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Abstract We establish an explicit embedding of a quantum affine sl,, into a quantum affine sl 4.
This embedding serves as a common generalization of two natural, but seemingly unrelated, embed-
dings, one on the quantum affine Schur algebra level and the other on the non-quantum level. The
embedding on the quantum affine Schur algebras is used extensively in the analysis of canonical bases
of quantum affine sl, and gl,,. The embedding on the non-quantum level is used crucially in a work
of Riche and Williamson on the study of modular representation theory of general linear groups over a
finite field. The same embedding is also used in a work of Maksimau on the categorical representations
of affine general linear algebras. We further provide a more natural compatibility statement of the em-
bedding on the idempotent version with that on the quantum affine Schur algebra level. A 5 [,,-variant
of the embedding is also established.
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1 Introduction

Consider the following rule

a

a 0 b
— 0 0 of. (1.1)
c d

0 d

c
It defines an embedding of slx(R) into sl3(R) over any commutative ring R where a,b, ¢ and
d belong to. Further, by regarding a,b,c and d as block matrices, the embedding generalizes
to a natural embedding of sl,(R) into sl,41(R). When R is the local field C((¢)), such an
embedding plays a key role in the study of categorical representations of affine general Lie
algebras in Maksimau’s work [10, 11]. An affine gl variant of the embedding is further used in
the study of modular representations of general linear groups over finite fields in a recent work
[12] of Riche and Williamson.
Now consider the n-step affine flag variety §, 4 associated with GL4(C). It is well known
that quantum affine Schur algebras S,, 4 admit a geometric realization as the convolution algebra

on §n.d X §n,da. The ind-variety §, q parametrizes lattice chains in a d-dimensional vector space
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over C((t)). The operation of adding an extra copy of the lattice in a prescribed step in lattice
chains defines a natural embedding S,, 4 C Sy41,4. Such a natural embedding of quantum affine
Schur algebras is used crucially in the study of canonical bases and multiplication formulas of
quantum affine sl,,(C) and gl,,(C) in [4, 7]. We refer to [2] for a Hecke-algebra approach to, and
further applications of, this embedding.

So we have a natural embedding of affine sl,, into affine sl,, 1 on the one hand and a natural
embedding S,, 4 C Sy+1,4 on the other hand. Note that S,, 4 receives an algebra homomorphism
from quantum affine sl,,. To this end, it is desirable to understand the relationship between the
two kinds of seemingly unrelated embeddings. In this paper, we establish an explicit embedding
of quantum affine sl,, into its higher rank. It is a natural quantization of the embedding on
affine sl,, defined by (1.1) and used in the works [10-12]. We further provide a compatibility of
the embedding with that on the quantum affine Schur algebra level. It is somewhat unnatural.
However when consider the embedding on Lusztig’s modified quantum affine sl,,, it becomes
natural again. So the embeddings established in this paper can be regarded as a common
generalization of the previous two kinds of embeddings. It is worthwhile to point out that the
quantization is not unique, depending on a parameter ¢ € {£1}. In an upcoming paper [6], the

author will extend the embeddings established in this paper to a much broader setting.

Note that if one replaces the zero in the center of the right matrix by —trace(a) — trace(d)
in the assignment (1.1), it induces an embedding gl,,(R) C sl,,+1(R). As a quantization of this
embedding, we further provide an embedding of quantum affine gl,, in the sense of Green [5]
into quantum affine sl,,1 of level 1. There is a second version of quantum affine gl,, studied
by Du and Fu [3]. It is very interesting to see if there is a similar embedding as a common
generalization of the embeddings on the non-quantum level and on the quantum affine Schur

algebra level.

Let 6,, be an involution of sl,,(R) by sending a matrix to the matrix whose (4, j) entry is
the (n 4+ 1 —i,n + 1 — j) entry of the original matrix. The pair (sl,(R),sl,(R)%") is a quasi-
split symmetric pair. The embedding defined in (1.1) with appropriate block sizes of a and d
is compatible with the involutions 6,, and 6,1 on sl,(R) and sl,,+1(R) respectively. Thus it
induces an embedding on the fixed-point set: sl,(R)?" C sl,.1(R)?+1. On the geometry side,
there is a quantum affine Schur algebras S, ; defined as the convolution algebras of n-step affine

isotropic flag varieties in the works [4] (see also [1]). These algebras are homomorphic images

On

o, 1.e., the coideal subalgebras in an affine quantum symmetric

of a quantum version of sl
pair of quasi-split type A. There are natural embeddings Sh.a € Sj41,4. Which play a key
role in loc. cit. It is a natural question to see if there exists an embedding for these types of
coideal subalgebras as a common generalization of the embedding sl,,(R)?" C sl,41(R)?+! and

sl (R)% C slypq(R)O+1.

The embedding established in this paper certainly calls for a further investigation of a more

intrinsic connection between the above lines of research.

2 Preliminaries

This section recalls the basic definitions of quantum affine sl,, and its Schur quotients.
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2.1 Definition

Let Q(v) be the field of rational functions with the variable v. For each integer a € N, we define
v¢ —p~?
la] = ———. [a]' =[alfa—1]---[1].

— b
v—oy1

If 2 is an element in an associative algebra over Q(v), we write
£ =[]

Let I, = Z/nZ. 1f there is no danger of confusion, we write elements in I,, by 0,1,...,n—1.
Recall that the Cartan matrix of affine type Ailll is the n by n matrix C' = (¢;;)i jer, such
that ¢;; = 20; 5 — 03 j+1 — 05,5—1. Let U(s/,\[n) be the quantum affine ;[n associated with C. It is
an associative algebra over Q(v) and it admits a generator-and-relation presentation. Precisely,
the generators are standard Chevalley generators E;, F;, and K l-il for all 4 € I, and the defining

relations are given as follows.

K,K; = K;K;, KK '=1=K;'K, (R1)
KiEj = ¢ EjKi, KiFJ = FjKl‘, (RQ)
K;— K;*
EZ‘FJ' - FJEl == 5i,j 7,0 — ,U—Zl 5 (R3)
1—Cij
S (—EP BB <, (R4)
p=0
1—Cij
ST (~V)PEPEFTTY =0, Viyj € I, (R5)
p=0

o~

The algebra U(sl,,) can be endowed with a Hopf algebra structure with the comultiplication
A defined by

AE)=E®1+K ®E, AF)=FoK '+10F, AK)=K®K, Yicl,.
2.2 Idempotent Form

Let n be a positive integer greater than 1. Let &,, be the set of all sequences (a;);ez such that
a; € Z and a; = a;4, for all i. Note that any sequence (a;);cz in &, is completely determined
by the entries (a1, ...,ay), which we shall use to denote the sequence itself. The set &,, carries
a natural abelian group structure with the component-wise addition. It is naturally isomorphic
to Z". Let Y,, be the subset of &,, consisting of all sequences (a;)iez such that >, ., a; = 0.
Let 1 be the sequence in &,, such that each entry is 1. Let X,, = &,,/(1) be the_qt_lotient of
S, by the subgroup generated by 1. Let (—,—) : Y,, x X,, — Z be the perfect pairing defined
by (b,a) = >, bia; for all b € Y,, and a € X,,. Let I, = Z/nZ. There is an embedding
I, — Y, defined by i ay where the i (resp. i+ 1) entry of o is 1 (resp. —1) mod n and 0
otherwise. Similarly there is an embedding I,, — X,, defined by i — «a; where «; is the coset of
af in X,. Let i-j = (o), ;) for all i,j € I,,. Then (I,,-) is the Cartan datum of affine type
A,,. Further, (Y, X,,, (—, —)) is a root datum of (I,,,-). The root datum is neither X-regular
nor Y-regular.

Let U, be the modified quantum group associated with the root datum (Y, X,,) ([8]). The

algebra U,, is an associative algebra over Q(v) without unit. Instead it has a collection of



4 Li Y. Q.

idempotents 1, for A € X,,. It carries a natural U(;[n)—bimodule structure generated by the

1)\’8.
2.3 Quantum Affine Schur Algebra
Let V,, be the vector space over Q(v) spanned by the symbols uy for all k& € Z. To avoid

confusion, we write k for the congruence class of k in I,, = Z/nZ. We define a U(s/,\[n)—module

structure on V,, by the following rules: for all i € I,,, k € Z,

P, S
Er o, = 5,;714_’_—11%_1, F o, = (5,;,;1%_,_1, G = v ki Ty,

Via the comultiplication A, there is a U(f:\[n)—module structure on the tensor product V&4 =
V,®: - ®V, of d copies of V,,. There exists a natural action of the affine Hecke algebra Hy
of type A on V&9, The quantum affine Schur algebra is defined to be the centralizer algebra
Sn.a = Endg,(V®9). We shall not recall the precise definition of the Hy-action as it plays no
role in later analyses, instead we shall recall a geometric definition of S,, 4 in the following. Since
the two actions on V&% are commutative, there exists an algebra homomorphism U(sA[n) —
Sp.q. The morphism is not surjective in general. Let S;l’d be its image, a subalgebra in S, 4.
The algebra S! , was first studied by Lusztig. In particular, we have a surjective algebra
homomorphism ’

Ta s U(sl,) — S), 4. (2.1)
It is well known from [9] that there exists an algebra homomorphism ¢gin,a : Sy, 41, — S}, 4
such that m, ¢ = ¢d1n,dTd+n,da- Moreover U(sA[n) is in the inverse limit of the inverse system
{Sn.d: $a+n,a}aen

Let k be a finite field of ¢ elements. Let k((¢)) be the field of formal Laurent polynomials.
Let k[[t]] be the subring of k((¢)) consisting of all formal power series. Consider a k((t))-vector
space V' of dimension d. A free k[[t]]-module L of rank d such that k((t)) @) L = V is called
a lattice of V. The collection of chains of lattices Ly = (L1 C Ly C --- C L,, C t~1L;) will be
denoted by §,.d4, the n-step affine flag variety. When specialized at v = ¢'/?, the algebra Sn.a
is isomorphic to the convolution algebra on §, .4 X $n,d-

Let A, 4 be the subset in &,, of all sequence (a;) such that ZKK" a; = d. For each
(a;) € Ay g, define S(a;) to be the subset of §, 4 consisting of all lattice chains Lo such that
dimy L;/L;—1 = a; for all 1 < i < n. For each (a;) € Ay, 4, there is an idempotent 1,,) in
Sy.,q such that, when specialized to v = ¢'/2, it is the characteristic function of the diagonal of
S(an) X S(a)-

3 The Embedding @,

In this section, we present an explicit embedding of the quantum affine sl,, to its higher rank

and a compatibility with the natural embedding on the Schur algebra level.

3.1 The Statement

Let us fix forever an integer r € [0,n—1] and € € {£1}. Consider U(sl,11). To avoid confusion,
we denote the Chevalley generators in U(EA[,H_l) by Ei, F;, K for i € I,1;. Consider the

following elements in U(,‘;\[n+1). For all i € I,,, we define
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C

; ifi=0,....,r—1,
¢i= 19 BB — v BB ifi=r,
21 ifi=r+1,....,n—1.
2 ifi=0,...,r—1,
fi= Qi F—v FF,, ifi=r (3.1)
Fi ifi=r+1,...,n—1.
K, ifi=0,...,r—1,
ki = Kikldrl ifi =,
it ifi=r+1,...,n—1.

Recall that for any = € U(g[,LH) we write 2(%) = 2% /[a]'. For any p € N, we have

p
P = 3 (—1) B, B0 E®D) (3.2)
j=0
P . LUy v o 5
FP =3 (1) ED ) B, (3:3)
j=0

The equality (3.2) is [8, Lemma 42.1.2 (c)]. We have the following.

Theorem 3.1 There is an injective homomorphism of associative algebras
.1 U(sl,) — Ulslyi1) defined by E; — e, F; = f;, KF' — B, Vi€, (3.4)

Proof We shall show the existence of ®,. in Section 4: for n > 2, it is given in Section 4.1
and for n = 2 it is given in Section 4.2.

Assume now that the algebra homomorphism ®, . is well-defined. We shall show that the
map ®, . is injective. Let U, . be the subalgebra of U(,‘;\[n+1) generated by e;, fi, kiil for all
i € I,. We consider the module V,, ;1 of U(sA[nH). It restricts automatically to a U, .-module.
To avoid confusion, we write its basis element by uy for all £ € Z. We define an embedding
Vi — Vigr by

s i), (R E (0T, F=1}C I,
ﬁk+|—k/n-|7 if ke {7,... ,m} cI,.

U —

Let W,, be the image of the embedding V,, — V, 1. One can check that W, is a U, .-
submodule of V,,, and moreover the actions of the generators in U,. on W,, is compatible

o~

with the action of the generators in U(sl,) under the isomorphism V,, — W,,. Observe that
Ale,)=e, @14k @e 4+ (W =09 )E 1K, @ By + (v — %) K, 1 By @ Ep gy, (3.5)
A(f)=fr @k 410 fr+ (v—v ), @ K ' Fpy + (v =0 ) F i @ FK,Z. (3.6)

This indicates that when restricting to W%9, as a summand of V?ﬁl, the last two operators
in A(e,) and A(f,.) are zero. Thus W&? is a U, .-module and thanks to (3.5) the actions
of e, and f. on W%4 are compatible with the actions of E,, F. on V&% via the isomorphism

V., — W,. Identifying V,, with W,,, we see that there exists an algebra homomorphism
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7r;hd U, — S;hd such that ﬂ;d(ei) = mn.a(Es), 7T;17d(fi) = mpq(F;) and w;d(ki) = Tpna(K5)
for all i € I,,. Since U(sl,,) is in the inverse limit of an inverse system {S,.a: S;L,d+n/\—> S},.a}den,
by the universality there exists a unique algebra homomorphism ¥, . : U, . — U(sl,,) such that
U, .(e;) =E;, ¥, .(fi) = F; and \Ilr,s(kiﬂ) = Kiil for all 7 € I,,. This is the inverse of the map
A U(s/;\[n) — U, induced by ®,.. So ®; _ is an isomorphism, and in other words, ®,. . is
injective. The theorem is thus proved. O

We end this section with a remark.

Remark 3.2 (1) The assumption that » € [0,n — 1] is not essential. One can define the
morphism ®, . when r = n as well in a similar manner.

(2) The v = 1 version of the embedding V,, — V41 and (3.1) first appeared in [11].

(3) The analysis in Proof of Theorem 3.1 yields the following commutative diagram of linear

maps.

U(A[n) L Ur,e

5
Wn,dl lﬁ'n-u,d

/ ™ /
Sn,d Sn—i—l,d

where 7,414 is the restriction of the map m,414 in (2.1) to U, and 7 is the projection
of a linear endomorphism of Vfﬁll to a linear endomorphism of V&4 under the embedding
V,, — V, 1. (Note that 7 is not an algebra homomorphism.) A more natural compatibility
will be given in the following section. The injectivity of ®,. can be proved by exploring the
above commutative diagram as follows. Suppose that x € U(f/:\[n) is in the kernel of ®, .. Then
by the above commutative diagram, we have m, 4(x) = 77, 1y ;Pre(z) = 0 for all d. It is

well-known that if 7, 4(x) = 0 for all d, then « = 0. Therefore @, . is injective.

3.2 A Variant

In [5], Green defines a version of quantum affine gl,,. This is a variant of U(g[n) More precisely,
it is defined as an associative algebra U(g[n) over Q(v), which has generators E;, F;, L;ﬂ for

i € I, and which subject to the following defining relations.

LiLj=L;L;, L;L;' =1,
LZ‘E]‘ = plii—0i-1, E]‘Li,
LiFj = ’U_&i’j—i_éi*l*ijLi,
L;L7—L7 'Lt
Fz‘ch — B =0 (3.7)
e
S (AP EE B g
p=0
lfcij
Y (CPEPEFTOTY =0, Vi el
p=0

Note that in [5], there is an assumption that n > 3. We do not need this assumption.

Recall that, to avoid confusion, a superscript ~ is put on the Chevalley generators of

~

U(sl,41). Recall that we fix an integer r € [0,n — 1]. Consider the following element in
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o~

U(ﬁ[nJ’»l)‘

Kl Ky, 1<i<
L = + St (38)

KL K7, r+l<i<n.

Let U(sA[n_H)l = U(sl n+1)/<]_["+1 K; — 1) be the quotient algebra of U(sA[nH) by the two-
sided ideal generated by Hn'H K; —1. This is the quantum affine f:\[n+1 at level 1. We still use
the same notations for the images of the Chevalley generators of U(sA[nH) under the canonical

projection map. We have the following g[n—variant of Theorem 3.1
Proposition 3.3 There is an embedding @, .1 : U(g[n) — U(;[nﬂ)l defined by E; +—
ei, Fy — fi,L; — 1; for all i € I,,, where e;, f; are in (3.1).
The proof is given in Section 4.3.
3.3 Compatibility with Quantum Affine Schur Algebras
Recall the root datum (Y;,, X,,) from Section 2.2. Define a morphism

¢=(f,9): (Yo, Xn) = (Yat1, Xnt1)

where f : Y, — Y,41 sends a sequence (aq,...,a,) to (a1,...,a,,0,a,41,...,a,), and g :
Xn+1 — X, sends a coset of (ai,...,ant1) to the coset of (a1 — api1,...,0;, — Gri1, Gry2 —
Apigly -y 0pt1—ary1). The root datum (Y41, X,,1+1) can be regarded as a root datum of affine

type A,, instead of A, 1, in an appropriate way such that ¢ is a morphism of root data of
affine type A,,. Note that f extends naturally to a map f: &,, — &, 41.

There is an embedding A,, 4 — X,, defined by A — X as the composition of the embedding
An g — 6, and the quotient map &,, — X,,. For Xe X, — A, g, then there is a d’ # d such
that A € A, o. Clearly different representatives of A yield different d’. We fix once and for
all a representative for each class in X,, so that if AN Ang # 0 then A € A, 4. Under this
assumption, we can define a map fy : X,, — X, 41 by sending \ — m Clearly gfa()\) = \.
In light of Theorem 3.1, we thus have an algebra embedding

¢d,s : Un - Un+1 (39)

defined by 15 — Loy Bilx = eilypy and Filg — filsy for all i € I, and A € G,,.

Recall from Section 2.3 the quantum affine Schur algebra Sp.q- It has idempotents 1, for
A € Ay q. It is known that there is an algebra homomorphism 7, 4 : U, — S,.a such that
Tn,a(l3) = 1y if A € A, g4, and 7, 4(15) = 0 otherwise. On the other hand, the subset §p41,4r
of §nt1,4 consisting of all lattice chains Lo such that L, = L,;; is naturally in bijection with
Sn,a- Via this bijection, there is an algebra homomorphism oq : S, 4 — Sp41,4 such that
aa(1x) = 1y for all X € A, 4 (see e.g., [7]). We are ready to state the compatibility of the
embeddings on Un and S,, 4.

Proposition 3.4 Let ¢ € {1}. The following diagram is commutative.

ba,

Un tjn—i—l
W'rt,dl lﬁ"*—l’d (310)

Sn,d B Sn+1,d
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where ¢qc is from (3.9).

Proof By definition, the two compositions 407, ¢ and 741,40 ¢4, coincide when evaluating
at the idempotents 1, for all A € X,,. Now the maps are all U,-module homomorphisms and
hence the two compositions coincide when evaluating at any element in U,.. Hence the diagram

must be commutative. The proposition follows. O

4 Existence of ®, .

This section is devoted to the proof of the existence of ®, .. In Section 4.1, we present the proof

when n > 2 and in Section 4.2, we present the proof for the n = 2 case.

4.1 Existence of @, in the n > 2 Case
In this section we assume that n > 2. We shall show that ®,. . is an algebra homomorphism,
i.e., the set {e;, fi, k' |i € I,,} satisfies the defining relations of Ul(sl,).

It is easy to see that the elements k! satisfy the relation (R1).

Next, we show that the pair (k;,e;) satisfies the defining condition in (R2). All are a

consequence of the definition, except the case (k;,e;), (kix1,e;) for i = r. Observe that

9 v

_1 v v o v v _1 v .
Ki,lel- =7 eiKi,l, Kiei = veiKl—, Kl-+1el- = ’UefL'KiJrl, Ki+26i =7 e»L'KZ'+2 ifi=r.
So we have
VY 9 5 9 1
kie; = KiKiv1e; = v7e; KiKip1 = voeky,  kizi1e; = v eikixa.

Thus the pair (k;,e;) satisfies the relation in (R2). Similarly the pair (k;, f;) satisfies the

relation in (R2) because we have
Kiafi=vfiK;1, Kifi=v 'fiK;, Kiafi=v iK1, Kiyofi=vfiKiyo ifi=r.

Next, we show that the triple (e;, fj, k') satisfies the commutator relation in (R3). The
relation is satisfied automatically if 4,5 # r. Assume that i = r, j # r, and j < r. Then we
have

eifj - fjei = (EEH - UEEi+1Ei) i Fj(EiEi+1 - UEEi+1Ei)
= EiEi+1Fj — FjEiEi+1 — Us(Ei+1Ei i FjEi+1Ei)
= (EiFu‘j - F‘jEui)EH_l —v° ui+1 (Evlpj - FjEi) =0.
So the commutator relation holds for the case i = r, j # r and j < r. Similarly one can show
that the commutator relation holds for the case i = r, j # r and j > r and the case i # 7,
j =r. We now show the remaining case ¢ = j = r. In this case, a direct simplification yields

v

eifi — fiei = (BiEip1 Fini Fy — B FiEEiy) — 05 (B Fopy B Fy — Fip FyEi )
+ 0 (BB Ei1 Fypr — B F EiEigy) + (Bi EiFy By — FiFy B Ey). (4.1)

By using the commutator relations in U(sA[nH) on EZ-HEH and FiEi, we see that the term in
the first parenthesis in (4.1) is equal to

Eipy. (4.2)
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Note that F‘iHEEVHlE = F‘Z—HEVIHEE, and by applying the commutator relation on both
F‘Z—HEU’IH and FiEu’i, the term in the second parenthesis in (4.1) is simplified to

Ki—i—l Kz-i—l < f(i — f(,b_l I%z K Kz_l'_l Kz-i—l
_U5< ,Ui_v 1 EF +Ez+1Fi+1 1)—’[)71 — v — - 1 v — - 1 (43)

By doing the same operation on the second monomial in the term in the third parenthesis in
(4.1), the term is simplied to

K K 1 Kl —I\(/-fl KZ—R71RZ —Iv{.il
o (B B By + B T i i ikl ) (4.4)
v—v v—ovt v—ov! v—ov!
Just like the term in the first parenthesis, the term in the last parenthesis in (4.1) is simplified
to
S = W N =
By —— i F 4 B il g (4.5)
v—ov1 v—ov7l

The sum of the terms in (4.2)-(4.5) having E;F; or F;E; can be simplified to
—Uflf(iﬂ + vf(;rll K; — Iu(z_l

4.6
v—ov-1 v—ov-l (4.6)
The sum of the terms in (4.2)—(4.5) having Ei+1ﬁ‘z‘+1 or Fi+1Ei+1 can be simplified to
—v 'K + 0K . K1 — K2} @7
v—o1 v—ov 1 7 '
The term involving only K and Iu(ill in (4.3) plus the term in (4.5) is equal to
K, - K
-1 7
I — (4.8)
The term involving only K:*! and f{f_ﬁl in (4.4) plus the term in (4.6) is equal to
y Kt
i+1 i+1
i 4.9
v—ovL (4.9)

So the commutator e; f; — fie; for ¢ = r is equal to the sum of (4.8) and (4.9), which is

. K- K Lo K — Kz+11 KKy, — K[! v;rll ki — kit
1+1 —1 + .

v—v
The commutator relation (R3) for the case ¢ = j = r is proved. This finishes the proof that the
triple (e;, f;, k') satisfies the relation (R3).

Next, we show that the pair (e;,e;) satisfies the quantum Serre relation (R4). First we
observe that all cases are a consequence of the corresponding defining relations of U(f:\[n+1),
except the cases (r £1,7) and (r,r £ 1). For the case (r — 1,7), we can simplify the quantum

Serre relation, say S,_1 ., as follows.
Eﬁz)l(ErEv‘r-i-l —v° B, 1Ey) — By 1 (BrErgy — 0 Ep 1 BBy + (Bp By — USETHET)Eﬁ)l
= Euﬁa)li’rﬁ]rﬂ — Er—lérEr+1Er—l + EurEvr+1Eu£3)1
E(E£2)1Evr+1Ev - Evr71Ev‘r+1Ev‘ Erﬂ + Evr+1Eerv,(,2,)1)

= (BB, — B, B Epy + B E® By — 0By (BB, — By B By + E,EP))
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=0.

So the quantum Serre relation holds for the case (¢,j) = (r—1,r). The case for (i,j) = (r+1,r)
can be shown in exactly the same way. Now we show the quantum Serre relation for the case
(r,r —1). First of all, we need the formula (3.2) for p = 2, which reads

e® = BOBD _ o B, BOB, ., + 0B, 5O
By using this formula, we see immediately that the left-hand side of the quantum Serre relation

. 2 2) .
for (r,r — 1), i.e., e$ )er,l —ep_1€p€p_1 + er,leg ), is equal to

(Ey(ﬂQ)Eu’ii_)lErfl - ErEv‘rJrlEv‘rflErEu’rJrl + ErflEv‘,,(?)E?(j_)l)
- UE(ET+1E£2)EV|T+1EV|T71 - EV‘TJrlETEU‘TflETJrl - ErEerrlErflETquET + EV'rflEerrlEvy@)Ev‘rJrl)
+ 02 (B EPE, | — BB B, B, By + B, EQ) ED). (4.10)

Replace the piece Eu’r+1Eu’rEur+1 by Ev’vnEv’gr)1 + Evgr)lEur in the second monomial, we see that the

terms in the first parenthesis in (4.10) are equal to
—E B, EQ\E,. (4.11)
Similarly, the third term with the coefficient v¢ in (4.10) is equal to
0¥ E,EC E, | E,. (4.12)
The monomials in (4.11) and (4.12) add up to
—o° (2B, E, 1 EXE,. (4.13)

The first, second and fourth monomials in the term with coefficient v add up to zero. The
remaining monomial in the term with v° is UEETET+1ET_1ET+1ET = UE[Z}ETET_lﬁ'g_)lE},
which cancels with (4.13). So the quantum Serre relation for (r,7 — 1) holds. This finishes the
proof of the quantum Serre relation (R4) for the pair (e;, ;).

Similarly one can show that the quantum Serre relation (R5) for the pair (f;, f;) holds. One
can also apply the involution on U(sA[nJrl)7 defined by EU’Z — F‘z,}i — Ez,lufl — Iu(fl for all
1 € I,41, to obtain the proof.

The proof of ®, . being an algebra homomorphism for n > 2 is thus finished.

4.2 Existence of ®, . in the n = 2 Case

In this section, we assume that n = 2, and we shall show that the set {e;, f;, kiﬂ |i € I}
satisfies the defining relations of U(sly). The relations (R1) and (R2) can be verified directly,
just like the n > 2 case, with very minor modifications. The commutator relation (R3) can be
proved in exactly the same way as the n > 2 case. So we only need to verify the quantum Serre
relations (R4) and (R5).

Let us verify the relation (R4). For simplicity, we use (¢, j,¢) for (v, + 1,7 — 1). The first

relation to show is
ef’)ei - 6%2)61'6@ + egeief) — eief’) =0. (4.14)
A simplification yields that the left-hand side of (4.14) is equal to

(EVEE; — EPEEjE + B EEE® — EE;EY)
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(BB — B BB, + BB BE® — BEEP). (4.15)

Observe that if the term in the first parenthesis is zero, so is the term in the second one by

switching the roles of ¢ and j. Recall that we have

EOE, = BEE® — @BES, BE® = BO BB, - @B,
Applying the above identities to the first and fourth monomials in the term in the first paren-
thesis in (4.15), we have

EPEE, E(2)E E; Eg + BB EEY - BEED
_ EgEiEu’gEng . EgEiEgEng _o. (4.16)
Therefore, the relation (4.14) holds.
The second relation we need to verify is
Sip = 62(-3)65 — el(-z)egei + eiegel@) — egegg) =0. (4.17)

Instead of proving it directly, which involves monomials of degree 7, we shall make use of
Lusztig’s twisted derivation 7, on the positive half of a quantum group in [8, 1.2.13]. Let
Ut (5A[3) be the positive half of U(g[g) generated by Ej, for all k € Is. To each k, there is a
linear map ry : Ut (sl3) — Ut (sl3) such that

(1) =0, r(Br) =0kp,  mi(zy) = v (@)y + 2ri(y),

for all homogeneous element y. Here |y| = (yo,v1,v2) € Z% is the degree of y and k - |y| =
22U — Yr+1 — Yk—1. Recall (r,r + 1,7 — 1) = (4,4, ¢). For now we assume that ¢ = —1. We will

freely use the following formulas in later analysis.

Lemma 4.1 For all p > 0, we have

re(e®) =0, (s1)
ri(e”) =0, (s2)
Tj(ef:p)) (v—rv~ ,Up 2 Z ) 72aEVJ(a)EVZ.(p)EV](,p—1—a)’ (s3)
rirs(ef”) = (v - >< - (s4)
rjrj(ez(p)) =(v— v_l)(v2 — v 2)p2P=3) Zv_?’“E E(p ), (s5)

Proof The equality (s1) is because the ¢-degree of e; is zero. For (s2), we only need to show

that 7;(e;) = 0, which can be done as follows.
ri(e;) = rl(Evléj - v_IEjEi) = vi'jri(Ei)E’j — v_IEjri(Ei) = v_lEj — v_lEj =0.
We show (s3) by induction. When p = 1, we have
ri(ei) = rj(BiE; — v B E) = B — v W'r (BB = (v —v v E;.
Assume that (s3) holds for p, we want to show that it holds for p + 1. We have

ri(ef ™) = —p+1—ﬂ j(ee) = (vr(ei")eq + e”r; (). (4.18)
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We simplify the first term as follows.

1 (v_vil)vpil = a,  —2a - “(p—1— SRt 1
e = S S B B BT iy 0 )
a=0
1 )ou —2a tn(a) ;A(p+1) ;a(p—a)
(v—v~ vp Z Ej E; Ej
(v—v P! - a(,—2a —1-2a (a) 7 (p) falp—1 7
- WZH) (v 2p—1—a]—v [p—a)ESYEPEFTE;,  (4.19)

a=0

where we use the fact
EP B E = EEYY 4 p—1-oEP VL,

The second term can be simplified as follows:

1 (p) - -1y, p—1 p,,—2p 12(P) fr(p+1)
] e; riler) = (v—v )P (=1)PvTPEE;
(0= YT RN e @ p0) o)
+ WZ(—l) v B EP EPTVE;. (4.20)
a=0

The second terms in (4.19) and (4.20) cancel once we observe that
VP72 p —1 —a] — P12 p —a] + 07 = 0.

The equality (s3) is then followed by adding the first terms in (4.19) and (4.20). Now we show
(s4). By (s3), we have

Ti'rj(e/gp)) U — ,Up 2 Z a _2aE](a)v_(p_1_a)Ti(Evi(p))EV'](p_l_a)

(v — v HwP~? Z )¢ _“E](G)Ev’i(p_l)Evj(-p_l_a)

=(v— v_l)v”_QeEp b, (4.21)
So (s4) holds. Finally we show (s4). By (s3), we have

TiT; (e(p))

(v — v~ )P~ 22 Yo —2a p—2a—2rj(Evj(a))E“»z(p)Ej(pflfa)+Evj(a))EVz(p)rj(Ej(p*1*a))

a—a a— a—1 m(p—1—a —2—q (a)y = m(p—2—a
’U—’U wP™ 22 2 P~ 3E( )E( )E](P )+vp 2 Ej( ))Ez(p)E](p )

(v — v~ )P~ 22 P—3a—6 _ p—3a—2)E§a)E§P)E§p*a*2)
=@w-v Hw*—v" 2(p 3) Z ) _3“E )Efp)E;p7a72). (4.22)

So (s5) holds. The lemma is therefore proved. O
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In light of [8, Lemma 1.2.15], to show that S;; = 0, it is sufficient to show that
Ti(SZ[) = 0, ’I”j(Sig) = O, 7‘@(51,@) = O. (4.23)
Due to (s2) and ’I"i(Eg) = 0, we have immediately that r;(S;¢) = 0. Moreover, we have

re(Sie) = (3) e(z)m(ezel) + e; rg(eze( )) Z'3(i+j)e§3)

653) - Uz (2)6 + v “eje (2) ’U_GBEB)
=(1—v 2B +0 43 - v—ﬁ)egf“’) = 0.
So it remains to show that r;(S;,) = 0. This is further reduced to show that
rirj(Sie) =0, 7r;7;(Sie) =0, 1er;(Sie) = 0. (4.24)
By a direct computation, we get
rj(Sie) = v i (e By — () Ever — v (0 — v )P BBy
+ (= v NEEwel® + e;Erj(e?) — Eprj(el?). (4.25)
By applying r; to the formula (4.25) and a direction computation, we have
rirg(Sie) = v 2 (eV) By — (v — v Y)ei By
—v v —v~ )eg VB, + v(v— v_l)Egel(-Q) +(w—v YeiEpe; — E’grirj (653))
=v (v - v_l)e?)E@ —v (v — U_l)e§2)Eg +o(v— U_l)Eg€§2) —v(v— v_l)EgeZ@) =0
So to show that r;(S;;) = 0, it remains to show that r¢r;(S;) = 0 and 7;r;(S;¢) = 0. By a

direct computation, we get
e (Sie) = v 3 (v? — v*Q)Tj(el(g)) — v 2y (el@))ei —v % (v — vil)el@)Ei
+ 0_4(11 — v_l)Ev’iez@) + v_?’eirj(ef)).
Since there is no Ey in rerj(Sir), so rerer;(Sie) = 0. Next, we compute r;7,r;(S;) as follows.
rireri(Sie) = (0 —v ) (w—v ) —v v —v 2] +v 3 (v - v_l)[2]]el(-2) = 0.
Further we compute 7;7,r;(S;¢). We have
rirer;i(Sie) = v 3 (v — v71)3(l771-(3)£77j - v*1E§2)EjEi + v72EiEjEi(2) - U73E’jljji(3)) = 0.

The above analysis shows that 7¢7;(S;) = 0. So to show that r;(S;,) = 0 it remains to show

that r;7;(S;¢) = 0. By a direct computation, we have
7"]2(51[)

v=2(v—v 1) (v2 —v72)

9

— (BOB; v BEP)E, - B e

71(UEV§2)EJ‘ — viléjEi(z))EeEi + EiEZ(UEi(Q)Ej - UﬁlEjEi@))
+ e B EP — 2 E(EPE; — 03B ED), (4.26)
Now substitute e; by EiEHl — U_1Ei+1Ei, we see that (4.26) is equal to
Ei(s)EjEv’g — EZ@)EjEv’zEvi + EiEjEEE§2)
_ v—?’EjE(?’)E[ + v_zézEfQ)E’ZEi — U_IEjEiEZ VZ@)
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VB EE; +vE B EPE; — v EEYE,

2 (2
fZ)EgE B — v B EEE® + o B B ES. (4.27)

By (4.16), the first row in (4.27) is equal to EngEi(B), which cancels with the second row. The
third row in (4.27) is equal to —U_1E£3)EU’ZEJ», which cancels with the fourth row. So we get
7%(Si¢) = 0. This finishes the proof of (4.24), and therefore r;(S;;) = 0. In turn, this shows that
(4.23) holds, and thus S;y = 0, i.e., (4.17), as desired. The above proof assumes that ¢ = —1.
The case for ¢ = 1 can be proved by rewriting e; as v® (EVJEvl —v*EEViEj) and the proof for e = 1
case applies by switching the roles of i and j.

The relation (R5) is a consequence of the relation (R4) by applying the involution on U(sls)
sending E), to Fy, Vk € I5. This finishes the proof of ®,. . being an algebra homomorphism for
n=2.

4.3 Proof of Proposition 3.3

In this section, we provide a proof of Proposition 3.3. The last two relations in (3.7) have been
verified in the proof of Theorem 3.1. The relations in the first three rows of (3.7) can be checked

directly. By using the relation H"+l K, = 1, we see that k; = [; lZJrl1 for all ¢ € I,,. Indeed, the

equality holds for all ¢ € I, — {n} obviously. If i = n, then
Ll =l = K KN (K K) 7 = K = kg

n

So the commutator relation in (3.7) is a consequence of the commutator relation of U(sA[nH).
This implies that the map ®,. .1 is an algebra homomorphism. The injective property follows

from the triangular decompositions of U(gl,,) and U(s n+1)1. This finishes the proof.
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