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Abstract

When observing the outcome of a choice, people are sensitive to the choice’s context,
such that the experienced value of an option depends on the alternatives: getting $1
when the possibilities were 0 or 1 feels much better than when the possibilities were 1 or
10. Context-sensitive valuation has been documented within reinforcement learning
tasks, in which values are learned from experience through trial and error. Range
adaptation, wherein options are rescaled according to the range of values yielded by
available options, has been proposed to account for this phenomenon. However, we
propose that other mechanisms – reflecting a different theoretical viewpoint – may also
explain this phenomenon. Specifically, we theorize that internally defined goals play a
crucial role in shaping the subjective value attributed to any given option. Motivated by
this theory, we develop a new “intrinsically enhanced” reinforcement learning model,
which combines extrinsically provided rewards with internally generated signals of goal
achievement as a teaching signal. Across seven different studies (including previously
published data sets as well as a novel, preregistered experiment with replication and
control studies), we show that the intrinsically enhanced model can explain
context-sensitive valuation as well as, or better than, range adaptation. Our findings
indicate a more prominent role of intrinsic, goal-dependent rewards than previously
recognized within formal models of human reinforcement learning. By integrating
internally generated signals of reward, standard reinforcement learning theories should
better account for human behavior, including context-sensitive valuation and beyond.

Introduction 1

When selecting among multiple alternatives, the subjective values of available options 2

and their neural correlates tend to scale as a function of the range of other options in 3

the choice set [1–6]. For example, imagine walking to an ice cream cart that normally 4

sells two flavors: chocolate, your favorite, and vanilla. After excitedly ordering a scoop 5

of chocolate, you discover that they are now also selling pistachio ice cream, which you 6

like even more. Suddenly your satisfaction with your order drops, despite the fact that 7

the objective value of the chocolate ice cream has not changed. This example illustrates 8

the phenomenon that subjective valuation depends on what other options are available, 9

which we refer to here as context-sensitive valuation. First documented when option 10

values are explicitly known, context-sensitive valuation is also evident when participants 11

learn from experience through trial and error [7, 8]. 12
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Context-sensitive valuation is argued to be adaptive. Given the limited size of the 13

brain’s neuronal population and the individual neurons’ firing capacities, responding to 14

stimuli in relative terms can improve the signal-to-noise ratio [9, 10]. However, 15

context-sensitive valuation can also result in irrational behavior when options are 16

presented outside of their original context [7, 11–17]. For instance, if option P 17

probabilistically results in +1 or 0 points and option N in 0 or -1 points, most rational 18

theories predict that human subjects should select P over N, no matter the probabilities. 19

Nonetheless, humans reliably tend to select option N over P when the negative option 20

N was initially encountered as the best option in its context and the positive option P 21

was encountered as the worst option in its own context ( [11, 14]; see e.g. Fig 3A and 22

4A). An outstanding question, then, regards the computational mechanisms that result 23

in these behavioral patterns. 24

Range adaptation has been proposed as the functional form of context-sensitive 25

valuation. It assumes that options are rescaled according to the minimum and 26

maximum option value in a given context [13]; this range may be learned over time [12], 27

or acquired immediately for a given context [11]. Returning to the ice cream example, 28

range adaptation would result in the rescaling of the value of chocolate according to the 29

known minimum (your liking of the vanilla flavor) and maximum (your liking of 30

pistachio) – resulting still in a positive, but blunted response to your order (Fig 1 top). 31

Range adaptation enables more efficient learning within fixed contexts, but can lead to 32

irrational preferences once outcomes are presented in novel contexts – as data from 33

human participants consistently shows [11–13,17]. 34

However, we argue that context-sensitive valuation could also be explained by a 35

simpler heuristic mechanism: that reaching one’s goal is intrinsically valuable, 36

independently of external rewards. In the example above, this simple heuristic results in 37

a similar effect to range adaptation, but through a separate cognitive process. If your 38

goal walking to the ice cream cart is to get the best possible ice cream, the subjective 39

reward after ordering chocolate when pistachio was available could be accounted for by 40

a mixture of your goal-independent evaluation of chocolate and a sense of having failed 41

your goal (Fig 1 top). A long-established construct in the realm of social and 42

personality psychology [18], goals have recently attracted the attention of cognitive 43

computational psychologists and neuroscientists, who have recognized their central role 44

in defining the reward function in reinforcement learning [19–21]. Recent findings 45

support this hypothesized role. In one experiment, McDougle and colleagues [22] 46

showed that even abstract, one-shot encoded goals can be endowed with value and 47

contribute to value-learning neural signals. Moreover, Juechems et al. [23] found that 48

rewards were encoded in a goal-dependent manner in the anterior cingulate cortex while 49

people were assessing whether to accept a task-relevant offer. Furthermore, the extent 50

to which an outcome aligns with the current goal dominates the neural representation of 51

value beyond absolute rewards [19,24]. These results validate the general notion that, in 52

humans, the computation of value can be flexibly shaped through cognitive control 53

according to current goals [19, 25]. These findings call for an integration of goals into 54

outcome evaluations. 55

Here, we develop a computational model that represents a novel account of 56

context-sensitive valuation based on the notion of goals as intrinsic rewards, and their 57

centrality to value estimation. Our “intrinsically enhanced” model assumes that 58

participants weigh both the absolute outcome experienced (“extrinsic reward”, a 59

unidimensional scalar) and an internally generated signal of goal achievement (a binary 60

“intrinsic reward”, in the same scale as the extrinsic reward) when learning. We show 61

that intrinsically enhanced reinforcement learning can explain the results of three 62

previously published data sets (totaling 935 participants) as well as range adaptation 63

models. Moreover, we find that the intrinsically enhanced model behaves more 64
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Fig 1. Top: The same outcome (getting chocolate ice cream) can lead to very different
feelings of reward depending on the alternatives available at the time of choice. When
chocolate is the best available option, it feels rewarding to get that flavor of ice cream,
but when a better flavor (pistachio) is available, the feeling of reward for chocolate is
dampened. This phenomenon may be explained through the intrinsic enhancement of
absolute rewards based on goal achievement or failure (purple) or through a range
adaptation mechanism (teal). In this situation, the two models make similar predictions
but capture different cognitive processes. Bottom left: In a reinforcement learning
task, different outcomes (1 and 0.1) may feel similarly rewarding within their contexts
when compared to a baseline (0) despite having different numeric values. Bottom

right: The same outcome (0) may feel different in different contexts, where it is
compared to different outcomes (1 and -1).

consistently with real participants in a fourth experimental design, compared to range 65

adaptation. Finally, we test distinctive predictions of the intrinsically motivated model 66

in a novel, preregistered experiment. Our results in the latter – which we fully replicate 67

in an independent sample and a control experiment – show that the intrinsically 68

enhanced model captures behavior better than range adaptation. 69
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Results 70

Candidate computational mechanisms 71

The aim of this study is to compare the explanatory power of range adaptation models 72

to a newly proposed “intrinsically enhanced” model of context-sensitive valuation. Both 73

models are based on a standard reinforcement learning (RL) architecture, where the 74

feedback received on each trial is compared to the predicted outcome to update the 75

estimated value of available options. On each trial, this model chooses one of the 76

available options based on their estimated value according to the softmax function [26]. 77

Over time, a basic RL that updates value estimates via the delta rule can learn the 78

optimal policy [27]. In updating the estimated value of each option, a standard, 79

unbiased RL model equates reward with the objective outcome (r) associated with a 80

given option. 81

While this simple algorithm is generally quite powerful, it cannot explain 82

context-sensitive valuation. To account for the effects observed in humans, [12] 83

proposed a range adaptation model which rescales outcomes according to the range of 84

values yielded by other options. This range-adapted reward (rr) is obtained by 85

subtracting the minimum value of a context (s) from the experienced outcome (r) and 86

dividing this term by the difference between the maximum and the minimum outcome 87

of the given context (rmax(s) and rmin(s), respectively): 88

rrt =
rt � rmin(s)

rmax(s)� rmin(s)
(1)

We propose a different kind of subjective outcome that accounts for the importance 89

of goals. Specifically, we assume that subjective outcomes reflect a mixture of the 90

extrinsically provided reward (i.e., the objective outcome associated with a certain 91

option) and a binary (“all-or-nothing”), internally generated signal (ir) that informs the 92

agent of whether it has chosen the best option it could (thereby reaching its “goal”). 93

This is calculated by comparing the outcome of the chosen option to the outcome of 94

other options in the same context (either by taking counterfactual outcomes into account 95

or by retrieving them from memory). A mixture parameter (!) regulates the extent to 96

which each component contributes to the overall intrinsically enhanced reward (ier): 97

iert = ! · irt + (1� !) · rt (2)

“Intrinsically enhanced” and range adaptation models make similar qualitative 98

predictions in most experimental settings, but they capture vastly different theoretical 99

interpretations of the underlying phenomenon. Adjudicating which model best fits 100

human behavior is thus an important step for understanding how context dependencies 101

emerge in reinforcement learning and decision-making. To do so, we use quantitative 102

model comparison [28] and posterior predictive checks, qualitatively comparing how well 103

models capture behavioral patterns in the data [29]. 104

We used hierarchical Bayesian inference [30] to fit and compare the two models of 105

interest. We also compare to other competing models, such as a hybrid actor-critic 106

model that successfully captured context-sensitive behavior in previous experiments [14]; 107

and simpler models, such as a “win-stay/lose-shift” policy [31]. We ensure in each 108

experiment that the different models are identifiable (see S7 Fig). Details about model 109

implementation for each candidate mechanism are available in the Materials and 110

methods alongside information about model fitting and comparison. 111
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Data sets and experimental designs 112

Seven data sets and/or experimental designs in total were used for analysis. Three were 113

previously published [11, 12, 14], one was a task described in a pre-print [13], one was an 114

original study (M22), one was a replication of M22 (M22R), and one was a control 115

version of M22 (M22B). Experimental designs differed in the exact task structure and 116

reward contingencies, but all involved a learning phase, during which stimuli and their 117

outcomes were presented within fixed contexts (e.g. the same pair or triplet of options), 118

and a test phase in which options were presented in novel pairings. The key features of 119

each data set (e.g. reward contingencies of each option) are summarized in Table 1. 120

More detailed information about each data set and task design is reported in S1 Table. 121

Table 1. Summary information for each of the data sets used for data

analysis and/or modeling.

N Context Stimuli Most frequent reward Probabilities EV

B21 800
1, 2 [A, B], [C, D] [10, 0] [0.75, 0.25] [7.5, 2.5]
3, 4 [E, F], [G, H] [1, 0] [0.75, 0.25] [0.75, 0.25]

B18 60

1 [A, B] [1, 0] [0.75, 0.25] [0.75, 0.25]
2 [C, D] [0.1, 0] [0.75, 0.25] [0.075, 0.025]
3 [E, F] [0, -1] [0.75, 0.25] [0, -0.25]
4 [G, H] [0, -0.1] [0.75, 0.25] [-0.025, -0.075]

G12 75

1 [A, B] [1, 0] [0.9, 0.1] [0.9, 0.1]
2 [C, D] [1, 0] [0.8, 0.2] [0.8, 0.2]
3 [E, F] [0, -1] [0.9, 0.1] [0.9, 0.1]
4 [G, H] [0, -1] [0.8, 0.2] [0.8, 0.2]

B22 50

1 [A, B] [14±2, 50±2] [1, 1] [14, 32]
2 [C, D, E] [14±2, 32±2, 50±2] [1, 1, 1] [14, 32, 50]
3 [F, G] [14±2, 86±2] [1, 1] [14, 86]
4 [H, I, J] [14±2, 50±2, 86±2] [1, 1, 1] [14, 50, 86]

M22 50
1 [L1, M1, H1] [14±2, 50±2, 86±2] [1, 1, 1] [14, 50, 86]
2 [L2, M2, H2] [14±2, 50±2, 86±2] [1, 1, 1] [14, 50, 86]

Previously collected data sets were originally reported by [12] (B21), [11] (B18), [14] (G12), and [13] (B22).
For each dataset experiment we used, the rewards and probabilities associated with each context and
stimulus of the learning phase, as well as their expected value (EV) are reported. The total number of
participants in each original experiment (N) is also shown.

Data set B21: Bavard et al. [12] 122

Task structure 123

The data used for the first set of analyses was collected by Bavard and colleagues [12]. 124

The experiment involved eight variants of the same task, and each participant only 125

completed a single variant. One hundred participants were recruited for each of the eight 126

variants of the task (800 in total). The task comprised a learning phase and a test phase 127

(120 trials each). Within the learning phase, participants viewed four different pairs of 128

abstract stimuli (contexts 1-4) and had to learn, for each pair and by trial and error, to 129

select the stimulus that yielded a reward most often. Within each pair of stimuli, one 130

yielded a reward 75% of the time, the other one 25% of the time. Possible outcomes 131

were 0 or 10 in half of the pairs, and 0 or 1 in the rest of the pairs. Pairs of stimuli thus 132

had differences in expected value (�EV) of either 5 or 0.5. During the test phase, 133

stimuli were recombined so that items associated with maximum outcomes of 10 were 134

pitted against items associated with maximum outcomes of 1, yielding pairs with �EVs 135
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of 6.75, 2.25, 7.25, and 1.75 (contexts 5-8). Each variant of the task was characterized 136

by whether feedback was provided during the test phase, the type of feedback displayed 137

during the learning phase (if partial, feedback was only shown for the chosen option; if 138

complete, counterfactual feedback was also displayed), and whether pairs of stimuli were 139

presented in a blocked or interleaved fashion. The latter feature was consistent across 140

phases of the same variant. The full task details are available at [12]. 141

Summary of the behavioral results 142

Performance throughout the task was measured as the proportion of optimal choices, i.e. 143

the proportion of trials in which the option with higher expected value (EV) in each 144

pair was chosen. Participants’ performance in the learning phase was significantly 145

higher than chance (i.e., 0.5; M = 0.69 ± 0.16, t(799) = 32.49, p < 0.001), with a 146

moderate effect of each pair’s �EV such that participants performed better in pair with 147

�EV = 5.0 (0.71 ± 0.18) than in pairs with �EV = 0.5 (0.67 ± 0.18, t(799) = 6.81, p 148

< 0.001). Performance was also better than chance in the test phase (0.62 ± 0.17, 149

t(799) = 20.29, p < 0.001), but this was highly dependent on each pair’s �EV 150

(F(2.84,2250.66) = 271.68, p < 0.001). 151

Context 8 (�EV = 1.75 pair) was of particular interest, as it illustrated apparently 152

irrational behavior. Specifically, it paired a stimulus that was suboptimal to choose in 153

the learning phase (25% 10 vs. 0) with a stimulus that was optimal in the learning 154

phase (75% 1 vs. 0). However, the previously suboptimal stimulus became the better 155

one in the testing phase (having EV = 2.5, compared to EV = 0.75). 156

If participants simply learned the absolute value of these stimuli, they should select 157

the option with EV = 2.5 in the test phase. However, if participants learned the relative 158

value of each option within the pair it was presented in, they should view the EV = 2.5 159

option as less valuable than the EV = 0.75 alternative. In support of the latter, 160

participants’ selection rate of the highest EV stimulus in test trials with �EV = 1.75 161

was significantly below chance (M = 0.42 ± 0.30, t(799) = -7.25, p < 0.001; “context 8”; 162

Fig 2A). 163

Both intrinsically enhanced and range adaptation mechanisms capture 164

behavior well 165

Simulating behavior with the intrinsically enhanced model replicated participants’ 166

behavioral signatures well (Fig 2A, purple), confirming its validity [28,29]. We sought to 167

confirm that the intrinsic reward was instrumental in explaining the behavioral pattern. 168

Indeed, in the intrinsically enhanced model, the ! parameter (M = 0.56 ± 0.01) was 169

significantly correlated with signatures of context-sensitive learning, specifically, the 170

error rate in context 8 (i.e., choosing a bandit with EV = 0.75 vs. one with EV = 2.5; 171

Spearman’s ⇢ = 0.46, p < 0.001; S14A Fig). The range model also recovered behavior 172

well in most experiments, but less accurately on average (Fig 2A, teal). 173

Model comparison favors the intrinsically enhanced model 174

To quantify the difference, we fit our models via hierarchical Bayesian inference (HBI), 175

which estimates individual parameters hierarchically while comparing candidate models. 176

The model comparison step of HBI favored the intrinsically enhanced model as the most 177

frequently expressed within the studied population, even after accounting for the 178

possibility that differences in model responsibilities were due to chance (protected 179

exceedance probability = 1). While each of the alternative models also provided the 180

best fit in a fraction of the participants (model responsibilities: intrinsically enhanced = 181

0.34, range adaptation = 0.19, hybrid actor-critic = 0.20, unbiased RL model = 0.08, 182
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Fig 2. (A) Model validation by experimental condition and context with parameters
extracted through Laplacian estimation [30], showing the simulated performance yielded
by the intrinsically enhanced model (in purple) and the range adaptation model (in
teal). The participants’ data is shown in the grey bars. Contexts 1-4 refer to the
learning phase, and contexts 5-8 to the test phase. Overall, both the intrinsically
enhanced model and the range adaptation model captured participants’ behavior
relatively well, the former outperforming the latter. Abbreviations: the first letter in
each triplet indicates whether feedback was partial (P) or complete (C) during learning;
the second letter indicates whether feedback in the test phase was partial (P), complete
(C), or not provided (N); the third letter indicates whether the experimental design was
interleaved (I) or blocked (B). Error bars indicate the S.E.M. (B) Model responsibilities
overall and across experimental conditions. Data underlying this figure are available at
https://github.com/hrl-team/range. Computational modeling scripts to produce
the illustrated results are available at https://osf.io/sfnc9/.

win-stay/lose-shift = 0.19), the responsibility attributed to the intrinsically enhanced 183

model was highest (Fig 2B). 184

The intrinsically enhanced model further provides an explanation for why more 185

successful learning would lead to less optimal behavior in the test phase. Both a blocked 186

design and complete feedback would enable participants to more easily identify the 187
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context-dependent goal throughout learning, and thus rely less on the numeric feedback 188

presented to them and more on the binary, intrinsic component of reward (i.e., whether 189

the intended goal has been reached). Indeed, an ANOVA test revealed that the !learn 190

parameter, which attributes relative importance to the intrinsic signal in the learning 191

phase, was higher in experiments with a blocked design (M = 0.59 ± 0.01) than in 192

experiments where contexts were displayed in an interleaved fashion (M = 0.52 ± 0.01; 193

t(799) = 3.62, p < 0.001; S8 Fig). At the same time, the !learn parameter was higher 194

for participants who underwent the learning phase with complete feedback (M = 0.60 ± 195

0.01) than for those who only received partial feedback (M = 0.53 ± 0.01; t(799) = 4.07, 196

p < 0.001). There was no significant interaction between the two factors (t(799) = 197

-0.22, p = 0.825). 198

Data set B18: Bavard et al. [11] 199

Task structure 200

The B21 dataset is well suited to study the rescaling of outcomes within a given context 201

in the positive domain. To investigate whether the same behavior can be explained by 202

either intrinsically enhanced or range adaptation models in the negative domain, we 203

retrieved a dataset reported in [11]. Here, subjects engaged with both gain and 204

loss-avoidance contexts. In gain contexts, the maximum possible reward was either 1 205

(for one pair of stimuli) or 0.1 (for another pair of stimuli). These rewards were yielded 206

with 75% probability by selecting the better option in each pair, while the outcome was 207

0 for the remaining 25% of the time. Probabilities were reversed for selecting the worse 208

option within a given pair. Loss avoidance trials were constructed similarly, except that 209

the maximum available reward was 0 in both cases, while the minimum possible 210

outcome was either -1 (in one pair) or -0.1 (in the other pair). This design effectively 211

manipulates outcome magnitude and valence across the four pairs of stimuli presented 212

during the learning phase. All possible combinations of stimuli were then presented, 213

without feedback, in a subsequent testing phase. Data were collected on two variants of 214

this experiment, which we analyze jointly. In Experiment 1 (N=20), participants only 215

received feedback on the option they selected. In Experiment 2 (N=40), complete 216

feedback (i.e., feedback on both the chosen and unchosen option) was presented to 217

participants in 50% of the learning phase trials. Presentation order was interleaved for 218

both experiments. The full task details are available at [11]. 219

Summary of the behavioral results 220

On average, participants selected the correct response more often than chance during 221

the learning phase (t(59) = 16.6, p < 0.001), showing that they understood the task 222

and successfully learned the appropriate stimulus-response associations in this context. 223

Stimulus preferences in the test phase were quantified in terms of the choice rate for 224

each stimulus, i.e. the average probability with which a stimulus was chosen in this 225

phase. While stimuli with higher EV tended to be chosen more often than others (F(59) 226

= 203.50, p < 0.001), participants also displayed irrational behaviors during the test 227

phase. In particular, choice rates were higher for the optimal option of the 0.1/0 context 228

(EV = 0.075; M = 0.71 ± 0.03) than choice rates for the suboptimal option of the 1/0 229

context (EV = 0.25; M = 0.41 ± 0.04; t(59) = 6.43, p < 0.001). Choice rates for the 230

optimal option in the 0/-0.1 context (EV = -0.025; M = 0.42 ± 0.03) were higher than 231

choice rates for the suboptimal option of the 0.1/0 context (EV = 0.025; M = 0.56 ± 232

0.03; t(59) = 2.88, p < 0.006). These effects show that, when learning about the value 233

of an option, people do not simply acquire an estimate of its running average, but 234

rather adapt it, at least partially, based on the alternatives the option is presented with. 235
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The intrinsically enhanced model captures behavior better than the range 236

adaptation model 237

Both the intrinsically enhanced model and the range adaptation model captured the key 238

behavioral patterns displayed by participants in the test phase, with the intrinsically 239

enhanced model more closely matching their behavior than the range model (Fig 3A). 240

The intrinsically enhanced model’s ! parameter (M = 0.55 ± 0.03) was significantly 241

correlated with key signatures of context-sensitive learning (i.e., the average error rate 242

when choosing between a bandit with EV = 0.075 vs. one with EV = 0.25 and between 243

a bandit with EV = -0.025 vs. one with EV = 0.025; Spearman’s ⇢ = 0.51, p < 0.001; 244

S14B Fig), confirming the role of intrinsic reward in explaining context-sensitivity 245

effects. We note that, consistent with our findings, the winning model in [11] was a 246

hybrid between relative and absolute outcome valuation which, in mathematical terms, 247

was equivalent to the intrinsically enhanced model. However, as discussed below (see 248

Discussion), the theory behind the hybrid model presented in [11] aligns more closely 249

with the range adaptation mechanism, and the mathematical overlap only exists for 250

data set B18. 251

Fig 3. (A) Model validation by context with parameters extracted through Laplacian
estimation, showing the simulated performance yielded by the intrinsically enhanced
model (in purple) and the range adaptation model (in teal), overlaid with the data (grey
bars). The intrinsically enhanced model outperformed the range model in capturing
participants’ behavior in the test phase, although both expressed the key behavioral
pattern displayed by participants. Bars indicate the S.E.M. (B) Model responsibilities
across participants. Data underlying this figure are available at
https://github.com/sophiebavard/Magnitude/. Computational modeling scripts to
produce the illustrated results are available at https://osf.io/sfnc9/.

Model comparison slightly favors the range adaptation model 252

Range adaptation was the most frequently expressed model within the studied 253

population (protected exceedance probability = 0.70). Although the HBI pipeline has 254

been shown to avoid overpenalizing complex models [30], it is still possible that the 255

additional complexity of the intrinsically enhanced model was not sufficient to 256

compensate for its better ability to capture behavior. Nonetheless, a large proportion of 257

the participants was best fit by the intrinsically enhanced model (model responsibilities: 258

intrinsically enhanced = 0.45, range adaptation = 0.52, hybrid actor-critic = 0.03, 259

unbiased RL model = 0, win-stay/lose-shift = 0; Fig 3B). 260
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Data set G22: Gold et al. [14] 261

Task structure 262

Data sets B21 and B18 were collected by the same research group. To exclude the 263

possibility that analyses on these data sets may be due to systematic features of the 264

experimenters’ design choices, we employed a dataset collected separately by Gold and 265

colleagues [14]. This dataset comprised both healthy controls (N=28) and clinically 266

stable participants diagnosed with schizophrenia or schizoaffective disorder (N=47). 267

This allowed us to test whether our findings could be generalized beyond the healthy 268

population. In this task, four contexts were presented to participants in an interleaved 269

fashion. These contexts were the result of a 2⇥2 task design, where the valence of the 270

best outcome and the probability of obtaining it by selecting the better option were 271

manipulated. Across contexts, the best outcome in a given context was either positive 272

(“Win!”, coded as 1) or neutral (“Keep your money!”, coded as 0), and the worse 273

outcome was either neutral (“Not a winner. Try again!”, coded as 0) or negative 274

(“Loss!”, coded as -1), respectively. The better option yielded the favorable outcome 275

either 90% or 80% of the time, and yielded the unfavorable outcome either 10% or 20% 276

of the time, respectively. Following a learning phase, in which options were presented 277

only within their context and participants received partial feedback, all possible pairs of 278

stimuli were presented in a testing phase to participants, who received no feedback upon 279

selecting one of them. The full task details are available at [14]. 280

Summary of the behavioral results 281

On average, participants selected the correct response more often than chance in the 282

learning phase (i.e., 0.5; M = 0.73 ± 0.15; t(74) = 13.42, p < 0.001). In the test phase, 283

participants selected the better option more often than predicted by chance (M = 0.65 284

± 0.11; t(74) = 11.62, p < 0.001). However, they also displayed irrational behavior, in 285

that performance was below 0.5 when the optimal options in the 0/-1 contexts (EV = 286

-0.10, -0.20) were pitted against the suboptimal options in the 1/0 contexts (EV = 0.10, 287

0.20; M = 0.4 ± 18; t(74) = -4.69, p < 0.001). Once again, these effects illustrate an 288

adaptation in the value of presented options based on the alternatives offered in the 289

same context, as predicted by range adaptation and intrinsically enhanced, but not 290

simple RL algorithms. 291

Both the intrinsically enhanced model and the range adaptation model 292

capture behavior adequately 293

Both main candidate models adequately captured the participants’ behavior in the test 294

phase (Fig 4A). Again, the intrinsically enhanced model’s ! parameter (M = 0.46 ± 295

0.01) was significantly correlated with signatures of context-sensitive learning (i.e., the 296

average error rate when choosing between a bandit with EV = -0.1 vs. one with EV = 297

0.1, and between a bandit with EV = -0.2 vs. one with EV = 0.2; Spearman’s ⇢ = 0.53, 298

p < 0.001; S14C Fig). 299

Model comparison slightly favors the intrinsically enhanced model 300

The intrinsically enhanced model was the most frequently expressed within the studied 301

population (protected exceedance probability = 0.84). Both the intrinsically enhanced 302

and the range adaptation models had high responsibility across participants 303

(intrinsically enhanced = 0.50, range adaptation = 0.39, hybrid actor-critic = 0, 304

unbiased RL model = 0.01, win-stay/lose-shift = 0; Fig 4B). 305
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Fig 4. (A) Model validation by context with parameters extracted through Laplacian
estimation, showing the simulated performance yielded by the intrinsically enhanced
model (in purple) and the range adaptation model (in teal), overlaid with the data (grey
bars). The intrinsically enhanced model outperformed the range model in capturing
participants’ behavior in the test phase, although both expressed the key behavioral
pattern displayed by participants. Bars indicate the S.E.M. (B) Model responsibilities
across participants. Data underlying this figure are available at
https://osf.io/8zx2b/. Computational modeling scripts to produce the illustrated
results are available at https://osf.io/sfnc9/.

Data set B22: Bavard and Palminteri [13] 306

Task structure 307

In all the data sets described above, stimuli were only ever presented in pairs. To test 308

whether the models of interest might make different predictions where outcomes are 309

presented in larger contexts, we used a task design presented by Bavard and 310

Palminteri [13]. At the time of writing, this work was not published in a peer-reviewed 311

journal, and data for this experiment was not publicly accessible. Therefore, we only 312

provide ex-ante simulations for this task. The study reported in the preprint involved 313

three different variants of the same task, two of which included forced-choice trials. 314

Since we did not have access to the precise sequence of stimuli participants viewed in 315

experiments with forced trials, we focused on the first experiment reported by the 316

authors. Here, participants (N=50) were presented with contexts composed of either 317

two (binary) or three stimuli (trinary), wherein each stimulus gave rewards selected 318

from a Gaussian distribution with a fixed mean and a variance of 4. The range of mean 319

values each stimulus could yield upon selecting it was either wide (14-86) or narrow 320

(14-50). For trinary trials, the intermediate option value was either 50 or 32 in wide and 321

narrow contexts, respectively. Participants first learned to select the best option in each 322

context via complete feedback. They did so for two rounds of learning, and contexts 323

were presented in an interleaved manner. The stimuli changed between learning sessions, 324

requiring participants to re-learn stimulus-reward associations, but the distribution of 325

outcomes remained the same across sessions. Then, they were presented with all 326

possible pairwise combinations of stimuli from the second learning session. No feedback 327

was displayed during this test phase. The full task details are available at [13]. 328

Summary of the behavioral results 329

The authors [13] report that on average, participants selected the correct response more 330

often than chance (0.5 or 0.33, depending on whether the context was binary or trinary) 331

in the learning phase. Overall performance in the test phase was also better than 332

chance, showing that participants were able to generalize beyond learned comparisons 333

successfully. Behavioral patterns showed signatures of both simple RL and range 334

adaptation models. On the one hand, as predicted by a simple RL model, options with 335
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the highest value in narrow contexts (EV = 50) were chosen less often than options with 336

the highest value in wide contexts (EV = 86). On the other hand, as predicted by the 337

range adaptation model, the mid-value option in the wide trinary context (EV = 50) 338

was chosen less frequently than the best option in the narrow binary context (EV = 50). 339

Moreover, in trinary contexts, the choice rate of mid-value options was much closer to 340

the choice rate of the lowest-valued options than would be expected by an unbiased RL 341

model. To capture this effect, the authors introduced an augmented variant of the range 342

adaptation model that incorporates a non-linear transformation of normalized 343

outcomes [13]. Below, we ask whether the intrinsically motivated model might capture 344

all these effects more parsimoniously. 345

Predictions from the intrinsically enhanced model capture participants’ 346

behavior 347

Fig 5 illustrates the predictions made by the unbiased, intrinsically enhanced, and range 348

adaptation model (with an additional parameter, here called z, which captures potential 349

non-linearities in reward valuation in the range adaptation model). On the one hand, 350

the unbiased RL model correctly predicts that choice rates for high-value options in 351

narrow contexts (EV = 50) would be lower than for high-value options in wide contexts 352

(EV = 86), while the range adaptation model does not. Moreover, the unbiased model 353

correctly predicts that choice rates for the mid-value options would be higher in the 354

wide (EV = 50) than in the narrow context (EV = 32), while the range adaptation 355

model selects them equally often. On the other hand, the range adaptation model 356

correctly predicts that participants’ choice rates for mid-value options in the wide 357

trinary context (EV = 50) would be lower than those for high-value options in the 358

narrow binary context (EV = 50), while the unbiased RL model does not. With the 359

addition of the non-linearity parameter z, the range adaptation model can also capture 360

the fact that choice rates for mid-value options in trinary contexts are closer to those of 361

low-value options than those of high-value options, while the unbiased RL model cannot. 362

Overall, [13] provide convincing evidence that range adaptation mechanisms surpass 363

other classic and state-of-the-art models, including standard RL algorithms and divisive 364

normalization, making it a strong model of human context-sensitive valuation. However, 365

only the intrinsically enhanced model can capture all the key effects displayed by 366

participants. Although these predictions await validation through fitting on the 367

collected data, the intrinsically enhanced model succinctly explains the different 368

behavioral signatures observed in real participants better than other candidate models. 369

Data set M22: Novel task distinguishing between intrinsically 370

enhanced and range adaptation models 371

Task structure 372

None of the data sets described above were collected to distinguish between intrinsically 373

enhanced and range adaptation models. To qualitatively, as well as quantitatively 374

disentangle the two, we conducted an additional, preregistered experiment (henceforth, 375

M22; the preregistered analysis pipeline and hypotheses are available at 376

https://osf.io/2sczg/). The task design was adapted from [13] to distinguish 377

between the range adaptation model and the intrinsically enhanced model (Fig 6). 378

Participants (N=50, plus a replication sample of 55 participants – see S1 Text) were 379

tasked with learning to choose the optimal symbols out of two sets of three (two trinary 380

contexts). On each trial of the learning phase, they chose one stimulus among either a 381

pair or a group of three stimuli belonging to the same context and received complete 382

feedback. As in B22, each stimulus was associated with outcomes drawn from a 383
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Fig 5. Predictions made by the unbiased, intrinsically enhanced, and rangez models.
(A) The unbiased model correctly predicts lower choice rates for high-value and
mid-value options in wide than in narrow contexts (upper grey box), but incorrectly
predicts similar choice rates for the option with value 50 regardless of context (lower
grey box). (B) The intrinsically enhanced model captures all behavioral patterns found
in participants’ data [13]. It correctly predicts lower choice rates for high-value and
mid-value options in wide than in narrow contexts (upper purple box) and correctly
predicts higher choice rates for the option with value 50 in the trinary narrow context
than in the trinary wide context (lower purple box). It also predicts that choice rates
for mid-value options will be closer to those of low-value options than high-value options
(lower purple box). (C) The rangez model correctly predicts higher choice rates for the
option with value 50 in the trinary narrow context than in the trinary wide context
(lower teal box), but incorrectly predicts similar choice rates for high-value options in
the narrow and wide trinary contexts (upper teal box). Simulation scripts used to
produce this figure are available at https://osf.io/sfnc9/.

Gaussian with fixed means and a variance of 4. Within each context was a low-value 384

option (L) with a mean of 14, a middle-value option (M) with a mean of 50, and a 385

high-value option (H) with a mean of 86. Thus, there was a pair of equivalent options 386

across contexts. Both sets of three (i.e., stimuli L1, M1, and H1 for context 1, and L2, 387

M2, and H2 for context 2) were presented 20 times each. However, the number of times 388

each pair of stimuli was presented differed among contexts. Specifically, the M1 stimulus 389

was pitted against the L1 stimulus 20 times, and never against the H1 stimulus, while 390

the M2 stimulus was pitted against the H2 stimulus 20 times, and never against the L2 391

stimulus. Both L options were pitted against the respective H option 20 times (see Fig 392

6). All possible pairs of stimuli were presented 4 times in the test phase. Participants 393

also estimated the value of each stimulus, 4 times each, on a scale from 0 to 100. 394

The key feature of this task is that the mid-value option is compared more often to 395

the lower-value option in the first context (M1 vs. L1), and to the higher-value option in 396

the second context (M2 vs. H2). While the range adaptation and intrinsically enhanced 397

models make similar predictions regarding test phase choice rates for L and H, they 398

make different predictions for M1 and M2 choice rates. Regardless of which option the 399

mid-range value is presented with, range adaptation models will rescale it based on the 400

minimum and maximum value of the overall context’s options (i.e., the average value of 401

L1 and H1, respectively). Thus, they will show no preference for M1 vs. M2 in the test 402

phase. The intrinsically enhanced model, however, will learn to value M1 more than M2, 403

as the former more often leads to goal completion (defined in our model as selecting the 404

best outcome among the currently available ones; see Materials and methods) than the 405

latter. This is because M1 is more often presented with a worse option than M2, which 406

instead is more frequently presented with a better option. Thus, if participants follow a 407

range adaptation rule (here indistinguishable from a classic RL model), there should be 408

no difference between their choice rates for M1, compared to M2. By contrast, if the 409

intrinsically enhanced model better captures people’s context-dependent learning of 410
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Fig 6. Left: Task structure. Participants viewed available options, indicated their
choice with a mouse click, and viewed each option’s outcome, including their chosen one
highlighted. Right: Experimental design. Both context 1 (top row) and context 2
(bottom row) contained three options, each having a mean value of 14, 50, or 86. The
contexts differed in the frequency with which different combinations of within-context
stimuli were presented during the learning phase (grey shaded area). In particular,
while option M1 (EV = 50) was presented 20 times with option L1 (EV = 14), option
M2 (EV = 50) was presented 20 times with option H2 (EV = 86). Intuitively, this made
M1 a more frequent intrinsically rewarding outcome than M2. The two contexts were
otherwise matched.

value options, M1 should be selected more often than M2 in the transfer phase. 411

We note that, while previous studies defined contexts as the set of available options 412

at the time of a decision [12,13], here we adopt a more abstract definition of context, 413

which comprises all the options that tend to be presented together – even when only 414

two of them are available (a feature that was absent from previous task designs). 415

Nonetheless, participants might have interpreted choice sets in which only two out of 416

three outcomes were available as separate contexts. With the latter interpretation, 417

range adaptation and intrinsically enhanced models would make the same predictions. 418

To encourage participants to consider the two sets of stimuli as belonging to one context 419

each (even when only two out of three options from a set were available), we designed a 420

control study (M22B; N=50, S2 Text) in which, instead of being completely removed 421

from the screen, unavailable options were simply made unresponsive (S4 Fig). 422

Therefore, participants could not select unavailable options, but the stimuli and 423

outcomes associated with them were still visible. 424

Ex-ante simulations 425

To confirm whether the intrinsically enhanced and the rangez model could be 426

qualitatively distinguished, we simulated participant behavior using the two models of 427

interest with the same methods as described for dataset B22. As expected, the 428

intrinsically enhanced model showed higher choice rates for M1 compared to M2 (Fig 429
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7A). By contrast, the rangez model showed no preference for M1, compared to M2, in 430

the test phase (Fig 7B). 431

Fig 7. Ex-ante model predictions based on simulations, for the intrinsically enhanced
(A) and rangez (B) models. Contexts 1 and 2 are shown in dark and light grey,
respectively. The core prediction that differentiates intrinsically enhanced and range
models is that participants will have a bias in favor of the middle option from context 1,
compared to the middle option from context 2 (compare the purple and teal boxes).
Simulation scripts used to produce this figure are available at https://osf.io/sfnc9/.

Behavioral results 432

Overall, participants performed above chance in both the learning phase (M = 0.90 ± 433

0.02, t(49) = 16.08, p<0.001; S1 Fig) and the testing phase of the experiment (M = 434

0.90 ± 0.02, t(49) = 19.5, p<0.001). 435

Results matched all preregistered predictions. Despite the fact that options M1 and 436

M2 were associated with the same objective mean value of 50, participants chose option 437

M1 (mean choice rate across all trials in the test phase: 0.57 ± 0.02) more often than 438

option M2 (0.36 ± 0.02; t(49) = 6.53, p<0.001 (Fig 8A-B). When the two options were 439

directly pitted against each other, participants selected M1 significantly more often than 440

chance (i.e., 0.50; M = 0.76 ± 0.05; t(49) = 5.13, p<0.001; Fig 8C). Performance in the 441

test phase was better for trials in which the M1 option was pitted against either low 442

option (M = 0.92 ± 0.03) than when M2 was pitted against either low option (M = 0.74 443

± 0.04; t(49) = 4.85, p<0.001; Fig 8C-D). By contrast, performance in the test phase 444

was better for trials in which the M2 option was pitted against either high option (M = 445

0.88 ± 0.03) than when M1 was pitted against either high option (M = 0.95 ± 0.02; 446

t(49) = -4.07, p<0.001; Fig 8C). Participants’ explicit evaluations were higher for M1 447

(55.65 ± 2.04) than M2 (M = 38.9 ± 2.16; t(49) = 6.09, p<0.001; Fig 8E-F). 448

Each of these behavioral signatures is expected from the intrinsically enhanced, but 449

not the range adaptation model. Thus, the results of this study show direct support for 450

the intrinsically enhanced model over the range adaptation model. These behavioral 451

patterns were fully replicated in an independent sample (M22R; S2-S3 Figs) and a 452

control study where stimuli and outcomes for unavailable options were left visible 453

(M22B;S5-S6 Figs). 454

Model comparison favors the intrinsically enhanced model 455

In comparing competing models, we only considered the intrinsically enhanced and 456

rangez architectures. We also included a basic strategy, namely the win-stay/lose-shift 457

model, to capture variability that neither model could explain, as is considered best 458

practice with Hierarchical Bayesian Inference (see Materials and methods; [30]). The 459
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Fig 8. Behavioral results and computational modeling support the intrinsically
enhanced model. (A) During the test phase, the mid-value option of context 1 (darker
grey) was chosen more often than the mid-value option of context 2 (lighter grey), a
pattern that was also evident in the intrinsically enhanced model’s, but not the rangez

model’s behavior. (B) Difference in test phase choice rates between stimulus M1 and
M2. (C) When the two mid-value options were pitted against each other, participants
preferred the one from context 1. When either was pitted against a low-value option,
participants selected the mid-value option from context 1 more often than the mid-value
option from context 2. When either was pitted against a high-value option, participants
selected the high-value option from context 1 less often than the high-value option from
context 2. The dotted line indicates chance level (0.5). (D) Difference between M1 and
M2 in the proportion of times the option was chosen when compared to either L1 or L2.
All these behavioral signatures were preregistered and predicted by the intrinsically
enhanced, but not the range adaptation model. (E) Participants explicitly reported the
mid-value option of context 1 as having a higher value than the mid-value option of
context 2. (F) Differences in explicit ratings between option M1 and M2. (G) Model
fitting favors the intrinsically enhanced model against rangez, as evidenced by higher
responsibility across participants for the former compared to the latter. Data and
analysis scripts underlying this figure are available at https://osf.io/sfnc9/.

intrinsically enhanced model was the most frequently expressed (protected exceedance 460

probability = 1) and had the highest responsibility across participants (intrinsically 461

enhanced = 0.83, range adaptation = 0.09, win-stay/lose-shift = 0.08; Fig 8G). Even 462

endowed with non-linear rescaling of mid-value options, the range adaptation model 463

failed to reproduce the key behavioral result that was observed in participants (Fig 464

8A-D). We note that the range adaptation model showed a slight bias for the M1 over 465

the M2 option, likely due to higher learning rates for chosen (compared to unchosen) 466

outcomes and an experimental design where M1 tends to be selected more often – thus 467

acquiring value faster – than M2. Nonetheless, the intrinsically enhanced model 468

matched participants’ behavior more closely than range adaption. Moreover, the 469

intrinsically enhanced model’s ! parameter (M = 0.46 ± 0.04) was significantly 470

correlated with the difference in choice rates for M1 vs. M2 in the test phase; 471

Spearman’s ⇢ = 0.93, p < 0.001; S14D Fig). All modeling results were replicated in an 472
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independent sample (M22R; S1 Text and S2 Fig) and a control study in which stimuli 473

and outcomes for unavailable options were not hidden from view (M22B; S2 Text and 474

S5 Fig). Together, these results provide evidence for the higher explanatory power of 475

the intrinsically enhanced model over range adaptation mechanisms. 476

Discussion 477

In this study, we proposed an “intrinsically enhanced” model as a possible 478

computational account of context-dependent reinforcement learning. There is now 479

overwhelming evidence for the proposition that human value attributions are 480

context-dependent [5, 32], and this general finding has been confirmed in reinforcement 481

learning tasks [7, 11–13,17,33], wherein participants have to learn the value of each 482

available option through trial and error, as is often the case in real-world scenarios. In a 483

decision-learning problem, context-sensitive valuation results in value attributions that 484

are relative to the alternative options available at the time of choosing. This 485

phenomenon cannot be accounted for by a standard, unbiased reinforcement learning 486

architecture. Instead, context-sensitive valuation has been successfully captured by the 487

range adaptation model, which normalizes absolute outcomes based on the minimum 488

and the maximum value of options in the same context. 489

However, other models could explain the effects of context-sensitive valuation 490

without resorting to range adaptation. Here, we explored one such alternative model 491

whose premises are backed by extensive literature in broader psychological domains. 492

Specifically, our account proposes that, after experiencing an outcome, people integrate 493

its absolute value with an additional “all-or-nothing”, internally generated signal of goal 494

achievement (positive if the best available option was selected, and 0 otherwise). Here, 495

context-sensitivity is achieved by defining goal-dependent signals in relation to the best 496

possible outcome. By analyzing three existing data sets totaling 935 participants and 497

simulating choices from a fourth experimental design, we showed that the intrinsically 498

enhanced model yields similar results to the range adaptation model, and should 499

therefore be considered a valid alternative for explaining context-sensitive valuation in 500

human reinforcement learning. Through an additional experiment intended to directly 501

test differences between the competing two models, an independent replication of it, and 502

a control study, we provided evidence for the stronger explanatory power of the 503

intrinsically enhanced reinforcement learning model over the range adaptation algorithm 504

in some experimental settings. Specifically, participants selected more frequently an 505

option that was more often the better one, even though it had the same objective value 506

and occurred in a context of similar range. 507

The fact that the intrinsically enhanced model integrates both absolute and binary 508

reward signals is consistent with the finding that, in the brain, outcome rescaling is 509

partial, not complete [34]. This poses the additional question of how the degree of 510

outcome rescaling is set. While large inter-individual variability likely plays an 511

important role in the extent to which extrinsic and intrinsic rewards impact value 512

computation, task features may also affect how the contribution of each is balanced. For 513

instance, providing participants with complete feedback (as opposed to factual feedback 514

only) induces an increase in relative outcome encoding [35]. In the intrinsically 515

enhanced model, a free parameter (!) governs the extent to which absolute and 516

goal-dependent values dominate in the computation of reward, with values of ! higher 517

than 0.5 leading to stronger contributions of intrinsically generated, goal-dependent 518

signals, and values of ! lower than 0.5 indicating a preponderance of absolute values in 519

the calculation of reward. We have found preliminary evidence for the claim that the 520

weighting parameter ! itself is dependent on task features in our analysis of the 521

B21 [12] data set, which comprised eight experiments. These differed in whether 522
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counterfactual outcomes were provided, and whether contexts were presented in an 523

interleaved or blocked manner. Both observing counterfactual outcomes and interacting 524

with contexts in a blocked manner likely make it easier for participants to produce 525

internally generated signals of goal achievement, as both features help them decide 526

whether their selected option corresponded to the best available option in the current 527

context. Thus, ! may be higher under these conditions than in experiments that 528

followed a design with partial information or interleaved presentation of contexts. 529

Indeed, we found that ! was higher in experiments with a blocked design than those 530

with an interleaved presentation of stimuli. Moreover, ! was higher for experiments 531

with complete feedback compared to those with partial feedback. These results provide 532

initial evidence that differences in relative versus absolute outcome encoding based on 533

experimental design could be accounted for by differences in emphasis on externally 534

provided versus intrinsically generated reward signals. 535

Attentional biases and task demands could also affect the relative contribution of 536

extrinsic and intrinsic reward signals in outcome valuation. For instance, Hayes and 537

Wedell [15] manipulated attentional focus in a reinforcement learning task by asking 538

participants to rate, at occasional time points in the task, either how they felt about 539

particular options or the reward amount they expected to be associated with particular 540

options. The latter condition resulted in blunted context-sensitive valuation during the 541

transfer portion of the task, which may be formalized as a greater contribution of 542

absolute reward values (i.e., the term participants’ attention was brought towards) 543

compared to internally rewarding features of the evaluated options (which, by contrast, 544

was emphasized in the former condition). Similarly, Juechems et al. [16] found that, 545

following a learning phase in which participants made within-context choices, exposure 546

to decision sets that combined previously experienced contexts resulted in subsequent 547

reductions in context-sensitive valuation. This behavior is thought to result from an 548

adaptive response to task-contingent expectations and can be easily captured by an 549

adjustment of the ! parameter once participants expect to make cross-context decisions. 550

Our findings corroborate a growing literature of theoretical advances [19–21] and 551

experimental results [22–24,36,37] recognizing the fundamental role of goals in the 552

computation of value in humans. In the classic reinforcement learning literature, 553

rewards have been understood as a property of the external environment, that an agent 554

interacting with it would simply receive [38]. While this approximation works well when 555

modeling many behavioral tasks [39], it cannot explain why the context in which 556

rewards are presented would matter to the computation of reward. Homeostatic 557

reinforcement learning attempts to bridge this gap by proposing that the rewarding 558

properties of an outcome are proportional to the extent to which it represents a 559

discrepancy reduction from a physiological set-point [40]. However, the same principle 560

could be extended to more cognitively defined target values. From crosswords to 561

marathons, many human activities feel rewarding once completed despite not having 562

immediate benefits on survival [41]. One possible explanation for this phenomenon is 563

that people actively set goals for themselves and, once these goals are active, progress 564

towards them drives incremental dopamine release to guide the learning of actions that 565

bring such goals about [42]. Indeed, reaching one’s goal activates similar brain areas as 566

secondary reinforcers, such as money or numeric points [22, 43]. 567

At face value, the need for multiple value signals may seem redundant. However, the 568

idea that the brain computes multiple signals of reward is well-established [44,45]. 569

Goal-dependent signals in particular have been shown to co-exist with neural signatures 570

of absolute value encoding [23, 24, 36]. And, while it has received less formal recognition 571

in cognitive psychology, the enhancement of standard reinforcement learning 572

frameworks with internally generated signals has led to notable breakthroughs in the 573

field of artificial intelligence [46–48]. Classic reinforcement learning architectures are 574
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provided with a hand-defined reward signal, which the agent seeks to maximize. 575

However, learning solely based on these sparse rewards may be difficult. To circumvent 576

this issue, artificial agents can be endowed with auxiliary reward functions to prompt 577

the directed exploration of the environment based on intrinsic rewards. This approach 578

has been shown to significantly improve performance even when extrinsic objectives are 579

well defined (e.g., [47, 49]). Inspired by work in developmental psychology, artificial 580

systems have been developed that can even set their own goals and learn to reach them 581

via self-defined reward functions, leading to self-supervised discovery and skill 582

acquisition (see [50] for review). Thus, by integrating extrinsic rewards with 583

self-generated, goal-dependent reward signals can critically enhance learning in both 584

artificial and biological agents. 585

The intrinsically enhanced model of context-sensitive valuation has proven flexible 586

enough to capture a host of behavioral findings, and powerful enough to produce novel 587

hypotheses that were then confirmed by an ad hoc experiment. While we considered a 588

variety of alternative algorithms to explain these phenomena (including the previously 589

successful range adaptation and hybrid actor-critic architectures), the list of models we 590

examined here is certainly not exhaustive. For instance, divisive normalization – in 591

which options are divided by their sum, rather than their range [3] – may represent a 592

reasonable account of relative value encoding, although studies have shown it has even 593

less explanatory power than range adaptation models [13]. Hayes and Wedell [51] 594

recently proposed a frequency encoding model that computes outcome values based on 595

their rank within the contextual distribution. Indeed, people’s choices tend to be 596

sensitive to the frequency with which an outcome is delivered, not just its average 597

value [52]. In our model, the goal-dependent signal transmits the same amount of 598

reward regardless of the absolute outcome value, such that the intrinsically enhanced 599

model could also explain frequency-dependent biases through a much simpler heuristic. 600

Future studies, however, may directly investigate similarities and differences between 601

frequency-based and intrinsically enhanced reinforcement learning models. 602

For ease of computation, in implementing the intrinsically enhanced and range 603

adaptation models we assumed that participants were always aware of the minimum 604

and maximum value of available options, even for cases in which only the outcome of 605

the chosen option was delivered, without counterfactual feedback. While [12] proposed a 606

version of the range adaptation model that updates estimates for range extremes in a 607

trial-by-trial fashion, we found that this extension did not improve behavioral fit, and 608

that the additional parameter was not recoverable (see S3 Text; S15 Fig). In addition to 609

the lack of dynamicity, we make the simplifying assumptions that different aspects of 610

outcome valuation are combined linearly and that goal-dependent signals are encoded as 611

binary outcomes. It is not uncommon for researchers to assume that different aspects of 612

an outcome are linearly combined during valuation [53,54]. Succinctly implementing 613

goal-dependent outcomes as binary signals was not only sufficient to capture the data 614

presented here, but also an approach often followed in artificial intelligence research, 615

which our theory was partly inspired by [50]. The brain is known to integrate various 616

aspects of an outcome into a single value [55, 56], and even seemingly incommensurable 617

sources of rewards – such as food and monetary outcomes or social cues – are rescaled 618

to similar values during cross-category comparisons [57]. Nonetheless, future modelers 619

may consider expanding the intrinsically enhanced model with more accurate depictions 620

of the internal processes allowing relative estimates of reward, and test-specific 621

assumptions we adopt here as a starting point. In addition, goal and reward signals 622

were put on the same scale, capturing the assumption that the intrinsic reward for 623

reaching a goal had equal value to the maximal extrinsic reward. A question for future 624

neuroimaging experiments is how the brain may automatically compute such rescaling 625

and escape commensurability issues. As our understanding of how goals are selected 626
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and goal-dependent rewards are adjusted to circumstances, intrinsically enhanced 627

models of behavior could be improved with increased explanatory power. Along the 628

same line of research, it may be possible to test for range adaptation as an adjunct 629

mechanism to intrinsically enhanced reinforcement learning, as the two systems are not 630

mutually exclusive. 631

A mathematically equivalent model to intrinsically enhanced reinforcement learning 632

(in the form presented here) was proposed by [11], but not considered in later studies. 633

There, the authors combined range adaptation with reference point centering, whereby 634

an outcome is computed relative to the mean of all context-relevant outcomes. This 635

mechanism provides a solution for punishment-based learning by bringing negative 636

outcomes to a positive scale and then using them to reinforce behavior as in standard 637

reinforcement learning [7]. The combination of range adaptation and reference point 638

results in a binary signal that is numerically strikingly similar to, but theoretically 639

distinct from, the internally generated reward signal of the intrinsically enhanced model. 640

Neither intrinsic rewards nor a combination of range adaptation and reference point 641

centering can, by themselves, explain behavior. As our model proposes, [11] combined 642

relative outcomes with absolute ones in order to reproduce the same behavioral 643

signatures displayed by human participants. Such a “hybrid” model thus encompasses 644

multiple computational steps (range adaptation, reference point centering, and the 645

mixing of relative outcomes with absolute ones). By contrast, the intrinsically enhanced 646

model provides a more succinct explanation of how binary rewards can be computed. 647

Crucially, the two models only overlap in specific instances, i.e. tasks in which only 648

binary choices are presented and the same outcomes are associated, though with 649

different probabilities, to options within the same context. This is not the case for the 650

majority of tasks analyzed here. 651

In the formulation that we employed, the intrinsically enhanced model assumes that 652

the participants’ goal was to select the stimuli that yielded points most consistently or 653

in larger amounts. This is clearly a simplification of the reality, in which participants 654

likely had multiple, perhaps even conflicting goals (e.g., finishing the experiment as fast 655

as possible, minimizing motor movements, choosing aesthetically pleasing stimuli, and 656

so on) that a complete account of participants’ learning should account for [58]. In 657

reality, participants’ goals – even in simple tasks such as the ones described above – are 658

also likely more nuanced than simple binary signals of whether the best available option 659

was selected. These subtleties, while important, do not contradict our central message: 660

that the prospect of achieving one’s goals is key to the calculation of reward. Indeed, if 661

it were possible to access the host of goals individual participants set for themselves 662

when making a single task-related decision, absolute rewards may cover a less important 663

role than previously thought in shaping behavior beyond their contribution to attaining 664

goal-contingent outcomes. A major challenge for future research will be developing 665

computational methods to infer goals and account for their contribution to the 666

calculation of value. 667

In sum, we have illustrated how the context-dependent valuation of outcomes that is 668

known to occur in human learners can be accounted for by a reinforcement learning 669

model that combines externally delivered reinforcers with internally generated signals of 670

goal attainment. Our re-analysis of three published data sets has provided evidence that 671

such an intrinsically enhanced model can explain behavior similarly to range adaptation 672

mechanisms, which have proven successful in the past. Moreover, by examining an 673

additional experimental design, we show that the intrinsically enhanced reinforcement 674

learning model captures behavioral findings better than other competitors. Lastly, by 675

qualitatively disentangling range adaptation and intrinsically enhanced mechanisms, we 676

have shown evidence for the superiority of the latter in predicting and explaining 677

context-dependent effects in human participants. Our findings point towards greater 678
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recognition of internal signals of rewards in formal theories of human reinforcement 679

learning. By accounting for intrinsically generated rewards, extensions of the 680

reinforcement learning framework may lead to better models of context-dependence 681

outcome valuation and beyond. 682

Materials and methods 683

Ethics statement 684

The experimental protocol was approved by the Institutional Review Board at the 685

University of California, Berkeley (approval number 2016-01-8280) and conducted 686

according to the principles expressed in the Declaration of Helsinki. For new data 687

collection, formal, written consent was obtained from participants via an online form. 688

Existing data sets 689

We used data and task structures originally collected and developed by [12] (B21), [11] 690

(B18), [14] (G12), and [13] (B22). The key information about each dataset is 691

summarized in Tables 1 and S1. Readers interested in further details are referred to the 692

original reports. Additionally, we designed a new experimental paradigm (M22) to 693

address the distinction between intrinsically enhanced and range adaptation models 694

more directly, the details of which are reported below. 695

Original experiment (M22) 696

Our original experiment was specifically designed to differentiate between the 697

intrinsically enhanced and range adaptation models. The study was preregistered, and a 698

pilot experiment was conducted. Preregistration and pilot results are available at 699

https://osf.io/2sczg/. 700

Task design 701

The task design for M22 was inspired by [13] but adapted in order to distinguish 702

between the range adaptation model and the intrinsically enhanced model. After 703

reading the instructions and completing one or multiple training sessions (12 trials each) 704

until they reached at least 60% accuracy, participants started the learning phase of the 705

task, during which they were presented with a total of six stimuli belonging to two 706

different contexts. Stimuli from the two contexts were presented in an interleaved 707

fashion. On each trial, stimuli were presented either in pairs or in groups of three, 708

always from the same context, and participants were asked to indicate their preference 709

by clicking on the chosen symbol. They then viewed the outcome of all available 710

options, including the selected one – the latter surrounded by a square. Outcomes were 711

drawn from a Gaussian distribution with a variance of 4 and a mean of 14, 50, or 86 712

(each mean being associated with a different stimulus in a given context). The specific 713

values were chosen based on the following criteria 1) matching [13] as closely as possible, 714

2) model simulations showing maximal differences in predictions between the models, 715

and 3) piloting results. Options in the first context – stimuli L1, M1, and H1 for low, 716

medium, and high-value options of the first context – were presented in one of the 717

following combinations, 20 times each: L1 vs. M1 vs. H1, L1 vs. M1, and L1 vs. H1. 718

Options in the second context – stimuli L2, M2, and H2 – were presented in one of the 719

following combinations, 20 times each: L2 vs. M2 vs. H2, M2 vs. H2, and L2 vs. H2 720

(see Fig 6). Stimuli were randomly generated identicons as provided at 721

https://github.com/sophiebavard/online_task. The total number of trials in the 722
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learning phase was thus 120. Whether each item was positioned on the left, right, or 723

center of the screen was randomly determined on each trial. In the test phase, all 724

possible pairs of options, including pairs of items across the two contexts and other 725

combinations that were never shown before, were presented 4 times each, yielding a 726

total of 60 trials. At the end of the experiment, participants also explicitly reported 727

their estimates for the value of each stimulus, 4 times each for a total of 24 trials. Trial 728

timing was identical to [13]. 729

Participants 730

Fifty participants (age M = 27.94 ± 0.75, age range = 18-40, 32% female) were 731

recruited from the online platform Prolific (http://www.prolific.co), completed the 732

experiment from their own devices, and were compensated $6.00 for their time (around 733

20 minutes, on average). Participants were incentivized to perform optimally in the task 734

by informing them that the total number of points they obtained would be recorded. 735

Following [13], no exclusion criteria were applied. A replication sample was recruited 736

from the university’s pool of participants (N=55, as opposed to the preregistered aim of 737

50, due to overestimating the participants’ drop-out rate; S1 Text). We also ran an 738

additional control experiment that encouraged participants to view stimuli of the same 739

type as belonging to the same context, even when one of the three options was 740

unavailable (M22B; N=50, S2 Text). Here, unavailable options were visible but 741

unresponsive, rather than hidden (S4 Fig). The University of California, Berkeley’s 742

institutional review board approved the study. 743

Behavioral analyses and hypotheses 744

We ensured that participants understood the task and learned option values 745

appropriately by comparing the rate at which they selected the best option on each trial 746

to chance levels using a single-sample t-test. 747

We compared test phase choice rates for the mid-value option of the first context of 748

stimuli (M1) to the mid-value option of the second context of stimuli (M2) through a 749

paired t-test. Following the predictions made by the intrinsically enhanced model, we 750

expected that the M1 option would be selected more often than the M2 option. 751

In addition, we used t-tests to compare choice rates for test phase trials in which 752

participants were presented with specific pairs of stimuli. In particular, we predicted 753

that participants would select M1 over M2 on trials in which the two options were 754

pitted against each other. Moreover, a secondary prediction was that correct choice 755

rates would be higher for trials in which M1 was pitted against L1 or L2 than trials in 756

which M2 was compared to L1 or L2. By contrast, the intrinsically enhanced model 757

predicts that correct choice rates would be higher for trials in which M2 was presented 758

with H1 or H2 than those in which M1 was compared to H1 or H2. 759

We additionally used paired t-tests to compare the average explicit ratings for M1 760

versus M2 in the last phase of the experiment. We predicted that participants would 761

rate M1 higher than M2, following the intrinsically enhanced model. 762

Models 763

Base mechanisms 764

All models shared the same basic architecture of a simple reinforcement learning 765

model [38]. Each model learned, through trial-by-trial updates, the expected value (Q) 766

of each chosen option (c) within a set of stimuli (s), and over time learned to choose the 767

option with higher Q most often. Q-value updates followed the delta rule [27], according 768
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to which the expected value of the option chosen on a given trial (t) is updated as: 769

Qt+1(s, c) = Qt(s, c) + ↵c · �c,t (3)

where ↵c is the learning rate for chosen options and �c,t is the reward prediction error 770

for the chosen option on a given trial, calculated upon receipt of feedback (r) for that 771

option as: 772

�c,t = rc,t �Qt(s, c) (4)

When complete (i.e., counterfactual) feedback was available, the expected value of the 773

unchosen option was also updated according to the same rule, but with a separate 774

learning rate (↵u) to account for potential differences in how feedback for chosen versus 775

unchosen options is attended to and updated: 776

Qt+1(s, u) = Qt(s, u) + ↵u · �u,t (5)
777

�u,t = ru,t �Qt(s, u) (6)

Given the Q-value of each option in a pair of stimuli, participants’ choices were modeled 778

according to the softmax function, such that the probability of selecting a stimulus on 779

trial t (Pt(s, c)) was proportional to the value of the stimulus relative to the other 780

options as given by: 781

Pt(s, c) =
exp(� ·Qt(s, c))P
i exp(� ·Qt(s, ci))

(7)

Here, � represents the inverse temperature: the higher the value of �, the closer a 782

participant’s choice leaned towards the higher value option on each trial [26]. All models 783

had separate �s for the two stages of the task (�learn and �test). 784

Q-values were initialized at 0. All outcomes were divided by a single rescaling factor 785

per experiment to be between [-1, 1] if negative outcomes were present, or between [0, 1] 786

if outcomes were in the positive range, to allow comparison of fit parameters (in 787

particular �) across models. For example, rewards were divided by 10 (for B21) or 100 788

(for B22 and M22). Note that this is simply a convenient reparameterization, not a 789

theoretical claim – it is mathematically equivalent to a model where the outcome is not 790

rescaled, the goal intrinsic value is equal to the maximum possible extrinsic reward, and 791

� is divided by the same scaling factor. 792

A model with a fixed learning rate of 1 and counterfactual learning was also 793

implemented to capture the possibility that at least some of the participants were 794

following a “win-stay/lose-shift” strategy, i.e., sticking to the same option after a win 795

and shifting to the alternative after a loss [31]. 796

Additional candidate models were the range adaptation model, the intrinsically 797

enhanced model, and the hybrid actor-critic model. Range adaptation models capture 798

the hypothesis that, when learning to attribute value to presented options, people are 799

sensitive to the range of all available options in a given context. Intrinsically enhanced 800

models capture the idea that participants may compute rewards not only based on the 801

objective feedback they receive, but also on a binary, intrinsically generated signal that 802

specified whether the goal of selecting the relatively better option was achieved. When 803

the task design included loss avoidance, as well as gain trials (i.e., both negative and 804

positive outcomes), intrinsically enhanced and range adaptation models had separate 805

learning rates (↵gains and ↵loss avoidance) for the two conditions to account for potential 806

differences between reward and punishment learning [59,60]. The hybrid actor-critic 807

model was included for completeness, as it was able to capture behavior best (including 808

maladaptive test choices) in [14], but is not the main focus of our analysis. Next, we 809

explain how each of these additional models was built. Additional variants of each 810

model were initially tested, and later excluded due to their lesser ability to capture 811

participants’ behavior (S3 Text). 812
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Range adaptation models 813

The range adaptation model [12] rescales rewards based on the range of available 814

rewards in a given context (maximum, rmax, and minimum, rmin, values of the 815

observed outcomes in a given set of stimuli, s), and uses these range-adapted rewards 816

(rr) to update Q-values on each trial: 817

rrt =
rt � rmin(s)

rmax(s)� rmin(s)
(8)

Note that in [12], after being initialized at zero, rmax and rmin are updated on each 818

trial in which r is larger or smaller than the current value, respectively. The update of 819

these range adaptation terms is regulated by a learning rate ↵r. In our modeling 820

procedures, this additional parameter added unwarranted complexity and penalized the 821

model. Therefore, we make the assumption that participants know the maximum and 822

minimum outcome available in each context, based on the idea that these values are 823

learned early on in the experiment. This assumption also prevents division by null 824

values. In experiments with complete feedback, previous models have similarly assumed 825

that participants update each context’s minimum and maximum value at the first 826

presentation of non-zero values [11]. For data sets in which up to three bandits could be 827

presented in the same trial, an additional parameter, which we call z (! in [13]), was 828

used to rescale mid-value options non-linearly. This was done in accordance with the 829

finding that, in behavioral experiments, participants’ estimates (both implicit and 830

explicit) of mid-value options were closer to the estimates for the lowest-value option 831

than to those for the highest-value option [13]. This is achieved via range adaptation by 832

simply elevating the rr value to the power of the free parameter z: 833

rrt =

✓
rt � rmin(s)

rmax(s)� rmin(s)

◆z

(9)

Intrinsically enhanced model 834

Intrinsically enhanced models combine the feedback from each trial with a binary, 835

internally generated signal. Given the reward on the chosen (rc,t) and unchosen options 836

(ru,t) on trial t, the intrinsic reward for the chosen option (irc,t) was computed as 837

follows: 838

irc,t =

(
0, if rc,t 6= rmax,t(s) or (ru,t is known and rc,t < ru,t)

1, otherwise
(10)

Thus, irc,t was equal to 0 when rc,t was either different from the maximum available 839

reward or less than ru,t (if the latter was known), and 1 when rc,t was either equal to 840

rmax, or better than ru,t (if the latter was known). On trials with complete feedback, a 841

counterfactual reward for the unchosen option (iru,t) was also computed according to 842

the same principles: 843

iru,t =

(
0, if ru,t 6= rmax,t(s) or (ru,t is known and rc,t > ru,t)

1, otherwise
(11)

The terms r and ir were combined to define an intrinsically enhanced outcome (ier) 844

used to update Q values. A weight (!) determined the relative contribution of rs and 845

irs to iers: 846

ierc,t = ! · irc,t + (1� !) · rc,t (12)
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such that Eq 4 and Eq 6 became, respectively: 847

�c,t = ierc,t �Qt(s, c) (13)
848

�u,t = ieru,t �Qt(s, u) (14)

For experiments in B21 in which participants received feedback during the test 849

phase, the model was endowed with !s for the two stages of the task (!learn and !test), 850

as we found that this improved the fit. 851

Hybrid actor-critic model 852

The hybrid actor-critic model combined a Q-learning module and an actor-critic 853

module [14]. The Q-learning module was identical to the basic RL architecture 854

described above, except for having the same � parameter for both the learning and 855

testing phase. This modification was intended to trim down model complexity. The 856

hybrid actor-critic module comprised a “critic”, which evaluates rewards within a given 857

context, and an “actor”, which chooses which action to select based on learned response 858

weights. Prediction errors updated the critic’s evaluations, as well as the actor’s action 859

weights. This allowed the actor to learn to select options without needing to represent 860

their value explicitly. On each trial of the learning phase, the critic updated the value V 861

of a given context based on: 862

Vt+1(s) = Vt(s) + ↵critic · �V,t (15)
863

�V,t = oc,t � Vt(s) (16)

where ↵critic is the critic’s learning rate. The actor’s weights for the chosen option W 864

were updated and then normalized (to avoid division by a null value) through the 865

following rules: 866

Wt+1(s, c) = Wt(s, c) + ↵actor · �V,t (17)
867

Wt+1(s, c) =
Wt(s, c)P
i |Wt(s, ci)|

(18)

As for the other models, actions were selected through a softmax. The values entered in 868

the softmax function were a combination of the Q-learner’s estimates and the actor’s 869

weights. A variable h controlled the influence of Q-learner values on the actor’s decisions, 870

such that the higher the value of h, the higher the impact of Q-values on choices: 871

Ht+1(s, ci) = (1� h) ·Wt(s, ci) + h ·Qt(s, ci) (19)

where H is the hybrid value upon which the actor’s choices are based. In this model, oc,t 872

was either the reward obtained on a given trial, or, for experiments where both gains 873

and losses were possible, a function of the reward controlled by the additional loss 874

parameter, d: 875

oc,t =

8
><

>:

1� d, if rc,t > 0

0, if rc,t = 0

�d, if rc,t < 0

(20)

such that for d = 0 negative outcomes were completely neglected, for d = 1 positive 876

outcomes were completely neglected, and for d = 0.5 the two types of outcomes were 877

weighed equally. This transformation was performed for unchosen outcomes as well, 878

whenever complete feedback was available. 879
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Ex-ante simulations 880

For data sets B22 and M22, we performed ex-ante (i.e., before obtaining any data) 881

simulations of the expected behavior using the intrinsically enhanced and the rangez 882

models by drawing 100 sets of parameters from the following distributions. As in 883

Bavard and Palminteri’s [13] work, we sampled the � parameter (inverse temperature) 884

from a Gamma(1.2, 0.2) distribution and the ↵ parameter (learning rate) from a 885

Beta(1.1,1.1) distribution. The z parameter for the range adaptation model was drawn 886

from a Gamma(3, 3) distribution (which has a mean of 1, a lower bound at 0 and no 887

upper bound), and the ! parameter (for the intrinsically enhanced model) was drawn 888

from a Beta(2, 2) distribution (which has a mean of 1, a lower bound at 0 and an upper 889

bound at 1). 890

Model fitting and validation procedures 891

Models were fit via the hierarchical Bayesian inference (HBI) method as introduced by 892

Piray et al. [30]. This statistical tool estimates parameters hierarchically by 893

characterizing a population-level distribution from which individual values are drawn, 894

while simultaneously comparing candidate models. HBI has been shown to provide 895

more robust parameter estimates than more common methods (which are more prone to 896

overfitting), and is less likely to favor overly simplistic models during model 897

comparison [30]. 898

All priors were set with a mean of 0 and a variance of 6.25. Inverse temperatures (�) 899

and the range model’s z parameter were then transformed through an exponential 900

function while all other parameters were transformed via a sigmoid function so as to be 901

constrained between 0 and 1 (as is standard practice [30]). The HBI fitting pipeline 902

involves two steps: first, the best-fitting parameters are estimated via Laplacian 903

approximation (independent of the model space; [61]); second, Laplacian estimates are 904

adjusted based on the likely contribution of each model for each participant’s behavior. 905

Parameters obtained via Laplacian approximation were used for the simulation step as 906

HBI parameters are not always reliable for non-winning models [30]. Each subject’s 907

behavior was simulated 10 times with the same sequence of stimuli that was displayed 908

to real participants. We report protected exceedance probability, which measures, for 909

each proposed model, the probability that it is most commonly expressed in the studied 910

population while ensuring that any difference in frequency among proposed models is 911

statistically significant, and is thus a more conservative version of exceedance 912

probability [62]. We also report each model’s average responsibility, i.e., the probability 913

that each model is responsible for generating each subject’s data. In comparing 914

candidate models, we also included at least one simpler strategy, compared to models of 915

interest, to capture some of the variability, as this has been shown to improve HBI [30]. 916

Data were fit to both the learning and test phases. In M22, we confirmed that fitting to 917

only the learning phase did not change results and that phase-specific temperature 918

parameters (�s) improved fit. 919

A prerequisite for drawing conclusions from the model fitting procedure is that at 920

least the key models of interest are identifiable. To ensure that this was the case within 921

our data sets, we computed and interpreted confusion matrices for each of them [28]. 922

For each dataset (excluding B22, since no data was available to us at the time of 923

writing), this was achieved by retrieving the best-fit parameters for a given model, using 924

them to simulate a new dataset, and fitting all models on the simulated dataset. The 925

same procedure was then repeated for all proposed models. To ensure that simulation 926

results were replicable, for data sets B18 and G12 (N = 60 and N = 75, respectively), 927

double the original amount of participants were simulated; for M22 (N = 50), four times 928

the amount of participants were simulated. For each fitting step, we report the model 929
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frequencies (i.e., the proportion of participants for which each model provided the best 930

fit) and exceedance probabilities extracted from the HBI results. Across data sets B21, 931

B18, and G12, the true model was recovered more often than chance (i.e., 0.20 given 932

that five models were compared simultaneously), with the lowest correct model recovery 933

probability being 0.53 and all correct exceedance probabilities being 1 (S7A-C Fig). 934

Model recovery was also satisfactory for the M22, M22R, and M22B data sets, with the 935

true model being recovered more often than chance (i.e., 0.33) in all cases, the lowest 936

correct model recovery probability being 0.55 and all correct exceedance probabilities 937

being 1 (S7D Fig). The best-fitting parameters for the intrinsically enhanced model are 938

reported in S8-S13 Figs. 939
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Supporting Information

Supporting tables, text, and figures are available at https://journals.plos.org/
plosbiology/article?id=10.1371/journal.pbio.3002201#sec044.

Table S1 Extended summary information for each of the data sets used for

data analysis and/or modeling. Previously collected data sets were originally
reported by [12] (B21), [11] (B18), [14] (G12), [13] (B22). For each dataset experiment
we used (“Exp.”), we report: the rewards and probabilities associated with each context
and bandit, as well as their expected value (EV); the key comparisons for which
participants show irrational behavior, or for which models make specific predictions;
whether feedback was partial or complete (i.e., including counterfactual) during
learning; whether feedback was partial, complete, or absent during testing; whether
bandit pairs were presented in a blocked or interleaved manner; whether there was a
difference in the absolute magnitude of reward across bandit pairs (“Mag. �”); whether
the task included negative outcomes (“Loss”); and the total number of participants in
each original experiment (“N”).

Fig S1 Learning phase performance in M22. Participants learned to
discriminate the correct option across bandit combinations in the learning phase. Data
and analysis scripts underlying this figure are available at https://osf.io/sfnc9/.

Text S1 Replication study (M22R) description.
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Fig S2 Results from the independent replication of study M22 (M22R). As
in the main study (M22), behavioral results and computational modeling support the
intrinsically enhanced model. (A) During the test phase, the mid-value option of
context 1 (darker grey) was chosen more often than the mid-value option of context 2
(lighter grey), a pattern that was also evident in the intrinsically enhanced model’s, but
not the rangez model’s behavior. (B) Difference in test phase choice rates between
stimulus M1 and M2. (C) When the two mid-value options were pitted against each
other, participants preferred the one from context 1. When either was pitted against a
low-value option, participants selected the mid-value option from context 1 more often
than the mid-value option from context 2. When either was pitted against a high-value
option, participants selected the high-value option from context 1 less often than the
high-value option from context 2. The dotted line indicates chance level (0.5) All these
behavioral signatures were captured by the intrinsically enhanced, but not the range
adaptation model. (C) Difference between M1 and M2 in the proportion of times the
option was chosen when compared to either L1 or L2. (E) Participants explicitly
reported the mid-value option of context 1 as having a higher value than the mid-value
option of context 2. (F) Differences in explicit ratings between option M1 and M2. (G)

Model fitting favored the intrinsically enhanced model. Data and analysis scripts
underlying this figure are available at https://osf.io/sfnc9/.

Fig S3 Learning phase performance in the M22 replication study (M22R).

Participants learned to discriminate the correct option across bandit combinations in
the learning phase. Data and analysis scripts underlying this figure are available at
https://osf.io/sfnc9/.

Text S2 Control study (M22B) description.

Fig S4 Task structure for experiment M22B. In M22B, unavailable options were
made more opaque and unselectable, but not completely invisible as was the case in
M22 and M22R. The two tasks were otherwise identical.

Fig S5 Results from the control study for M22 (M22B). As in the main study
(M22) and the replication (M22R), behavioral results and computational modeling
support the intrinsically enhanced model. See S2 Fig for caption details. Data and
analysis scripts underlying this figure are available at https://osf.io/sfnc9/.

Fig S6 Learning phase performance in the M22 control study (M22B).

Participants learned to discriminate the correct option across bandit combinations in
the learning phase. Data and analysis scripts underlying this figure are available at
https://osf.io/sfnc9/.

Fig S7 Confusion matrices illustrating model recovery across data sets. The
upper row in each subplot shows model frequencies, the lower row shows protected
exceedance probabilities. Model name abbreviations: IE = intrinsically enhanced, HAC
= hybrid actor-critic, RL = unbiased, WSLS = win-stay/lose-shift. Data and analysis
scripts underlying this figure are available at https://osf.io/sfnc9/.

Fig S8 Best fit parameters for the intrinsically enhanced model in B21.

Note that ↵u could only be fit in experiments with counterfactual feedback, and !test

could only be fit in experiments with counterfactual feedback at testing, and are
therefore left at the initial prior. Abbreviations: the first letter in each triplet indicates
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whether feedback was partial (P) or complete (C) during learning; the second letter
indicates whether feedback in the test phase was partial (P), complete (C), or not
provided (N); the third letter indicates whether the experimental design was interleaved
(I) or blocked (B). Error bars indicate the S.E.M. (B) Model responsibilities overall and
across experimental conditions. Computational modeling scripts used to produce this
figure are available at https://osf.io/sfnc9/.

Fig S9 Best fit parameters for the intrinsically enhanced model in B18.

Computational modeling scripts used to produce this figure are available at
https://osf.io/sfnc9/.

Fig S10 Best fit parameters for the intrinsically enhanced model in G12.

Computational modeling scripts used to produce this figure are available at
https://osf.io/sfnc9/.

Fig S11 Best fit parameters for the intrinsically enhanced model in M22.

Computational modeling scripts used to produce this figure are available at
https://osf.io/sfnc9/.

Fig S12 Best fit parameters for the intrinsically enhanced model in the

M22 replication study (M22R). Computational modeling scripts used to produce
this figure are available at https://osf.io/sfnc9/.

Fig S13 Best fit parameters for the intrinsically enhanced model in the

control study for M22 (M22B). Computational modeling scripts used to produce
this figure are available at https://osf.io/sfnc9/.

Fig S14 The ! parameter from the intrinsically enhanced model was

significantly correlated with key behavioral signatures of context-sensitive

learning. (A) In B21, !learn correlates with the error rate in context 8 (choosing a
bandit with EV = 0.75 vs. one with EV = 2.5. (B) In B18, ! correlates with the
average error rate when choosing between a bandit with EV = 0.075 vs. one with EV =
0.25, and between a bandit with EV = -0.025 vs. one with EV = 0.025. (C) In G12, !
correlates with the average error rate when choosing between a bandit with EV = -0.1
vs. one with EV = 0.1, and between a bandit with EV = -0.2 vs. one with EV = 0.2.
(D-F) In M22, M22R, and M22B, ! correlates with the difference in choice rates for
bandits M1 and M2 (both had EV = 50). Spearman’s ⇢ is reported for each correlation.
All behavioral biases were measured in the test phase. Computational modeling scripts
used to produce this figure are available at https://osf.io/sfnc9/.

Text S3 Preliminary model selection information.

Fig S15 Adding an ↵range parameter in the range adaptation model does

not increase its responsibility. Model validation (A) and comparison (B) by
experimental condition in B21 with ↵range in the range adaptation model. Here, the
range adaptation model was endowed with an ↵range parameter, which dynamically
updated the minimum and maximum value of each context, as was done in the original
study for data set B21 [12]. The addition of this parameter disadvantaged the range
model (in teal) compared to the intrinsically enhanced model (in purple). See Fig 2 for
caption details. Data underlying this figure are available at
https://github.com/hrl-team/range/. Computational modeling scripts used for the
illustrated results are available at https://osf.io/sfnc9/.
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