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Abstract

When observing the outcome of a choice, people are sensitive to the choice’s context,
such that the experienced value of an option depends on the alternatives: getting $1
when the possibilities were 0 or 1 feels much better than when the possibilities were 1 or
10. Context-sensitive valuation has been documented within reinforcement learning
tasks, in which values are learned from experience through trial and error. Range
adaptation, wherein options are rescaled according to the range of values yielded by
available options, has been proposed to account for this phenomenon. However, we
propose that other mechanisms — reflecting a different theoretical viewpoint — may also
explain this phenomenon. Specifically, we theorize that internally defined goals play a
crucial role in shaping the subjective value attributed to any given option. Motivated by
this theory, we develop a new “intrinsically enhanced” reinforcement learning model,
which combines extrinsically provided rewards with internally generated signals of goal
achievement as a teaching signal. Across seven different studies (including previously
published data sets as well as a novel, preregistered experiment with replication and
control studies), we show that the intrinsically enhanced model can explain
context-sensitive valuation as well as, or better than, range adaptation. Our findings
indicate a more prominent role of intrinsic, goal-dependent rewards than previously
recognized within formal models of human reinforcement learning. By integrating
internally generated signals of reward, standard reinforcement learning theories should
better account for human behavior, including context-sensitive valuation and beyond.

Introduction

When selecting among multiple alternatives, the subjective values of available options
and their neural correlates tend to scale as a function of the range of other options in
the choice set |[IH6]. For example, imagine walking to an ice cream cart that normally
sells two flavors: chocolate, your favorite, and vanilla. After excitedly ordering a scoop
of chocolate, you discover that they are now also selling pistachio ice cream, which you
like even more. Suddenly your satisfaction with your order drops, despite the fact that
the objective value of the chocolate ice cream has not changed. This example illustrates
the phenomenon that subjective valuation depends on what other options are available,
which we refer to here as context-sensitive valuation. First documented when option
values are explicitly known, context-sensitive valuation is also evident when participants
learn from experience through trial and error [7,/8].
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Context-sensitive valuation is argued to be adaptive. Given the limited size of the
brain’s neuronal population and the individual neurons’ firing capacities, responding to
stimuli in relative terms can improve the signal-to-noise ratio [9,/10]. However,
context-sensitive valuation can also result in irrational behavior when options are
presented outside of their original context |7,|11H17]. For instance, if option P
probabilistically results in +1 or 0 points and option N in 0 or -1 points, most rational

theories predict that human subjects should select P over N, no matter the probabilities.

Nonetheless, humans reliably tend to select option N over P when the negative option
N was initially encountered as the best option in its context and the positive option P
was encountered as the worst option in its own context ( [L1[{14]; see e.g. Fig and
). An outstanding question, then, regards the computational mechanisms that result
in these behavioral patterns.

Range adaptation has been proposed as the functional form of context-sensitive
valuation. It assumes that options are rescaled according to the minimum and
maximum option value in a given context |13|; this range may be learned over time [12],
or acquired immediately for a given context [11]. Returning to the ice cream example,
range adaptation would result in the rescaling of the value of chocolate according to the
known minimum (your liking of the vanilla flavor) and maximum (your liking of
pistachio) — resulting still in a positive, but blunted response to your order (Fig 1] top).
Range adaptation enables more efficient learning within fixed contexts, but can lead to
irrational preferences once outcomes are presented in novel contexts — as data from
human participants consistently shows [11413}17].

However, we argue that context-sensitive valuation could also be explained by a
simpler heuristic mechanism: that reaching one’s goal is intrinsically valuable,
independently of external rewards. In the example above, this simple heuristic results in
a similar effect to range adaptation, but through a separate cognitive process. If your
goal walking to the ice cream cart is to get the best possible ice cream, the subjective
reward after ordering chocolate when pistachio was available could be accounted for by
a mixture of your goal-independent evaluation of chocolate and a sense of having failed
your goal (Fig|l|top). A long-established construct in the realm of social and
personality psychology [18], goals have recently attracted the attention of cognitive
computational psychologists and neuroscientists, who have recognized their central role
in defining the reward function in reinforcement learning [19-21]. Recent findings
support this hypothesized role. In one experiment, McDougle and colleagues [22]
showed that even abstract, one-shot encoded goals can be endowed with value and
contribute to value-learning neural signals. Moreover, Juechems et al. [23] found that
rewards were encoded in a goal-dependent manner in the anterior cingulate cortex while
people were assessing whether to accept a task-relevant offer. Furthermore, the extent
to which an outcome aligns with the current goal dominates the neural representation of
value beyond absolute rewards [19,[24]. These results validate the general notion that, in
humans, the computation of value can be flexibly shaped through cognitive control
according to current goals [19,/25]. These findings call for an integration of goals into
outcome evaluations.

Here, we develop a computational model that represents a novel account of
context-sensitive valuation based on the notion of goals as intrinsic rewards, and their
centrality to value estimation. Our “intrinsically enhanced” model assumes that
participants weigh both the absolute outcome experienced (“extrinsic reward”, a
unidimensional scalar) and an internally generated signal of goal achievement (a binary
“Intrinsic reward”, in the same scale as the extrinsic reward) when learning. We show
that intrinsically enhanced reinforcement learning can explain the results of three
previously published data sets (totaling 935 participants) as well as range adaptation
models. Moreover, we find that the intrinsically enhanced model behaves more
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Intrinsically enhanced model Range adaptation model

Absolute value: | like chocolate! = 0.7 Absolute value: | like chocolate! = 0.7

Intrinsic value: | got the best flavor, |
reached my goal! =1

Minimum value = 0.2
Maximum value = 0.7
Range = 0.5

Reward = (0.7-0.2)/0.5 =1

Weighting parameter = 0.5
Reward =0.5x 0.7+ 0.5 x 1 =0.85

® o

0.2 0.7
Intrinsically enhanced model Range adaptation model
[} [ ]
Absolute value: | like chocolate! = 0.7 ‘ Absolute value: | like chocolate! = 0.7
Intrinsic value: | did not get the best Minimum value = 0.2
flavor, | did not reach my goal = 0 Maximum value = 1
Weighting parameter = 0.5 REMER =04
Reward = 0.5 x 0.7 + 0.5 x 0 = 0.35 Reward = (0.7-0.2)/0.8 = 0.625
0.2 0.7 1
Different outcomes can feel similarly rewarding The same outcome can feel different
in separate contexts in different contexts

Fig 1. Top: The same outcome (getting chocolate ice cream) can lead to very different
feelings of reward depending on the alternatives available at the time of choice. When
chocolate is the best available option, it feels rewarding to get that flavor of ice cream,
but when a better flavor (pistachio) is available, the feeling of reward for chocolate is
dampened. This phenomenon may be explained through the intrinsic enhancement of
absolute rewards based on goal achievement or failure (purple) or through a range
adaptation mechanism (teal). In this situation, the two models make similar predictions
but capture different cognitive processes. Bottom left: In a reinforcement learning
task, different outcomes (1 and 0.1) may feel similarly rewarding within their contexts
when compared to a baseline (0) despite having different numeric values. Bottom
right: The same outcome (0) may feel different in different contexts, where it is
compared to different outcomes (1 and -1).

consistently with real participants in a fourth experimental design, compared to range
adaptation. Finally, we test distinctive predictions of the intrinsically motivated model
in a novel, preregistered experiment. Our results in the latter — which we fully replicate
in an independent sample and a control experiment — show that the intrinsically
enhanced model captures behavior better than range adaptation.
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Results

Candidate computational mechanisms

The aim of this study is to compare the explanatory power of range adaptation models
to a newly proposed “intrinsically enhanced” model of context-sensitive valuation. Both
models are based on a standard reinforcement learning (RL) architecture, where the
feedback received on each trial is compared to the predicted outcome to update the
estimated value of available options. On each trial, this model chooses one of the

available options based on their estimated value according to the softmax function [26].

Over time, a basic RL that updates value estimates via the delta rule can learn the
optimal policy [27]. In updating the estimated value of each option, a standard,
unbiased RL model equates reward with the objective outcome (r) associated with a
given option.

While this simple algorithm is generally quite powerful, it cannot explain
context-sensitive valuation. To account for the effects observed in humans, [12]
proposed a range adaptation model which rescales outcomes according to the range of
values yielded by other options. This range-adapted reward (rr) is obtained by
subtracting the minimum value of a context (s) from the experienced outcome (r) and
dividing this term by the difference between the maximum and the minimum outcome
of the given context (Tmaz(s) and rmin(s), respectively):

T = Tmin(s)
e Tmax (3) - Tmin(s) (1)

We propose a different kind of subjective outcome that accounts for the importance
of goals. Specifically, we assume that subjective outcomes reflect a mixture of the
extrinsically provided reward (i.e., the objective outcome associated with a certain
option) and a binary (“all-or-nothing”), internally generated signal (ir) that informs the
agent of whether it has chosen the best option it could (thereby reaching its “goal”).
This is calculated by comparing the outcome of the chosen option to the outcome of
other options in the same context (either by taking counterfactual outcomes into account
or by retrieving them from memory). A mixture parameter (w) regulates the extent to
which each component contributes to the overall intrinsically enhanced reward (ier):

jery =w-iry + (1 —w) -1y (2)

“Intrinsically enhanced” and range adaptation models make similar qualitative
predictions in most experimental settings, but they capture vastly different theoretical
interpretations of the underlying phenomenon. Adjudicating which model best fits
human behavior is thus an important step for understanding how context dependencies
emerge in reinforcement learning and decision-making. To do so, we use quantitative
model comparison 28] and posterior predictive checks, qualitatively comparing how well
models capture behavioral patterns in the data [29].

We used hierarchical Bayesian inference [30] to fit and compare the two models of
interest. We also compare to other competing models, such as a hybrid actor-critic
model that successfully captured context-sensitive behavior in previous experiments [14];
and simpler models, such as a “win-stay/lose-shift” policy [31]. We ensure in each
experiment that the different models are identifiable (see [S7|Fig). Details about model

implementation for each candidate mechanism are available in the [Materials and

alongside information about model fitting and comparison.
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Data sets and experimental designs

Seven data sets and/or experimental designs in total were used for analysis. Three were
previously published [11},/12,/14], one was a task described in a pre-print [13], one was an
original study (M22), one was a replication of M22 (M22R), and one was a control

version of M22 (M22B). Experimental designs differed in the exact task structure and
reward contingencies, but all involved a learning phase, during which stimuli and their

outcomes were presented within fixed contexts (e.g. the same pair or triplet of options),
and a test phase in which options were presented in novel pairings. The key features of

each data set (e.g. reward contingencies of each option) are summarized in Table

More detailed information about each data set and task design is reported in [S1| Table.

Table 1. Summary information for each of the data sets used for data

analysis and /or modeling.

N Context Stimuli Most frequent reward Probabilities EV

1,2 [A,BJ, [C, D] [10, 0] [0.75, 0.25] [7.5, 2.5]
B2l 800 54 [E. F|, [G, H] L, 0] [0.75, 0.25] [0.75, 0.25]

1 [A, B] 1, 0] [0.75, 0.25] [0.75, 0.25]

2 [C, D] 0.1, 0] [0.75, 0.25] 0.075, 0.025]
B18 60 4 IE, F] [0, -1] [0.75, 0.25] 0, -0.25]

4 (G, H] [0, -0.1] [0.75, 0.25] [-0.025, -0.075]

1 A, B 1, 0] 0.9, 0.1] 0.9, 0.1]

2 [C, D] [1, 0] 0.8, 0.2] 0.8, 0.2]
G2 IE, F] [0, -1] 0.9, 0.1] 0.9, 0.1]

4 [G, H] [0, -1] [0.8, 0.2] [0.8, 0.2]

1 [A, B] [14£2, 50+2] 1, 1] [14, 32]
B2z 50 2 [C, D, E] [1442, 3242, 5042] 1,1, 1] [14, 32, 50]

3 [F, G] (142, 86+2] 1, 1] (14, 86]

4 [H, 1, J] (142, 5042, 8642 1,1, 1] [14, 50, 86]
M2z 50 L [Ll, M, Hy]  [14+2, 50£2, 86+2] 1,1, 1] [14, 50, 86]

2 [Ly, My, Hy]  [14+2, 5042, 86+2] 1,1, 1] [14, 50, 86]

Previously collected data sets were originally reported by [12] (B21), [11] (B18), [14] (G12), and [13] (B22).

For each dataset experiment we used, the rewards and probabilities associated with each context and
stimulus of the learning phase, as well as their expected value (EV) are reported. The total number of

participants in each original experiment (N) is also shown.

Data set B21: Bavard et al. [12]

Task structure

The data used for the first set of analyses was collected by Bavard and colleagues [12].
The experiment involved eight variants of the same task, and each participant only
completed a single variant. One hundred participants were recruited for each of the eight
variants of the task (800 in total). The task comprised a learning phase and a test phase
(120 trials each). Within the learning phase, participants viewed four different pairs of
abstract stimuli (contexts 1-4) and had to learn, for each pair and by trial and error, to
select the stimulus that yielded a reward most often. Within each pair of stimuli, one
yielded a reward 75% of the time, the other one 25% of the time. Possible outcomes
were 0 or 10 in half of the pairs, and 0 or 1 in the rest of the pairs. Pairs of stimuli thus

had differences in expected value (AEV) of either 5 or 0.5. During the test phase,

stimuli were recombined so that items associated with maximum outcomes of 10 were
pitted against items associated with maximum outcomes of 1, yielding pairs with AEVs
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of 6.75, 2.25, 7.25, and 1.75 (contexts 5-8). Each variant of the task was characterized
by whether feedback was provided during the test phase, the type of feedback displayed
during the learning phase (if partial, feedback was only shown for the chosen option; if
complete, counterfactual feedback was also displayed), and whether pairs of stimuli were
presented in a blocked or interleaved fashion. The latter feature was consistent across

phases of the same variant. The full task details are available at [12].

Summary of the behavioral results

Performance throughout the task was measured as the proportion of optimal choices, i.e.

the proportion of trials in which the option with higher expected value (EV) in each
pair was chosen. Participants’ performance in the learning phase was significantly
higher than chance (i.e., 0.5; M = 0.69 £ 0.16, t(799) = 32.49, p < 0.001), with a
moderate effect of each pair’s AEV such that participants performed better in pair with
AEV = 5.0 (0.71 £ 0.18) than in pairs with AEV = 0.5 (0.67 + 0.18, t(799) = 6.81, p
< 0.001). Performance was also better than chance in the test phase (0.62 + 0.17,
t(799) = 20.29, p < 0.001), but this was highly dependent on each pair’'s AEV
(F(2.84,2250.66) = 271.68, p < 0.001).

Context 8 (AEV = 1.75 pair) was of particular interest, as it illustrated apparently
irrational behavior. Specifically, it paired a stimulus that was suboptimal to choose in
the learning phase (25% 10 vs. 0) with a stimulus that was optimal in the learning
phase (75% 1 vs. 0). However, the previously suboptimal stimulus became the better
one in the testing phase (having EV = 2.5, compared to EV = 0.75).

If participants simply learned the absolute value of these stimuli, they should select
the option with EV = 2.5 in the test phase. However, if participants learned the relative
value of each option within the pair it was presented in, they should view the EV = 2.5
option as less valuable than the EV = 0.75 alternative. In support of the latter,
participants’ selection rate of the highest EV stimulus in test trials with AEV = 1.75
was significantly below chance (M = 0.42 + 0.30, t(799) = -7.25, p < 0.001; “context 8”;

Fig2A).
Both intrinsically enhanced and range adaptation mechanisms capture
behavior well

Simulating behavior with the intrinsically enhanced model replicated participants’
behavioral signatures well (Fig[2A, purple), confirming its validity [28}[29]. We sought to

confirm that the intrinsic reward was instrumental in explaining the behavioral pattern.

Indeed, in the intrinsically enhanced model, the w parameter (M = 0.56 £ 0.01) was
significantly correlated with signatures of context-sensitive learning, specifically, the
error rate in context 8 (i.e., choosing a bandit with EV = 0.75 vs. one with EV = 2.5;
Spearman’s p = 0.46, p < 0.001; Fig). The range model also recovered behavior
well in most experiments, but less accurately on average (Fig[2JA, teal).

Model comparison favors the intrinsically enhanced model

To quantify the difference, we fit our models via hierarchical Bayesian inference (HBI),

which estimates individual parameters hierarchically while comparing candidate models.

The model comparison step of HBI favored the intrinsically enhanced model as the most
frequently expressed within the studied population, even after accounting for the
possibility that differences in model responsibilities were due to chance (protected
exceedance probability = 1). While each of the alternative models also provided the
best fit in a fraction of the participants (model responsibilities: intrinsically enhanced =
0.34, range adaptation = 0.19, hybrid actor-critic = 0.20, unbiased RL model = 0.08,
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Participant number by experiment
Fig 2. (A) Model validation by experimental condition and context with parameters
extracted through Laplacian estimation [30], showing the simulated performance yielded
by the intrinsically enhanced model (in purple) and the range adaptation model (in
teal). The participants’ data is shown in the grey bars. Contexts 1-4 refer to the
learning phase, and contexts 5-8 to the test phase. Overall, both the intrinsically
enhanced model and the range adaptation model captured participants’ behavior
relatively well, the former outperforming the latter. Abbreviations: the first letter in
each triplet indicates whether feedback was partial (P) or complete (C) during learning;
the second letter indicates whether feedback in the test phase was partial (P), complete
(C), or not provided (N); the third letter indicates whether the experimental design was
interleaved (I) or blocked (B). Error bars indicate the S.E.M. (B) Model responsibilities
overall and across experimental conditions. Data underlying this figure are available at
https://github.com/hrl-team/range. Computational modeling scripts to produce
the illustrated results are available at https://osf.io/sfnc9/.

win-stay /lose-shift = 0.19), the responsibility attributed to the intrinsically enhanced
model was highest (Fig[2B).

The intrinsically enhanced model further provides an explanation for why more
successful learning would lead to less optimal behavior in the test phase. Both a blocked
design and complete feedback would enable participants to more easily identify the
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https://github.com/hrl-team/range
https://osf.io/sfnc9/

context-dependent goal throughout learning, and thus rely less on the numeric feedback
presented to them and more on the binary, intrinsic component of reward (i.e., whether
the intended goal has been reached). Indeed, an ANOVA test revealed that the wieqrn
parameter, which attributes relative importance to the intrinsic signal in the learning
phase, was higher in experiments with a blocked design (M = 0.59 4 0.01) than in
experiments where contexts were displayed in an interleaved fashion (M = 0.52 £+ 0.01;
t(799) = 3.62, p < 0.001;[S8| Fig). At the same time, the wjeqrn parameter was higher
for participants who underwent the learning phase with complete feedback (M = 0.60 +
0.01) than for those who only received partial feedback (M = 0.53 £ 0.01; t(799) = 4.07,
p < 0.001). There was no significant interaction between the two factors (t(799) =
-0.22, p = 0.825).

Data set B18: Bavard et al. [11]

Task structure

The B21 dataset is well suited to study the rescaling of outcomes within a given context
in the positive domain. To investigate whether the same behavior can be explained by
either intrinsically enhanced or range adaptation models in the negative domain, we
retrieved a dataset reported in [11]. Here, subjects engaged with both gain and
loss-avoidance contexts. In gain contexts, the maximum possible reward was either 1
(for one pair of stimuli) or 0.1 (for another pair of stimuli). These rewards were yielded
with 75% probability by selecting the better option in each pair, while the outcome was
0 for the remaining 25% of the time. Probabilities were reversed for selecting the worse
option within a given pair. Loss avoidance trials were constructed similarly, except that
the maximum available reward was 0 in both cases, while the minimum possible
outcome was either -1 (in one pair) or -0.1 (in the other pair). This design effectively
manipulates outcome magnitude and valence across the four pairs of stimuli presented
during the learning phase. All possible combinations of stimuli were then presented,
without feedback, in a subsequent testing phase. Data were collected on two variants of
this experiment, which we analyze jointly. In Experiment 1 (N=20), participants only
received feedback on the option they selected. In Experiment 2 (N=40), complete
feedback (i.e., feedback on both the chosen and unchosen option) was presented to
participants in 50% of the learning phase trials. Presentation order was interleaved for
both experiments. The full task details are available at [11].

Summary of the behavioral results

On average, participants selected the correct response more often than chance during
the learning phase (t(59) = 16.6, p < 0.001), showing that they understood the task
and successfully learned the appropriate stimulus-response associations in this context.
Stimulus preferences in the test phase were quantified in terms of the choice rate for
each stimulus, i.e. the average probability with which a stimulus was chosen in this
phase. While stimuli with higher EV tended to be chosen more often than others (F(59)
= 203.50, p < 0.001), participants also displayed irrational behaviors during the test
phase. In particular, choice rates were higher for the optimal option of the 0.1/0 context
(EV = 0.075; M = 0.71 £ 0.03) than choice rates for the suboptimal option of the 1/0
context (EV = 0.25; M = 0.41 + 0.04; t(59) = 6.43, p < 0.001). Choice rates for the
optimal option in the 0/-0.1 context (EV = -0.025; M = 0.42 £ 0.03) were higher than
choice rates for the suboptimal option of the 0.1/0 context (EV = 0.025; M = 0.56 +
0.03; t(59) = 2.88, p < 0.006). These effects show that, when learning about the value
of an option, people do not simply acquire an estimate of its running average, but
rather adapt it, at least partially, based on the alternatives the option is presented with.
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The intrinsically enhanced model captures behavior better than the range
adaptation model

Both the intrinsically enhanced model and the range adaptation model captured the key
behavioral patterns displayed by participants in the test phase, with the intrinsically
enhanced model more closely matching their behavior than the range model (Fig )
The intrinsically enhanced model’s w parameter (M = 0.55 + 0.03) was significantly
correlated with key signatures of context-sensitive learning (i.e., the average error rate
when choosing between a bandit with EV = 0.075 vs. one with EV = 0.25 and between
a bandit with EV = -0.025 vs. one with EV = 0.025; Spearman’s p = 0.51, p < 0.001;
Fig), confirming the role of intrinsic reward in explaining context-sensitivity
effects. We note that, consistent with our findings, the winning model in [11] was a
hybrid between relative and absolute outcome valuation which, in mathematical terms,
was equivalent to the intrinsically enhanced model. However, as discussed below (see
, the theory behind the hybrid model presented in aligns more closely
with the range adaptation mechanism, and the mathematical overlap only exists for
data set B18.

A 1.0 Data B 1.0 : Intrinsically enhanced
@ Intrinsically enhanced Hybrid actor-critic
? © Range Unbiased
208 o [ 0.8 Win-stay/lose-shift
g I > Overall
506 506
o 0. o Ul
S i e 2
] I 2
S04 Py 204
I © s ! 14
3
202 I 0.2
0.0 .
+1 +1 +0.1  +0.1 -1 -1 0.1 -0.1 30
075 025 075 025 025 075 025 0.75 Participant number

Non-zero outcome/probability
Fig 3. (A) Model validation by context with parameters extracted through Laplacian
estimation, showing the simulated performance yielded by the intrinsically enhanced
model (in purple) and the range adaptation model (in teal), overlaid with the data (grey
bars). The intrinsically enhanced model outperformed the range model in capturing
participants’ behavior in the test phase, although both expressed the key behavioral
pattern displayed by participants. Bars indicate the S.E.M. (B) Model responsibilities
across participants. Data underlying this figure are available at
https://github.com/sophiebavard/Magnitude/. Computational modeling scripts to
produce the illustrated results are available at https://osf.io/sfnc9/,

Model comparison slightly favors the range adaptation model

Range adaptation was the most frequently expressed model within the studied
population (protected exceedance probability = 0.70). Although the HBI pipeline has
been shown to avoid overpenalizing complex models , it is still possible that the
additional complexity of the intrinsically enhanced model was not sufficient to
compensate for its better ability to capture behavior. Nonetheless, a large proportion of
the participants was best fit by the intrinsically enhanced model (model responsibilities:
intrinsically enhanced = 0.45, range adaptation = 0.52, hybrid actor-critic = 0.03,
unbiased RL model = 0, win-stay /lose-shift = 0; Fig )
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Data set G22: Gold et al. [14]
Task structure

Data sets B21 and B18 were collected by the same research group. To exclude the
possibility that analyses on these data sets may be due to systematic features of the
experimenters’ design choices, we employed a dataset collected separately by Gold and
colleagues [14]. This dataset comprised both healthy controls (N=28) and clinically
stable participants diagnosed with schizophrenia or schizoaffective disorder (N=47).
This allowed us to test whether our findings could be generalized beyond the healthy
population. In this task, four contexts were presented to participants in an interleaved
fashion. These contexts were the result of a 2x2 task design, where the valence of the
best outcome and the probability of obtaining it by selecting the better option were
manipulated. Across contexts, the best outcome in a given context was either positive
(“Win!”, coded as 1) or neutral (“Keep your money!”, coded as 0), and the worse
outcome was either neutral (“Not a winner. Try again!”, coded as 0) or negative
(“Loss!”, coded as -1), respectively. The better option yielded the favorable outcome
either 90% or 80% of the time, and yielded the unfavorable outcome either 10% or 20%
of the time, respectively. Following a learning phase, in which options were presented
only within their context and participants received partial feedback, all possible pairs of
stimuli were presented in a testing phase to participants, who received no feedback upon
selecting one of them. The full task details are available at [14].

Summary of the behavioral results

On average, participants selected the correct response more often than chance in the
learning phase (i.e., 0.5; M = 0.73 4 0.15; t(74) = 13.42, p < 0.001). In the test phase,
participants selected the better option more often than predicted by chance (M = 0.65
+ 0.11; t(74) = 11.62, p < 0.001). However, they also displayed irrational behavior, in
that performance was below 0.5 when the optimal options in the 0/-1 contexts (EV =
-0.10, -0.20) were pitted against the suboptimal options in the 1/0 contexts (EV = 0.10,
0.20; M = 04 + 18; t(74) = -4.69, p < 0.001). Once again, these effects illustrate an
adaptation in the value of presented options based on the alternatives offered in the
same context, as predicted by range adaptation and intrinsically enhanced, but not
simple RL algorithms.

Both the intrinsically enhanced model and the range adaptation model
capture behavior adequately

Both main candidate models adequately captured the participants’ behavior in the test
phase (Fig ) Again, the intrinsically enhanced model’s w parameter (M = 0.46 +

0.01) was significantly correlated with signatures of context-sensitive learning (i.e., the
average error rate when choosing between a bandit with EV = -0.1 vs. one with EV =
0.1, and between a bandit with EV = -0.2 vs. one with EV = 0.2; Spearman’s p = 0.53,

p < 0.001; Fig).

Model comparison slightly favors the intrinsically enhanced model

The intrinsically enhanced model was the most frequently expressed within the studied
population (protected exceedance probability = 0.84). Both the intrinsically enhanced
and the range adaptation models had high responsibility across participants
(intrinsically enhanced = 0.50, range adaptation = 0.39, hybrid actor-critic = 0,
unbiased RL model = 0.01, win-stay /lose-shift = 0; Fig )
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Fig 4. (A) Model validation by context with parameters extracted through Laplacian
estimation, showing the simulated performance yielded by the intrinsically enhanced
model (in purple) and the range adaptation model (in teal), overlaid with the data (grey
bars). The intrinsically enhanced model outperformed the range model in capturing
participants’ behavior in the test phase, although both expressed the key behavioral
pattern displayed by participants. Bars indicate the S.E.M. (B) Model responsibilities
across participants. Data underlying this figure are available at
https://osf.i0/8zx2b/. Computational modeling scripts to produce the illustrated
results are available at https://osf.io/sfnc9/.

Data set B22: Bavard and Palminteri
Task structure

In all the data sets described above, stimuli were only ever presented in pairs. To test
whether the models of interest might make different predictions where outcomes are
presented in larger contexts, we used a task design presented by Bavard and
Palminteri . At the time of writing, this work was not published in a peer-reviewed
journal, and data for this experiment was not publicly accessible. Therefore, we only
provide ex-ante simulations for this task. The study reported in the preprint involved
three different variants of the same task, two of which included forced-choice trials.
Since we did not have access to the precise sequence of stimuli participants viewed in
experiments with forced trials, we focused on the first experiment reported by the
authors. Here, participants (N=50) were presented with contexts composed of either
two (binary) or three stimuli (trinary), wherein each stimulus gave rewards selected
from a Gaussian distribution with a fixed mean and a variance of 4. The range of mean
values each stimulus could yield upon selecting it was either wide (14-86) or narrow
(14-50). For trinary trials, the intermediate option value was either 50 or 32 in wide and
narrow contexts, respectively. Participants first learned to select the best option in each
context via complete feedback. They did so for two rounds of learning, and contexts
were presented in an interleaved manner. The stimuli changed between learning sessions,
requiring participants to re-learn stimulus-reward associations, but the distribution of
outcomes remained the same across sessions. Then, they were presented with all
possible pairwise combinations of stimuli from the second learning session. No feedback
was displayed during this test phase. The full task details are available at .

Summary of the behavioral results

The authors report that on average, participants selected the correct response more
often than chance (0.5 or 0.33, depending on whether the context was binary or trinary)
in the learning phase. Overall performance in the test phase was also better than
chance, showing that participants were able to generalize beyond learned comparisons
successfully. Behavioral patterns showed signatures of both simple RL and range
adaptation models. On the one hand, as predicted by a simple RL model, options with

August 25, 2023

11/33

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335


https://osf.io/8zx2b/
https://osf.io/sfnc9/

the highest value in narrow contexts (EV = 50) were chosen less often than options with
the highest value in wide contexts (EV = 86). On the other hand, as predicted by the
range adaptation model, the mid-value option in the wide trinary context (EV = 50)

was chosen less frequently than the best option in the narrow binary context (EV = 50).

Moreover, in trinary contexts, the choice rate of mid-value options was much closer to
the choice rate of the lowest-valued options than would be expected by an unbiased RL
model. To capture this effect, the authors introduced an augmented variant of the range
adaptation model that incorporates a non-linear transformation of normalized
outcomes [13]. Below, we ask whether the intrinsically motivated model might capture
all these effects more parsimoniously.

Predictions from the intrinsically enhanced model capture participants’
behavior

Fig |p|illustrates the predictions made by the unbiased, intrinsically enhanced, and range
adaptation model (with an additional parameter, here called z, which captures potential
non-linearities in reward valuation in the range adaptation model). On the one hand,
the unbiased RL model correctly predicts that choice rates for high-value options in
narrow contexts (EV = 50) would be lower than for high-value options in wide contexts
(EV = 86), while the range adaptation model does not. Moreover, the unbiased model
correctly predicts that choice rates for the mid-value options would be higher in the
wide (EV = 50) than in the narrow context (EV = 32), while the range adaptation
model selects them equally often. On the other hand, the range adaptation model
correctly predicts that participants’ choice rates for mid-value options in the wide
trinary context (EV = 50) would be lower than those for high-value options in the
narrow binary context (EV = 50), while the unbiased RL model does not. With the
addition of the non-linearity parameter z, the range adaptation model can also capture
the fact that choice rates for mid-value options in trinary contexts are closer to those of

low-value options than those of high-value options, while the unbiased RL model cannot.

Overall, |13] provide convincing evidence that range adaptation mechanisms surpass
other classic and state-of-the-art models, including standard RL algorithms and divisive
normalization, making it a strong model of human context-sensitive valuation. However,
only the intrinsically enhanced model can capture all the key effects displayed by
participants. Although these predictions await validation through fitting on the
collected data, the intrinsically enhanced model succinctly explains the different

behavioral signatures observed in real participants better than other candidate models.

Data set M22: Novel task distinguishing between intrinsically
enhanced and range adaptation models

Task structure

None of the data sets described above were collected to distinguish between intrinsically
enhanced and range adaptation models. To qualitatively, as well as quantitatively
disentangle the two, we conducted an additional, preregistered experiment (henceforth,
M22; the preregistered analysis pipeline and hypotheses are available at
https://osf.io/2sczg/)). The task design was adapted from [13] to distinguish
between the range adaptation model and the intrinsically enhanced model (Fig @
Participants (N=>50, plus a replication sample of 55 participants — see [S1| Text) were
tasked with learning to choose the optimal symbols out of two sets of three (two trinary
contexts). On each trial of the learning phase, they chose one stimulus among either a
pair or a group of three stimuli belonging to the same context and received complete
feedback. As in B22, each stimulus was associated with outcomes drawn from a
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Fig 5. Predictions made by the unbiased, intrinsically enhanced, and range” models.
(A) The unbiased model correctly predicts lower choice rates for high-value and
mid-value options in wide than in narrow contexts (upper grey box), but incorrectly
predicts similar choice rates for the option with value 50 regardless of context (lower
grey box). (B) The intrinsically enhanced model captures all behavioral patterns found
in participants’ data [13]. It correctly predicts lower choice rates for high-value and
mid-value options in wide than in narrow contexts (upper purple box) and correctly
predicts higher choice rates for the option with value 50 in the trinary narrow context
than in the trinary wide context (lower purple box). It also predicts that choice rates
for mid-value options will be closer to those of low-value options than high-value options
(lower purple box). (C) The range” model correctly predicts higher choice rates for the
option with value 50 in the trinary narrow context than in the trinary wide context
(lower teal box), but incorrectly predicts similar choice rates for high-value options in
the narrow and wide trinary contexts (upper teal box). Simulation scripts used to
produce this figure are available at https://osf.io/sfnc9/.

Gaussian with fixed means and a variance of 4. Within each context was a low-value
option (L) with a mean of 14, a middle-value option (M) with a mean of 50, and a
high-value option (H) with a mean of 86. Thus, there was a pair of equivalent options
across contexts. Both sets of three (i.e., stimuli Ly, M, and Hy for context 1, and Lo,
Ms,, and Hy for context 2) were presented 20 times each. However, the number of times
each pair of stimuli was presented differed among contexts. Specifically, the M; stimulus
was pitted against the L; stimulus 20 times, and never against the H; stimulus, while
the My stimulus was pitted against the Ho stimulus 20 times, and never against the Lo
stimulus. Both L options were pitted against the respective H option 20 times (see Fig
@. All possible pairs of stimuli were presented 4 times in the test phase. Participants
also estimated the value of each stimulus, 4 times each, on a scale from 0 to 100.

The key feature of this task is that the mid-value option is compared more often to
the lower-value option in the first context (M; vs. L), and to the higher-value option in
the second context (Mg vs. Hy). While the range adaptation and intrinsically enhanced
models make similar predictions regarding test phase choice rates for L and H, they
make different predictions for M; and My choice rates. Regardless of which option the
mid-range value is presented with, range adaptation models will rescale it based on the
minimum and maximum value of the overall context’s options (i.e., the average value of
L; and Hy, respectively). Thus, they will show no preference for M; vs. Ms in the test
phase. The intrinsically enhanced model, however, will learn to value M; more than Ms,
as the former more often leads to goal completion (defined in our model as selecting the
best outcome among the currently available ones; see [Materials and methods)) than the
latter. This is because M; is more often presented with a worse option than My, which
instead is more frequently presented with a better option. Thus, if participants follow a
range adaptation rule (here indistinguishable from a classic RL model), there should be
no difference between their choice rates for My, compared to My. By contrast, if the
intrinsically enhanced model better captures people’s context-dependent learning of
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Fig 6. Left: Task structure. Participants viewed available options, indicated their
choice with a mouse click, and viewed each option’s outcome, including their chosen one
highlighted. Right: Experimental design. Both context 1 (top row) and context 2
(bottom row) contained three options, each having a mean value of 14, 50, or 86. The
contexts differed in the frequency with which different combinations of within-context
stimuli were presented during the learning phase (grey shaded area). In particular,
while option M; (EV = 50) was presented 20 times with option Ly (EV = 14), option
M; (EV = 50) was presented 20 times with option Hy (EV = 86). Intuitively, this made
M; a more frequent intrinsically rewarding outcome than Ms. The two contexts were
otherwise matched.

value options, M; should be selected more often than Ms in the transfer phase.

We note that, while previous studies defined contexts as the set of available options
at the time of a decision [12) . here we adopt a more abstract definition of context,
which comprises all the options that tend to be presented together — even when only
two of them are available (a feature that was absent from previous task designs).
Nonetheless, participants might have interpreted choice sets in which only two out of
three outcomes were available as separate contexts. With the latter interpretation,
range adaptation and intrinsically enhanced models would make the same predictions.
To encourage participants to consider the two sets of stimuli as belonging to one context
each (even when only two out of three options from a set were available), we designed a
control study (M22B; N=50, [S2| Text) in which, instead of being completely removed
from the screen, unavailable options were simply made unresponsive Fig).
Therefore, participants could not select unavailable options, but the stimuli and
outcomes associated with them were still visible.

Ex-ante simulations

To confirm whether the intrinsically enhanced and the range” model could be
qualitatively distinguished, we simulated participant behavior using the two models of
interest with the same methods as described for dataset B22. As expected, the
intrinsically enhanced model showed higher choice rates for M; compared to Ms (Fig
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EA) By contrast, the range” model showed no preference for My, compared to Ms, in
the test phase (Fig[7B).

A 10 Intrinsically enhanced model B 10 RangeZ model
0.8 0.8
Q Q
© 0.6 © 06
@ @
kel S
504 504
0.2 0.2
0.0 0.0
L1 M1 H1 LZ MZ HZ L1 M1 H1 L2 MZ HZ
14 50 86 14 50 86 14 50 86 14 50 86
Option name/value Option name/value

Fig 7. Ex-ante model predictions based on simulations, for the intrinsically enhanced
(A) and range” (B) models. Contexts 1 and 2 are shown in dark and light grey,
respectively. The core prediction that differentiates intrinsically enhanced and range
models is that participants will have a bias in favor of the middle option from context 1,
compared to the middle option from context 2 (compare the purple and teal boxes).
Simulation scripts used to produce this figure are available at https://osf.io/sfnc9/|

Behavioral results

Overall, participants performed above chance in both the learning phase (M = 0.90 +
0.02, £(49) = 16.08, p<0.001;[S1|Fig) and the testing phase of the experiment (M =
0.90 £+ 0.02, t(49) = 19.5, p<0.001).

Results matched all preregistered predictions. Despite the fact that options M; and
M, were associated with the same objective mean value of 50, participants chose option
M; (mean choice rate across all trials in the test phase: 0.57 £ 0.02) more often than
option My (0.36 + 0.02; t(49) = 6.53, p<0.001 (Fig[8A-B). When the two options were
directly pitted against each other, participants selected M; significantly more often than
chance (i.e., 0.50; M = 0.76 + 0.05; t(49) = 5.13, p<0.001; Fig ) Performance in the
test phase was better for trials in which the M; option was pitted against either low
option (M = 0.92 4 0.03) than when Ms was pitted against either low option (M = 0.74
=+ 0.04; t(49) = 4.85, p<0.001; Fig —D). By contrast, performance in the test phase
was better for trials in which the My option was pitted against either high option (M =
0.88 £ 0.03) than when M; was pitted against either high option (M = 0.95 + 0.02;
t(49) = -4.07, p<0.001; Fig[8C). Participants’ explicit evaluations were higher for M,
(55.65 £ 2.04) than My (M = 38.9 £ 2.16; t(49) = 6.09, p<0.001; Fig —F).

Each of these behavioral signatures is expected from the intrinsically enhanced, but
not the range adaptation model. Thus, the results of this study show direct support for
the intrinsically enhanced model over the range adaptation model. These behavioral
patterns were fully replicated in an independent sample (M22R; Figs) and a
control study where stimuli and outcomes for unavailable options were left visible

(M22B Figs).

Model comparison favors the intrinsically enhanced model

In comparing competing models, we only considered the intrinsically enhanced and
range? architectures. We also included a basic strategy, namely the win-stay/lose-shift
model, to capture variability that neither model could explain, as is considered best
practice with Hierarchical Bayesian Inference (see [Materials and methods} [30]). The
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Fig 8. Behavioral results and computational modeling support the intrinsically
enhanced model. (A) During the test phase, the mid-value option of context 1 (darker
grey) was chosen more often than the mid-value option of context 2 (lighter grey), a
pattern that was also evident in the intrinsically enhanced model’s, but not the range”
model’s behavior. (B) Difference in test phase choice rates between stimulus M; and
Ms. (C) When the two mid-value options were pitted against each other, participants
preferred the one from context 1. When either was pitted against a low-value option,
participants selected the mid-value option from context 1 more often than the mid-value
option from context 2. When either was pitted against a high-value option, participants
selected the high-value option from context 1 less often than the high-value option from
context 2. The dotted line indicates chance level (0.5). (D) Difference between M; and

M, in the proportion of times the option was chosen when compared to either L or Ls.

All these behavioral signatures were preregistered and predicted by the intrinsically
enhanced, but not the range adaptation model. (E) Participants explicitly reported the
mid-value option of context 1 as having a higher value than the mid-value option of
context 2. (F) Differences in explicit ratings between option M; and Ms. (G) Model
fitting favors the intrinsically enhanced model against range”, as evidenced by higher
responsibility across participants for the former compared to the latter. Data and
analysis scripts underlying this figure are available at https://osf.io/sfnc9/.

intrinsically enhanced model was the most frequently expressed (protected exceedance
probability = 1) and had the highest responsibility across participants (intrinsically
enhanced = 0.83, range adaptation = 0.09, win-stay /lose-shift = 0.08; Fig ) Even
endowed with non-linear rescaling of mid-value options, the range adaptation model
failed to reproduce the key behavioral result that was observed in participants (Fig
—D). We note that the range adaptation model showed a slight bias for the M; over
the My option, likely due to higher learning rates for chosen (compared to unchosen)
outcomes and an experimental design where M; tends to be selected more often — thus
acquiring value faster — than My. Nonetheless, the intrinsically enhanced model
matched participants’ behavior more closely than range adaption. Moreover, the
intrinsically enhanced model’s w parameter (M = 0.46 &+ 0.04) was significantly
correlated with the difference in choice rates for My vs. My in the test phase;
Spearman’s p = 0.93, p < 0.001; Fig). All modeling results were replicated in an

August 25, 2023

16/33,

460

461

462

463

464

466

467

468

469

470

471

472


https://osf.io/sfnc9/

independent sample (M22R; Text and [S2| Fig) and a control study in which stimuli
and outcomes for unavailable options were not hidden from view (M22B; S2 Text and
Fig). Together, these results provide evidence for the higher explanatory power of

the intrinsically enhanced model over range adaptation mechanisms.

Discussion

In this study, we proposed an “intrinsically enhanced” model as a possible
computational account of context-dependent reinforcement learning. There is now
overwhelming evidence for the proposition that human value attributions are
context-dependent [5,[32], and this general finding has been confirmed in reinforcement
learning tasks [7,{11H13}|17}[33], wherein participants have to learn the value of each
available option through trial and error, as is often the case in real-world scenarios. In a
decision-learning problem, context-sensitive valuation results in value attributions that
are relative to the alternative options available at the time of choosing. This
phenomenon cannot be accounted for by a standard, unbiased reinforcement learning
architecture. Instead, context-sensitive valuation has been successfully captured by the
range adaptation model, which normalizes absolute outcomes based on the minimum
and the maximum value of options in the same context.

However, other models could explain the effects of context-sensitive valuation
without resorting to range adaptation. Here, we explored one such alternative model
whose premises are backed by extensive literature in broader psychological domains.
Specifically, our account proposes that, after experiencing an outcome, people integrate
its absolute value with an additional “all-or-nothing”, internally generated signal of goal
achievement (positive if the best available option was selected, and 0 otherwise). Here,
context-sensitivity is achieved by defining goal-dependent signals in relation to the best
possible outcome. By analyzing three existing data sets totaling 935 participants and
simulating choices from a fourth experimental design, we showed that the intrinsically
enhanced model yields similar results to the range adaptation model, and should
therefore be considered a valid alternative for explaining context-sensitive valuation in
human reinforcement learning. Through an additional experiment intended to directly
test differences between the competing two models, an independent replication of it, and
a control study, we provided evidence for the stronger explanatory power of the
intrinsically enhanced reinforcement learning model over the range adaptation algorithm
in some experimental settings. Specifically, participants selected more frequently an
option that was more often the better one, even though it had the same objective value
and occurred in a context of similar range.

The fact that the intrinsically enhanced model integrates both absolute and binary
reward signals is consistent with the finding that, in the brain, outcome rescaling is
partial, not complete [34]. This poses the additional question of how the degree of
outcome rescaling is set. While large inter-individual variability likely plays an
important role in the extent to which extrinsic and intrinsic rewards impact value
computation, task features may also affect how the contribution of each is balanced. For
instance, providing participants with complete feedback (as opposed to factual feedback
only) induces an increase in relative outcome encoding [35]. In the intrinsically
enhanced model, a free parameter (w) governs the extent to which absolute and
goal-dependent values dominate in the computation of reward, with values of w higher
than 0.5 leading to stronger contributions of intrinsically generated, goal-dependent
signals, and values of w lower than 0.5 indicating a preponderance of absolute values in
the calculation of reward. We have found preliminary evidence for the claim that the
weighting parameter w itself is dependent on task features in our analysis of the
B21 [12] data set, which comprised eight experiments. These differed in whether
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counterfactual outcomes were provided, and whether contexts were presented in an
interleaved or blocked manner. Both observing counterfactual outcomes and interacting
with contexts in a blocked manner likely make it easier for participants to produce
internally generated signals of goal achievement, as both features help them decide
whether their selected option corresponded to the best available option in the current
context. Thus, w may be higher under these conditions than in experiments that
followed a design with partial information or interleaved presentation of contexts.
Indeed, we found that w was higher in experiments with a blocked design than those
with an interleaved presentation of stimuli. Moreover, w was higher for experiments
with complete feedback compared to those with partial feedback. These results provide
initial evidence that differences in relative versus absolute outcome encoding based on
experimental design could be accounted for by differences in emphasis on externally
provided versus intrinsically generated reward signals.

Attentional biases and task demands could also affect the relative contribution of
extrinsic and intrinsic reward signals in outcome valuation. For instance, Hayes and
Wedell |15] manipulated attentional focus in a reinforcement learning task by asking
participants to rate, at occasional time points in the task, either how they felt about
particular options or the reward amount they expected to be associated with particular
options. The latter condition resulted in blunted context-sensitive valuation during the
transfer portion of the task, which may be formalized as a greater contribution of
absolute reward values (i.e., the term participants’ attention was brought towards)
compared to internally rewarding features of the evaluated options (which, by contrast,
was emphasized in the former condition). Similarly, Juechems et al. [16] found that,
following a learning phase in which participants made within-context choices, exposure
to decision sets that combined previously experienced contexts resulted in subsequent
reductions in context-sensitive valuation. This behavior is thought to result from an
adaptive response to task-contingent expectations and can be easily captured by an
adjustment of the w parameter once participants expect to make cross-context decisions.

Our findings corroborate a growing literature of theoretical advances [19-21] and
experimental results [22124,/36//37] recognizing the fundamental role of goals in the
computation of value in humans. In the classic reinforcement learning literature,
rewards have been understood as a property of the external environment, that an agent
interacting with it would simply receive [38]. While this approximation works well when
modeling many behavioral tasks [39], it cannot explain why the context in which
rewards are presented would matter to the computation of reward. Homeostatic
reinforcement learning attempts to bridge this gap by proposing that the rewarding
properties of an outcome are proportional to the extent to which it represents a
discrepancy reduction from a physiological set-point [40]. However, the same principle
could be extended to more cognitively defined target values. From crosswords to
marathons, many human activities feel rewarding once completed despite not having
immediate benefits on survival [41]. One possible explanation for this phenomenon is
that people actively set goals for themselves and, once these goals are active, progress
towards them drives incremental dopamine release to guide the learning of actions that
bring such goals about [42]. Indeed, reaching one’s goal activates similar brain areas as
secondary reinforcers, such as money or numeric points [22}/43].

At face value, the need for multiple value signals may seem redundant. However, the
idea that the brain computes multiple signals of reward is well-established [44,45].
Goal-dependent signals in particular have been shown to co-exist with neural signatures
of absolute value encoding [23124,36]. And, while it has received less formal recognition
in cognitive psychology, the enhancement of standard reinforcement learning
frameworks with internally generated signals has led to notable breakthroughs in the
field of artificial intelligence [46({48]. Classic reinforcement learning architectures are
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provided with a hand-defined reward signal, which the agent seeks to maximize.
However, learning solely based on these sparse rewards may be difficult. To circumvent
this issue, artificial agents can be endowed with auxiliary reward functions to prompt
the directed exploration of the environment based on intrinsic rewards. This approach
has been shown to significantly improve performance even when extrinsic objectives are
well defined (e.g., [47,49]). Inspired by work in developmental psychology, artificial
systems have been developed that can even set their own goals and learn to reach them
via self-defined reward functions, leading to self-supervised discovery and skill
acquisition (see |50| for review). Thus, by integrating extrinsic rewards with
self-generated, goal-dependent reward signals can critically enhance learning in both
artificial and biological agents.

The intrinsically enhanced model of context-sensitive valuation has proven flexible
enough to capture a host of behavioral findings, and powerful enough to produce novel
hypotheses that were then confirmed by an ad hoc experiment. While we considered a
variety of alternative algorithms to explain these phenomena (including the previously
successful range adaptation and hybrid actor-critic architectures), the list of models we
examined here is certainly not exhaustive. For instance, divisive normalization — in
which options are divided by their sum, rather than their range [3] — may represent a
reasonable account of relative value encoding, although studies have shown it has even
less explanatory power than range adaptation models [13]. Hayes and Wedell [51]
recently proposed a frequency encoding model that computes outcome values based on
their rank within the contextual distribution. Indeed, people’s choices tend to be
sensitive to the frequency with which an outcome is delivered, not just its average
value [52]. In our model, the goal-dependent signal transmits the same amount of
reward regardless of the absolute outcome value, such that the intrinsically enhanced

model could also explain frequency-dependent biases through a much simpler heuristic.

Future studies, however, may directly investigate similarities and differences between
frequency-based and intrinsically enhanced reinforcement learning models.

For ease of computation, in implementing the intrinsically enhanced and range
adaptation models we assumed that participants were always aware of the minimum
and maximum value of available options, even for cases in which only the outcome of
the chosen option was delivered, without counterfactual feedback. While [12] proposed a
version of the range adaptation model that updates estimates for range extremes in a
trial-by-trial fashion, we found that this extension did not improve behavioral fit, and
that the additional parameter was not recoverable (see [S3| Text; @ Fig). In addition to
the lack of dynamicity, we make the simplifying assumptions that different aspects of
outcome valuation are combined linearly and that goal-dependent signals are encoded as
binary outcomes. It is not uncommon for researchers to assume that different aspects of
an outcome are linearly combined during valuation [53}54]. Succinctly implementing
goal-dependent outcomes as binary signals was not only sufficient to capture the data
presented here, but also an approach often followed in artificial intelligence research,
which our theory was partly inspired by [50]. The brain is known to integrate various
aspects of an outcome into a single value [55/56], and even seemingly incommensurable
sources of rewards — such as food and monetary outcomes or social cues — are rescaled
to similar values during cross-category comparisons [57]. Nonetheless, future modelers
may consider expanding the intrinsically enhanced model with more accurate depictions
of the internal processes allowing relative estimates of reward, and test-specific
assumptions we adopt here as a starting point. In addition, goal and reward signals
were put on the same scale, capturing the assumption that the intrinsic reward for
reaching a goal had equal value to the maximal extrinsic reward. A question for future
neuroimaging experiments is how the brain may automatically compute such rescaling
and escape commensurability issues. As our understanding of how goals are selected
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and goal-dependent rewards are adjusted to circumstances, intrinsically enhanced
models of behavior could be improved with increased explanatory power. Along the
same line of research, it may be possible to test for range adaptation as an adjunct
mechanism to intrinsically enhanced reinforcement learning, as the two systems are not
mutually exclusive.

A mathematically equivalent model to intrinsically enhanced reinforcement learning
(in the form presented here) was proposed by [11], but not considered in later studies.
There, the authors combined range adaptation with reference point centering, whereby
an outcome is computed relative to the mean of all context-relevant outcomes. This
mechanism provides a solution for punishment-based learning by bringing negative
outcomes to a positive scale and then using them to reinforce behavior as in standard
reinforcement learning [7]. The combination of range adaptation and reference point
results in a binary signal that is numerically strikingly similar to, but theoretically

distinct from, the internally generated reward signal of the intrinsically enhanced model.

Neither intrinsic rewards nor a combination of range adaptation and reference point
centering can, by themselves, explain behavior. As our model proposes, [11] combined
relative outcomes with absolute ones in order to reproduce the same behavioral
signatures displayed by human participants. Such a “hybrid” model thus encompasses
multiple computational steps (range adaptation, reference point centering, and the
mixing of relative outcomes with absolute ones). By contrast, the intrinsically enhanced
model provides a more succinct explanation of how binary rewards can be computed.
Crucially, the two models only overlap in specific instances, i.e. tasks in which only
binary choices are presented and the same outcomes are associated, though with
different probabilities, to options within the same context. This is not the case for the
majority of tasks analyzed here.

In the formulation that we employed, the intrinsically enhanced model assumes that
the participants’ goal was to select the stimuli that yielded points most consistently or
in larger amounts. This is clearly a simplification of the reality, in which participants
likely had multiple, perhaps even conflicting goals (e.g., finishing the experiment as fast
as possible, minimizing motor movements, choosing aesthetically pleasing stimuli, and
so on) that a complete account of participants’ learning should account for [58]. In
reality, participants’ goals — even in simple tasks such as the ones described above — are
also likely more nuanced than simple binary signals of whether the best available option
was selected. These subtleties, while important, do not contradict our central message:
that the prospect of achieving one’s goals is key to the calculation of reward. Indeed, if
it were possible to access the host of goals individual participants set for themselves
when making a single task-related decision, absolute rewards may cover a less important
role than previously thought in shaping behavior beyond their contribution to attaining
goal-contingent outcomes. A major challenge for future research will be developing
computational methods to infer goals and account for their contribution to the
calculation of value.

In sum, we have illustrated how the context-dependent valuation of outcomes that is
known to occur in human learners can be accounted for by a reinforcement learning
model that combines externally delivered reinforcers with internally generated signals of
goal attainment. Our re-analysis of three published data sets has provided evidence that
such an intrinsically enhanced model can explain behavior similarly to range adaptation
mechanisms, which have proven successful in the past. Moreover, by examining an
additional experimental design, we show that the intrinsically enhanced reinforcement
learning model captures behavioral findings better than other competitors. Lastly, by
qualitatively disentangling range adaptation and intrinsically enhanced mechanisms, we
have shown evidence for the superiority of the latter in predicting and explaining
context-dependent effects in human participants. Our findings point towards greater
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recognition of internal signals of rewards in formal theories of human reinforcement
learning. By accounting for intrinsically generated rewards, extensions of the
reinforcement learning framework may lead to better models of context-dependence
outcome valuation and beyond.

Materials and methods

Ethics statement

The experimental protocol was approved by the Institutional Review Board at the
University of California, Berkeley (approval number 2016-01-8280) and conducted
according to the principles expressed in the Declaration of Helsinki. For new data
collection, formal, written consent was obtained from participants via an online form.

Existing data sets

We used data and task structures originally collected and developed by [12] (B21), [11]
(B18), [|14] (G12), and [13] (B22). The key information about each dataset is
summarized in Tables [l and [SI. Readers interested in further details are referred to the
original reports. Additionally, we designed a new experimental paradigm (M22) to
address the distinction between intrinsically enhanced and range adaptation models
more directly, the details of which are reported below.

Original experiment (M22)

Our original experiment was specifically designed to differentiate between the
intrinsically enhanced and range adaptation models. The study was preregistered, and a
pilot experiment was conducted. Preregistration and pilot results are available at
https://osf.io/2sczg/.

Task design

The task design for M22 was inspired by |13] but adapted in order to distinguish
between the range adaptation model and the intrinsically enhanced model. After
reading the instructions and completing one or multiple training sessions (12 trials each)
until they reached at least 60% accuracy, participants started the learning phase of the
task, during which they were presented with a total of six stimuli belonging to two
different contexts. Stimuli from the two contexts were presented in an interleaved
fashion. On each trial, stimuli were presented either in pairs or in groups of three,
always from the same context, and participants were asked to indicate their preference
by clicking on the chosen symbol. They then viewed the outcome of all available
options, including the selected one — the latter surrounded by a square. Outcomes were
drawn from a Gaussian distribution with a variance of 4 and a mean of 14, 50, or 86
(each mean being associated with a different stimulus in a given context). The specific
values were chosen based on the following criteria 1) matching [13] as closely as possible,
2) model simulations showing maximal differences in predictions between the models,
and 3) piloting results. Options in the first context — stimuli L1, My, and H; for low,
medium, and high-value options of the first context — were presented in one of the
following combinations, 20 times each: L; vs. M; vs. Hy, Ly vs. My, and Ly vs. Hy.
Options in the second context — stimuli Lo, My, and Hs — were presented in one of the
following combinations, 20 times each: Ly vs. My vs. Hy, My vs. Hy, and Lo vs. Ho
(see Fig @ Stimuli were randomly generated identicons as provided at
https://github.com/sophiebavard/online_task. The total number of trials in the
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https://osf.io/2sczg/
https://github.com/sophiebavard/online_task

learning phase was thus 120. Whether each item was positioned on the left, right, or
center of the screen was randomly determined on each trial. In the test phase, all
possible pairs of options, including pairs of items across the two contexts and other
combinations that were never shown before, were presented 4 times each, yielding a
total of 60 trials. At the end of the experiment, participants also explicitly reported
their estimates for the value of each stimulus, 4 times each for a total of 24 trials. Trial
timing was identical to [13].

Participants

Fifty participants (age M = 27.94 £+ 0.75, age range = 18-40, 32% female) were
recruited from the online platform Prolific (http://www.prolific.co), completed the
experiment from their own devices, and were compensated $6.00 for their time (around
20 minutes, on average). Participants were incentivized to perform optimally in the task
by informing them that the total number of points they obtained would be recorded.
Following [13], no exclusion criteria were applied. A replication sample was recruited
from the university’s pool of participants (N=55, as opposed to the preregistered aim of
50, due to overestimating the participants’ drop-out rate; Text). We also ran an
additional control experiment that encouraged participants to view stimuli of the same
type as belonging to the same context, even when one of the three options was
unavailable (M22B; N=50, |S2| Text). Here, unavailable options were visible but
unresponsive, rather than hidden Fig). The University of California, Berkeley’s
institutional review board approved the study.

Behavioral analyses and hypotheses

We ensured that participants understood the task and learned option values
appropriately by comparing the rate at which they selected the best option on each trial
to chance levels using a single-sample t-test.

We compared test phase choice rates for the mid-value option of the first context of
stimuli (M;) to the mid-value option of the second context of stimuli (Ms) through a
paired t-test. Following the predictions made by the intrinsically enhanced model, we
expected that the M; option would be selected more often than the My option.

In addition, we used t-tests to compare choice rates for test phase trials in which
participants were presented with specific pairs of stimuli. In particular, we predicted
that participants would select My over My on trials in which the two options were
pitted against each other. Moreover, a secondary prediction was that correct choice
rates would be higher for trials in which M; was pitted against L.; or Ly than trials in
which My was compared to Ly or Ly. By contrast, the intrinsically enhanced model
predicts that correct choice rates would be higher for trials in which My was presented
with H; or Hs than those in which M; was compared to H; or Hs.

We additionally used paired t-tests to compare the average explicit ratings for My
versus Ms in the last phase of the experiment. We predicted that participants would
rate M; higher than Ms, following the intrinsically enhanced model.

Models
Base mechanisms

All models shared the same basic architecture of a simple reinforcement learning

model [3§]. Each model learned, through trial-by-trial updates, the expected value (Q)
of each chosen option (¢) within a set of stimuli (s), and over time learned to choose the
option with higher @) most often. Q-value updates followed the delta rule [27], according
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http://www.prolific.co

to which the expected value of the option chosen on a given trial (¢) is updated as:

Qi+1(5,¢) = Qi(s,¢) + ac - Oc (3)

where a, is the learning rate for chosen options and d., is the reward prediction error
for the chosen option on a given trial, calculated upon receipt of feedback (r) for that
option as:

5c,t =Tct — Qt(sa C) (4)

When complete (i.e., counterfactual) feedback was available, the expected value of the
unchosen option was also updated according to the same rule, but with a separate
learning rate () to account for potential differences in how feedback for chosen versus
unchosen options is attended to and updated:

Qi+1(8,u) = Qt(s,u) + Qo+ St (5)
6u,t =Tu,t — Qt (8, u) (6)

Given the Q-value of each option in a pair of stimuli, participants’ choices were modeled
according to the softmax function, such that the probability of selecting a stimulus on
trial ¢ (P;(s,c)) was proportional to the value of the stimulus relative to the other

options as given by:
exp(B - Qu(s,¢))

> exp(B - Qu(s, ci))

Here, 3 represents the inverse temperature: the higher the value of 3, the closer a
participant’s choice leaned towards the higher value option on each trial [26]. All models
had separate 8s for the two stages of the task (Bjeqrn and Biest)-

Q-values were initialized at 0. All outcomes were divided by a single rescaling factor
per experiment to be between [-1, 1] if negative outcomes were present, or between [0, 1]
if outcomes were in the positive range, to allow comparison of fit parameters (in
particular 3) across models. For example, rewards were divided by 10 (for B21) or 100
(for B22 and M22). Note that this is simply a convenient reparameterization, not a
theoretical claim — it is mathematically equivalent to a model where the outcome is not
rescaled, the goal intrinsic value is equal to the maximum possible extrinsic reward, and
[ is divided by the same scaling factor.

A model with a fixed learning rate of 1 and counterfactual learning was also
implemented to capture the possibility that at least some of the participants were
following a “win-stay/lose-shift” strategy, i.e., sticking to the same option after a win
and shifting to the alternative after a loss [31].

Additional candidate models were the range adaptation model, the intrinsically
enhanced model, and the hybrid actor-critic model. Range adaptation models capture
the hypothesis that, when learning to attribute value to presented options, people are
sensitive to the range of all available options in a given context. Intrinsically enhanced
models capture the idea that participants may compute rewards not only based on the
objective feedback they receive, but also on a binary, intrinsically generated signal that
specified whether the goal of selecting the relatively better option was achieved. When
the task design included loss avoidance, as well as gain trials (i.e., both negative and
positive outcomes), intrinsically enhanced and range adaptation models had separate
learning rates (tgqins and Qoss avoidance) for the two conditions to account for potential
differences between reward and punishment learning [59,/60]. The hybrid actor-critic
model was included for completeness, as it was able to capture behavior best (including
maladaptive test choices) in [14], but is not the main focus of our analysis. Next, we
explain how each of these additional models was built. Additional variants of each
model were initially tested, and later excluded due to their lesser ability to capture
participants’ behavior (S3| Text).

Py(s,c) = (7)
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Range adaptation models

The range adaptation model [12] rescales rewards based on the range of available
rewards in a given context (maximum, 7,,4,, and minimum, 7,,;,, values of the
observed outcomes in a given set of stimuli, s), and uses these range-adapted rewards
(rr) to update @-values on each trial:

T Tmin(S)
= rma;v(s) - rmzn(s) (8)

Note that in [12], after being initialized at zero, rmqq. and rp,;, are updated on each
trial in which r is larger or smaller than the current value, respectively. The update of
these range adaptation terms is regulated by a learning rate c... In our modeling
procedures, this additional parameter added unwarranted complexity and penalized the
model. Therefore, we make the assumption that participants know the maximum and
minimum outcome available in each context, based on the idea that these values are
learned early on in the experiment. This assumption also prevents division by null
values. In experiments with complete feedback, previous models have similarly assumed
that participants update each context’s minimum and maximum value at the first
presentation of non-zero values |11]|. For data sets in which up to three bandits could be
presented in the same trial, an additional parameter, which we call z (w in [13]), was
used to rescale mid-value options non-linearly. This was done in accordance with the
finding that, in behavioral experiments, participants’ estimates (both implicit and
explicit) of mid-value options were closer to the estimates for the lowest-value option
than to those for the highest-value option |13]|. This is achieved via range adaptation by
simply elevating the rr value to the power of the free parameter z:

= (s ) ®)

Intrinsically enhanced model

Intrinsically enhanced models combine the feedback from each trial with a binary,
internally generated signal. Given the reward on the chosen (7. ;) and unchosen options
(ru,e) on trial ¢, the intrinsic reward for the chosen option (ir.;) was computed as
follows:
0, ifr r s) or (ry¢ is known and 7. < 7
irc,t _ { c,t 7é maw,t( ) ( u,t c,t u,t) (10)

1, otherwise

Thus, ir.: was equal to 0 when r.; was either different from the maximum available
reward or less than r, , (if the latter was known), and 1 when r.; was either equal to
Tmag, O better than r, ; (if the latter was known). On trials with complete feedback, a
counterfactual reward for the unchosen option (ir, ) was also computed according to
the same principles:

s = {0, if Tyt # Tmaw,t(8) or (T is known and r¢y > ry) (11)

1, otherwise

The terms r and ir were combined to define an intrinsically enhanced outcome (ier)
used to update @ values. A weight (w) determined the relative contribution of rs and
irs to iers:

teres =w - ires + (1 —w) - 7oy (12)
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such that Eq[4] and Eq [6] became, respectively:
5c,t = ierc,t - Qt(sa C) (13)

5u,t = Z.e""u,t - Qt(s7 u) (14)

For experiments in B21 in which participants received feedback during the test
phase, the model was endowed with ws for the two stages of the task (wWjeqrn and wiest),
as we found that this improved the fit.

Hybrid actor-critic model

The hybrid actor-critic model combined a Q-learning module and an actor-critic
module [14]. The Q-learning module was identical to the basic RL architecture
described above, except for having the same § parameter for both the learning and
testing phase. This modification was intended to trim down model complexity. The
hybrid actor-critic module comprised a “critic”, which evaluates rewards within a given
context, and an “actor”, which chooses which action to select based on learned response
weights. Prediction errors updated the critic’s evaluations, as well as the actor’s action
weights. This allowed the actor to learn to select options without needing to represent
their value explicitly. On each trial of the learning phase, the critic updated the value V'
of a given context based on:

V;erl(S) = ‘/;5(5) + Qeritic 5V,t (15)

6V,t = Oc,t — ‘/t(S) (16)

where aeritic is the critic’s learning rate. The actor’s weights for the chosen option W
were updated and then normalized (to avoid division by a null value) through the
following rules:

Wt+1(57 C) = Wt(S, C) + Qactor * 6V,t (17)

Wt (8, C)
Wisi(s,¢) = =——7—— (18)
i IWi(s, ¢

As for the other models, actions were selected through a softmax. The values entered in
the softmax function were a combination of the Q-learner’s estimates and the actor’s
weights. A variable h controlled the influence of Q-learner values on the actor’s decisions,
such that the higher the value of h, the higher the impact of Q-values on choices:

Ht_‘_l(S,Ci) = (1 — h) . Wt(S,Ci) + h - Qt(S,Ci) (19)

where H is the hybrid value upon which the actor’s choices are based. In this model, o, +
was either the reward obtained on a given trial, or, for experiments where both gains
and losses were possible, a function of the reward controlled by the additional loss
parameter, d:
1—-d, ifre; >0
0ct =40, ifree=0 (20)
—d, if Tet < 0

such that for d = 0 negative outcomes were completely neglected, for d = 1 positive

outcomes were completely neglected, and for d = 0.5 the two types of outcomes were
weighed equally. This transformation was performed for unchosen outcomes as well,

whenever complete feedback was available.
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Ex-ante simulations

For data sets B22 and M22, we performed ex-ante (i.e., before obtaining any data)
simulations of the expected behavior using the intrinsically enhanced and the range”
models by drawing 100 sets of parameters from the following distributions. As in
Bavard and Palminteri’s [13| work, we sampled the 8 parameter (inverse temperature)
from a Gamma(1.2, 0.2) distribution and the o parameter (learning rate) from a
Beta(1.1,1.1) distribution. The z parameter for the range adaptation model was drawn
from a Gamma(3, 3) distribution (which has a mean of 1, a lower bound at 0 and no
upper bound), and the w parameter (for the intrinsically enhanced model) was drawn
from a Beta(2, 2) distribution (which has a mean of 1, a lower bound at 0 and an upper
bound at 1).

Model fitting and validation procedures

Models were fit via the hierarchical Bayesian inference (HBI) method as introduced by
Piray et al. [30]. This statistical tool estimates parameters hierarchically by
characterizing a population-level distribution from which individual values are drawn,
while simultaneously comparing candidate models. HBI has been shown to provide
more robust parameter estimates than more common methods (which are more prone to
overfitting), and is less likely to favor overly simplistic models during model
comparison [30].

All priors were set with a mean of 0 and a variance of 6.25. Inverse temperatures (/)
and the range model’s z parameter were then transformed through an exponential
function while all other parameters were transformed via a sigmoid function so as to be
constrained between 0 and 1 (as is standard practice [30]). The HBI fitting pipeline
involves two steps: first, the best-fitting parameters are estimated via Laplacian
approximation (independent of the model space; [61]); second, Laplacian estimates are

adjusted based on the likely contribution of each model for each participant’s behavior.

Parameters obtained via Laplacian approximation were used for the simulation step as
HBI parameters are not always reliable for non-winning models [30]. Each subject’s
behavior was simulated 10 times with the same sequence of stimuli that was displayed
to real participants. We report protected exceedance probability, which measures, for
each proposed model, the probability that it is most commonly expressed in the studied
population while ensuring that any difference in frequency among proposed models is
statistically significant, and is thus a more conservative version of exceedance
probability [62]. We also report each model’s average responsibility, i.e., the probability
that each model is responsible for generating each subject’s data. In comparing
candidate models, we also included at least one simpler strategy, compared to models of

interest, to capture some of the variability, as this has been shown to improve HBI [30].

Data were fit to both the learning and test phases. In M22, we confirmed that fitting to
only the learning phase did not change results and that phase-specific temperature
parameters (fs) improved fit.

A prerequisite for drawing conclusions from the model fitting procedure is that at
least the key models of interest are identifiable. To ensure that this was the case within
our data sets, we computed and interpreted confusion matrices for each of them [28].
For each dataset (excluding B22, since no data was available to us at the time of
writing), this was achieved by retrieving the best-fit parameters for a given model, using
them to simulate a new dataset, and fitting all models on the simulated dataset. The
same procedure was then repeated for all proposed models. To ensure that simulation
results were replicable, for data sets B18 and G12 (N = 60 and N = 75, respectively),
double the original amount of participants were simulated; for M22 (N = 50), four times
the amount of participants were simulated. For each fitting step, we report the model
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frequencies (i.e., the proportion of participants for which each model provided the best
fit) and exceedance probabilities extracted from the HBI results. Across data sets B21,
B18, and G12, the true model was recovered more often than chance (i.e., 0.20 given
that five models were compared simultaneously), with the lowest correct model recovery
probability being 0.53 and all correct exceedance probabilities being 1 —C Fig).
Model recovery was also satisfactory for the M22, M22R, and M22B data sets, with the
true model being recovered more often than chance (i.e., 0.33) in all cases, the lowest
correct model recovery probability being 0.55 and all correct exceedance probabilities
being 1 Fig). The best-fitting parameters for the intrinsically enhanced model are

reported in [S§] Figs.
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Supporting Information

Supporting tables, text, and figures are available at https://journals.plos.org/
plosbiology/article?id=10.1371/journal.pbio.3002201#sec044.

Table S1 Extended summary information for each of the data sets used for
data analysis and/or modeling. Previously collected data sets were originally
reported by [12] (B21), [11] (B18), |14] (G12), |13] (B22). For each dataset experiment
we used (“Exp.”), we report: the rewards and probabilities associated with each context
and bandit, as well as their expected value (EV); the key comparisons for which
participants show irrational behavior, or for which models make specific predictions;
whether feedback was partial or complete (i.e., including counterfactual) during
learning; whether feedback was partial, complete, or absent during testing; whether
bandit pairs were presented in a blocked or interleaved manner; whether there was a
difference in the absolute magnitude of reward across bandit pairs (“Mag. A”); whether
the task included negative outcomes (“Loss”); and the total number of participants in
each original experiment (“N”).

Fig S1 Learning phase performance in M22. Participants learned to
discriminate the correct option across bandit combinations in the learning phase. Data

and analysis scripts underlying this figure are available at https://osf.io/sfnc9/.

Text S1 Replication study (M22R) description.
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Fig S2 Results from the independent replication of study M22 (M22R). As
in the main study (M22), behavioral results and computational modeling support the
intrinsically enhanced model. (A) During the test phase, the mid-value option of
context 1 (darker grey) was chosen more often than the mid-value option of context 2
(lighter grey), a pattern that was also evident in the intrinsically enhanced model’s, but
not the range” model’s behavior. (B) Difference in test phase choice rates between
stimulus M; and My. (C) When the two mid-value options were pitted against each
other, participants preferred the one from context 1. When either was pitted against a
low-value option, participants selected the mid-value option from context 1 more often
than the mid-value option from context 2. When either was pitted against a high-value
option, participants selected the high-value option from context 1 less often than the
high-value option from context 2. The dotted line indicates chance level (0.5) All these
behavioral signatures were captured by the intrinsically enhanced, but not the range
adaptation model. (C) Difference between M; and My in the proportion of times the
option was chosen when compared to either Ly or Ly. (E) Participants explicitly
reported the mid-value option of context 1 as having a higher value than the mid-value
option of context 2. (F) Differences in explicit ratings between option My and Ms. (G)
Model fitting favored the intrinsically enhanced model. Data and analysis scripts
underlying this figure are available at https://osf.io/sfnc9/.

Fig S3 Learning phase performance in the M22 replication study (M22R).
Participants learned to discriminate the correct option across bandit combinations in
the learning phase. Data and analysis scripts underlying this figure are available at
https://osf.io/sfnc9/.

Text S2 Control study (M22B) description.

Fig S4 Task structure for experiment M22B. In M22B, unavailable options were
made more opaque and unselectable, but not completely invisible as was the case in
M22 and M22R. The two tasks were otherwise identical.

Fig S5 Results from the control study for M22 (M22B). As in the main study
(M22) and the replication (M22R), behavioral results and computational modeling
support the intrinsically enhanced model. See|S2|Fig for caption details. Data and
analysis scripts underlying this figure are available at https://osf.io/sfnc9/.

Fig S6 Learning phase performance in the M22 control study (M22B).
Participants learned to discriminate the correct option across bandit combinations in
the learning phase. Data and analysis scripts underlying this figure are available at
https://osf.io/sfnc9/.

Fig S7 Confusion matrices illustrating model recovery across data sets. The
upper row in each subplot shows model frequencies, the lower row shows protected
exceedance probabilities. Model name abbreviations: IE = intrinsically enhanced, HAC
= hybrid actor-critic, RL = unbiased, WSLS = win-stay/lose-shift. Data and analysis
scripts underlying this figure are available at https://osf.io/sfnc9/.

Fig S8 Best fit parameters for the intrinsically enhanced model in B21.
Note that a,, could only be fit in experiments with counterfactual feedback, and wyest
could only be fit in experiments with counterfactual feedback at testing, and are
therefore left at the initial prior. Abbreviations: the first letter in each triplet indicates
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whether feedback was partial (P) or complete (C) during learning; the second letter
indicates whether feedback in the test phase was partial (P), complete (C), or not
provided (N); the third letter indicates whether the experimental design was interleaved
(I) or blocked (B). Error bars indicate the S.E.M. (B) Model responsibilities overall and
across experimental conditions. Computational modeling scripts used to produce this
figure are available at https://osf.io/sfnc9/.

Fig S9 Best fit parameters for the intrinsically enhanced model in B18.
Computational modeling scripts used to produce this figure are available at
https://osf.io/sfnc9/.

Fig S10 Best fit parameters for the intrinsically enhanced model in G12.
Computational modeling scripts used to produce this figure are available at
https://osf.io/sfnc9/.

Fig S11 Best fit parameters for the intrinsically enhanced model in M22.
Computational modeling scripts used to produce this figure are available at
https://osf.io/sfnc9/.

Fig S12 Best fit parameters for the intrinsically enhanced model in the
M22 replication study (M22R). Computational modeling scripts used to produce
this figure are available at https://osf.io/sfnc9/.

Fig S13 Best fit parameters for the intrinsically enhanced model in the
control study for M22 (M22B). Computational modeling scripts used to produce
this figure are available at https://osf.io/sfnc9/.

Fig S14 The w parameter from the intrinsically enhanced model was
significantly correlated with key behavioral signatures of context-sensitive
learning. (A) In B21, wjeqrn correlates with the error rate in context 8 (choosing a
bandit with EV = 0.75 vs. one with EV = 2.5. (B) In B18, w correlates with the
average error rate when choosing between a bandit with EV = 0.075 vs. one with EV =
0.25, and between a bandit with EV = -0.025 vs. one with EV = 0.025. (C) In G12, w
correlates with the average error rate when choosing between a bandit with EV = -0.1
vs. one with EV = 0.1, and between a bandit with EV = -0.2 vs. one with EV = 0.2.
(D-F) In M22, M22R, and M22B, w correlates with the difference in choice rates for
bandits My and My (both had EV = 50). Spearman’s p is reported for each correlation.
All behavioral biases were measured in the test phase. Computational modeling scripts
used to produce this figure are available at https://osf.io/sfnc9/.

Text S3 Preliminary model selection information.

Fig S15 Adding an a,.ng. parameter in the range adaptation model does
not increase its responsibility. Model validation (A) and comparison (B) by
experimental condition in B21 with cgnge in the range adaptation model. Here, the
range adaptation model was endowed with an &;.qng. parameter, which dynamically
updated the minimum and maximum value of each context, as was done in the original
study for data set B21 |12]. The addition of this parameter disadvantaged the range
model (in teal) compared to the intrinsically enhanced model (in purple). See Fig for
caption details. Data underlying this figure are available at
https://github.com/hrl-team/range/. Computational modeling scripts used for the
illustrated results are available at https://osf.io/sfnc9/.
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