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Abstract We establish an explicit embedding of a quantum affine sln into a quantum affine sln+1.

This embedding serves as a common generalization of two natural, but seemingly unrelated, embed-

dings, one on the quantum affine Schur algebra level and the other on the non-quantum level. The

embedding on the quantum affine Schur algebras is used extensively in the analysis of canonical bases

of quantum affine sln and gln. The embedding on the non-quantum level is used crucially in a work

of Riche and Williamson on the study of modular representation theory of general linear groups over a

finite field. The same embedding is also used in a work of Maksimau on the categorical representations

of affine general linear algebras. We further provide a more natural compatibility statement of the em-

bedding on the idempotent version with that on the quantum affine Schur algebra level. A ̂gln-variant

of the embedding is also established.
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1 Introduction

Consider the following rule

⎡

⎣

a b

c d

⎤

⎦ �→

⎡

⎢

⎢

⎣

a 0 b

0 0 0

c 0 d

⎤

⎥

⎥

⎦

. (1.1)

It defines an embedding of sl2(R) into sl3(R) over any commutative ring R where a, b, c and
d belong to. Further, by regarding a, b, c and d as block matrices, the embedding generalizes
to a natural embedding of sln(R) into sln+1(R). When R is the local field C((t)), such an
embedding plays a key role in the study of categorical representations of affine general Lie
algebras in Maksimau’s work [10, 11]. An affine gl variant of the embedding is further used in
the study of modular representations of general linear groups over finite fields in a recent work
[12] of Riche and Williamson.

Now consider the n-step affine flag variety Fn,d associated with GLd(C). It is well known
that quantum affine Schur algebras Sn,d admit a geometric realization as the convolution algebra
on Fn,d ×Fn,d. The ind-variety Fn,d parametrizes lattice chains in a d-dimensional vector space
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over C((t)). The operation of adding an extra copy of the lattice in a prescribed step in lattice
chains defines a natural embedding Sn,d ⊂ Sn+1,d. Such a natural embedding of quantum affine
Schur algebras is used crucially in the study of canonical bases and multiplication formulas of
quantum affine sln(C) and gln(C) in [4, 7]. We refer to [2] for a Hecke-algebra approach to, and
further applications of, this embedding.

So we have a natural embedding of affine sln into affine sln+1 on the one hand and a natural
embedding Sn,d ⊂ Sn+1,d on the other hand. Note that Sn,d receives an algebra homomorphism
from quantum affine sln. To this end, it is desirable to understand the relationship between the
two kinds of seemingly unrelated embeddings. In this paper, we establish an explicit embedding
of quantum affine sln into its higher rank. It is a natural quantization of the embedding on
affine sln defined by (1.1) and used in the works [10–12]. We further provide a compatibility of
the embedding with that on the quantum affine Schur algebra level. It is somewhat unnatural.
However when consider the embedding on Lusztig’s modified quantum affine sln, it becomes
natural again. So the embeddings established in this paper can be regarded as a common
generalization of the previous two kinds of embeddings. It is worthwhile to point out that the
quantization is not unique, depending on a parameter ε ∈ {±1}. In an upcoming paper [6], the
author will extend the embeddings established in this paper to a much broader setting.

Note that if one replaces the zero in the center of the right matrix by −trace(a) − trace(d)
in the assignment (1.1), it induces an embedding gln(R) ⊆ sln+1(R). As a quantization of this
embedding, we further provide an embedding of quantum affine gln in the sense of Green [5]
into quantum affine sln+1 of level 1. There is a second version of quantum affine gln studied
by Du and Fu [3]. It is very interesting to see if there is a similar embedding as a common
generalization of the embeddings on the non-quantum level and on the quantum affine Schur
algebra level.

Let θn be an involution of sln(R) by sending a matrix to the matrix whose (i, j) entry is
the (n + 1 − i, n + 1 − j) entry of the original matrix. The pair (sln(R), sln(R)θn) is a quasi-
split symmetric pair. The embedding defined in (1.1) with appropriate block sizes of a and d

is compatible with the involutions θn and θn+1 on sln(R) and sln+1(R) respectively. Thus it
induces an embedding on the fixed-point set: sln(R)θn ⊂ sln+1(R)θn+1 . On the geometry side,
there is a quantum affine Schur algebras Sı

n,d defined as the convolution algebras of n-step affine
isotropic flag varieties in the works [4] (see also [1]). These algebras are homomorphic images
of a quantum version of slθn

n , i.e., the coideal subalgebras in an affine quantum symmetric
pair of quasi-split type A. There are natural embeddings Sı

n,d ⊆ Sı
n+1,d, which play a key

role in loc. cit. It is a natural question to see if there exists an embedding for these types of
coideal subalgebras as a common generalization of the embedding sln(R)θn ⊂ sln+1(R)θn+1 and
sln(R)θn ⊂ sln+1(R)θn+1 .

The embedding established in this paper certainly calls for a further investigation of a more
intrinsic connection between the above lines of research.

2 Preliminaries

This section recalls the basic definitions of quantum affine sln and its Schur quotients.
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2.1 Definition

Let Q(v) be the field of rational functions with the variable v. For each integer a ∈ N, we define

[a] =
va − v−a

v − v−1
, [a]! = [a][a − 1] · · · [1].

If x is an element in an associative algebra over Q(v), we write

x(a) = xa/[a]!

Let In = Z/nZ. If there is no danger of confusion, we write elements in In by 0, 1, . . . , n−1.
Recall that the Cartan matrix of affine type A

(1)
n−1 is the n by n matrix C = (cij)i,j∈In

such
that cij = 2δi,j − δi,j+1 − δi,j−1. Let U(̂sln) be the quantum affine ̂sln associated with C. It is
an associative algebra over Q(v) and it admits a generator-and-relation presentation. Precisely,
the generators are standard Chevalley generators Ei, Fi, and K±1

i for all i ∈ In and the defining
relations are given as follows.

KiKj = KjKi, KiK
−1
i = 1 = K−1

i Ki, (R1)

KiEj = vcij EjKi, KiFj = v−cij FjKi, (R2)

EiFj − FjEi = δi,j
Ki − K−1

i

v − v−1
, (R3)

1−cij
∑

p=0

(−1)pE
(p)
i EjE

(1−cij−p)
i = 0, (R4)

1−cij
∑

p=0

(−1)pF
(p)
i FjF

(1−cij−p)
i = 0, ∀i, j ∈ In. (R5)

The algebra U(̂sln) can be endowed with a Hopf algebra structure with the comultiplication
Δ defined by

Δ(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, Δ(Fi) = Fi ⊗ K−1
i + 1 ⊗ Fi, Δ(Ki) = Ki ⊗ Ki, ∀i ∈ In.

2.2 Idempotent Form

Let n be a positive integer greater than 1. Let Sn be the set of all sequences (ai)i∈Z such that
ai ∈ Z and ai = ai+n for all i. Note that any sequence (ai)i∈Z in Sn is completely determined
by the entries (a1, . . . , an), which we shall use to denote the sequence itself. The set Sn carries
a natural abelian group structure with the component-wise addition. It is naturally isomorphic
to Z

n. Let Yn be the subset of Sn consisting of all sequences (ai)i∈Z such that
∑

1≤i≤n ai = 0.
Let 1 be the sequence in Sn such that each entry is 1. Let Xn = Sn/〈1〉 be the quotient of
Sn by the subgroup generated by 1. Let 〈−,−〉 : Yn × Xn → Z be the perfect pairing defined
by 〈b, ā〉 =

∑

1≤i≤n biai for all b ∈ Yn and ā ∈ Xn. Let In = Z/nZ. There is an embedding
In → Yn defined by i �→ α∨

i where the i (resp. i + 1) entry of α∨
i is 1 (resp. −1) mod n and 0

otherwise. Similarly there is an embedding In → Xn defined by i �→ αi where αi is the coset of
α∨

i in Xn. Let i · j = 〈α∨
i , αj〉 for all i, j ∈ In. Then (In, ·) is the Cartan datum of affine type

An. Further, (Yn, Xn, 〈−,−〉) is a root datum of (In, ·). The root datum is neither X-regular
nor Y -regular.

Let U̇n be the modified quantum group associated with the root datum (Yn, Xn) ([8]). The
algebra U̇n is an associative algebra over Q(v) without unit. Instead it has a collection of
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idempotents 1λ for λ ∈ Xn. It carries a natural U(̂sln)-bimodule structure generated by the
1λ’s.

2.3 Quantum Affine Schur Algebra

Let Vn be the vector space over Q(v) spanned by the symbols uk for all k ∈ Z. To avoid
confusion, we write k̄ for the congruence class of k in In = Z/nZ. We define a U(̂sln)-module
structure on Vn by the following rules: for all ī ∈ In, k ∈ Z,

Eī.uk = δk̄,i+1uk−1, Fī.uk = δk̄,̄iuk+1, Kī.uk = vδk̄,̄i−δk̄,i+1uk.

Via the comultiplication Δ, there is a U(̂sln)-module structure on the tensor product V⊗d
n =

Vn ⊗ · · · ⊗ Vn of d copies of Vn. There exists a natural action of the affine Hecke algebra Hd

of type A on V⊗d
n . The quantum affine Schur algebra is defined to be the centralizer algebra

Sn,d = EndHd
(V⊗d). We shall not recall the precise definition of the Hd-action as it plays no

role in later analyses, instead we shall recall a geometric definition of Sn,d in the following. Since
the two actions on V⊗d are commutative, there exists an algebra homomorphism U(̂sln) →
Sn,d. The morphism is not surjective in general. Let S′

n,d be its image, a subalgebra in Sn,d.
The algebra S′

n,d was first studied by Lusztig. In particular, we have a surjective algebra
homomorphism

πn,d : U(̂sln) → S′
n,d. (2.1)

It is well known from [9] that there exists an algebra homomorphism φd+n,d : S′
n,d+n → S′

n,d

such that πn,d = φd+n,dπd+n,d. Moreover U(̂sln) is in the inverse limit of the inverse system
{Sn,d, φd+n,d}d∈N.

Let k be a finite field of q elements. Let k((t)) be the field of formal Laurent polynomials.
Let k[[t]] be the subring of k((t)) consisting of all formal power series. Consider a k((t))-vector
space V of dimension d. A free k[[t]]-module L of rank d such that k((t))⊗k[[t]] L = V is called
a lattice of V . The collection of chains of lattices L• = (L1 ⊆ L2 ⊆ · · · ⊆ Ln ⊂ t−1L1) will be
denoted by Fn,d, the n-step affine flag variety. When specialized at v = q1/2, the algebra Sn,d

is isomorphic to the convolution algebra on Fn,d × Fn,d.
Let Λn,d be the subset in Sn of all sequence (ai) such that

∑

1≤i≤n ai = d. For each
(ai) ∈ Λn,d, define F(ai) to be the subset of Fn,d consisting of all lattice chains L• such that
dimk Li/Li−1 = ai for all 1 ≤ i ≤ n. For each (ai) ∈ Λn,d, there is an idempotent 1(ai) in
Sn,d such that, when specialized to v = q1/2, it is the characteristic function of the diagonal of
F(ai) × F(ai).

3 The Embedding Φr,ε

In this section, we present an explicit embedding of the quantum affine sln to its higher rank
and a compatibility with the natural embedding on the Schur algebra level.

3.1 The Statement

Let us fix forever an integer r ∈ [0, n−1] and ε ∈ {±1}. Consider U(̂sln+1). To avoid confusion,
we denote the Chevalley generators in U(̂sln+1) by Ĕi, F̆i, K̆

±1
i for i ∈ In+1. Consider the

following elements in U(̂sln+1). For all i ∈ In, we define
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ei =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ĕi if i = 0, . . . , r − 1,

ĔiĔi+1 − vεĔi+1Ĕi if i = r,

Ĕi+1 if i = r + 1, . . . , n − 1.

fi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F̆i if i = 0, . . . , r − 1,

F̆i+1F̆i − v−εF̆iF̆i+1 if i = r,

F̆i+1 if i = r + 1, . . . , n − 1.

ki =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

K̆i if i = 0, . . . , r − 1,

K̆iK̆i+1 if i = r,

K̆i+1 if i = r + 1, . . . , n − 1.

(3.1)

Recall that for any x ∈ U(̂sln+1) we write x(a) = xa/[a]!. For any p ∈ N, we have

e(p)
r =

p
∑

j=0

(−1)jvεjĔ
(j)
r+1Ĕ

(p)
r Ĕ

(p−j)
r+1 , (3.2)

f (p)
r =

p
∑

j=0

(−1)jv−εjF̆ (j)
r F̆

(p)
r+1F̆

(p−j)
r . (3.3)

The equality (3.2) is [8, Lemma 42.1.2 (c)]. We have the following.

Theorem 3.1 There is an injective homomorphism of associative algebras

Φr,ε : U(̂sln) → U(̂sln+1) defined by Ei �→ ei, Fi �→ fi, K
±1
i �→ k±1

i , ∀i ∈ In. (3.4)

Proof We shall show the existence of Φr,ε in Section 4: for n > 2, it is given in Section 4.1
and for n = 2 it is given in Section 4.2.

Assume now that the algebra homomorphism Φr,ε is well-defined. We shall show that the
map Φr,ε is injective. Let Ur,ε be the subalgebra of U(̂sln+1) generated by ei, fi, k

±1
i for all

i ∈ In. We consider the module Vn+1 of U(̂sln+1). It restricts automatically to a Ur,ε-module.
To avoid confusion, we write its basis element by ŭk for all k ∈ Z. We define an embedding
Vn → Vn+1 by

uk �→
⎧

⎨

⎩

ŭk+�k/n�, if k̄ ∈ {0, 1, . . . , r − 1} ⊆ In,

ŭk+	k/n
, if k̄ ∈ {r, . . . , n − 1} ⊆ In.

Let Wn be the image of the embedding Vn → Vn+1. One can check that Wn is a Ur,ε-
submodule of Vn, and moreover the actions of the generators in Ur,ε on Wn is compatible
with the action of the generators in U(̂sln) under the isomorphism Vn → Wn. Observe that

Δ(er) = er ⊗ 1 + kr ⊗ er + (v−1 − vε)Ĕr+1K̆r ⊗ Ĕr + (v − vε)K̆r+1Ĕr ⊗ Ĕr+1, (3.5)

Δ(fr) = fr ⊗ k−1
r + 1 ⊗ fr + (v − v−ε)F̆r ⊗ K̆−1

r F̆r+1 + (v−1 − v−ε)F̆r+1 ⊗ F̆rK̆
−1
r+1. (3.6)

This indicates that when restricting to W⊗d
n , as a summand of V⊗d

n+1, the last two operators
in Δ(er) and Δ(fr) are zero. Thus W⊗d

n is a Ur,ε-module and thanks to (3.5) the actions
of er and fr on W⊗d

n are compatible with the actions of Er, Fr on V⊗d
n via the isomorphism

Vn → Wn. Identifying Vn with Wn, we see that there exists an algebra homomorphism
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π′
n,d : Ur,ε → S′

n,d such that π′
n,d(ei) = πn,d(Ei), π′

n,d(fi) = πn,d(Fi) and π′
n,d(ki) = πn,d(Ki)

for all i ∈ In. Since U(̂sln) is in the inverse limit of an inverse system {S′
n,d,S

′
n,d+n → S′

n,d}d∈N,
by the universality there exists a unique algebra homomorphism Ψr,ε : Ur,ε → U(̂sln) such that
Ψr,ε(ei) = Ei, Ψr,ε(fi) = Fi and Ψr,ε(k±1

i ) = K±1
i for all i ∈ In. This is the inverse of the map

Φ′
r,ε : U(̂sln) → Ur,ε induced by Φr,ε. So Φ′

r,ε is an isomorphism, and in other words, Φr,ε is
injective. The theorem is thus proved. �

We end this section with a remark.

Remark 3.2 (1) The assumption that r ∈ [0, n − 1] is not essential. One can define the
morphism Φr,ε when r = n as well in a similar manner.

(2) The v = 1 version of the embedding Vn → Vn+1 and (3.1) first appeared in [11].

(3) The analysis in Proof of Theorem 3.1 yields the following commutative diagram of linear
maps.

U(̂sln)
Φr,ε−−−−→ Ur,ε

πn,d

⏐

⏐

�

⏐

⏐

�
π̃n+1,d

S′
n,d

π←−−−− S′
n+1,d

where π̃n+1,d is the restriction of the map πn+1,d in (2.1) to Ur,ε and π is the projection
of a linear endomorphism of V⊗d

n+1 to a linear endomorphism of V⊗d
n under the embedding

Vn → Vn+1. (Note that π is not an algebra homomorphism.) A more natural compatibility
will be given in the following section. The injectivity of Φr,ε can be proved by exploring the
above commutative diagram as follows. Suppose that x ∈ U(̂sln) is in the kernel of Φr,ε. Then
by the above commutative diagram, we have πn,d(x) = ππ′

n+1,dΦr,ε(x) = 0 for all d. It is
well-known that if πn,d(x) = 0 for all d, then x = 0. Therefore Φr,ε is injective.

3.2 A Variant

In [5], Green defines a version of quantum affine gln. This is a variant of U(̂sln). More precisely,
it is defined as an associative algebra U(̂gln) over Q(v), which has generators Ei, Fi, L

±1
i for

i ∈ In and which subject to the following defining relations.
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

LiLj = LjLi, LiL
−1
i = 1,

LiEj = vδi,j−δi−1,j EjLi,

LiFj = v−δi,j+δi−1,j FjLi,

EiFj − FjEi = δi,j
LiL

−1
i+1−L−1

i Li+1

v−v−1 ,
1−cij
∑

p=0

(−1)pE
(p)
i EjE

(1−cij−p)
i = 0,

1−cij
∑

p=0

(−1)pF
(p)
i FjF

(1−cij−p)
i = 0, ∀i, j ∈ In.

(3.7)

Note that in [5], there is an assumption that n ≥ 3. We do not need this assumption.

Recall that, to avoid confusion, a superscript ˘ is put on the Chevalley generators of
U(̂sln+1). Recall that we fix an integer r ∈ [0, n − 1]. Consider the following element in
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U(̂sln+1).

li =

⎧

⎨

⎩

K̆iK̆i+1 · · · K̆r, 1 ≤ i ≤ r,

K̆−1
r+1 · · · K̆−1

i , r + 1 ≤ i ≤ n.
(3.8)

Let U(̂sln+1)1 ≡ U(̂sln+1)/〈
∏n+1

i=1 K̆i − 1〉 be the quotient algebra of U(̂sln+1) by the two-
sided ideal generated by

∏n+1
i=1 K̆i − 1. This is the quantum affine ̂sln+1 at level 1. We still use

the same notations for the images of the Chevalley generators of U(̂sln+1) under the canonical
projection map. We have the following ̂gln-variant of Theorem 3.1

Proposition 3.3 There is an embedding Φr,ε;1 : U(̂gln) → U(̂sln+1)1 defined by Ei �→
ei, Fi �→ fi, Li �→ li for all i ∈ In, where ei, fi are in (3.1).

The proof is given in Section 4.3.

3.3 Compatibility with Quantum Affine Schur Algebras

Recall the root datum (Yn, Xn) from Section 2.2. Define a morphism

φ = (f, g) : (Yn, Xn) → (Yn+1, Xn+1)

where f : Yn → Yn+1 sends a sequence (a1, . . . , an) to (a1, . . . , ar, 0, ar+1, . . . , an), and g :
Xn+1 → Xn sends a coset of (a1, . . . , an+1) to the coset of (a1 − ar+1, . . . , air

− ar+1, ar+2 −
ar+1, . . . , an+1−ar+1). The root datum (Yn+1, Xn+1) can be regarded as a root datum of affine
type An, instead of An+1, in an appropriate way such that φ is a morphism of root data of
affine type An. Note that f extends naturally to a map f : Sn → Sn+1.

There is an embedding Λn,d → Xn defined by λ �→ λ̄ as the composition of the embedding
Λn,d → Sn and the quotient map Sn → Xn. For λ̄ ∈ Xn − Λn,d, then there is a d′ �= d such
that λ ∈ Λn,d′ . Clearly different representatives of λ̄ yield different d′. We fix once and for
all a representative for each class in Xn so that if λ̄ ∩ Λn,d �= ∅ then λ ∈ Λn,d. Under this
assumption, we can define a map fd : Xn → Xn+1 by sending λ̄ → f(λ). Clearly gfd(λ̄) = λ̄.
In light of Theorem 3.1, we thus have an algebra embedding

φd,ε : U̇n → U̇n+1 (3.9)

defined by 1λ̄ �→ 1f(λ), Ei1λ̄ �→ ei1f(λ) and Fi1λ̄ �→ fi1f(λ) for all i ∈ In and λ ∈ Sn.
Recall from Section 2.3 the quantum affine Schur algebra Sn,d. It has idempotents 1λ for

λ ∈ Λn,d. It is known that there is an algebra homomorphism π̇n,d : U̇n → Sn,d such that
π̇n,d(1λ̄) = 1λ if λ ∈ Λn,d, and π̇n,d(1λ̄) = 0 otherwise. On the other hand, the subset Fn+1,d|r
of Fn+1,d consisting of all lattice chains L• such that Lr = Lr+1 is naturally in bijection with
Fn,d. Via this bijection, there is an algebra homomorphism σd : Sn,d → Sn+1,d such that
σd(1λ) = 1f(λ) for all λ ∈ Λn,d (see e.g., [7]). We are ready to state the compatibility of the
embeddings on U̇n and Sn,d.

Proposition 3.4 Let ε ∈ {±1}. The following diagram is commutative.

U̇n

φ̇d,ε ��

πn,d

��

U̇n+1

π̇n+1,d

��
Sn,d σd

�� Sn+1,d

(3.10)
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where φd,ε is from (3.9).

Proof By definition, the two compositions σd ◦ π̇n,d and π̇n+1,d ◦φd,ε coincide when evaluating
at the idempotents 1λ for all λ ∈ Xn. Now the maps are all Un-module homomorphisms and
hence the two compositions coincide when evaluating at any element in U̇n. Hence the diagram
must be commutative. The proposition follows. �

4 Existence of Φr,ε

This section is devoted to the proof of the existence of Φr,ε. In Section 4.1, we present the proof
when n > 2 and in Section 4.2, we present the proof for the n = 2 case.

4.1 Existence of Φr,ε in the n > 2 Case

In this section we assume that n > 2. We shall show that Φr,ε is an algebra homomorphism,
i.e., the set {ei, fi, k

±1
i | i ∈ In} satisfies the defining relations of U(̂sln).

It is easy to see that the elements k±1
i satisfy the relation (R1).

Next, we show that the pair (ki, ej) satisfies the defining condition in (R2). All are a
consequence of the definition, except the case (ki, ei), (ki±1, ei) for i = r. Observe that

K̆i−1ei = v−1eiK̆i−1, K̆iei = veiK̆i, K̆i+1ei = veiK̆i+1, K̆i+2ei = v−1eiK̆i+2 if i = r.

So we have

kiei = K̆iK̆i+1ei = v2eiK̆iK̆i+1 = v2eiki, ki±1ei = v−1eiki±1.

Thus the pair (ki, ej) satisfies the relation in (R2). Similarly the pair (ki, fj) satisfies the
relation in (R2) because we have

K̆i−1fi = vfiK̆i−1, K̆ifi = v−1fiK̆i, K̆i+1fi = v−1fiK̆i+1, K̆i+2fi = vfiK̆i+2 if i = r.

Next, we show that the triple (ei, fj , k
±1
i ) satisfies the commutator relation in (R3). The

relation is satisfied automatically if i, j �= r. Assume that i = r, j �= r, and j < r. Then we
have

eifj − fjei = (ĔiĔi+1 − vεĔi+1Ĕi)F̆j − F̆j(ĔiĔi+1 − vεĔi+1Ĕi)

= ĔiĔi+1F̆j − F̆jĔiĔi+1 − vε(Ĕi+1ĔiF̆j − F̆jĔi+1Ĕi)

= (ĔiF̆j − F̆jĔi)Ĕi+1 − vεĔi+1(ĔiF̆j − F̆jĔi) = 0.

So the commutator relation holds for the case i = r, j �= r and j < r. Similarly one can show
that the commutator relation holds for the case i = r, j �= r and j > r and the case i �= r,

j = r. We now show the remaining case i = j = r. In this case, a direct simplification yields

eifi − fiei = (ĔiĔi+1F̆i+1F̆i − F̆i+1F̆iĔiĔi+1) − vε(Ĕi+1F̆i+1ĔiF̆i − F̆i+1F̆iĔi+1Ĕi)

+ vε(ĔiF̆iĔi+1F̆i+1 − F̆iF̆i+1ĔiĔi+1) + (Ĕi+1ĔiF̆iĔi+1 − F̆iF̆i+1Ĕi+1Ĕi). (4.1)

By using the commutator relations in U(̂sln+1) on Ĕi+1F̆i+1 and F̆iĔi, we see that the term in
the first parenthesis in (4.1) is equal to

Ĕi

K̆i+1 − K̆−1
i+1

v − v−1
F̆i + F̆i+1

K̆i − K̆−1
i

v − v−1
Ĕi+1. (4.2)
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Note that F̆i+1F̆iĔi+1Ĕi = F̆i+1Ĕı+1F̆iĔi, and by applying the commutator relation on both
F̆i+1Ĕı+1 and F̆iĔi, the term in the second parenthesis in (4.1) is simplified to

−vε

(

K̆i+1 − K̆−1
i+1

v − v−1
ĔiF̆i + Ĕi+1F̆i+1

K̆i − K̆−1
i

v − v−1
− K̆i − K̆−1

i

v − v−1

K̆i+1 − K̆−1
i+1

v − v−1

)

. (4.3)

By doing the same operation on the second monomial in the term in the third parenthesis in
(4.1), the term is simplied to

−v−ε

(

K̆i − K̆−1
i

v − v−1
Ĕi+1F̆i+1 + ĔiF̆i

K̆i+1 − K̆−1
i+1

v − v−1
− K̆i − K̆−1

i

v − v−1

K̆i+1 − K̆−1
i+1

v − v−1

)

. (4.4)

Just like the term in the first parenthesis, the term in the last parenthesis in (4.1) is simplified
to

Ĕi+1
K̆i − K̆−1

i

v − v−1
F̆i+1 + F̆i

K̆i+1 − K̆−1
i+1

v − v−1
Ĕi. (4.5)

The sum of the terms in (4.2)–(4.5) having ĔiF̆i or F̆iĔi can be simplified to

−v−1K̆i+1 + vK̆−1
i+1

v − v−1
· K̆i − K̆−1

i

v − v−1
. (4.6)

The sum of the terms in (4.2)–(4.5) having Ĕi+1F̆i+1 or F̆i+1Ĕi+1 can be simplified to

−v−1K̆i + vK̆−1
i

v − v−1
· K̆i+1 − K̆−1

i+1

v − v−1
. (4.7)

The term involving only K̆±1
i and K̆±1

i+1 in (4.3) plus the term in (4.5) is equal to

K̆−1
i+1

K̆i − K̆−1
i

v − v−1
. (4.8)

The term involving only K̆±1
i and K̆±1

i+1 in (4.4) plus the term in (4.6) is equal to

K̆i

K̆i+1 − K̆−1
i+1

v − v−1
. (4.9)

So the commutator eifi − fiei for i = r is equal to the sum of (4.8) and (4.9), which is

K̆−1
i+1

K̆i − K̆−1
i

v − v−1
+ K̆i

K̆i+1 − K̆−1
i+1

v − v−1
=

K̆iK̆i+1 − K̆−1
i K̆−1

i+1

v − v−1
=

ki − k−1
i

v − v−1
.

The commutator relation (R3) for the case i = j = r is proved. This finishes the proof that the
triple (ei, fi, k

±1
i ) satisfies the relation (R3).

Next, we show that the pair (ei, ej) satisfies the quantum Serre relation (R4). First we
observe that all cases are a consequence of the corresponding defining relations of U(̂sln+1),
except the cases (r ± 1, r) and (r, r ± 1). For the case (r − 1, r), we can simplify the quantum
Serre relation, say Sr−1,r, as follows.

Ĕ
(2)
r−1(ĔrĔr+1 − vεĔr+1Ĕr) − Ĕr−1(ĔrĔr+1 − vεĔr+1Ĕr)Ĕr−1 + (ĔrĔr+1 − vεĔr+1Ĕr)Ĕ

(2)
r−1

= Ĕ
(2)
r−1ĔrĔr+1 − Ĕr−1ĔrĔr+1Ĕr−1 + ĔrĔr+1Ĕ

(2)
r−1

− vε(Ĕ(2)
r−1Ĕr+1Ĕr − Ĕr−1Ĕr+1ĔrĔr−1 + Ĕr+1ĔrĔ

(2)
r−1)

= (Ĕ(2)
r−1Ĕr − Ĕr−1ĔrĔr−1 + ĔrĔ

(2)
r−1)Ĕr+1 − vεĔr+1(Ĕ

(2)
r−1Ĕr − Ĕr−1ĔrĔr−1 + ĔrĔ

(2)
r−1)
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= 0.

So the quantum Serre relation holds for the case (i, j) = (r−1, r). The case for (i, j) = (r+1, r)
can be shown in exactly the same way. Now we show the quantum Serre relation for the case
(r, r − 1). First of all, we need the formula (3.2) for p = 2, which reads

e(2)
r = Ĕ(2)

r Ĕ
(2)
r+1 − vεĔr+1Ĕ

(2)
r Ĕr+1 + v2εĔ

(2)
r+1Ĕ

(2)
r .

By using this formula, we see immediately that the left-hand side of the quantum Serre relation
for (r, r − 1), i.e., e

(2)
r er−1 − er−1erer−1 + er−1e

(2)
r , is equal to

(Ĕ(2)
r Ĕ

(2)
r+1Ĕr−1 − ĔrĔr+1Ĕr−1ĔrĔr+1 + Ĕr−1Ĕ

(2)
r Ĕ

(2)
r+1)

− vε(Ĕr+1Ĕ
(2)
r Ĕr+1Ĕr−1 − Ĕr+1ĔrĔr−1Ĕr+1 − ĔrĔr+1Ĕr−1Ĕr+1Ĕr + Ĕr−1Ĕr+1Ĕ

(2)
r Ĕr+1)

+ v2ε(E(2)
r+1Ĕ

(2)
r Ĕr−1 − Ĕr+1ĔrĔr−1Ĕr+1Ĕr + Ĕr−1Ĕ

(2)
r+1Ĕ

(2)
r ). (4.10)

Replace the piece Ĕr+1ĔrĔr+1 by ĔrĔ
(2)
r+1 + Ĕ

(2)
r+1Ĕr in the second monomial, we see that the

terms in the first parenthesis in (4.10) are equal to

−ĔrĔr−1Ĕ
(2)
r+1Ĕr. (4.11)

Similarly, the third term with the coefficient v2ε in (4.10) is equal to

−v2εĔrĔ
(2)
r+1Ĕr−1Ĕr. (4.12)

The monomials in (4.11) and (4.12) add up to

−vε[2]ĔrĔr−1Ĕ
(2)
r+1Ĕr. (4.13)

The first, second and fourth monomials in the term with coefficient vε add up to zero. The
remaining monomial in the term with vε is vεĔrĔr+1Ĕr−1Ĕr+1Ĕr = vε[2]ĔrĔr−1Ĕ

(2)
r+1Ĕr,

which cancels with (4.13). So the quantum Serre relation for (r, r − 1) holds. This finishes the
proof of the quantum Serre relation (R4) for the pair (ei, ej).

Similarly one can show that the quantum Serre relation (R5) for the pair (fi, fj) holds. One
can also apply the involution on U(̂sln+1), defined by Ĕi �→ F̆i, F̆i �→ Ĕi, K̆i �→ K̆−1

i for all
i ∈ In+1, to obtain the proof.

The proof of Φr,ε being an algebra homomorphism for n > 2 is thus finished.

4.2 Existence of Φr,ε in the n = 2 Case

In this section, we assume that n = 2, and we shall show that the set {ei, fi, k
±1
i | i ∈ I2}

satisfies the defining relations of U(̂sl2). The relations (R1) and (R2) can be verified directly,
just like the n > 2 case, with very minor modifications. The commutator relation (R3) can be
proved in exactly the same way as the n > 2 case. So we only need to verify the quantum Serre
relations (R4) and (R5).

Let us verify the relation (R4). For simplicity, we use (i, j, 
) for (r, r + 1, r − 1). The first
relation to show is

e
(3)
	 ei − e

(2)
	 eie	 + e	eie

(2)
	 − eie

(3)
	 = 0. (4.14)

A simplification yields that the left-hand side of (4.14) is equal to

(Ĕ(3)
	 ĔiĔj − Ĕ

(2)
	 ĔiĔjĔ	 + Ĕ	ĔiĔjĔ

(2)
	 − ĔiĔjĔ

(3)
	 )
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− vε(Ĕ(3)
	 ĔjĔi − Ĕ

(2)
	 ĔjĔiĔ	 + ĔlĔjĔiĔ

(2)
	 − ĔjĔiĔ

(2)
	 ). (4.15)

Observe that if the term in the first parenthesis is zero, so is the term in the second one by
switching the roles of i and j. Recall that we have

Ĕ
(3)
	 Ĕi = Ĕ	ĔiĔ

(2)
	 − [2]ĔiĔ

(3)
	 , ĔiĔ

(3)
	 = Ĕ

(2)
	 ĔiĔ	 − [2]Ĕ(3)

	 Ĕi.

Applying the above identities to the first and fourth monomials in the term in the first paren-
thesis in (4.15), we have

Ĕ
(3)
	 ĔiĔj − Ĕ

(2)
	 ĔiĔjĔ	 + Ĕ	ĔiĔjĔ

(2)
	 − ĔiĔjĔ

(3)
	

= Ĕ	Ĕi(Ĕ
(2)
	 Ĕj + EjĔ

(2)
	 ) − (Ĕ(2)

	 Ĕi + ĔiĔ
(2)
	 )ĔjĔ	

= Ĕ	ĔiĔ	ĔjĔ	 − Ĕ	ĔiĔ	ĔjĔ	 = 0. (4.16)

Therefore, the relation (4.14) holds.
The second relation we need to verify is

Si	 ≡ e
(3)
i e	 − e

(2)
i e	ei + eie	e

(2)
i − e	e

(3)
i = 0. (4.17)

Instead of proving it directly, which involves monomials of degree 7, we shall make use of
Lusztig’s twisted derivation rk on the positive half of a quantum group in [8, 1.2.13]. Let
U+(̂sl3) be the positive half of U(̂sl3) generated by Ĕk for all k ∈ I3. To each k, there is a
linear map rk : U+(̂sl3) → U+(̂sl3) such that

rk(1) = 0, rk(Ĕk′) = δk,k′ , rk(xy) = vk·|y|rk(x)y + xrk(y),

for all homogeneous element y. Here |y| = (y0, y1, y2) ∈ Z
I3 is the degree of y and k · |y| =

2yk − yk+1 − yk−1. Recall (r, r + 1, r − 1) = (i, j, 
). For now we assume that ε = −1. We will
freely use the following formulas in later analysis.

Lemma 4.1 For all p ≥ 0, we have

r	(e
(p)
i ) = 0, (s1)

ri(e
(p)
i ) = 0, (s2)

rj(e
(p)
i ) = (v − v−1)vp−2

p−1
∑

a=0

(−1)av−2aĔ
(a)
j Ĕ

(p)
i Ĕ

(p−1−a)
j , (s3)

rirj(e
(p)
i ) = (v − v−1)vp−2e

(p−1)
i , (s4)

rjrj(e
(p)
i ) = (v − v−1)(v2 − v−2)v2(p−3)

p−2
∑

a=0

v−3aĔ
(a)
j Ĕ

(p)
i Ĕ

(p−2−a)
j . (s5)

Proof The equality (s1) is because the 
-degree of ei is zero. For (s2), we only need to show
that ri(ei) = 0, which can be done as follows.

ri(ei) = ri(ĔiĔj − v−1ĔjĔi) = vi·jri(Ĕi)Ĕj − v−1Ĕjri(Ĕi) = v−1Ĕj − v−1Ĕj = 0.

We show (s3) by induction. When p = 1, we have

rj(ei) = rj(ĔiĔj − v−1ĔjĔi) = Ĕi − v−1vi·jrj(Ĕj)Ĕi = (v − v−1)v−1Ĕi.

Assume that (s3) holds for p, we want to show that it holds for p + 1. We have

rj(e
(p+1)
i ) =

1
[p + 1]

rj(e
(p)
i .ei) =

1
[p + 1]

(vrj(e
(p)
i )ei + e

(p)
i rj(ei)). (4.18)
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We simplify the first term as follows.

1
[p + 1]

vrj(e
(p)
i )ei =

(v − v−1)vp−1

[p + 1]

p−1
∑

a=0

(−1)av−2aĔ
(a)
j Ĕ

(p)
i Ĕ

(p−1−a)
j (ĔiĔj − v−1ĔjĔi)

= (v − v−1)vp−1

p−1
∑

a=0

(−1)av−2aĔ
(a)
j Ĕ

(p+1)
i Ĕ

(p−a)
j

+
(v − v−1)vp−1

[p + 1]

p−1
∑

a=0

(−1)a(v−2a[p − 1 − a] − v−1−2a[p − a])Ĕ(a)
j Ĕ

(p)
i Ĕ

(p−1
j Ĕi, (4.19)

where we use the fact

Ĕ
(p−1−a)
j ĔiĔj = ĔiĔ

(p−a)
j + [p − 1 − a]Ĕ(p−a)

j Ĕi.

The second term can be simplified as follows:

1
[p + 1]

e
(p)
i rj(ei) = (v − v−1)vp−1(−1)pv−2pĔ

(p)
j Ĕ

(p+1)
i

+
(v − v−1)v−1

[p + 1]

p−1
∑

a=0

(−1)av−aĔ
(a)
j Ĕ

(p)
i Ĕ

(p−a)
i Ĕi. (4.20)

The second terms in (4.19) and (4.20) cancel once we observe that

vp−2a[p − 1 − a] − vp−1−2a[p − a] + v−a = 0.

The equality (s3) is then followed by adding the first terms in (4.19) and (4.20). Now we show
(s4). By (s3), we have

rirj(e
(p)
i ) = (v − v−1)vp−2

p−1
∑

a=0

(−1)av−2aĔ
(a)
j v−(p−1−a)ri(Ĕ

(p)
i )Ĕ(p−1−a)

j

= (v − v−1)vp−2

p−1
∑

a=0

(−1)av−aĔ
(a)
j Ĕ

(p−1)
i Ĕ

(p−1−a)
j

= (v − v−1)vp−2e
(p−1)
i . (4.21)

So (s4) holds. Finally we show (s4). By (s3), we have

rjrj(e
(p)
i )

= (v − v−1)vp−2

p−1
∑

a=0

(−1)av−2a(vp−2a−2rj(Ĕ
(a)
j )Ĕ(p)

i Ĕ
(p−1−a)
j + Ĕ

(a)
j )Ĕ(p)

i rj(Ĕ
(p−1−a)
j )

= (v − v−1)vp−2

p−1
∑

a=0

(−1)av−2a(vp−a−3Ĕ
(a−1)
j Ĕ

(p)
i Ĕ

(p−1−a)
j + vp−2−aĔ

(a)
j )Ĕ(p)

i Ĕ
(p−2−a)
j

= (v − v−1)vp−2

p−2
∑

a=0

(−1)a(vp−3a−6 − vp−3a−2)Ĕ(a)
j Ĕ

(p)
i Ĕ

(p−a−2)
j

= (v − v−1)(v2 − v−2)v2(p−3)

p−2
∑

a=0

(−1)av−3aĔ
(a)
j Ĕ

(p)
i Ĕ

(p−a−2)
j . (4.22)

So (s5) holds. The lemma is therefore proved. �
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In light of [8, Lemma 1.2.15], to show that Si	 = 0, it is sufficient to show that

ri(Si	) = 0, rj(Si	) = 0, r	(Si,	) = 0. (4.23)

Due to (s2) and ri(Ĕ	) = 0, we have immediately that ri(Si	) = 0. Moreover, we have

r	(Si	) = e
(3)
i − e

(2)
i r	(e	ei) + eir	(e	e

(2)
i ) − v	·3(i+j)e

(3)
i

= e
(3)
i − v−2e(2)ei + v−4eie

(2)
i − v−6e

(3)
i

= (1 − v−2[3] + v−4[3] − v−6)e(3)
i = 0.

So it remains to show that rj(Si	) = 0. This is further reduced to show that

rirj(Si	) = 0, rjrj(Si	) = 0, r	rj(Si	) = 0. (4.24)

By a direct computation, we get

rj(Si	) = v−1rj(e
(3)
i )Ĕ	 − rj(e

(2)
i )Ĕ	ei − v−1(v − v−1)e(2)

i Ĕ	Ĕi

+ (v − v−1)ĔiĔ	e
(2)
i + eiĔ	rj(e

(2)
i ) − Ĕ	rj(e

(3)
i ). (4.25)

By applying ri to the formula (4.25) and a direction computation, we have

rirj(Si	) = v−2rirj(e
(3)
i )Ĕ	 − (v − v−1)eiĔ	ei

− v−1(v − v−1)e(2)
i Ĕ	 + v(v − v−1)Ĕ	e

(2)
i + (v − v−1)eiĔ	ei − Ĕ	rirj(e

(3)
i )

= v−1(v − v−1)e(2)
i Ĕ	 − v−1(v − v−1)e(2)

i Ĕ	 + v(v − v−1)Ĕ	e
(2)
i − v(v − v−1)Ĕ	e

(2)
i = 0.

So to show that rj(Si	) = 0, it remains to show that r	rj(Si	) = 0 and rjrj(Si	) = 0. By a
direct computation, we get

r	rj(Si	) = v−3(v2 − v−2)rj(e
(3)
i ) − v−2rj(e

(2)
i )ei − v−2(v − v−1)e(2)

i Ĕi

+ v−4(v − v−1)Ĕie
(2)
i + v−3eirj(e

(2)
i ).

Since there is no Ĕ	 in r	rj(Si	), so r	r	rj(Si	) = 0. Next, we compute rir	rj(Si	) as follows.

rir	rj(Si	) = [v−2(v2 − v−2)(v − v−1) − v−1(v − v−1)[2] + v−3(v − v−1)[2]]e(2)
i = 0.

Further we compute rjr	rj(Si	). We have

rjr	rj(Si	) = v−3(v − v−1)3(Ĕ(3)
i Ĕj − v−1Ĕ

(2)
i ĔjĔi + v−2ĔiĔjĔ

(2)
i − v−3ĔjĔ

(3)
i ) = 0.

The above analysis shows that r	rj(Si	) = 0. So to show that rj(Si	) = 0 it remains to show
that rjrj(Si	) = 0. By a direct computation, we have

r2
j (Si	)

v−2(v − v−1)(v2 − v−2)
= (Ĕ(3)

i Ĕj − v−3ĔjĔ
(3)
i )Ĕ	 − Ĕ

(2)
i Ĕ	ei

− v−1(vĔ
(2)
i Ĕj − v−1ĔjĔ

(2)
i )Ĕ	Ĕi + ĔiĔ	(vĔ

(2)
i Ĕj − v−1ĔjĔ

(2)
i )

+ eiĔ	Ĕ
(2)
i − v2Ĕ	(Ĕ

(3)
i Ĕj − v−3ĔjĔ

(3)
i ). (4.26)

Now substitute ei by ĔiĔi+1 − v−1Ĕi+1Ĕi, we see that (4.26) is equal to

Ĕ
(3)
i ĔjĔ	 − Ĕ

(2)
i ĔjĔ	Ĕi + ĔiĔjĔ	Ĕ

(2)
i

− v−3ĔjĔ
(3)Ĕ	 + v−2Ĕ	Ĕ

(2)
i Ĕ	Ĕi − v−1ĔjĔiĔ	Ĕ

(2)
i
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− Ĕ
(2)
i Ĕ	ĔiĔj + vĔiĔ	Ĕ

(2)
i Ĕj − v2Ĕ	Ĕ

(3)
i Ĕj

+ Ĕ
(2)
i Ĕ	ĔjĔi − v−1ĔiĔ	ĔjĔ

(2)
i + v−1Ĕ	ĔjĔ

(3)
i . (4.27)

By (4.16), the first row in (4.27) is equal to ĔjĔ	Ĕ
(3)
i , which cancels with the second row. The

third row in (4.27) is equal to −v−1Ĕ
(3)
i Ĕ	Ĕj , which cancels with the fourth row. So we get

r2
j (Si	) = 0. This finishes the proof of (4.24), and therefore rj(Si	) = 0. In turn, this shows that

(4.23) holds, and thus Si	 = 0, i.e., (4.17), as desired. The above proof assumes that ε = −1.
The case for ε = 1 can be proved by rewriting ei as vε(ĔjĔi−v−εĔiĔj) and the proof for ε = 1
case applies by switching the roles of i and j.

The relation (R5) is a consequence of the relation (R4) by applying the involution on U(̂sl3)
sending Ĕk to F̆k ∀k ∈ I3. This finishes the proof of Φr,ε being an algebra homomorphism for
n = 2.

4.3 Proof of Proposition 3.3

In this section, we provide a proof of Proposition 3.3. The last two relations in (3.7) have been
verified in the proof of Theorem 3.1. The relations in the first three rows of (3.7) can be checked
directly. By using the relation

∏n+1
i=1 K̆i = 1, we see that ki = lil

−1
i+1 for all i ∈ In. Indeed, the

equality holds for all i ∈ In − {n} obviously. If i = n, then

lnl−1
n+1 = lnl−1

1 = K̆−1
r+1 · · · K̆−1

n (K̆1 · · · K̆r)−1 = K̆n+1 = kn.

So the commutator relation in (3.7) is a consequence of the commutator relation of U(̂sln+1).
This implies that the map Φr,ε:1 is an algebra homomorphism. The injective property follows
from the triangular decompositions of U(̂gln) and U(̂sln+1)1. This finishes the proof.
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