ∈ N1(S)Z such that e := −KS · β ≥ 3. Then for

general points q1, . . . , qe−2 on S, the locus B in M
bir

(S, β) parametrizing morphisms whose
images pass through q1, . . . , qe−2 is either empty or a connected curve.

Proof. Fix a blow-down map π : S → P2. Write β = mH − k1E1 − · · · − kdEd where H is
the pull-back of the hyperplane class via π, the Ei are π-exceptional divisors, and ki ≥ 0.

First suppose S is general. By [Tes05] M
bir

(S, β) is irreducible. Let U be the open subset of

M
bir

(S, β) parametrizing generically injective morphisms from P1 to S. By composing with
the blow-down π : S → P2 we get an embedding from U to the Hilbert scheme of curves
of degree m in P2. We let PN denote the projective space of curves of degree m in P2, so

we get a morphism U → PN and thus a rational map α : M
bir

(S, β) 99K PN . Resolving the

indeterminacy locus of α, we get morphisms α̃ : M̃ → PN and p : M̃ →M
bir

(S, β) such that
α̃ = α ◦ p. The image of α is (e− 1)-dimensional and the images of q1, . . . , qe−2 in P2 give a
linear subvariety Λ of codimension ≤ e− 2 in PN parametrizing curves of degree m passing
through them. By [FL81, Theorem 2.1], α̃−1(Λ) is connected. By the above lemma, a general
point in every irreducible component of B has an irreducible domain and is therefore in the
domain of α. Since B = p(α̃−1(Λ)), we conclude that B is connected as well.

Now suppose that S is an arbitrary del Pezzo surface of degree 9 − d. Let Vd be the
open subvariety of Hilbd(P2) parametrizing d points in general position in P2 (in the usual
sense for del Pezzo surfaces), Z the universal Hilbert scheme over Vd and S the blow-up
of P2 × Vd with center Z. Then there is a point u ∈ Vd such that S = Su. Denote by
q′1, . . . , q

′
e−2 the images of q1, . . . , qe−2 in P2. For any map f : P1 → Su whose image passes

through q1, . . . , qe−2 we have H1(Nf (−e+ 2)) = 0, so the deformations of f yield a family of
stable maps from P1 to the fibers of S → Vd passing through the pre-images of q′1, . . . , q

′
e−2

which has the expected dimension. Let M be the family of stable maps to fibers of S → Vd
passing through the preimages of q′1, . . . , q

′
e−1. We claim that every irreducible component

of M dominates Vd. This follows from a dimension calculation: we know that each fiber of
M→ Vd is at most 1-dimensional. A normal bundle calculation shows that each component
of M has dimension at least dim(Vd) + 1. Together these observations prove the claim.

Consider the map from M to Vd. Since the general fiber of this map is connected and
every component of M dominates Vd, we see that M is also connected. Since Vd is smooth
and the fiber over a general point of Vd is connected, the Stein factorization of the proper
map M→ Vd is trivial and thus the fiber over every closed point u is connected. �

Theorem 6.5. If S is a smooth del Pezzo surface of degree 1 over an algebraically closed

field of characteristic 0, then for every β ∈ N1(S)Z with −KS · β ≥ 3, M
bir

(S, β) is either
irreducible or empty.
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Proof. Suppose that M
bir

(S, β) is non-empty. Let e = −KS · β, and pick e − 2 general

points q1, . . . , qe−2 in S. Lemma 6.3 shows that in every component of M
bir

(S, β) there is
a 1-parameter family of curves parametrizing curves through q1, . . . , qe−2. The union B of

all such 1-parameter families is connected by Proposition 6.4. Suppose that M
bir

(S, β) is
reducible and let M1, . . . ,Mk denote the irreducible components. Since B is connected and
Mi ∩ B 6= ∅ for every component Mi, we see that there must be a point b ∈ B which is
contained in two different irreducible components. In particular, b must be a singular point
of M0,0(S, β). But this is not possible by Lemma 6.3. �

If β is a multiple of a −KS-conic, then it is easy to see that M0,0(β) will admit a component
that generically parametrizes multiple covers of the corresponding conic fibration. Altogether
we have:

Theorem 6.6. Let S be a smooth del Pezzo surface of degree 1 over an algebraically closed
field of characteristic 0. Let β be a nef class on S satisfying −KS · β ≥ 3. Then:

(1) If β is not a multiple of a −KS-conic, then there is a unique component M of
M0,0(S, β) generically parametrizing stable maps with irreducible domains. The gen-
eral map parametrized by M is a birational map onto a free curve.

(2) If β is a multiple of a smooth rational conic, then there is a unique component of
M0,0(S, β) generically parametrizing stable maps with irreducible domains. The gen-
eral map parametrized by M is a finite cover of a smooth conic.

(3) If there is a contraction of a (−1)-curve φ : S → S ′ such that β is the pullback of
−KS′, then there are exactly two components of M0,0(S, β) parametrizing stable maps
with irreducible domains. One component generically parametrizes birational maps
onto free curves, the other generically parametrizes multiple covers of conics.

(4) If β is a multiple of −2KS then there are at least two components of M0,0(S, β)
parametrizing stable maps with irreducible domains. There is a unique component
generically parametrizes birational maps onto free curves, and the others generically
parametrize multiple covers of conics.

Proof. By [Tes05, Proposition 4.6] there exists a free curve of class β, and thus a component
M ⊂M0,0(S, β) generically parametrizing free curves.

Suppose that the general curve parametrized by M is not birational onto its image. If we
let m denote the anticanonical degree of the (reduced) image and b the degree of the general
map parametrized by M , then

dim(M) = (m− 1) + (2b− 2).

Since we also know that M has at least the expected dimension mb − 1, we deduce that
m = 2. Thus if M generically parametrizes non-birational maps, the images of these maps
must be conics. Conversely, since every nef class α satisfying −KS · α = 2 is represented by
a free conic, multiple covers of conics will always yield a component of M0,,0(S,mα). Note
that if α is the class of a smooth rational conic, then the moduli space of conics of class α
is irreducible. Similarly, if α is the pullback of the anticanonical divisor on a degree 2 del
Pezzo under a birational map, then the moduli space of conics of class α is the dual curve
of the branch divisor for the induced map to P2 and thus must be irreducible.

28



It only remains to analyze the case when M generically parametrizes birational maps. By

Theorem 6.5 we know that M
bir

(S, β) is either irreducible or empty. We also know that β is
represented by a stable map with an irreducible domain by [Tes05, Proposition 4.6]. Thus
we obtain the desired property if β is not a multiple of a conic. Since a smooth rational
conic is a fiber of a morphism to P1, it is clear that a multiple of a smooth rational conic is
not represented by any irreducible rational curves. If β is pulled back from a degree 2 del
Pezzo surface S ′, then by gluing free curves representing | −KS′ |, smoothing, and taking a
strict transform we find an irreducible rational curve of class β. If β is a multiple of |−2KS|,
then by gluing free curves in | − 2KS| and smoothing we see that β is represented by an
irreducible rational curve. �

7. Irreducibility of moduli spaces in characteristic p

Let S be a del Pezzo surface defined over an algebraically closed field k of characteristic p.

Denote by M
bir

(S, β) the closure of the locus in the Kontsevich space M0,0(S, β) parametriz-
ing generically birational maps with irreducible domains. As in the previous section, our

goal is to show that M
bir

(S, β) is irreducible under suitable hypotheses. Our strategy is to
deform to characteristic 0.

7.1. Existence of stable maps with irreducible domains. We first need to show the
existence of stable maps with irreducible domains which map birationally onto their image.
We will mimic the approach of [Tes05]. The first step is:

Lemma 7.1 ([Tes05] Corollary 2.5). Let S be a del Pezzo surface of degree d ≤ 8 over an
algebraically closed field. Let D be a nef Cartier divisor on X. Then there is a sequence of
contractions of (−1)-curves

S = Yd → Yd+1 → . . .→ Y8,

non-negative integers nd, nd+1, . . . , n7, and a nef divisor D′ on Y8 such that

D = nd(−KYd) + nd+1φ
∗
d+1(−KYd+1

) + . . .+ n7φ
∗
7(−KY7) + φ∗8D

′

where φd+i : Yd → Yd+i is the composition of the birational maps in the above sequence.

Proof. Recall that the description of del Pezzo surfaces as blow-ups of P2 is exactly the same
in characteristic p and characteristic 0. Since the proof of [Tes05, Corollary 2.5] only uses
the combinatorics of these blow-ups, the proof works equally well in any characteristic. �

Proposition 7.2 ([Tes05] Proposition 4.6). Let S be a del Pezzo surface over an algebraically
closed field. When the degree of S is 1 we assume that the characteristic of the ground
field is not equal to 2. We further assume that every dominant component of M0,0(S) that
generically parametrizes birational maps to rational curves of anticanonical degree ≤ 3 is
separable. Then every nef class α is represented by a stable map f : P1 → S which is a free
curve.

Proof. First we must address the nef classes α satisfying −KS · α = 1. By the Hodge Index
Theorem this can only occur when S has degree 1 and α = −KS. Note that P2 contains
a cubic rational curve through any 8 points. Since −KS is primitive, by taking a strict
transform we see that α is represented by an irreducible rational curve.
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The more interesting case is when −KS · α ≥ 4. As in Lemma 7.1 we can write

D = nd(−KYd) + nd+1φ
∗
d+1(−KYd+1

) + . . .+ n7φ
∗
7(−KY7) + φ∗8D

′

where each Yi is a del Pezzo surface of degree i.
We claim that if i ≥ 4 then | −KYi | is represented by a free rational curve. The existence

of an irreducible rational curve in the anticanonical linear system follows from the fact that
these are the strict transforms of plane cubics passing through the points we blow up. A
general member is free by Proposition 5.3.

Note that by assumption | −KY2 | and | −KY3 | are also represented by free rational curves
(if d ≤ 3).

We now construct a chain of rational curves representing D. If d ≥ 2, we construct the
chain by taking nd general free curves in |−KYd |, then connecting it to a chain of nd+1 general
free curves in φ∗d+1|−KYd+1

|, and so on until we reach Y7. Since a del Pezzo surface of degree
8 is either P1×P1 or the blow-up of P2 at a point, it is also clear that D′ is represented by a
free rational curve. Altogether, if d ≥ 2 then D is represented by a stable map which maps
birationally onto a chain of free rational curves. By smoothing we obtain a stable map with
irreducible domain mapping to a free curve.

When d = 1 and n1 = 0 the argument is similar. If n1 ≥ 2, then we can write n1 =
2m1 + 3m2 for some non-negative integers m1,m2. By assumption | − 2KS| and | − 3KS| are
both represented by free rational curves, and we conclude by a similar argument as before.
Finally, if n1 = 1, C ∈ | −KY1 | has the normal sheaf O(−1) or O(−2)⊕ k(p). (Recall that
we are assuming that the characteristic 6= 2 so that O(−3)⊕ k[t]/(t2) is not possible.) Note
that each −φ∗iKYi for i > 1 and φ∗8D

′ can be expressed as a positive sum of at least two (−1)-
curves. Thus we may represent the class D as a comb whose handle is C and whose teeth
are a collection of (−1)-curves Ej. Since Ej · C = 1, the (−1)-curves meet C transversally.
Since there are at least two (−1)-curves, Theorem 2.2 shows that the resulting comb is a
smooth point of the moduli space. We can smooth it so that we obtain an irreducible free
curve, proving the claim. �

7.2. Deforming to characteristic 0.

Lemma 7.3. Suppose that S is a smooth del Pezzo surface of degree d defined over an
algebraically closed field k of characteristic p. Assume that p ≥ δ(d). When d = 2 and
p = 3, we further assume that S is not isomorphic to the surface listed in Theorem 4.1.(2).

Let β ∈ N1(S)Z be a nef class such that e := −KS · β ≥ 3 and M
bir

(S, β) is non-empty.

Let q1, . . . , qe−2 be general points in S and let B be the locus in M
bir

(S, β) parametrizing
stable maps whose images pass through q1, . . . , qe−2. Then B is of dimension 1 and lies in
the smooth locus of M0,0(S, β). Furthermore only finitely many maps parametrized by B
have reducible domains.

Proof. Proposition 5.2 shows that every component of M
bir

(S, β) has the expected dimension.
Since general points will impose general conditions on a family of curves, we see that B has
dimension 1.

We prove the remaining statements by induction on e. When e = 3, let f : Z → S be a
stable map of degree 3 passing through a general point. If Z is irreducible, then (Z, f) is
a smooth point of the moduli space by Corollary 4.5. Assume that Z is reducible. Then Z
consists of a −KS-conic Z1 and a −KS-line Z2 with fi = f |Zi

. Assume that d ≥ 2. Then
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the image of Z2 is a (−1)-curve, so it is smooth. It follows from Proposition 2.3 that (Z, f)
is a smooth point of the moduli space. If d = 1, then it follows from Lemma 4.6 that the
images of Z1 and Z2 meet transversally. Thus we conclude that f is a local immersion in an
open neighborhood of the node of Z. If the image of Z2 is a (−1)-curve or a nodal curve,
then Nf1 = O and Nf2 = O(−1), so Nf |Z1 = O(1), and Nf |Z2 = O. If the image of Z2 has
a cusp, then Nf1 = O and Nf2 = O(−2)⊕ k(p) where p is the point at which f is ramified.
Therefore, Nf |Z1 = O(1), and Nf |Z2 = O(−1)⊕ k(p). In both cases (Z, f) is a smooth point
of the moduli space.

We now prove the induction step. Choose e ≥ 4 and assume our assertion is true for stable
maps of anticanonical degree < e. Let (Z, f) be a stable map parametrized by B. If Z is
irreducible, then we claim that (Z, f) is a smooth point of the moduli space. Suppose other-
wise, so that the singular locus of M0,0(S) meets the curve B at a point representing a map
with irreducible domain. As we vary the choice of e−2 general points q1, . . . , qe−2, the curves

B define a flat family of subvarieties of M
bir

(S, β). Since a flat family of subvarieties will in-
tersect any other subvariety in the expected dimension, there must be a component V of the
singular locus of M0,0(S) which has codimension 1 in M0,0(S) and generically parametrizes
birational stable maps with irreducible domains. Pick general points q′1, · · · , q′e−3 and con-
sider a 1-dimensional locus of V generically parametrizing irreducible curves passing through
q′1, · · · , q′e−3. Arguing as in Lemma 5.1, f breaks into a stable map with reducible domain,
and there are the following possible types of breaking curves (Z ′, g), where the Z ′i denote
the irreducible components of Z ′:

(1) Z ′ = Z ′1 ∪ Z ′2 with −KS · Z ′1 = d1 > 2, −KS · Z ′2 = d2 > 1 such that Z ′1 contains
d1 − 2 general points and Z ′2 contains d2 − 1 general points or;

(2) Z ′ = Z ′1∪Z ′2∪Z ′3 with −KS ·Z ′1 = d1 > 1, −KS ·Z ′2 = d2 > 1, and −KS ·Z ′3 = d3 > 1
such that each Z ′i contains di − 1 general points, or;

(3) Z ′ = Z ′1 ∪ Z ′2 ∪ Z ′3 with −KS · Z ′1 = d1 > 1, −KS · Z ′2 = d2 > 1, and −KS · Z ′3 = 1
such that Z ′1 contains d1 − 1 general points and Z ′2 contains d2 − 1 general points.

In the first case, the induction hypothesis shows that Z ′1 and Z ′2 are smooth points of the
moduli space. This implies that h1(Z ′i, g

∗TS|Z′
i
) = 0. Furthermore, Z ′2 is general in its moduli

so it must be free. Thus we conclude that h1(Z ′, g∗TS) = 0. Then (Z ′, g) is a smooth point of
M0,0(S), a contradiction. In the second case, the Zi’s are general in moduli so they are free.
Thus (Z ′, g) is a smooth point of moduli space, a contradiction. In the third case, Z ′1 and Z ′2
must be free. When d ≥ 2, Z ′3 is a smooth curve. Hence it follows from Proposition 2.3 that
(Z ′, g) is a smooth point of the moduli space. Assume that d = 1. We claim that the images
of Z ′1, Z

′
2, Z

′
3 meet transversally with each other. When the degree of Z ′1 is greater than 2,

then Z ′1 is very free by the induction hypothesis. Thus transversality of Z ′1 with Z ′2 and Z ′3
is clear. Similarly for Z ′2, so without loss of generality we may assume that Z ′1 and Z ′2 are
−KS-conics. Then transversality follows from Lemma 4.6. Arguing as above, we conclude
that (Z ′, g) is a smooth point of the moduli space, a contradiction. Altogether, for a general
choice of q1, · · · , qe−2 points of the form (Z, f) in B with Z irreducible are smooth points of
the moduli space.

Now suppose Z is reducible. Let Z1, . . . , Zm, m ≥ 2 be the non-contracted irreducible
components of Z, and let ei = deg f |Zi

and fi = f |Zi
. Suppose f1, . . . , fk are the maps

containing at least one of the general points and fk+1, . . . , fm are the maps containing none
of the general points. Then for 1 ≤ i ≤ k the image of Zi can pass through at most ei − 1

31



general points. So e− 2 ≤ e1 + · · ·+ ek− k. On the other hand
∑m

i=1 ei = e, so there are two
possibilities: either 1) m = k = 2 or 2) k = 1,m = 2, e1 = e− 1, e2 = 1. And in either case
there cannot be a contracted component. In the first case, the image of Zi, i = 1, 2, has to
pass through ei − 1 of the points, and so there are finitely many choices for each fi. Since
the images of f1 and f2 pass through the maximum number of general points, they are free
and so (Z, f) is a smooth point of the moduli space.

In the second case, the image of Z2 is a −KS-line, and the image of Z1 passes through
q1, . . . , qe−2, so f1 is general in its moduli and Nf1 = O(e − 3). If d ≥ 2, then (Z, f) is a
smooth point of the moduli space as above. Suppose that d = 1. Since there are finitely
many lines on S the images of Z1 and Z2 meet transversally. Indeed, assume to the contrary
that Z1 is tangent to Z2. Since Z1 is general in its moduli, this is only possible when Z1 is
a −KS-conic. However this contradicts with our assumption on char(k) and Lemma 4.6.

Thus we conclude that f is a local immersion in an open neighborhood of the node of Z.
If the image of Z2 is a (−1)-curve or a nodal curve, then Nf1 = O(e− 3) and Nf2 = O(−1),
so Nf |Z1 = O(e−2), and Nf |Z2 = O. If the image of Z2 has a cusp, then Nf1 = O(e−3) and
Nf2 = O(−2)⊕k(p) where p is the point at which f is ramified. Therefore, Nf |Z1 = O(e−2),
and Nf |Z2 = O(−1)⊕ k(p). In both cases (Z, f) is a smooth point of the moduli space. �

Theorem 7.4. Let S be a smooth del Pezzo surface of degree d over an algebraically closed
field k of characteristic p, and let β be a nef curve class of anti-canonical degree e ≥ 3. We
assume that p ≥ δ(d). When d = 2 and p = 3, we further assume that S is not isomorphic

to the surface listed in Theorem 4.1.(2). Then M
bir

(S, β) is irreducible or empty.

Proof. Suppose M
bir

(S, β) is non-empty. We may assume that S is defined over a subfield
k′ ⊂ k such that k′ is finitely generated over the prime field Fp and N1(S)Z = N1(S ⊗ k)Z.
After replacing k′ by a finite extension inside k we may assume that S is k′-rational and
in particular that S(k′) is Zariski dense in S. After taking another finite extension of k′

inside k if necessary, there is a normal complete local ring R which is of finite type over
Zp with residue field k′ and generic point η and a smooth surface S over SpecR such that
S ⊗R k′ = S. Let F1 ⊂ Se−2 be a proper closed subset containing all sets of e − 2 closed
points which fail to be general in the sense of Lemma 7.3 when applied to Sk′ . Next let
F2 ⊂ (S ⊗R K(η))e−2 be a proper closed subset containing all sets of e − 2 closed points

which fail to be general in the sense of Lemma 7.3 when applied to S ⊗R K(η). We take
the Zariski closure F2 ⊂ S ×R · · · ×R S of F2. We define U as the Zariski open subset of
S ×R · · · ×R S which is the complement of F1 ∪ F2.

Choose points q1, . . . , qe−2 defined over k′ in S whose product lies in U . Since S is smooth,
we may apply Hensel’s lemma to find sections q̃1, . . . , q̃e−2 of S → SpecR such that q̃i⊗Rk′ =
qi. By construction the product of the e− 2 points q̃i ⊗R K(η)’s in S ⊗R K(η) is contained
in U .

We will write βS ∈ N1(S/SpecR)Z for the image of β under the pushforward N1(S)Z →
N1(S/SpecR)Z. Let M̃ be the locus in M0,0(S/SpecR, βS) parametrizing stable maps f
whose images meet with the images of q̃1, . . . , q̃e−2. Then by [Kol96, II.1.7 Theorem] the

dimension of M̃ is greater than or equal to

1 + dim R.
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Indeed, [Kol96, II.1.7 Theorem] implies that a component N of M0,0(S/SpecR, βS) which

contains a component of M̃ has dimension greater than or equal to e − 1 + dim R. We
consider a component N (e−1) ⊂ M0,e−1(S/SpecR, βS) above N and the evaluation map

eve−1 : N (e−1) → Se−1. Then M̃ is the preimage of the product of the images of q̃1, · · · , q̃e−2.
We conclude that M̃ has dimension greater than or equal to 1 + dim R. On the other hand

every fiber of M̃ → SpecR has at most dimension 1 because of Lemma 7.3. Altogether, we

have shown that every component of M̃ dominantly maps to SpecR.

By Proposition 6.4, the geometric generic fiber of M̃ → SpecR, i.e., M̃ ⊗R K(η), is

connected. Since SpecR is normal, the Stein factorization of M̃ → SpecR is trivial so

that all the geometric fibers are connected. In particular the geometric fiber of M̃ over the
closed point of R is connected. Lemma 7.3 shows that every point of this fiber is contained
in the smooth locus of M0,0(Sk′). Then the same argument as in Theorem 6.5 shows that

M
bir

(Sk′ , β) is irreducible. Since Sk′ is constructed from S by a base change of the ground
field, our assertion follows. �

Theorem 7.5. Let S be a smooth del Pezzo surface of degree d over an algebraically closed
field of characteristic p. Assume that p ≥ δ(d). When d = 2 and p = 3, we further assume
that S is not isomorphic to the surface listed in Theorem 4.1.(2).

Let β be a nef class on S satisfying −KS · β ≥ 3. Then:

(1) If β is not a multiple of a −KS-conic, then there is a unique component M of
M0,0(S, β) generically parametrizing stable maps with irreducible domains. The gen-
eral map parametrized by M is a birational map onto a free curve.

(2) If β is a multiple of a smooth rational conic, then there is a unique component M
of M0,0(S, β) generically parametrizing stable maps with irreducible domains. The
general map parametrized by M is a finite cover of a smooth conic.

(3) If d = 2 and β is a multiple of −KS, or if d = 1 and there is a contraction of a
(−1)-curve φ : S → S ′ such that β is a multiple of the pullback of −KS′, then there
are exactly two components of M0,0(S, β) parametrizing stable maps with irreducible
domains. One component generically parametrizes birational maps onto free curves,
the other generically parametrizes multiple covers of −KS-conics.

(4) If d = 1 and β is a multiple of −2KS then there are at least two components of
M0,0(S, β) parametrizing stable maps with irreducible domains. There is a unique
component generically parametrizes birational maps onto free curves, and the others
generically parametrize multiple covers of −KS-conics.

The proof is essentially the same as the proof of Theorem 6.6.

Proof. By Proposition 7.2 we know that M0,0(S, β) is represented by a stable map with
irreducible domain. Let M be a component generically parametrizing stable maps with
irreducible domains. When the general map parametrized by M is not birational, we argue
just as in the proof of Theorem 6.6. In particular this proves that such maps can only exist
when β is the multiple of a −KS-conic.

It only remains to classify the irreducible components of M
bir

(S, β). By Theorem 7.4

M
bir

(S, β) is either irreducible or empty. If β is not a multiple of the class of a conic, then
Proposition 7.2 shows that β is represented by a stable map with irreducible domain and the
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previous paragraph shows that this map must be birational. Thus M
bir

(S, β) is non-empty,
hence irreducible. The case when β is a multiple of a smooth rational conic is the same as
in the proof of Theorem 6.6. If d = 2 and β is a multiple of −KS, recall that | − KS| is
represented by a free curve by Theorem 4.4. By gluing and smoothing a chain of such curves
we find an irreducible rational curve of class β. If d = 1 and β is a pullback under a map φ
then we can find an irreducible rational curve of class β by appealing to the degree 2 case.
If d = 1 and β is a multiple of −2KS, then | − 2KS| is represented by a free rational curve
by Theorem 4.4. �

8. The Fujita invariant for surfaces in characteristic p

In this section we study the Fujita invariant (which we will also call the a-invariant) for
surfaces in characteristic p. Our goal is to prove a classification theorem and to control the
behavior of the Fujita invariant under finite covers. Throughout we work over an algebraically
closed field k of characteristic p.

Definition 8.1. [HTT15, Definition 2.2] Let X be a smooth projective variety and let L be
a big and nef Q-divisor on X. The Fujita invariant (which we will also call the a-invariant)
is

a(X,L) := min{t ∈ R | t[L] + [KX ] ∈ Eff
1
(X)}.

If L is nef but not big, we set a(X,L) =∞.

By [HTT15, Proposition 2.7], a(X,L) does not change when pulling back L by a birational
map between smooth varieties. Thus, when X is a singular projective variety which admits
a resolution of singularities, we define the Fujita invariant for X by pulling back to a smooth

birational model φ : X̃ → X:

a(X,L) := a(X̃, φ∗L).

This definition does not depend on the choice of φ.

Remark 8.2. Suppose that X is a smooth projective variety and L is a big and nef divisor
on X. Then a(X,L) > 0 if and only if X admits a dominant family of rational curves
satisfying KX · C < 0. This follows from the following theorem:

Theorem 8.3 ([MM86] Theorem 1, [BDPP13] 0.3 Corollary, [Das20] Theorem 1.6). Let X
be a smooth projective variety over an algebraically closed field. Then KX is not pseudo-
effective if and only if X admits a dominant family of rational curves satisfying KX ·C < 0.

The rationality of the Fujita invariant is proved in characteristic 0 for threefolds by Batyrev
in [Bat92] and for higher dimensional varieties in [BCHM10]. For varieties of low dimension
in characteristic p, it follows from the work of [Das20].

Theorem 8.4 ([Das20]). Let X be a smooth projective variety of dimension ≤ 3 and L be a
big and nef Q-divisor on X. We also assume that the characteristic p of the ground field k
is > 5 when the dimension of X is 3. Then a(X,L) is rational.

To derive this statement from [Das20], we will need a well-known lemma:

Lemma 8.5. Let X be a smooth projective variety of dimension ≤ 3 and L be a big and nef
Q-divisor on X. Let a be any positive real number. Then there exists an effective Q-divisor
0 ≤ L′ ∼Q L such that (X, aL′) is a terminal pair.
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Proof. It follows from [KM98, Proposition 2.61] that there exists an effective divisor E such

that for any rational number 0 < ε � 1, Aε = L − εE is ample. Let β : X̃ → X be a log
resolution for (X,E) whose existence is guaranteed by [CP09] and [Cut09] in dimension 3.
Let F be an effective exceptional divisor such that −F is β-ample. Then we have

β∗L = β∗Aε + εβ∗E = β∗Aε − εF + ε(β∗E + F ).

For 0 < ε� 1, (X̃, aε(β∗E + F )) is a terminal pair and β∗Aε − εF is ample. Thus one can
find a general ample Q-divisor A′ε ∼Q β

∗Aε − εF such that the support of A′ε + ε(β∗E + F )
is a snc divisor and every coefficient of aA′ε is strictly less than 1. Let L′ = β∗A

′
ε + εE. By

the negativity lemma, we have β∗L′ = A′ε + ε(β∗E + F ). Thus when ε is sufficiently small,
(X, aL′) is a terminal pair by [KM98, Corollary 2.32]. �

Proof of Theorem 8.4. We only prove the case of dimension 3. After rescaling of L we may
assume that a(X,L) > 1. We pick L′ = A′ + εE as in the proof of Lemma 8.5 with
a = a(X,L). Let V be the subspace of the space of R-divisors which is generated by A′, E.
Using the arguments in Lemma 8.5 one can find an ample Q-divisor A such that A does not
share any component with A′ and E, A ∼Q A

′, and KX + A+ (a− 1)A′ + aεE is terminal.
Then it follows from [Das20, Theorem 1.2] that the pseudo-effective polytope EA(V ) in V is
a rational polytope. Since A + (a − 1)A′ + aεE + KX is on the boundary of this polytope,
we conclude that a is rational. �

The following notion plays a central role in the study of Fujita invariants:

Definition 8.6. Let X be a smooth projective variety of dimension ≤ 3 such that KX is not
pseudo-effective. Let L be a big and nef Q-Cartier divisor on X. We say (X,L) is adjoint
rigid if a(X,L)L+KX has Iitaka dimension 0.

When X is singular and admits a resolution of singularities β : X̃ → X, we say (X,L) is

adjoint rigid if (X̃, β∗L) is adjoint rigid. This definition does not depend on the choice of β.

Lemma 8.7. Let f : Y → X be a dominant separable generically finite morphism of smooth
varieties and let L be a big and nef Q-divisor on X. Then a(Y, f ∗L) ≤ a(X,L).

Proof. By the Riemann-Hurwitz formula there is an effective ramification divisor R such
that KY = f ∗KX +R. Thus

KY + a(X,L)f ∗L = f ∗(KX + a(X,L)L) + R

is pseudo-effective, proving the desired inequality. �

Note that the result of Lemma 8.7 may fail for inseparable maps. A well-known example
is given by a unirational parametrization of a K3 surface: a smooth rational surface has
positive a-invariant with respect to any polarization but a K3 surface has a-invariant 0.

8.1. Surfaces with large a-invariant. We next classify the pairs of a smooth projective
surface S and a divisor L such that a(S, L) > 1. Since the minimal model program works
just as in characteristic 0, there are essentially no differences in the characteristic p situation.
For completeness we will include a quick proof of every assertion.

Proposition 8.8 ([LTT18] Proposition 5.9). Let S be a smooth uniruled projective surface
over k and let L be a big and nef Q-divisor on S.
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(1) Suppose that κ(KS + a(S, L)L) = 1. Let F be a general fiber of the canonical map
for (S, a(S, L)L). Then

a(S, L) = a(F,L) =
2

L · F
.

(2) Suppose that κ(KS + a(S, L)L) = 0. Then there is a birational morphism φ : S → S ′

where S ′ is a smooth weak del Pezzo surface such that −KS′ ∼Q a(S, L)φ∗L.

Proof. We run the miminal model program for (S, a(S, L)L) to obtain a birational morphism
φ : S → S ′. Since L is a big and nef divisor each birational step of the MMP is a contraction
of a (−1)-curve and the end result S ′ is smooth. We know that KS′ +a(S, L)φ∗L is semiample
but not big so that its Iitaka dimension must be 0 or 1. When the Iitaka dimension is 0,
we obtain the desired statement. When the Iitaka dimension is 1 then by the classification
of surfaces we know that the corresponding map must have general fiber isomorphic to P1.
Indeed, let π : S ′ → B be the semiample fibration of KS′ + a(S, L)φ∗L. Pick a sufficiently
small ε > 0 and perform a relative (KS′ +(a(S, L)− ε)φ∗L)-MMP over B. Then the outcome
is a Mori fiber space so one may appeal to the classification of Mori fiber spaces in dimension
2. In particular, in this situation KS′ + a(S, L)φ∗L vanishes when restricted to a general
fiber F , yielding the desired description of the a-invariant. �

Corollary 8.9. Let S be a smooth uniruled projective surface and let L denote a big and nef
divisor on S. Then

a(S, L) ∈
{

2

n

∣∣∣∣n ∈ N
}
∪
{

3

n

∣∣∣∣n ∈ N
}

Proof. In Case (1) of Proposition 8.8 we see directly that a(S, L) has the form 2/n. In Case
(2) of Proposition 8.8, S ′ will admit a curve of anticanonical degree 2 unless S ′ ∼= P2, in
which case S ′ will admit a curve of anticanonical degree 3. For such a curve C we have

a(S, L) =
−KS′ · C
φ∗L · C

and we deduce the desired expression. �

As a consequence we can easily classify the pairs (S, L) with large a-invariant.

Theorem 8.10. Let S be a smooth uniruled projective surface and let L denote a big and
nef divisor on S. If a(S, L) > 1 then

a(S, L) ∈
{

3, 2,
3

2

}
Furthermore

(1) If a(S, L) = 3 then there is a birational morphism φ : S → P2 such that L = φ∗O(1).
(2) If a(S, L) = 2 and (S, L) is adjoint rigid then there is a birational morphism φ : S →

Q such that Q is either a smooth quadric or a quadric cone in P3 and L = φ∗OP3(1).
(3) If a(S, L) = 2 and (S, L) is not adjoint rigid then there is a birational morphism

φ : S → S ′ where S ′ is a ruled surface and L is the pullback of a big and nef divisor
with degree 1 along the fibers of the ruling of S ′.

(4) If a(S, L) = 3/2 then there is a birational morphism φ : S → P2 such that L =
φ∗O(2).
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Proof. Just as in Proposition 8.8 we run the MMP for (S, a(S, L)L) and repeatedly contract
(−1)-curves to obtain φ : S → S ′. Suppose that E is the (−1)-curve contracted by the first
step of the MMP. Since a(S, L) > 1 and (KS + a(S, L)L) · E < 0, we see that L · E = 0.
Thus L is pulled back from the target of the first step of the MMP. Repeating this logic
inductively, we see there is some big and nef divisor L′ on S ′ such that L = φ∗L′. Using the
classification of weak del Pezzo surfaces we obtain the description of the theorem. �

8.2. Covers which increase the a-invariant. Suppose that S is a weak del Pezzo sur-
face. As discussed in the introduction, we expect that the “pathological” dominant families
of rational curves on X are controlled by generically finite maps f : Y → S such that
a(Y,−f ∗KS) > a(S,−KS) = 1. Our goal in this section is to classify the situations in which
the a-invariant of Y is strictly larger than that of S.

Theorem 8.11. Let S be a weak del Pezzo surface and suppose that f : Y → S is a dominant
generically finite morphism such that a(Y,−f ∗KS) > a(S,−KS). Then we are in one of the
following situations:

(1) (Y,−f ∗KS) is not adjoint rigid, a(Y,−f ∗KS) = 2, and the image of a general fiber
of the Iitaka fibration for a(Y,−f ∗KS)(−f ∗KS) + KY is a curve C on S satisfying
−KS · C = 1. In this case f is birationally equivalent to the base-change of a quasi-
elliptic fibration by a non-separable map to the base curve.

(2) char(k) = 2, S is a weak del Pezzo surface of degree 2, and f is birationally equivalent
to a purely inseparable morphism of degree 2 from P2 to the anticanonical model of
S. We have a(Y,−f ∗KS) = 3/2 in this case.

(3) char(k) = 2, S is a weak del Pezzo surface of degree 1, and f is birationally equiv-
alent to a purely inseparable morphism of degree 2 from the quadric cone Q to the
anticanonical model of S. We have a(Y,−f ∗KS) = 2 in this case.

(4) char(k) = 2, S is a weak del Pezzo surface of degree 1, and f is birationally equivalent
to a non-separable morphism of degree 4 from P2 to the anticanonical model of S.
We have a(Y,−f ∗KS) = 3/2 in this case.

Proof. First note that if f : Y → S is separable then KY − f ∗KS is an effective divisor so
that a(Y,−f ∗KS) ≤ a(S,−KS). Since we are interested in situations where this inequality
fails the map f must be non-separable.

Theorem 8.10 classifies the situations where a(Y,−f ∗KS) > 1. When Y is not adjoint
rigid, the rest of the properties in the first sentence of (1) are immediate from Theorem
8.10. Since S carries a 1-dimensional family of −KS-lines, Lemma 3.3 shows that S must
have degree 1 and that the curves C on S are singular members of | −KS|. Resolving this
linear series, we see that the fibers of the Iitaka fibration on Y map birationally to the fibers
of a quasi-elliptic fibration on the blow-up of S. Furthermore f must be non-separable by
Lemma 8.7. Altogether this proves the second sentence.

Next we consider the case when Y is adjoint rigid. Let φ : Y → Y ′ be the map to a weak del
Pezzo surface constructed by Theorem 8.10 by running the (KY −a(Y,−f ∗KS)f ∗KS)-MMP.
Since each (−1)-curve we contract while running the MMP will have vanishing intersection
against the pushforward of −f ∗KS, we see that −f ∗KS = φ∗L′ for some divisor L′ on Y ′.
This implies that any φ-exceptional curve on Y is either contracted by f or is mapped to a
(−2)-curve on S. If we let ψ : S → S ′ denote the contraction of all the (−2)-curves on S,
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then there is a generically finite morphism f ′ : Y ′ → S ′ forming a commuting diagram

Y

φ
��

f // S

ψ
��

Y ′
f ′ // S ′

From the equation

KY ′ ∼Q a(Y,−f ∗KS)φ∗f
∗KS ∼Q a(Y,−f ∗KS)φ∗f

∗ψ∗KS′

we see that KY ′ ∼Q a(Y,−f ∗KS)f ′∗KS′ .
Theorem 8.10 shows that there are three types of adjoint rigid surfaces with a-invariant

larger than 1. We argue separately for each case:

• Case 1: a(Y,−f ∗KS) = 3. Theorem 8.10 shows that there is a birational morphism
g : Y ′ → P2 such that −f ′∗KS′ ∼ g∗H where H is the hyperplane class on P2. As
explained above this divisor is also proportional to KY ′ . Thus the only possibility
is that g is an isomorphism, Y ′ ∼= P2, and −f ′∗KS′ ∼ H. Then deg(f ′) · (−KS′)2 =
(−f ′∗KS′)2 = 1 so that f ′ is birational, a contradiction.
• Case 2: a(Y,−f ∗KS) = 2. Theorem 8.10 shows that there is a birational morphism
g : Y ′ → T where T ∼= P1 × P1 or the quadric cone Q such that −f ′∗KS′ ∼ g∗H
where H is the restriction of the hyperplane class on P3. As explained above this
divisor is also proportional to KY ′ . Thus we must have either Y ′ ∼= P1 × P1 or F2

and −2f ′∗KS′ ∼ KY ′ . When Y ′ is F2, we replace Y ′ by the quadric cone Q. We see
that deg(f ′) · (−KS′)2 = (−f ′∗KS′)2 = 2. The only possibility is that f ′ has degree
2 and that S ′ is a singular degree 1 weak del Pezzo. In particular, our ground field
must have characteristic 2.

Suppose for a contradiction that Y = P1 × P1. Then the calculation above shows
that each family of lines on Y maps to a one-dimensional family of rational curves on
S ′ of anticanonical degree 1. Furthermore these two families cannot coincide (since
their numerical classes on S ′ are different). But by Lemma 3.3 it is only possible for
S to carry one such family, showing that such a map cannot exist.
• Case 3: a(Y,−f ∗KS) = 3

2
. Theorem 8.10 shows that there is a birational morphism

g : Y ′ → P2 such that −f ′∗KS′ ∼ g∗2H where H is the hyperplane class on P2. As
explained above this divisor is also proportional to KY ′ . Thus the only possibility is
that g is an isomorphism, Y ′ ∼= P2 and −f ′∗KS′ ∼ 2H. Then deg(f ′) · (−KS′)2 =
(−f ′∗KS′)2 = 4. Thus we see that S ′ must be a singular weak del Pezzo surface of
degree 2 or 1 with Picard rank 1 and that f ′ must be non-separable and must have
degree 2 or 4 respectively. In particular, our ground field must have characteristic 2.

�

Using our earlier classification of pathological del Pezzo surfaces, we can give an even more
precise description of the possible dominant morphisms which increase the a-invariant.

Corollary 8.12. Let S be a weak del Pezzo surface and suppose that f : Y → S is a
dominant generically finite morphism such that a(Y,−f ∗KS) > a(S,−KS).

(1) If we are in the setting of Theorem 8.11.(1), then S has Type 1.
(2) If we are in the setting of Theorem 8.11.(2), then S has Type 2.
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(3) If we are in the setting of Theorem 8.11.(3), then S has Type 3.
(4) If we are in the setting of Theorem 8.11.(4), then S has Type 1 or Type 3.

Proof. Theorem 8.11 gives 4 possible situations. In Case 1 (respectively Case 2, Case 3) it
follows from Claim 3.5 (resp. Claim 3.6, Claim 3.7) that S has Type 1 (resp. Type 2, Type
3). It only remains to consider Case 4.

Let S ′ denote the anticanonical model of S and suppose there is a non-separable degree 4
morphism f : P2 → S ′ such that f ∗(−KS) ∼= O(2). Then the image in S ′ of the lines on P2

yields a 2-dimensional family of −KS-conics. We then conclude by Corollary 3.8. �

To finish off the classification, we make one final remark:

Proposition 8.13. The Type 3 surfaces are exactly the same as the Type 1 surfaces in
characteristic 2.

Proof. As discussed earlier, a Type 3 surface has Type 1. Indeed, by definition a Type 3
surface S has an anticanonical model S ′ which admits a purely inseparable degree 2 map
f : Q → S ′ from the quadric cone. The images of the lines on Q are −KS-lines on S ′, and
we conclude that S has Type 1 by Lemma 3.3.

Conversely, we show that every Type 1 surface in characteristic 2 has Type 3. Let S be a

Type 1 surface in characteristic 2, let φ : S̃ → S be the blow-up of the basepoint of | −KS|
with exceptional divisor E, and let π : S̃ → P1 be the resolution of the rational map defined
by | −KS|. Consider the diagram

Y

p
��

g // S̃

π
��

P1 F // P1

where F denotes the Frobenius map and Y is the normalization of S̃ ×P1 P1. Then g is a
purely inseparable degree 2 morphism, Y is smooth, and the general fiber of p is isomorphic
to P1. Set D = g∗E. Since E is a section of π, D is a section of p. Note that D2 = g∗E2 = −2
so that D is a (−2)-curve on Y .

Since the fibers of p have intersection −1 against f ∗KS, we see that a(Y,−f ∗KS) ≥ 2
where f : Y → S denote the composition of g and the birational map to S. Theorem 8.11
then shows that the equality must be attained. Furthermore, note that (KY −2f ∗KS)·D = 0.
We conclude that KY − 2f ∗KS is adjoint rigid. Thus we must be in Case (3) of Theorem
8.11. Corollary 8.12 shows that S has Type 3. �

8.2.1. Breaking maps and rational curves. Finally let us remark that the existence of break-
ing maps implies the existence of families of rational curves with larger than the expected
dimension. In other words, the compatibility we have found between dominant covers with
larger a-invariant and the presence of families with too large dimension is not just a coinci-
dence.

Proposition 8.14. Let X be a smooth weak Fano variety defined over k and let f : Y → X
be a breaking map from a smooth projective variety Y . Suppose that there is a component
M of M0,0(Y ) generically parameterizing a dominant family of rational curves g : P1 → Y
such that deg(g∗(KY − a(Y,−f ∗KX)f ∗KX)) = 0. Then the family of rational curves on X
obtained by applying f to the stable maps in M has higher than expected dimension.
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Proof. Since any component of M0,0(Y ) has at least the expected dimension, we have

dim M ≥ deg(−g∗KY ) + dim Y − 3.

On the other hand since we have

deg(−g∗KY ) = a(Y,−f ∗KX) deg(−g∗f ∗KX)

and a(Y,−f ∗KX) > 1, we conclude that

dim M > deg(−g∗f ∗KX) + dim X − 3.

�

Since for every breaking map f : Y → S in Theorem 8.11 the surface Y admits infinitely
many families of free curves satisfying the assumption of Proposition 8.14, we see that each
surface S in the theorem admits infinitely many families of rational curves with higher than
the expected dimension.
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