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Abstract

Some introduced species cause severe damage, although the majority have little

impact. Robust predictions of which species are most likely to cause substantial

impacts could focus efforts to mitigate those impacts or prevent certain inva-

sions entirely. Introduced herbivorous insects can reduce crop yield, fundamen-

tally alter natural and managed forest ecosystems, and are unique among

invasive species in that they require certain host plants to succeed. Recent

studies have demonstrated that understanding the evolutionary history of intro-

duced herbivores and their host plants can provide robust predictions of impact.

Specifically, divergence times between hosts in the native and introduced ranges

of a nonnative insect can be used to predict the potential impact of the insect

should it establish in a novel ecosystem. However, divergence time estimates

vary among published phylogenetic datasets, making it crucial to understand if

and how the choice of phylogeny affects prediction of impact. Here, we tested

the robustness of impact prediction to variation in host phylogeny by using

insects that feed on conifers and predicting the likelihood of high impact using

four different published phylogenies. Our analyses ranked 62 insects that are

not established in North America and 47 North American conifer species

according to overall risk and vulnerability, respectively. We found that results

were robust to the choice of phylogeny. Although published vascular plant phy-

logenies continue to be refined, our analysis indicates that those differences are

not substantial enough to alter the predictions of invader impact. Our results

can assist in focusing biosecurity programs for conifer pests and can be more

generally applied to nonnative insects and their potential hosts by prioritizing

surveillance for those insects most likely to be damaging invaders.
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INTRODUCTION

Invasive species are critical drivers of biodiversity loss
and changes in ecosystem function and services
(Simberloff et al., 2013; Vilà et al., 2010), and they cause
billions of dollars of ecological and economic damage
annually (Bradshaw et al., 2016; Cuthbert et al., 2022).
Predicting and reducing the consequences of invasion are
some of the most urgent goals of ecology, yet establishing
effective priorities is particularly challenging because
most introduced species are relatively benign, with only a
small proportion become damaging invaders (Bradshaw
et al., 2016; Williamson & Fitter, 1996). The ability to
identify which species have the potential to cause major
ecological or economic harm would greatly assist in pri-
oritizing limited biosecurity resources for surveillance
and eradication (Tobin et al., 2014). This knowledge is
especially beneficial prior to or during the early stages of
invasion (i.e., transport, introduction, and early establish-
ment) when returns on management investments are the
greatest (Epanchin-Niell & Liebhold, 2015; Yokomizo
et al., 2009).

Previous research has focused on identifying the traits
of organisms that might predict their success as invaders
(Catford et al., 2016; Jeschke & Strayer, 2006) and their
impacts on invaded communities (Dick et al., 2017;
Kumschick et al., 2015; Liebhold et al., 2016; Mack
et al., 2000; Mech et al., 2019; Sofaer et al., 2018). A pat-
tern that emerges from this work is that the impact of an
invader depends upon the community it invades. While
an interesting insight, diversity in both invader and
invaded community traits, along with the individualistic
nature of invader-invaded community interactions,
makes it difficult to determine, a priori, which introduced
species are likely to cause harm. Some of the most dam-
aging invaders are parasites and pathogens, which can
decimate the species that serve as their hosts. The com-
plexities and potential impacts of host–pest relationships,
such as those associated with nonnative herbivorous
insects, warrant deeper exploration.

Substantial effort has been devoted to understanding
and making predictions about all stages of the invasion
process, particularly for nonnative insects. Past research
has tested the ability to predict novel host associations
between plants and herbivorous insects (Branco
et al., 2015; Pearse et al., 2013; Pearse & Altermatt, 2013)
and evaluated the robustness of association predictions to
critical sources of uncertainty (Pearse & Altermatt, 2015).
Other studies have tested the ability to predict invasion
pathway success or arrival (e.g., Fletcher et al., 2016;
Hulme, 2009), establishment and spread upon arrival
(e.g., Gougherty & Davies, 2021; Hudgins et al., 2017;
Palamara et al., 2016), and host colonization

(e.g., Pearse & Hipp, 2009). These and related efforts
demonstrate how a range of predictive approaches are
likely necessary for capturing the entire picture of inva-
sion, from the characteristics and associations of an organ-
ism in its native range to the damage caused in a novel
area. Many of these studies as well as others
(e.g., Desurmont et al., 2011; Gilbert et al., 2012; Pearse &
Rosenheim, 2020; Robles-Fern�andez & Lira-Noriega, 2017)
recognize that the reconstructing of evolutionary history is
valuable for predictions regarding invasion processes.

One of the final, most salient aspects of the study of
biological invasions is predicting impact following intro-
duction, host utilization, establishment, and spread. For
nonnative herbivorous insects on trees, insect impact
depends upon how closely related hosts are in the intro-
duced range to those in the insect’s native range (Mech
et al., 2019; Schulz et al., 2021). Relatedness of hosts can
be measured through divergence times obtained from
reconstructed phylogenies, but these time estimates vary
among published phylogenetic datasets. Great strides
have been made in using DNA sequence data to recon-
struct the phylogeny of conifers (Leslie et al., 2018) and,
indeed, all extant plant species (Smith & Brown, 2018).
Although the relationships among species are similar
among different phylogenetic studies, regardless of meth-
odology, divergence time estimates often vary because of
uncertainty about the choice and placement of fossils
used for calibrating molecular dating (Gernandt
et al., 2018; Sauquet & Magall�on, 2018). It is, therefore,
crucial to evaluate whether and how predictions of
impact may shift according to the phylogenetic dataset
used. Here, we tested the robustness of predictions of
nonnative insect impact to variation in estimates of diver-
gence time between native and novel host species. Specif-
ically, we evaluated potential shifts in predictions of
insect invader impact and host vulnerability.

METHODS

Overview

Here, we apply the model framework of Mech et al. (2019)
to European conifer-specialist insects (herbivore species
that only utilize coniferous [Order Pinales] tree hosts) that
have not yet established in North America. To test the sen-
sitivity of the model framework to the host phylogeny
used, we compared model inputs (i.e., divergence time
estimates) and outputs (i.e., predicted likelihoods of high-
impact invasion) among four published host plant phylog-
enies: two molecular phylogenies that focused on conifers
(Leslie et al., 2012, 2018), one from a comprehensive phy-
logeny of seed plants that combined molecular data with

2 of 16 UDEN ET AL.



taxonomic relationships (Smith & Brown, 2018), and one
from the online resource, TimeTree, that distills the scien-
tific consensus on the phylogeny and divergence times of
global biodiversity by assembling estimates from the scien-
tific literature into a global TimeTree of Life (http://www.
timetree.org; Hedges et al., 2015; Kumar et al., 2017). To
answer fundamental questions about trends associated
with closely related evolutionary groups, we used predic-
tions from the phylogeny with the most comprehensive
species coverage, Smith and Brown (2018), to rank insect
and tree species according to relative risk and vulnerabil-
ity, respectively. Specifically, we: (1) created a list of
62 European insect species (“risk species”); (2) identified
and compared divergence time estimates among the four
phylogenetic datasets; (3) refit and validated the Mech
et al. (2019) model using data from each of the four phylo-
genetic datasets; (4) compared predicted likelihoods of
high-impact invasion for all risk species among the four
phylogenetic datasets; and (5) used high-impact likelihood
predictions from Smith and Brown (2018) to evaluate risk
and vulnerability trends among insects and conifer hosts,
respectively.

Risk species identification

Our study focused on conifer specialists associated with
trees native to Europe due to the region’s general climate
similarity to North America and readily available data
pertaining to insect traits and hosts. Although we focused
on insects native to Europe, many were considered
Eurasian as they had a broader Palearctic distribution
that encompassed parts of Europe as well as Asia
(Appendix S1). The first step in compiling the risk species
list was examining the USDA Animal and Plant Health
Inspection Service (APHIS) Prioritized Offshore Pest List,
which consists of �150 pest species previously deemed to
be of greatest threat to United States agriculture (USDA
APHIS, 2012). However, only 12 species on the APHIS
list were considered conifer specialists from Europe, and
they were not reflective of the nonnative conifer special-
ists currently established in North America. For example,
53% of the established nonnative conifer specialists in
North America are sap-feeding hemipterans, but the
APHIS list contained none. Because the majority of cur-
rently established conifer specialists in North America
feed exclusively on hosts in Pinaceae (Mech et al., 2020),
we expanded our risk species list by evaluating insects
feeding on four common Pinaceae genera and species in
Europe: Abies alba Miller, Larix decidua Miller, Picea
abies (L.) Hermann Karsten, and Pinus sylvestris L. We
used Smith and Roy (2008), which focuses on British
insects but is considered representative of continental

Europe, to determine some of the European insects asso-
ciated with these four conifer species and to add conifer
specialists not currently established in North America to
the risk species list. This increased the number of insect
species from 12 to 142. Finally, we selected a stratified
random subset (n = 62) of the full risk species list, based
on the composition (order and feeding guild) of currently
established nonnative conifer specialists. For these
62 insect species, we then used published literature and
online searches to determine their feeding guild and full
native host list (Appendix S1). For consistency, we calcu-
lated predicted risks for the same 47 North American
conifers included in the previous model formulation
(Mech et al., 2019), with the data needed for the North
American host traits and coevolved insect submodels
obtained from Mech et al. (2020).

Comparison of phylogenetic dataset
divergence time estimates

To determine the divergence times for each native–novel
host pair, Mech et al. (2019) used Leslie et al. (2012), who
inferred the phylogeny of approximately 80% of extant
conifer species using DNA sequence data from two chlo-
roplast genes (matK, rbcl) and two nuclear genes (18S,
PHYP). The divergence times were calibrated with
16 points placed throughout the phylogeny that were
assigned lognormal date ranges based on fossil evidence.
Three species not represented in Leslie et al. (2012)—
Abies balsamea (L.) Miller, Pinus cembra L., and
P. banksiana Lambert—were placed in positions within
their respective genera based on their positions in other
published phylogenies (Gernandt et al., 2005; Parks
et al., 2012; Xiang et al., 2015). Leslie et al. (2018) used
similar methods as Leslie et al. (2012) but added addi-
tional taxa to include �90% of extant conifer species,
added new matK and rbcL sequences and excluded all
PHYP sequences to improve the evenness of data across
clades, and added more fossil calibration points for a total
of 26 minimum divergence dates, including some new
fossils placed within crown genera.

TimeTree (Hedges et al., 2015; Kumar et al., 2017) is a
public, web-based resource that compiles available diver-
gence times for all organisms derived from molecular
sequence data. Dated phylogenies from the peer-reviewed
literature are collected and synthesized for the user. The
divergence times assigned to nodes are the mean of all
estimates available in the literature for that node. For our
analyses, we generated a dated phylogeny using the
“TimeTree View” option of inputting a list of taxa,
accessed on 14 June 2020. Smith and Brown (2018)
reconstructed a dated phylogeny of 353,185 species of
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seed plant taxa using DNA sequence data mined from
GenBank and phylogenetic data from Open Tree of Life
(Hinchliff et al., 2015). Hierarchical clustering analysis
was first used to reconstruct phylogenies of major clades
using the sequence data. The relationships among these
clades and the incorporation of taxa without sequence
data were then estimated using data from the Open Tree
of Life project. Generally, species that were not
represented with sequence data in GenBank were placed
in a basal position in their respective genera. Divergence
times were estimated using the penalized likelihood
method in treePL (Sanderson, 2002; Smith &
O’Meara, 2012). This tree was calibrated using 590 points
derived from the phylogeny of Magall�on et al. (2015),
which was itself calibrated at 137 nodes using fossil data.

The shortest divergence time for all native–novel host
pairs was found using each of the four phylogenies
(Kumar et al., 2017; Leslie et al., 2012, 2018; Smith &
Brown, 2018). We used Pearson’s correlation coefficient
naïve to compare model inputs (i.e., divergence time esti-
mates) among the four different phylogenetic datasets.

Refitting and validation of the Mech et al.
(2019) model

For each of the four phylogenetic datasets, we followed
the approach of Mech et al. (2019), who developed a host
relatedness submodel explaining variability in impact
among 58 conifer-specialist species already established in
North America. Each submodel was then combined with
the host traits and insect relatedness submodels of Mech
et al. (2019) to form a composite model, resulting in four
total composite models. Like Mech et al. (2019) and
Schulz et al. (2020), we defined high-impact invasions as
those resulting in isolated, sporadic, extensive, or persis-
tent tree mortality within populations or regionally, up to
causing functional extinction of the host tree, and not-
high-impact invasions as those that directly or indirectly
cause only minor damage or mortality of individual trees.
We chose this impact dichotomy to have a large enough
sample of high-impact species and because no matter the
timeline of introduction, documented tree mortality at
the population level is a prerequisite to even greater
impacts.

To develop the four host-relatedness submodels, we
used logistic regression to test for a significant interaction
between quadratic divergence time and insect guild with,
α = 0.10. If the interaction was significant, we used
Akaike’s information criterion (AIC), adjusted for small
sample size (AICc), in an information theoretic
(i.e., model selection) approach, to rank three competing
submodels according to support in the data:

(1) impact � divergence time; (2) impact � divergence
time2; and (3) impact � 1 (i.e., null model; no predictors).
The same three models were compared for folivores, sap-
feeders, and all feeding guilds combined. If the quadratic
divergence time–insect guild interaction was not signifi-
cant, we used AICc to compare the same three competing
submodels for the “all guilds” dataset alone. If the null
submodel received an AICc score within two of the best-
supported submodel, it indicated that none of the models
in the set were viable, at which point the submodel was
excluded from further consideration and was not inte-
grated into the composite model. In the event there was
model-based uncertainty between linear divergence time
and quadratic divergence time models, we selected the
best-supported model instead of performing model
averaging.

The pseudo R2 goodness-of-fit metrics for each
submodel were calculated using the Nagelkerke R2

(Nagelkerke, 1991) calculation through the fmsb package
in R (Nakazawa, 2021). We used 10-fold cross-validation
to gauge the predictive ability of submodels with inde-
pendent observations (i.e., data not used in model train-
ing), which involves randomly subsetting a dataset into
10% and 90% groups, estimating coefficient estimates
with the 90%, making predictions of high impact with the
10%, evaluating predictive performance with the known
values of the 10%, repeating the process nine more times,
and averaging the results (Fushiki, 2011). Within 10-fold
cross-validation, predictive performance was quantified
with receiver operator characteristic (ROC) plots and
area under the curve (AUC) statistics (Fielding &
Bell, 1997), which indicated the degree to which
submodels correctly assigned greater likelihoods of high-
impact invasion to high-impact than low-impact invasion
events. Although each submodel was validated with inde-
pendent data, composite models were validated with the
data used to parameterize it.

Comparison of model predictions among
phylogenetic datasets

Each of the four composite models was used to predict
the likelihood of high-impact invasion for all risk insect–
novel host pairs (n = 2914). We used the inverse logit
transformation to convert raw model outputs (i.e., logit
values) to continuous probabilities between 0 and 1.
We used Pearson’s correlation coefficients to compare
high-impact likelihood predictions among the four phylo-
genetic datasets. To convert continuous predictions of
high-impact likelihood to either high-impact or not
high-impact groups, we used a threshold of 0.08 because
this was the observed proportion of currently established
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conifer-specialist tree pairs that were high impact (Mech
et al., 2019).

Risk and vulnerability ranking

For the 47 North American conifer species evaluated, we
presented high-impact invasion likelihood predictions
across the 2914 risk insect–novel host pairs with the model
refit with divergence times derived from the phylogeny of
Smith and Brown (2018). We selected this phylogeny after
the predictions were shown to be robust to the choice of
phylogeny (see “Results” below), because it is the most
comprehensively dated super-tree of seed plant relation-
ships available to date and can retrieve data on missing
species from other resources. To visualize relative risk and
vulnerability across all pairs of risk insect and novel hosts
in our study, we aggregated predictions in a phylogeneti-
cally structured heatmap using the heatmap.2 function in
the gplots package in (R Core Team, 2020; Warnes
et al., 2020), with insect and conifer species ordered along
the plot axes according to their phylogenetic relationships
derived from the Open Tree of Life using the rotl package
in R (Michonneau et al., 2016).

We also used high-impact likelihood predictions to
calculate and showcase the utility of the mean predicted
likelihood of high-impact invasion (Pa) across our sam-
pled insect risk species, which can be used to rank tree
species from greatest to least vulnerability to this particu-
lar cluster of risk insects. We also calculated Pc, the prob-
ability of at least one high-impact event across all
47 conifer species, which can be used to rank insect risk
species from most to least risky. To visualize risk and vul-
nerability across insect and conifer species, we used the
ggplot2 (Wickham, 2016) and dplyr (Wickham
et al., 2020) packages in R to generate histograms of the
counts of classes of high-impact invasion likelihood for
each risk insect and conifer species, and ranked the histo-
grams by Pc and Pa, respectively.

RESULTS

Comparison of phylogenetic dataset
divergence time estimates

Native–novel host divergence time estimates among the
four phylogenetic datasets used in the host-relatedness
submodel refitting were strongly positively correlated (all
pairs r ≥ 0.95), with the same rank order among phyloge-
nies (Table 1). When comparing the four datasets, the
same native host was selected as the closest relative for
98.8% of the risk insect–novel host pairs. Hence, the

Mech et al. (2019) predictive model, which is largely
driven by the evolutionary history between an insect’s
native and novel hosts, can find similar patterns of
shortest divergence times in the host-relatedness
submodel when using four different robust phylogenetic
datasets reconstructed using different methods and with
different calibration schemes.

Model refitting and validation

The model refitting process resulted in different host-
relatedness submodel variables among the four phyloge-
netic datasets. Through generalized linear models, we
found significant (p < 0.10) interactions between quadratic
divergence time and insect guild for the phylogenies of
Leslie et al. (2012, 2018) and Kumar et al. (2017), but not
Smith and Brown (2018) (Appendix S2: Table S1). Conse-
quently, we developed separate folivore, sap-feeder, and
all guilds host-relatedness submodels for the Leslie
et al. (2012, 2018) and Kumar et al. (2017) phylogenetic
datasets, and a single all guilds host-relatedness submodel
for the Smith and Brown (2018) phylogenetic dataset. For
the folivore, sap-feeder, and all guilds submodels of Leslie
et al. (2012), the quadratic divergence time submodel
received more support (i.e., lower AICc scores) than the
linear divergence time or null submodels (Appendix S2:
Table S2), with pseudo R2 values (i.e., goodness-of-fit) of
0.433, 0.356, and 0.158, and AUC (i.e., cross-validation)
values of 0.802, 0.791, and 0.674, respectively
(Appendix S2: Table S3). For Kumar et al. (2017), the
linear divergence time submodel was best supported
for folivores (r2 = 0.462; AUC = 0.840) and all guilds
(r2 = 0.080; AUC = 0.632), whereas the quadratic diver-
gence time submodel was best supported for sap-feeders
(r2 = 0.116; AUC = 0.629) (Appendix S2: Tables S2
and S3). The model selection approach did not clearly
indicate whether the linear or quadratic divergence
time submodel was better-supported for the folivore
(ΔAICc = 0.535) and all guilds (ΔAICc = 1.560) submodels
of Leslie et al. (2018). However, given the implausibility of
averaging linear and quadratic divergence time models, we
identified the linear divergence time submodel as the top
model for folivores (r2 = 0.259; AUC = 0.765) and the qua-
dratic divergence time submodel as the best model for all
guilds (r2 = 0.124; AUC = 0.645) (Appendix S2: Tables S2
and S3). The quadratic divergence time sap-feeder
submodel (r2 = 0.357; AUC = 0.777) was best supported
for the Leslie et al. (2018) phylogeny (Appendix S2:
Tables S2 and S3). Finally, the best-supported all guilds
submodel for Smith and Brown (2018) was the quadratic
divergence time submodel (r2 = 0.22; AUC = 0.705)
(Appendix S2: Tables S2 and S3).
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Comparison of model predictions among
phylogenetic datasets

Composite model predictions of high-impact invasion
likelihood among the four phylogenies were moderately-
to-strongly positively correlated (all r = 0.71–0.88;
Table 2). Predicted probabilities of at least one
high-impact invasion event following the introduction
and establishment of the 62 insect risk species (Pc) were
also moderately-to-strongly positively correlated
(r = 0.54–0.93; Table 3). Among the 2914 predictions of
risk insect–novel host pairs that had high-impact inva-
sion likelihood with the four composite models, there
were only 40 instances (1.37%) in which the risk
predicted using one source phylogeny was high (>0.08)
but low (<0.01) when using another source phylogeny.
These cases were associated with 27 risk conifer-specialist
insects and nine conifer hosts.

Risk and vulnerability rankings

We used high-impact likelihood predictions from the
model refit with divergence times derived from the phy-
logeny of Smith and Brown (2018) to rank conifers and

insects according to vulnerability (Pa; Figure 1) and risk
(Pc; Figure 2), respectively, as well as display the 2914
high-impact invasion likelihood predictions in a heatmap
(Figure 3). Of the 2914 risk species-novel host pairs exam-
ined, 302 (10.4%) had a predicted risk of high impact
above our threshold of 0.08. These pairs included 41 risk
species (66% of the insect species studied) and 20 North
American conifers (41.7% of our sample conifers). Using
the Smith and Brown (2018) phylogeny, values of Pc
ranged from 0.94 to 0.07, with 14.5% (n = 9) of risk spe-
cies displaying a Pc ≥ 0.90 (Figure 2). Based on the species
we assessed, the pine-tree lappet (Dendrolimus pini L.),
with Pc = 0.94, had a 94% chance of resulting in a
high-impact invasion event for at least one of the
47 North American conifer species. Alternatively, the risk
of at least one high-impact invasion event for brown
larch aphid (Cinaria cuneomaculata Del Guercio)—the
insect species with the lowest Pc—was 7.3%. Among coni-
fer species, values of Pa ranged from 0 to 0.019, with the
mean predicted likelihood of high-impact invasion across
all risk insect species being greatest for red spruce (Picea
rubens Sargent) (Figure 1). Because we focused on specific
European host species in Pinaceae to create our
risk insect species list, it was not surprising that North
American conifers in the same genera as the European

TAB L E 1 Correlation matrix of shortest divergence time for the four phylogenies (n = 2739 insect–tree combinations).

Phylogenetic dataset Leslie et al. (2012) Kumar et al. (2017) Leslie et al. (2018) Smith and Brown (2018)

Leslie et al. (2012) 1.00 0.99 0.99 0.97

Kumar et al. (2017) 1.00 0.99 0.95

Leslie et al. (2018) 1.00 0.96

Smith and Brown (2018) 1.00

TAB L E 3 Correlation matrix of predicted probabilities of at least one high impact from the introduction of 62 different nonnative insect

species.

Phylogenetic dataset Leslie et al. (2012) Kumar et al. (2017) Leslie et al. (2018) Smith and Brown (2018)

Leslie et al. (2012) 1.00 0.93 0.59 0.79

Kumar et al. (2017) 1.00 0.54 0.65

Leslie et al. (2018) 1.00 0.67

Smith and Brown (2018) 1.00

TAB L E 2 Correlation matrix of composite model risk predictions from the four phylogenies (n = 2914 insect–tree combinations).

Phylogenetic dataset Leslie et al. (2012) Kumar et al. (2017) Leslie et al. (2018) Smith and Brown (2018)

Leslie et al. (2012) 1.00 0.88 0.86 0.85

Kumar et al. (2017) 1.00 0.78 0.71

Leslie et al. (2018) 1.00 0.79

Smith and Brown (2018) 1.00
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species (e.g., Abies and Picea spp.) were found to have rel-
atively higher levels of vulnerability to high-impact inva-
sion compared with species within Cupressaceae
(Figure 3). Among the 62 insect species, risk of high-
impact invasion was spread among insect orders, with rel-
atively high levels of risk concentrated in Lepidoptera and
Coleoptera. Overall, there were fewer predictions of high-
impact invasion for the Hymenoptera and Hemiptera spe-
cies included in our study (Figure 3).

DISCUSSION

Our results demonstrate that models fitted using infor-
mation about previously established nonnative insects
can be used to rank both the relative vulnerability of
native host species (Figure 1) and the relative potential
risk associated with insect species that have not yet
arrived (Figure 2). Although prior studies have found that
only a small proportion of nonnative species causes sig-
nificant damage (Aukema et al., 2010; Williamson &
Fitter, 1996), 66% of our stratified random sample of risk
species were predicted to have a high probability of being
high impact (>0.08) on at least one North American coni-
fer should they become established. This difference high-
lights the importance of establishment in the invasion
process, which our impact model does not predict.

Our comparison of model inputs and outputs when
using different plant phylogenies (Kumar et al., 2017;
Leslie et al., 2012, 2018; Smith & Brown, 2018) indicated
that the selection of the specific plant phylogeny did not
substantially alter risk predictions, in part because of the
congruence in topology and divergence time estimates
among phylogenies (Table 1), which is a testament to the
current robustness of plant phylogenetic reconstruction.
The phylogeny of Smith and Brown (2018) had notably
shorter divergence times than the other source phyloge-
nies, with the Pinaceae crown node dated to 71.7 million
years ago (mya) versus 165.9–187.2 in the others, but
these systematically shorter divergence times did not
have a strong impact on the results. The predicted proba-
bilities of at least one high-impact invasion for each coni-
fer species across all 62 insect risk species (Pc) were more
variable among phylogenies, but still displayed moderate-
to-strong positive correlations (Table 3). Given the strong
positive correlations among phylogenetic divergence time

estimates, this increased variability in aggregated predic-
tions was likely to be due to variation in the best-
supported host-relatedness submodels (Appendix S2:
Table S2). The agreement in predictions among models
trained with divergence time estimates based upon differ-
ent phylogenies lends confidence to the reliability of our
model, as only 1.37% of the predictions differed in classi-
fying a species as high impact or not high impact. These
results complement similar efforts aimed at evaluating
the robustness of model predictions about nonnative her-
bivorous insects at other stages along the invasion path-
way (e.g., Pearse et al., 2013; Pearse & Altermatt, 2015).

In contrast with the null hypothesis of randomness in
likelihood of high impact among the 2914 risk insect–
novel host pairs, our results displayed clear phylogenetic
patterns in both North American conifer species
(i.e., columns) and nonnative conifer-specialist insects
(i.e., rows) (Figure 3). Consistent with Mech et al. (2019),
divergence time between native and novel hosts using
Smith and Brown (2018) showed a quadratic relationship
with the probability of risk, indicating that there is a
“Goldilocks” region of high risk. If a North American
conifer shared a common ancestor with the risk insect’s
native host �2–10 mya, as opposed to <2 or >10 mya, it
was predicted to be more vulnerable to a high-impact
invasion by a conifer specialist. For the subset of insect
species chosen for our study, North American fir (Abies)
and spruce (Picea) were found to be more vulnerable to
the introduction of European nonnative specialist insects
that utilize fir and spruce in their native range. The most
vulnerable tree that we found in our study was red spruce
(Picea rubens Sarg.). The host traits submodel used in the
Mech et al. (2019) composite model identified trees with
the traits of high shade tolerance and low drought toler-
ance as being more vulnerable to high-impact invasions.
In accordance with that study, North American fir and
spruce bear these characteristics, whereas pine (Pinus)
does not. The vulnerability of spruce and fir is also par-
tially an artifact of our sampling method. Out of the
62 risk insect species evaluated, 30 utilized Picea abies
(Appendix S1), a tree that has a paired divergence time
with red spruce of 5.01 mya, right in the middle of the
“Goldilocks zone” of high risk, further explaining the
number of species in these genera with higher Pa values
(Figure 1). Conversely, the selected European pine, Pinus
sylvestris L., does not share a common ancestor in the

F I GURE 1 Histograms of the number of nonnative insects by predicted probability of high impact for each of the 47 North American

conifer species. Conifer species are arranged by the highest mean predicted probability of high impact (Pa) (top left box, i.e., Picea rubens is

the most likely to experience high impact from the European nonnative insects included in this study) to lowest mean probability of high

impact (bottom right box, i.e., Sequoia sempervirens is the least likely to experience high impact from nonnative insects included in this

study).
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“Goldilocks” zone with the majority of North American
pines. Thus, most of the pines on our list were not associ-
ated with many high predicted risks. One of the excep-
tions was red pine (Pinus resinosa Aiton), which shared a
common ancestor with Pinus sylvestris 5.6 mya. This spe-
cific host pair also highlights the potential that the host-
relatedness model may be symmetrical; that it could also
apply to North American insects invading Europe. For
example, the native hosts of the pine needle scale
(Chionaspis pinifoliae Fitch) include red pine and white
pine (Pinus strobus L.), but it can have a high impact on
European trees planted in North America (Glynn &
Herms, 2004), particularly those that have diverged from
its native hosts in the “Goldilocks zone” of high risk
(Pinus sylvestris and P. mugo Turra).

The ability to identify vulnerable tree species
irrespective of a particular insect invader can inform inva-
sive species biosecurity and management programs
through the prioritization of limited monitoring resources
to the most vulnerable tree species. The importance of host
evolutionary history (i.e., shortest divergence time between
native and novel hosts) in predicting the risk of high-
impact invasions can be used to help to identify vulnerable
North American tree species. Although other submodels
incorporated within the composite model can influence
the risk associated with specific insect species, the host-
relatedness submodel identifies trends regardless of the
insect associated with the host pairs. Using the phylogeny
of Smith and Brown (2018), the “Goldilocks” zone of
�2–10 mya was associated with 197 native–novel host
pairs. Within those pairs, 27 of the North American coni-
fers included in our study (57.4%) had at least one data
point in the high-risk zone. This indicates that there are
certain tree species in other regions, such as Europe or
Asia, that serve as a pool of potential high-risk insect spe-
cies for at least one North American conifer species.
A unique implication of this research is the ability to iden-
tify, for example, particular Palearctic trees that are within
the high-impact “Goldilocks” zone of divergence times in
relation to specific North American tree species, and then
identify the insects that feed on those Palearctic trees to
determine the species that would have the highest
predicted risk of causing a high impact on those North
American tree species.

Quantifying the risk of specific introduced insects to
cause high impacts in North America can inform

programs to prevent and manage biological invasions.
Because of the high volume of global trade, it is not feasi-
ble for regulators to inspect all imported goods, find all
insects contaminating goods, and prevent the introduc-
tion of all nonnative insect species (McCullough
et al., 2006). Our results show considerable variation in
the expected impact among nonnative European insects
in North America (Figure 2). Specifically, knowledge of
the insects most likely to cause high impacts, and the
pathways through which they are most likely to enter,
could inform mitigating actions. Strategic policy may
decrease the likelihood of introduction and could be used
to select high-risk tree species for targeted surveillance.

When jointly considering vulnerable conifer species
and the predicted impact of a nonnative insect, this work
could be extended by using the USDA Forest Service
Forest Inventory and Analysis (FIA) program (McRoberts
et al., 2005) to identify vulnerable biogeographic regions
(or ecoregions) and vegetation communities that have
relatively high-value tree species that might be at risk
from introduced species. For example, Fraser fir (Abies
fraseri (Pursh) Poir.) displays high levels of vulnerability
across the 62 insect species, and Carolina hemlock (Tsuga
caroliniana Engelm.) is highly vulnerable to one of our
sampled nonnative insect species (Figure 3). Both of
these conifers have a limited geographic range and eco-
logical habitat, and hence a likely relatively narrow
genetic pool, being restricted to the Great Smoky and
Appalachian Mountains of Southeastern North America.
Current surveillance for introduced species in the USA,
such as the USDA Forest Service Early Detection and
Rapid Response (EDRR) program (Rabaglia et al., 2019),
targets specific insect species. While this approach cer-
tainly has merit, extending these programs by consider-
ing vulnerable ecoregions, vegetation communities, and
species importance indicators (e.g., NatureServe Explorer
plant community descriptions) could further help to pri-
oritize the allocation of limited resources to biosecurity
and invasive species management programs.

Although we have found confidence in the Mech
et al. (2019) model to predict the risk of nonestablished
conifer specialists in North America, we do not believe
that this model should be used to make predictions about
insects that feed on different host types (herbaceous
plants or woody angiosperms) or that have a larger host
breadth. Recent research has found that different drivers

F I GURE 2 Histograms of the number of North American conifers by predicted probability of high impact for each of the 62 nonnative

European insect species. Insect species are arranged by the predicted probability of at least one North American conifer species experiencing

high impact if all North American conifers were exposed to the insect (Pc) (top left box, i.e., Dendrolimus pini is most likely to be high impact

on at least one North American conifer included in this study) to lowest probability of high impact (bottom right box, i.e., Cinara

cuneomaculata is least likely to be high impact on at least one the North American conifers included in this study).
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of impact may exist for other types of hosts, indicating
that different risk models should be used for these vari-
able groups (Schulz et al., 2021). However, based on our
results, if host relatedness is a strong driver for other
insect groups (woody angiosperm specialists or general-
ists), those model predictions will most likely also be
robust, regardless of phylogeny used.

We were more likely to observe broad phylogenetic
patterns among vulnerable hosts than among herbivores,
as there were predicted high-impact risk species from all
five insect orders included in our analyses (Figure 3).
Nevertheless, our results can be used to identify specific
risk insect–novel host pairs that have relatively high like-
lihoods of high-impact invasion. For example, our model
indicates that the Fraser fir is particularly vulnerable,
with 17 risk insect species predicted to have high likeli-
hood of a high-impact invasion should they arrive and
establish in North America (Figure 3). Last, our results
can be used to differentiate between nonnative insects
that pose a high risk to multiple conifer species and those
predicted to negatively impact only a few conifer species.
The comparison of our predictions of high-impact inva-
sion likelihood to lists of known insect pests in the risk
species’ native range (e.g., those listed by the European
and Mediterranean Plant Protection Organization
[EPPO]), could be used to identify pest species that are
likely to enter via invasion pathways.

The absence of a high likelihood of high-impact
invasion for certain conifer species in our results does
not mean that they are invulnerable. The insect species
that we tested, and our focus on Europe as the source
region, influences the conifer species identified as vul-
nerable. For example, not all species within
Cupressaceae should be considered resistant to high-
impact insect invasion, as might be suggested by the
prediction matrix (Figure 3), because we did not include
insects that feed primarily on members of Cupressaceae.
In addition, our results only apply to the risk of invasion
from Europe to North America. The distribution of
divergence times among European and North American
conifer species is expected to be different for other bio-
geographic regions. For example, conifer species in the
Southern Hemisphere generally have older divergence
times than those in the Northern Hemisphere (Leslie
et al., 2012), and East Asia has higher conifer diversity
than Europe (Farjon, 2010; Sundaram et al., 2019).

These region-specific differences in host plant evolution-
ary history are likely to affect predictions of high-impact
invasions, given the important role of evolutionary his-
tory (Mech et al., 2019). It is possible that certain low-
risk areas in the prediction matrix (Figure 3) would be
higher risk with broader geographic representation of
nonnative insects. Therefore, we recommend that future
research focus on how the patterns of risk to North
American conifers differs for insects originating from
other areas such as Asia or Latin America, both of
which are major sources of species introductions in
recent years due to global trade routes (Meurisse
et al., 2019; Roques et al., 2020). Predicted risks could
also be evaluated for insects that are commonly
intercepted at ports of entry and therefore have high
propagule pressure (Brockerhoff et al., 2014; Colautti
et al., 2006). Overall, our study supports the increasingly
illuminated role of native–novel host relatedness in
determining an introduced insect’s risk to new hosts
and showcases that using different robust phylogenetic
datasets to quantify this relatedness does not affect the
resultant risks. Predictive models such as those used in
this study can be used to mitigate future ecological and
economic impacts in an increasingly connected world.
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