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Let S be a closed surface of genus g > 2 and p a maximal PSL(2, R) x PSL(2, R)
surface group representation. By a result of Schoen, there is a unique p—equivariant
minimal surface ¥ in H2 x H2. We study the induced metrics on these minimal
surfaces and prove the limits are precisely mixed structures. We prove a similar result
for maximal surfaces in AdS>. In the second half of the paper, we provide a geometric
interpretation: the minimal surfaces ) degenerate to the core of a product of two
R-trees. As a consequence, we obtain a compactification of the space of maximal
representations of 771 () into PSL(2, R) x PSL(2, R).

49Q05, 53C43

1. Introduction and main results 1692
2. Geometric preliminaries 1695
3. Minimal lagrangians 1703
4. Embedding of the induced metrics 1705
5. Compactification of the induced metrics 1712
6. Analysis of the limits 1725
7. Applications to maximal surfaces in AdS? 1739
8. Compactification of maximal representations 1742
References 1743

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.


http://msp.org
http://dx.doi.org/10.2140/gt.2023.27.1691
http://www.ams.org/mathscinet/search/mscdoc.html?code=49Q05,%2053C43
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/

1692 Charles Ouyang

1 Introduction and main results

Let S be a closed, orientable, smooth surface of genus g > 1. For any reductive Lie
group G, one can form the character variety R(;(S), G) = Hom™ (,(S),G) / G,
consisting of conjugacy classes of reductive surface group representations into G. In
the classical setting, where G = PSL(2, R), one recovers a copy of Teichmiiller space.
A goal in the higher Teichmiiller theory is to understand geometric aspects of surface
group representations into higher-rank Lie groups.

Following the work of Labourie [23], given a reductive surface group representation p
into a semisimple Lie group G, to each complex structure J on the surface S, one
can record the energy of the unique p—equivariant harmonic map from (§ ,J) to the
Riemannian symmetric space G/ K. This defines an energy functional on Teichmiiller
space, and Labourie proves that if the original representation p is Anosov, then the
energy functional admits a critical point. Hence, to each such representation p, there is
an associated branched immersed minimal surface in the symmetric space G/ K.

The existence and uniqueness of the minimal surface in the associated symmetric
space has been resolved by Labourie [24] for the rank-two real split simple Lie groups:
namely SL(3,R), PSp(4, R) and G,. Interestingly enough, the result still holds when
G is merely semisimple, as the case of PSL(2, R) x PSL(2, R) was proven by Schoen
in [39].

There is also the aim in the program of the higher Teichmiiller theory to understand
representations as geometric objects. This is a natural goal, given that in the case of
classical Teichmiiller theory, where the group is G = PSL(2, R) and the representation
is discrete and faithful, the associated geometric objects are given by marked hyperbolic
surfaces. Moreover, it is of interest to obtain a description of boundary points associated
to higher Teichmiiller spaces in terms of degenerations of geometric objects. It would
be interesting to have these geometric objects at the boundary be a generalization of
measured laminations (see [43, Section 11]), which are the limiting geometric objects
in the Thurston compactification of Teichmiiller space.

In the setting G = PSL(2, R) x PSL(2, R), this paper does exactly that: we provide a
parametrization of maximal surface group representations into PSL(2, R) x PSL(2, R),
by studying the induced metrics on the p—equivariant minimal surfaces in the symmetric
space H2 x H2. If p = (py, p2), and T is the unique p—equivariant minimal surface in
H? x H?, then its quotient by the action of the fundamental group via the representation
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High-energy harmonic maps and degeneration of minimal surfaces 1693

is the graph of the unique minimal lagrangian isotopic to the identity between (S, g;) =
H?/py and (S, g2) = H?/ps.

Let Ind(S) be the equivalence class of induced metrics on the graph minimal surface
in the product of two hyperbolic surfaces. Two such metrics are identified if one is the
pullback metric of the other by a diffeomorphism homotopic to the identity map.

We study the length spectrum of these induced metrics on the minimal surface and show
that we can degenerate the metrics to obtain singular flat metrics, measured laminations
and mixed structures. A mixed structure 1 = (S, ga, A) is the data of a collection of
incompressible subsurfaces |_| Sy, with a prescribed meromorphic (integrable) quadratic
differential on each subsurface (collapsing the boundary components and viewing them
as punctures), with a measured lamination A supported on the complement S\ |_| Sy.
Observe that a holomorphic quadratic differential on S and a measured lamination
on § are trivial examples of mixed structures, where S, = S and Sy = &, respectively.
Define then PMix(S) to be the space of projectivized mixed structures. Our first main
result is the following.

Theorem A The space Ind(S) of induced metrics embeds into the space PCurr(S) of
projectivized currents. Its closure is Ind(.S)) LI PMix(S).

If we keep track of the ambient space, namely H? x H?, we show that by scaling the
ambient space by a suitable sequence of constants (which generally will be the total
energy of a harmonic map), we can obtain as limits of minimal lagrangians the core
of a pair of R—trees coming from measured foliations. In fact, we show there is an
isometric embedding from a metric space obtained from the data of a mixed structure
to the core of trees.

As a consequence, we have an answer to our original goal of ascribing something
geometric to maximal surface group representations into PSL(2, R) x PSL(2, R). By
studying degenerations of the minimal lagrangians, we obtain natural boundary objects
which are both geometric and are natural extensions of measured laminations.

Theorem B The space of maximal representations of PSL(2, R) x PSL(2, R) embeds
into the space of myS—equivariant minimal lagrangians in H? x H?. The scaled
Gromov—Hausdorff limits of the minimal lagrangians are given by the core of a product
T1 x T, of trees, where T and T, are a pair of R—trees coming from a projective pair
of measured foliations.
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1694 Charles Ouyang

Minimal lagrangians in H? x H? arise as the image of the Gauss map of the unique
embedded spacelike maximal surface in a Globally Hyperbolic Maximal Compact
(GHMO) AdS3-manifold; see [22]. Mess [28] showed that the maximal representations
into PSL(2, R) x PSL(2, R) are precisely the holonomy representations of GHMC
AdS®—structures. One could have studied maximal representations into PSL(2, R) x
PSL(2, R) by looking at the induced metric on the maximal surface instead. We show
an analogue of Theorem A, that the limits one obtains are also mixed structures. If
Max(S) denotes the space of induced metrics on the maximal surface, then our final
result is the following.

Theorem C The space Max(S) of induced metrics on the maximal surfaces embeds
into the space PCurr(S) of projectivized currents. Its closure is Max(S) LI PMix(S).

There has been some recent interest in studying surface group representations to the
Lie group PSL(2, R) x PSL(2, R) by way of geodesic currents. Work of Glorieux [15]
shows that the average of two Liouville currents, %(L x; + Lyx,), yields the length
spectrum of the Globally Hyperbolic Maximal Compact AdS* manifold with holonomy
(p1. p2), where X; = H? \ p;. In another recent paper of Glorieux [16], it is shown
that this map which sends unordered pairs of elements in Teichmiiller space to the
space of projectivized currents, given by (X1, X7) = (X3, X1) — %(LX1 + Ly,), is
injective. Recent work of Burger, lozzi, Parreau and Pozzetti [6] show the limits of this
embedding are given by the projectivization of a pair of measured laminations. The
limiting current 1 thus satisfies

(-1 i) =i(r1,-)+i(A2,-),

where A; and A, are specific representatives of the projectivize classes [A;] and [A;],
respectively, representing limits on the Thurston boundary.

We remark that our compactification via geodesic currents is distinct. If the limiting
laminations A; and A, fill, that is, the sum of their intersection numbers with any third
measured lamination is never zero, then the corresponding limiting object 1’ under
our compactification is a singular flat metric coming from a unit-norm holomorphic
quadratic differential ® whose horizontal and vertical laminations are A; and A,. The
corresponding current is thus given by

(1-2) o) =i*(n' ) = i* (A, ) +i%(ha, @)

for a suitably short arc o away from the zeros of |®|. In general, this is different from
the sum of A; and A,. Notice that for y an arc of the horizontal lamination of ®,
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the two intersection numbers i (1, @) and i (7, &) coincide, so that the two currents 7
and 1’ are distinct even as projectivized currents. However, using their limiting currents,
Burger, Iozzi, Parreau and Pozzetti are able to construct and interpret their boundary
objects as subbuildings in the product of trees, endowed with the L !-metric.

Finally, since the first version of this paper appeared, related work has been done
on some of the other rank-two Lie groups; see Ouyang and Tamburelli [34; 35; 36].
More recently, together with Martone and Tamburelli [26], we have described our
compactification as a closed ball, upon which the mapping class group acts.

Acknowledgements It is the author’s privilege to thank his advisor Mike Wolf for
first suggesting the problem and for his continued patience, support and guidance. The
author would like to express his gratitude to Zeno Huang and Andrea Tamburelli for
many fruitful conversations throughout this project. He would also like to thank Chris
Leininger and Ivo Slegers for helpful comments on an earlier draft. Finally, he would
like to thank the referee for the many careful comments to improve the paper. The
author acknowledges support from the National Science Foundation through grant
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2 Geometric preliminaries

2.1 Harmonic maps between surfaces

Let (M, o |dz|?) and (N, p |dw|?) be two closed Riemannian surfaces and
w: (M, o |dz|*) — (N, p|dw|?)

a Lipschitz map. Then the energy of the map w is given by the integral

&(w) = % /M||dw||2 dvol,.

A critical point of the energy functional is a harmonic map. The energy density of the
map w, defined almost everywhere, is given by

_ pw(z))
6

and so the total energy is also given by the formula

(Jwz|? + wz[?),

e(w)

E(w) = [M e(wyodzndz = /M p(w(2))(|ws|? + |ws)?) dz A dZ,
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1696 Charles Ouyang

which shows the total energy depends only upon the conformal structure of the domain
surface but on the metric of the target. Alternatively, a harmonic map w solves the
Euler—Lagrange equation for the energy functional, a second-order nonlinear PDE,

wzz + (log p)ww,wz = 0.
To any harmonic map w: (M, o |dz|?) — (N, p|dw|?), the pullback of the metric
tensor decomposes by type according to
w*(pldw|?) = ®dz* +oedz dz + ® dz?,

where ® dz? is a holomorphic quadratic differential with respect to the complex
structure coming from the conformal class of (M, o |dz|?), called the Hopf differential
of w. Much of the formulas arising from harmonic maps make use of the auxiliary

_ pw(z), > _ pw(2)
= —o(z) lwz|© and L= —o(z)

We list some of these formulas and make liberal use of them without always explicitly

functions

lwz|?.

citing the precise one:

e The energy density e = H + L.
e The Jacobian 7 = H — L.

e The norm of the quadratic differential

Ll
o
e The Laplace—Beltrami operator
4 9?
0 0207
¢ Gaussian curvature of the source
2 92 log o
K .
(0) = o 0207
¢ Gaussian curvature of the target
2 02 log p
K(p) = :
,0 owow
¢ The Beltrami differential
;@
v=22 _ —,  with v®=
wy OoH
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The Bochner formula is given by

AlogH = -2K(p)H+2K(p)L+2K(c) when H(p)#O0,
AlogL=-2K(p)L+2K(p)H+2K(c) when L(p)#0.

We shall often be in the setting where both the source and target are hyperbolic surfaces,
that is, K(o) = K(p) = —1, and so some of the formulas listed above can be simplified.
In the more general setting where the target has negative curvature, the existence of a
harmonic map in the homotopy class is due to Eells and Sampson [11], its uniqueness
is due to Hartman [19] and Al’ber [1], and the fact that if the homotopy class contains
a diffeomorphism, then the harmonic map itself is a diffeomorphism and H > 0, is due
to Schoen and Yau [40] and Sampson [38].

2.2 Teichmiiller space

Recall that Teichmiiller space 7 (.S) is the space of all hyperbolic metrics on S with
the identification g ~ 4 if there exists a diffeomorphism ¢ of the surface, homotopic
to the identity map, for which ¢*g = h. The topology is given by its marked length
spectrum.

Alternatively, one may regard Teichmiiller space as the space of marked Riemann
surfaces. For a fixed surface S, two complex structures (S, J;) and (S, J;) are iden-
tified if there exists a biholomorphism f: (S, J1) — (S, J») which is homotopic to
the identity. The topology is given by the metric which, for two points of Teichmiiller
space, assigns the logarithm of the quasiconformal dilatation of the unique Teichmiiller
mapping between the marked Riemann surfaces.

Teichmiiller space is topologically trivial, being homeomorphic to an open ball of

dimension 6g — 6.

2.3 Measured foliations and measured laminations

For a closed surface S, a measured foliation (5, F) is a singular foliation (finitely
many k—pronged singularities, with k € {3,4,...}) with a transverse measure, that is,
a measure p defined on each arc transverse to the foliation, such that the measure is
invariant under isotopy between two arcs through transverse arcs.

To any isotopy class of measured foliations, there is an associated measured lamination.
A measured geodesic lamination on a hyperbolic surface is a closed disjoint set of
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1698 Charles Ouyang

geodesics with a transverse measure. Likewise, to any measured lamination, there is
an associated measured foliation, so that there is a canonical way to pass from one
to the other; see [7] and [37]. Hence, the space of measured laminations does not
depend upon the choice of hyperbolic metric. Thurston showed that both spaces are
homeomorphic to Euclidean balls of dimension 6g — 6; see [12] and [42].

2.4 Holomorphic quadratic differentials

The space of holomorphic quadratic differentials Qg is a holomorphically trivializable
vector bundle over Teichmiiller space, whose fiber over the Riemann surface X is the
vector space of holomorphic quadratic differentials on X. It is the vector space of
holomorphic sections of the square of the canonical bundle Ky, and so may be written
H°(X, K%). By the Riemann—Roch theorem, the complex dimension of this vector
space is 3g — 3. More concretely, if X is a Riemann surface and ¢ is a holomorphic
quadratic differential on X, then locally ¢ = f(z) dz2, where f is a holomorphic
function and z is a chart for X.

Holomorphicity of the differential and compactness of the Riemann surface ensures
the quadratic differential has precisely 4g — 4 zeros counted with multiplicity. Hence,
in a neighborhood avoiding a zero of ¢, one may choose natural coordinates ¢ so that
g = d¢?. The metric |¢| is well-defined on the complement of the zeros and is locally
Euclidean. At the zeros, the metric has conic singularities of angle (n + 2)r, where n
is the order of the zero of the quadratic differential at that point.

For any point on the complement of the zeros of the quadratic differential, there is a
unique direction for which ¢ (v, v) € R*. Integrating the resulting line field, one obtains
a foliation, called the horizontal foliation of the quadratic differential ¢g. Likewise, one
can define the vertical foliation of ¢, by integrating the line field of directions for which
q(v,v) € R™. The foliations come equipped with a transverse measure. For any arc y
transverse to the horizontal foliation, the measure for the horizontal foliation is given by

= / m(y/ 7)) =],
Y

and likewise, the transverse measure for the vertical foliation is given by integrating
the real part |Re(,/q)| over an arc y.

If Sg,» is a compact surface of genus g with n punctures such that 3¢ —3 +n > 0, then
Qg.n will denote the space of integrable holomorphic quadratic differentials on Sy ;.
At each of the punctures, the differential has a pole of order one.

Geometry & Topology, Volume 27 (2023)
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2.5 Geodesic currents and marked length spectra

Let (S, o) be a fixed closed hyperbolic surface of genus g > 2. Then its universal cover
S may be identified isometrically with H?. Let G(§ ) denote the space of geodesics
of S. Then a geodesic current on S is a 1 (S)—equivariant Radon measure on G(§ ).
The space of geodesic currents, denoted by Curr(.S), is given by the weak™ topology.

Remark A priori, the definition of a geodesic current may appear to depend upon the
choice of hyperbolic metric, but it turns out G(§ ) depends only upon 71 (S); see [4].
Hence the space of geodesic currents is independent of the hyperbolic metric initially
chosen for S.

The ur-example of a geodesic current is given by a single closed geodesic y on S. Lift
y to a discrete set of geodesics J on S. These lifted geodesics may be given a Dirac
measure, which is 1 (S)—invariant as the lifts themselves are 71 (S)—invariant. Hence
for any closed curve, by looking at its geodesic representative, one obtains a geodesic
current on S. In fact, Bonahon [4] shows the space of weighted closed curves is dense
in Curr(S) and the geometric intersection number between curves has a continuous
bilinear extension to i : Curr(S) x Curr(S) — R>¢. Moreover, a geodesic current on S
is determined by its intersection number with all closed curves [33]. The topology then
on the space of geodesic currents is given by its marked length spectrum. For the fixed
surface S, denote by C the set of isotopy classes of closed curves. The marked length
spectrum of a geodesic current u is given by the collection {i (1, y)}yec. A sequence
of geodesic currents [, is said to converge to u if their marked length spectra converge;
that is, for each y € € and € > 0, there is an N (e, y) such that for n > N (e, y), one
has [i (i, y) —i(n, y)| < €. It is important to note that N is allowed to depend on the
curve class chosen. No requirement on uniform convergence is required.

If a current arises from a metric, the following rather useful formula applies.

Proposition 2.1 (Bonahon [4]; Otal [33]) Let u be a current arising from a metric o.
Then

A %Area(a).
In the case where u is a geodesic current arising from a measured lamination, it is
not hard to see that i (i, ) = 0, but in fact, this turns out to be a characterization of
measured laminations.
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Proposition 2.2 (Bonahon [4]) Let i be a geodesic current such that i (u, ) = 0.
Then p is a measured lamination.

It is clear that if p is a geodesic current, then so is ¢y for ¢ € R4. The set of
projectivized currents, denoted by PCurr(SS), is given by Curr(S)/ ~, where y ~ v
if there exists a positive constant ¢ for which © = cv, and so consists of projective
classes of geodesic currents. The space PCurr(sS) is then given the quotient topology.
We highlight an important property of this space.

Proposition 2.3 (Bonahon [4]) The space PCurr(S) is compact.

Several geometric structures have been shown to be embedded into Curr(S). The
first such example was due to Bonahon [4], who showed Teichmiiller space could be
embedded inside Curr(S) via its Liouville current, namely o + L, with the property
that for any closed curve y, one has /;([y]) = i(Ls, y), so that the length of the
geodesic representative of y with respect to the hyperbolic metric ¢ coincides with
the intersection number between the currents L, and y. As the space of measured
laminations can be realized as geodesic currents, Bonahon recovers the Thurston
compactification by way of projectivized geodesic currents.

Otal [33] has shown the space of negatively curved Riemannian metrics on surfaces can
be realized by geodesic currents. For any simple curve class [y], the length of the unique
geodesic representative coincides with the intersection number of the corresponding
geodesic current and the curve class [y], extending the work of Bonahon.

Duchin, Leininger and Rafi [9] have embedded the space of singular flat metrics arising
from integrable holomorphic quadratic differentials into the space of geodesic currents.
We summarize a few results here, as we shall use them in what follows. Recall that to
any holomorphic quadratic differential ¢, one can associate a singular flat metric |¢|
via canonical coordinates.

The unit sphere Q él, C Qg consists of the holomorphic quadratic differentials with L'-
norm one. Then the space Flat(.S) of unit-norm singular flat metrics may be identified by

Flat(S) = 0, /S,

where the action of S! is given by multiplication by e’ 9 for0 <6 <2mw. We require
this quotient because if ¢ is a holomorphic quadratic differential, then ¢ and ¢’ ¢ will
have the same singular flat metric |¢|. For g € Q ;,, consider the transverse measure
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for the vertical foliation of ¢, that is, v, = |Re(,/q)|. Denote by vg = |[Re(e?? N
the vertical foliation of ¢’¢. Form the integral

1 (7 0

Theorem 2.4 (Duchin, Leininger and Rafi [9]) The integral L4 is a geodesic current
such that to any simple closed curve y,

Lg(y) =i(Lg, V),

where |q| is the singular flat metric arising from the holomorphic quadratic differential g .
Furthermore, the map which sends |q| € Flat(S) to L, € PCurr(S) is an embedding.

As a geodesic current is determined by its marked length spectrum, the construction of
the geodesic current L, depends only upon the U(1)-orbit of ¢g. Hence we will use the
notation L4 to denote the geodesic current whose marked length spectrum coincides
with that of the singular flat metric |¢|.

As the space of projectivized currents is compact, one may take the closure of the
space Flat(S), and it is shown in [9] that the limiting structures consist precisely of
projectivized mixed structures. A mixed structure may be defined as follows. Let
S’ be an incompressible subsurface of S equipped with a Riemann surface structure.
Then consider Q g/, the space of integrable meromorphic quadratic differentials on S’
such that with respect to the underlying complex structure on S’, neighborhoods of
boundary components of d.S’ are conformally punctured disks. To any such quadratic
differential ¢, the corresponding singular flat metric on S’ thus assigns length zero to
any peripheral curve. Let A be a measured lamination supported on the complement
S\ S’. The triple (S, g, A) is called a mixed structure on S. For any n = (S’, ¢, 1),
one obtains a geodesic current L, given by the property

/2
. . 1 .
l(Ln’V)=l()nV)+§/0 i(v),y)db,

where A is a closed curve on S. We remark that in the case S’ = &, then 7 is
a measured lamination on S, so that the space Mix(S) properly contains ML(S).
The compactification of the singular flat metrics arising from unit-norm quadratic
differentials is then given by the following theorem.

Theorem 2.5 (Duchin, Leininger and Rafi [9]) The closure of Flat(S) in PCurr(S)
is given by PMix(S).

Geometry & Topology, Volume 27 (2023)
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2.6 Anti-de Sitter space

We are primarily concerned with the anti-de Sitter space of signature (2, 1), which
is given by the quasisphere xf + x% — x§ — xi = —1 inside R?-?) with the metric
ds? = dx12 + dx% — dx% — dxi. More precisely,

AdS? = {x eR®Y : (x,x) = —11.

As the manifold is pseudo-Riemannian, tangent vectors v € T AdS3 come in one of the
following three types:

e timelike if (v, v) <0,
o lightlike if (v, v) =0,
e spacelike if (v, v) > 0.

The anti-de Sitter space AdS? is given by the projectivization of KES% its double cover.
The isometry group of AdS? is PSL(2, R) x PSL(2, R).

A smooth surface S < AdS? is said to be spacelike if the restriction to S of the metric
on AdS? is a Riemannian metric. This is equivalent to the condition that every tangent
vector v € T'S is spacelike.

Consider the Levi-Civita connections on S and AdS> given by V¥ and V, respectively.
For a unit normal field N on S, the second fundamental form is given by

Vs = V3w + (v, w) N,

where v and w are vector fields on S, and v and W are vector fields extending v and w.
The shape operator is the (1, 1) tensor given by B(v) = V, N. It satisfies the property
II(v, w) = (B(v), w). The maximal surfaces then are governed by the condition that
tr B=0.

An AdS? manifold is a Lorentzian manifold locally isometric to AdS3. Among these
manifolds, we restrict our attention to those which are globally hyperbolic maximal
compact, henceforth written as GHMC. These manifolds are defined by those satisfying
the following three properties:

(1) They contain a closed orientable spacelike surface S.
(2) Each complete timelike geodesic intersects S precisely once.

(3) They are maximal with respect to isometric embeddings.

Geometry & Topology, Volume 27 (2023)
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It follows that GHMC AdS? manifolds must be homeomorphic to S x R. Mess [28]
showed that the genus of S must be at least two, and that GHMC structures are
parametrized by two copies of Teichmiiller space. Barbot, Béguin and Zeghib [2]
showed that for each such GHMC manifold, there exists a unique embedded spacelike
maximal surface X. In fact, there is a parametrization of all such GHMC manifolds by
the unique embedded maximal surface it contains, along with its second fundamental
form.

Theorem 2.6 (Krasnov and Schlenker [22]) Let M be a GHMC AdS3—manifold and
let ¥ be its unique embedded spacelike maximal surface. The second fundamental form
of X is given by the real part of a holomorphic quadratic differential on the underlying
complex structure of the maximal surface. Furthermore, there is a homeomorphism
between the space of all GHMC AdS>—structures and the cotangent bundle of Teich-
miiller space, which assigns to a GHMC AdS>—structure the conformal class of its
unique maximal surface and the holomorphic quadratic differential for which its real
part is the second fundamental form.

The induced metric of the maximal surface is given by e?“o, where o is the hyperbolic
metric and u satisfies the PDE

Agu = e —e724|®|> — 1.

But the solution to this PDE is u = %log H, for which the PDE becomes the usual
Bochner equation. Here # is the holomorphic energy density arising from harmonic
maps between closed hyperbolic surfaces. Hence, the induced metric of the maximal
surface is given by Ho. As a corollary of our main result, we will describe the limiting
length spectrum of any sequence of induced metrics of the maximal surface.

3 Minimal lagrangians

A diffeomorphism ¢: (S, g1) — (S, g2) is minimal if its graph X C (S x S, g1 D g2)
with the induced metric is a minimal surface. Recall that ¥ is a minimal surface if
the inclusion i : ¥ — (S x S, g1 @ g») is critical point of the area functional. Observe
that if ¢ is minimal then so is ¢_1. If w1 and w, denote the area forms of g; and g»,
respectively, and if in addition X C (S X S, w1 —wy) is a lagrangian submanifold, then
we say that ¢ is a minimal lagrangian.

Geometry & Topology, Volume 27 (2023)



1704 Charles Ouyang

Theorem 3.1 (Schoen [39]) If g1 and g, are hyperbolic metrics on S, then there is
a unique minimal lagrangian map ¢: (S, g1) — (S, g») in the homotopy class of the
identity.

Let ¥ denote the graph minimal surface with the induced metric. Then its inclusion
into the producti: X — (S x S, g1 D g») is a conformal harmonic map. A conformal
map to a product space is a product of harmonic maps whose Hopf differentials sum
to zero. Hence, for any pair of points in Teichmiiller space, one may record the data
of both the conformal structure of the minimal surface along with one of the Hopf
differentials. The harmonic-maps parametrization of Teichmiiller space which we
record below ensures the map is bijective. Sampson proved injectivity and continuity
of the map, and Wolf showed the map was surjective and admits a continuous inverse.

Theorem 3.2 (Sampson [38], Wolf [44]) Let (S, o) be a fixed hyperbolic surface.
For any point in Teichmiiller space [(S, p)], select the representative (S, p) so that the
identity map id: (S, o) — (S, p) is the unique harmonic map in its homotopy class,
and denote its Hopf ditferential by ®(p). Then this map

®:7(S) - H°(X,K%)

is a homeomorphism, where X is the complex structure associated to (S, o).

Theorem 3.3 There is a homeomorphism
W T(S)XT(S) = Qg. (X1, X2) = ([Z]. Hopf(uy)).

which assigns to any pair of points X, X, in Teichmiiller space the conformal structure
of the unique graph minimal surface ¥ C X; x X, along with the Hopf differential
Hopf(u1) of the projection u;: ¥ — X.

Proof The discussion above ensures the map W is well-defined. As the construction of
the minimal surface varies continuously with the choice of X; and X3, it is clear the map
is continuous. To see injectivity of W, suppose that W (X, Xp) = WV (Y1, Y3) = (X, D).
Then the harmonic maps u; : ¥ — X7 and v; : ¥ — Y7 have the same Hopf differentials,
so by the harmonic-maps parametrization, X7 = Y;. The same argument forces
X, =Y>. Surjectivity follows similarly, as to any choice of Riemann surface ¥ = (S, J)
and holomorphic quadratic differential ®, there exists a unique hyperbolic metric
X1 = (S, g1) such that the identity map id: ¥ — X is a harmonic map with Hopf
differential ®. Similarly, one can find an X, arising from the Hopf differential —®.
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Hence ¥(X7, X3) = (2, @), which gives surjectivity. The inverse is clearly continuous
as given the data of a Riemann surface and a holomorphic quadratic differential, the pair
of hyperbolic metrics may be written explicitly and vary continuously, which suffices
for the proof. |

4 Embedding of the induced metrics

In this section we study the induced metric on the graph minimal surfaces. Recall that
given a pair (X7, X3) of hyperbolic surfaces, Theorem 3.1 produces a graph minimal
surface X in the 4—manifold (S x S, g1 & g2), where X; = (S, g;). If m: (S, g1) —
(S, g,) is the unique minimal map isotopic to the identity, thenid: (S, g1) — (S, m*g,)
is the unique minimal map isotopic to the identity, which in this case is the identity map.
The graph 3, then, is the diagonal in S x .S, and there is a canonical diffeomorphism
from S to the diagonal in S x S. The induced metric on X thus furnishes a metric g
on S by the pullback of this diffeomorphism. Henceforth, when we say induced
metric, we refer to this metric g on S, and will use X to denote (S, g). We consider
these metrics up to pullback by a diffeomorphism isotopic to the identity, and call
this subspace of metrics Ind(S) and endowing it with the compact—open topology.
The remainder of the section is devoted towards studying geometric properties of the
minimal surfaces and showing that Ind(S') can be embedded into PCurr(S).

Proposition 4.1 Let X1 = (S, g1), X2 = (S, g5) and VY (X1, X,) = (X, ®). Then the
induced metric on the minimal surface ¥ is given by g + m*g,. Consequently, the
induced metric is given by twice the (1, 1) part of a hyperbolic metric when expressed
in conformal coordinates.

Proof As in the discussion above, we may choose a suitable hyperbolic metric X, =
(S, g2) in the equivalence class of [X3] to ensure that the unique minimal map isotopic
to the identity is the identity map. Hence, the graph of the minimal map is the diagonal
in §' xS, so that (after identifying the diagonal with §') the harmonic map from the
minimal surface X to X; is given by the identity map. The first result then follows by
definition of the product metric. Notice that the hyperbolic metric g may be written in
conformal coordinates on ¥ as ® dz2 +oey dz dZ + ® dz%. As the minimal surface &
is mapped conformally into the product X; x X, of hyperbolic surfaces, then one
obtains a pair u;: ¥ — X; of harmonic maps, whose Hopf differentials, Hopf(u{)
and Hopf(u,), sum to zero. Hence g, may be written in conformal coordinates
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on ¥ as —® dz2 + e, dz dz — ® dz?, with |®| = | — @], so by a result of Sampson
(Proposition 4.4) the energy densities e; and e, will coincide. As the induced metric is
given by the sum, the induced metric has local expression 20e dz dz. |

Proposition 4.2 The induced minimal surfaces have sectional curvature that is strictly
negative.

Proof For any point p € X, it is clear that K, < 0, since X is a minimal surface in an
NPC space, so we wish to show that K, # 0. The proof is by contradiction. Let {e, e}
be an orthonormal basis of N,X. Now consider the 2—plane spanned by eigenvectors
X and Y of the second fundamental form II. One has II(X, Y) = thl I (X, Y )e;.

The mean curvatures of the immersion are given by
@1 Hy =11 (X, X)+1I;(Y,Y) =0,
Hy =1L(X,X)+1,(Y,Y)=0.

The Gauss equation tells us that at p,
(4-2) 0=Rm(X,Y.Y, X)
=Rm(X, Y, Y, X) — (II(X, X), T(Y, Y)) + (I[(X, ¥), T[(X, Y))

2 2
=Rm(X.Y.Y. X)+ > I;(X. HI;(Y.Y) - Y I (X, Y)%
j=1 j=1
and as H? x H? is NPC, from (4-1) and (4-2) it follows that I = 0 at p and that
Rm(X,Y,Y,X)=0at p. As T(H2xH?) =~ TH2& T'H2, we may write X = X; ® X
and Y =Y @ Y,. A simple calculation shows
0=Rm(X,Y,Y, X)

=Rm, (X1, Y1, Y1, X1) + Rmy (X2, Y2, Y2, X3)

= k(X1 YD(IX1 P11 = (X1.71)%) + k(X2 Vo) (| X2 P |Y2|* — (X2, 12))

=—1- (X PV 1> = (X1, 11)*) = 1- (| X2 |2 = (X2. Y2)?).
which by Cauchy—Schwarz implies that X and Y7 (and also X, and Y;) are linearly
dependent. So the map u_ drops rank, a contradiction, as our surface was a graph. O

For a choice of complex coordinates z = x + iy on the minimal surface X, then d/0dx
and d/dy form an orthogonal frame. Denote then

and E,

‘Bx‘zﬁ _‘8)/‘2: ay’
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Let J be the almost complex structure on the 4—manifold X; x X,. Then J = J; & J3,
where J; is the almost complex structure arising from X; = (S, g;).

Proposition 4.3 Let Ey, E, and J be as above. The second fundamental form is

given by
(E,. Ey) = —Re ®(0e)y, —oe(ImP)x +Im P(oe)y JE,
oey/20e(02e? —4|D|2)
Im® — Re @ Re ®
4 m ®(oe), —oe(Re ®)x +Re (Oe)xJE2,
oey/20e(02e2 —4|D)2)
Re ® Im®), —Im®
(E,. Ey) = eP(oe)y +oe(ImP)y —Im (ae)xJE
oey/20e(02e? —4|D|?)
—Im® Re &), —Re ®
N m ®(oe), +oe(Re ) —Re (Oe)xJEz,
oey/20e(02e? —4|D|2)
Im ® — Re ® Re @
(E,. Ey) = m ®(oe)y, —oe(Re P)x +Re (Ue)XJE1

oey/20e(02e? —4|D|?)
n —oe(Re @), +Re P(oe)y, —Im P(oe)x JE
oey/20e(02e? —4|D|2)

2.

Proof As X C X; x X, is a lagrangian submanifold, {E, E,, JE|, JE,} forms an
orthonormal basis of 7'(X; x X;) = T X @& T X, in this neighborhood. The second
fundamental form then is given by

2
I(X.Y) =Y &(VxY.JE))JE;.
j=1
where g = g1 @ g, and V =V, @ V,. We first calculate II(Eq, E1). As the minimal

surface metric is given by 20e |dz|?> = 20e (dx?* + dy?), one has

it (. ) =20 = [

so that
£ - 1 0
: V20e 0x
Similarly, E, is given by
1 0
Ey, = —.
V20e 0y
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To calculate JE, we project E to each of its factors and apply the almost complex
structure on each of its factors; namely, we find the vector which has the same length
and forms angle 7 with the projected factor using the hyperbolic metric. This is the
complex structure arising from the conformal class of the metric. To find J; E; =
a(d/9x) + b(3d/9dy), for instance, we observe first that the hyperbolic metric on X is
given by

01 =®dz? +oedzdz + ®dz?
=Q2Re®+o0e)dx? —4Im P dx dy + (—2Re & + oe) dy>.

Hence we want to solve for a # 0 and b > 0 which satisfy

9 9 B
(4-3) gl(aﬁ +b$,E1) —0.

9 9 0 9y _ 2Red+oe
(4-4) gl(agikb@,aaikb@)—gl(El,El)—T-

Some basic algebra yields that
2Im ® 2Re ® 4 oe
= and b= ,
V(20e)((0e)? —4|D]?) V(20e)((0e)? —4|D]?)

so that
2Im® d 2Re ® +oe d

= oo 0o — 40P 0x | Yoo (we) — 4P ¥

Now J, E; is found similarly, and is given by

—2Im® i—l— —2Re ® +oe d
V2oe((0e)? —4|®2) dx  \/20e((0e)? —4|D|?) ay’

JE| =

The tangent vector given by Vg, E; splits as Vi, E1 ® Vi Ei. The Christoffel
symbols for g; and g, can be readily calculated:

1 9

1 _ 1 I
Ve B = v(l/«/Zae)a/ax J2oe 0x

. 1 1 vl i—i— 1 9
 V20e \V20e 9/9x 9x .\ 0X
(s ”)(H)
=—+|—('T Ir +
20’6( 206( 113x 113y 20
1

=(L1F1 +L(L))_+_2F2 9
20e "' J20e\V20e ). ) dx 206 119y
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where 1I’ll1 and 1F121 are the usual Christoffel symbols, with the extra superscript
denoting that these are the ones for the metric g;. They are given explicitly by
i1 _ 1 —2Re®+oe
ry,= 3 (—0262 BYTPSD (2Re® +0e)x
2Im ®
+———((—4ImP,)—(2Re ® +0e ,
o (4 m e — »)
a1 _ 1 2Im &
ry, = 5 (—02e2 ETTE (2Re ® 4 0e)x
2Red +oe
02e? —4|P|?
Similarly, the same can be done for the metric g, and using the formula for I, one gets
II(Eq, E1). The same can be done for the rest. O

(-4Im dx) — (2Re @ + oe)y)).

It would be curious to see under what conditions different points in Qg would yield
the same induced metric. One might hope that the space of induced metrics would be
homeomorphic to Qy, but the following result of Sampson shows this is not possible.

Proposition 4.4 (Sampson) For a fixed closed hyperbolic surface X = (S, 0), if ®;
and &, are two Hopf differentials on X arising from harmonic maps from X to closed
hyperbolic surfaces of the same genus such that the norms |®; | and |®,| coincide, then
the energy densities coincide, that is, e; = e.

Hence, if we select two elements of Qg, say (X, ®;) and (X, ®,), where |D| = | D3|
but ®; # &,, then the corresponding energy densities are the same and hence the
corresponding induced metrics are the same.

The following proposition is a converse to the result of Sampson and shows this is the
only situation for which the corresponding induced metrics coincide.

Lemma 4.5 On a fixed closed hyperbolic surface, we have e; = e, if and only if
|@1] = |D2].

Proof That |®;| = |®,| implies e; = e, is due to Sampson. Now suppose e¢; = e;.
Then Hq + £1 = Hy + L5, so the Bochner formula Alog H; = 2H; —2L; — 2 may
be rewritten as A log H; = 4H; — 2e; — 2. Subtracting the two equations fori =1, 2
yields

H
Alog =1 = 4(7‘[1 —Hz).
Ho
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Now H; > 0, so that the quotient H /H, attains its maximum on the surface; we claim
this is 1, for if the maximum of #/H, were greater than 1, then at the maximum
(which is also the maximum of log(#/H;)) we would have

0> AlogZ—; =4(H1—Hy) = 47{2(% — 1) >0,
a contradiction, so that H; /H, < 1 and symmetrically H,/H; < 1. Hence H; = H,
and so £1 = L;, by the assumption on the energy densities. From the formula
|®|2/0? = HL, the conclusion follows. |

Corollary 4.6 The space of induced metrics Ind(S) may be identified with Qg / ~,
where (X, ®1) ~ (Y, ®,) if X =Y and | D] = |D,|.

We conclude this section by proving that the space Ind(S) can be embedded into
the space of currents, and that the embedding remains injective after projectivization,
thereby obtaining an embedding into projectivized currents.

Proposition 4.7 The space Ind(S) can be realized as geodesic currents.

Proof From Proposition 4.2, the induced metrics have strictly negative curvature, so
by Otal [33], there is a well-defined embedding C: Ind(S) — Curr(S) from the space
of induced metrics on S to the space of geodesic currents, which sends 2o¢e — Ly,
so that if y is a closed curve, then /r450([V]) = i (Lage, V). |

The following lemma is a statement concerning energy densities and their failure to
scale linearly.

Lemma 4.8 On a fixed closed hyperbolic surface, it e; = ce,, then ¢ = 1, and hence
@] = |D2].

Proof Without loss of generality, suppose ¢ > 1, else we may re-index so that ¢ > 1.
Then H,/H, < ¢, for if Hi/H, > ¢, we locate the maximum of H;/H,, and the
Bochner formula at that point yields
H
0> Alog H—l =4(H1—Ha) —2(e1 —e2) =4(H1 —Hz) —2(ce2 —e2)
2
Ha
=4H, | ——1])—=2e;3(c—1
2 (7-[2 ) 2(c—=1)
>4Hy (c—1)—2e3(c—1)
=(c—1)dHy—2e3) =(c—1)2Hy—2L3) =2(c—1) T, > 0,
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a contradiction. Notice the upper bound is actually attained, for at a zero of |®q|, we
have that £, vanishes and so at such a zero we have the equation

and as we have H/H, < ¢, it follows that £, must also vanish whenever £; does. In
fact, we can say more about the zeros of £;. The condition on the energy densities
yields the equality

0= (cHa—H1)+ (cL2—Ly),

and the bound on the quotient #/H, implies that the first term is nonnegative so the
second term is nonpositive, that is, cL, — L1 <0orc < Li/Ly or Lo/L1 < 1/c, s0
that the order of the zeros of £, is greater than or equal to the order of zeros of L. As
|®|%/0% = HL and H > 0, both £, and £, have exactly 8g — 8 zeros counted with
multiplicity, so the order of vanishing of £; is the same as that of £, at every point
of the surface. Hence the quadratic differentials ®; and @, differ by a multiplicative
constant k € C, that is, ®; = k®,. At the zero of |®,| (and so also a zero of |Dq|),

which is a maximum of the quotient 7 />, the Bochner equation now reads

H 2|42 2|, |?

0> Alog—1 =2H, —l—%’-{z—i-g =2(H1 —Hz) =2Hz(c—1) =0,
7‘[2 02 1 0‘27'[2

which implies ¢ = 1, and by the previous lemma |k| = 1. |

Theorem 4.9 The space of induced metrics Ind(S) embeds into PCurr(sS).

Proof Let v: Curr(S) — PCurr(S) be the natural projection map. It suffices to show
that the map 7 o C: Ind(S) — PCurr(S) is injective. If the images of two induced
metrics under the map 7 oC coincide, then by Otal’s theorem [33] on the marked length
spectrum rigidity of negatively curved Riemannian metrics, we have

ocdzdz =co'e dzdz,

where ¢ € R~ . Then they will be in the same conformal class, so that 0 = ¢’. Then
e =ce’,and by Lemma 4.8, ¢ = 1. O

Remark As the induced metrics are not scalar multiples of each other, we make a
slight modification by dividing the induced metrics by 2 to ensure these metrics are now
precisely the (1, 1)—part of a hyperbolic metric when written in conformal coordinates,
rather than twice that.
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5 Compactification of the induced metrics

In this section we identify the elements in the closure Ind(S) C PCurr(.S). As the space
of projectivized currents is compact, we obtain a compactification Ind(S) U PMix(S)
of the induced metrics from the embedding obtained in the previous section.

5.1 Flat metrics as limits

In a simple scenario where the conformal structure of the minimal surface remains
fixed, we can describe the asymptotic behavior of the induced metric. We consider the
simplest case, where X , (and consequently X ;) lie along a harmonic-maps ray, that
is, the sequence of Hopf differentials of the projection map onto the first factor is given
by t,®, where ® # 0 and ¢, — oo.

Proposition 5.1 Let 0, e, be the induced metric where 0,, = o for all n, and the Hopf
differentials of the harmonic maps u; ,: (S,0) — X1, are given by t,®o, where @
is a unit-norm quadratic ditferential on (S, o). Suppose &, — oo. Then everywhere
away from the zeros of |®q|, one has

Oné€n

lim
n—oo &,

= [Dy|.

Proof By construction, the Hopf differential of the harmonic map from (S, o) to X ,
is given by #,®o, where @y is a unit-norm quadratic differential. In a neighborhood
away from any zero of @, consider then the horizontal foliation of &, = ¢,®(. By
the estimates on the geodesic curvature of its image [45], a horizontal arc of the
foliation in this neighborhood will be mapped close to a geodesic in X7 ,; we do not
reproduce the techniques here, as we will do so later in a slightly modified setting.
Using normal coordinates (x, y) for the target adapted to this geodesic and estimates
on stretching [44], we have that

(x, y) > (26)/%x,0) + 0(e™¢),

where the constant ¢ only depends upon the domain Riemann surface and the distance
from the zero of the quadratic differential. For the harmonic map from (S, o) to X3 ,,
its Hopf differential is given by —z, g, so that an arc of its horizontal foliation, which
is an arc of the vertical foliation of ¢, P, gets mapped close to a geodesic, yielding

(x.p) P> (0,262 y) +o(e™").
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Hence, as a map from X to the 4-manifold X; , x X, , with the product metric, we
have that the induced metric 0, e, in this neighborhood has the form

(41, 4+ 0(e™)) dx? + 20(e™ ") dx dy + (41, + 0(e ")) dy?.

Dividing by 41, and observing that for a high-energy harmonic map, the total energy is
comparable to twice the L'-norm of the quadratic differential (Proposition 5.8), and
taking the limit, yields the conclusion. m|

Proposition 5.2 Suppose o,,¢,, is a sequence of induced metrics such that 6, — o in
T(S) and &, — oo. Then, after passing to a subsequence, there exists a sequence t,

and a unit-norm quadratic differential ®y on [o] such that
. Opép

lim

n—>o0

— [Pl

In

Proof Let ¢, = &,. Then the result follows from the compactness of unit-norm
holomorphic quadratic differentials over a compact set in Teich(.S), and the argument
in the previous proposition. O

As the previous results only show C° convergence in any neighborhood away from
a zero of the quadratic differential, it is not quite so obvious we have convergence in
the sense of length spectrum. The following technical proposition shows we actually
do have convergence when the metrics are regarded as projectivized geodesic currents.
With the length spectrum embedding (as given in Theorem 4.9), we now have sequences
of points whose limits are the flat structures in the space of geodesic currents.

Proposition 5.3 Let 0,¢, and &, be in the same setting as above. Then, as currents,

Lanen

gl/?

— L|q>0|.

Proof As the topology of geodesic currents is determined by the intersection number
against closed curves, it suffices to show that given any closed, nonnull homotopic
curve class [y] and € > 0, there is an N([y], €) such that for n > N, one has that
li(Lo,e, /e, V) —i(Lid,)» V)| < €. We choose a representative y of [y] to be a [®g|—-
geodesic with length L = i(L|g,), ) with some fixed orientation. As the estimate in
Proposition 5.2 does not hold near a zero z; of |®q|, the first step is to construct open
balls V; of radius € in the |®(|-metric about each zero z; of ®¢ (choosing € sufficiently
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small) so that

(i) balls centered about distinct zeros do not intersect,

(ii) if the curve y enters one of the neighborhoods V;, then the curve y must intersect
the zero z; before y exits V;,

(iii)) (1—€)C —(4g —2)mwe > 0, where C is the systolic length of the surface
(S, [Po)).

As ® is holomorphic, the zeros are isolated, so we can easily ensure that (i) is satisfied.
If the curve y does not intersect z;, then as y is a closed curve, the distance from z; to
the curve y in the |®¢|-metric is bounded away from zero, guaranteeing condition (ii).
Finally, condition (iii) follows as the systolic length C of (S, |®¢|) and the genus of
surface are fixed.

As the complement of the union of the V; forms a compact set, by Proposition 5.2
we can find an N so that for n > N the metrics o,e,/E, and |Pg| differ by at most €.
Now each time y enters V;, say at p, then hits the zero z; and exits V; for the first time
thereafter, say at ¢, we may replace that segment of y with a segment running along the
boundary of V; connecting p and ¢. Notice that this does not change the homotopy class
of y. We make this alteration for each instance y enters a V;, and denote the new curve
by y’. Observe that each time we make such an alteration, the length of the curve (in the
| Do |-metric) increases by at most K;e, where K; is a constant depending only upon the
|®o| and the order of the zero z;. In fact K; < (4g —2)m. Hence the |®¢|-length of ’
is bounded above by L + sz=1 n; Kje, where n; is the number of times y enters V;.
But as y” now lies in the complement of the union of the V;, by Proposition 5.2, the
length of y’ in the oye,/Ep—metric is at most (1 + €)(L + sz=1 niKie). But the
length of y’ in the oye,/&,—metric must be at least the length of the geodesic in its
homotopy class, which has length L), = i(Lg,e, /s, ¥); hence

j
(1 —|—e)(L —i—ZniK,-e) > L.

i=1

Distributing on the left-hand side and subtracting both sides by L yields

J J
ZniKié—i-G(L —I—ZniKié) > L;—L = i(Lanen/Sn’V)_i(LICI>0|’V)-

i=1 i=1

Now if L), — L > 0, we are done, for K; is independent of € and »; is constant in €.
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So consider the case where L), — L < 0, thatis, L > L),. Consider the o,e,/Ex—
geodesic ¥, in the homotopy class of y, and again we give ), an orientation. Naturally
¥» can enter and exit the V; neighborhoods multiple times, but we remark that as the
distance function on a NPC space from a convex set is itself convex, then each time
the curve leaves V;, it must pick up some topology before returning, that is, the part
of the curve rel endpoints lying on the boundary of V; is not homotopic to a segment
along the boundary of V;.

However, now if ¥ enters and exits V; say a total of r times, we consider the pairs
of entry and exit points ordered accordingly as p1,4qi,..., Pr,qr using the chosen
orientation. Now look at the segment of ¥, between pg and pg4 ;. If this is homotopic
rel endpoints to a segment of the boundary of V;, then we look at the segment of },
between ps and pg45 (using a cyclic ordering, so  + 1 is identified with 1) and see if
that segment is homotopic relative endpoints to a segment along the boundary of V;. We
repeat this until the segment of y,, between ps and py is not homotopic rel endpoints to
the boundary of V;. Then we repeat this process for pg and ps_; (again using a cyclic
ordering) until we find the segment of ¥, between ps and pg~» which is not homotopic
rel endpoints to the boundary of V;. Then we replace the segment of ¥ between pgryq
and py_; with a segment along the boundary of V; connecting these two points. We
repeat this for each i, so that when the curve leaves V;, it picks up some topology
before reentering V;. Altering ¥, in this fashion yields a curve J;, lying outside of all
the V;. Switching over to the |®g|-metric yields the inequality
4g—4
(1+e)L), + Z m;Kje > L,
i=1
where m; is the number of segments of the altered curve ¥, lying on the boundary
of V;, and once again K; is a constant depending solely on the order of the zero z;. By
the assumption that L > L), we have actually that
4g—4 4g—4
L,+eL+ Y miKie>L, so eL+ » miKie>L—L).
i=1 i=1
It suffices to show that m2; can be bounded independently of n. This follows from
an estimate on the systolic length of the metric oe,/E,. Let C’ denote the systolic
length among all homotopically nontrivial curves which avoid the V; for the metric |®|.
Then C’ > C. Then by Proposition 5.1, the systolic length among all homotopically
nontrivial curves which avoid all the V; for the metric oe, /&, is at least (1 —¢€)C’.
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If K denotes the largest constant among the K;, then one has that

for by construction we had m; segments of ¥, each of which is not homotopic rel end-
points to the boundary of V;, so that if we connect the endpoints of the segment with a
segment along the boundary of V;, we add at most Ke to the length of the segment.
But we now have a closed curve not homotopic to the boundary of any of the V;, so
the length of this closed curve is bigger than C’. This suffices for the proof. O

The resulting flat metrics arising from unit-norm holomorphic quadratic differentials
are distinct as Riemannian metrics from the induced metrics as the quadratic differential
metrics have zero curvature away from the zeros, whereas the induced metrics have
negative curvature everywhere (Proposition 4.2). In fact, the flat metrics are distinct as
geodesic currents, as work of Frazier [13] shows that the marked length spectrum distin-
guishes nonpositively curved Euclidean metrics from the negatively curved Riemannian

metrics.

5.2 Measured laminations as limits

However, not all limits of induced metrics are given by flat metrics. One can also
obtain measured laminations. This is most readily seen in the setting where one takes a
hyperbolic metric and looks at the minimal lagrangian to itself. The induced metric
of the minimal surface is then twice the hyperbolic metric. We thus have a copy of
Teichmiiller space inside the space of induced metrics inside the space of projectivized
currents. From Bonahon [4], we know we must have projectivized measured laminations
in our compactification of the induced metrics. However, there are more ways to obtain
measured laminations than by degenerating only the induced metrics which are scalar
multiples of hyperbolic metrics, as the following proposition shows.

Proposition 5.4 Suppose that Ly, ., leaves all compact sets, but that the sequence
&En of total energies is bounded. Then, in PCurr(S), we have [Lg,,¢,] — [A] € PMFE(S).
Furthermore, if [Ls,] — [A'] in the Thurston compactification, theni (A, ") = 0, where
A €[A]and X €[\].

Proof By the compactness of PCurr(S), any sequence [L,,¢,] subconverges to [A] €
PCurr(S'). Hence, there is a sequence of positive real numbers so that 7, Lg,.¢,, — A €
Curr(S). We claim ¢, — 0.
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Consider a finite set of curves y1, ¥2, . .., ¥x Which fill the surface S. Then the current
Y1+ Y2+ -+ Vi is a binding current, that is to say, it has positive intersection number
with any nonzero geodesic current.

As L, e, leaves all compact sets in Curr(sS),
lim i(Lg,e,, V1 + -+ k) = 00,
n—>o0

so by continuity of the intersection form, one has
lim 1,0 (Loye,. v1 +--+vi) =i(A, y1 + -+ k).
n—oo

But the intersection number on the right-hand side is finite, hence 7, — 0. From
Proposition 2.1, one has i (Ls,e,, . Lo,e,) = 5 Area(S, one,), which in this case is 5-&,.
Then

. . . . s
i(AA) = lim i(tnLoye,. tnLoye,) = lim 1,355,, =0,

where the last equality follows from the boundedness of total energy, hence A € MFE(S).
Now if [Lg,] — [A/], then there is a sequence ¢, — 0 such that ¢, L, — A". Then

i) = nli)n;oi(angnen,z,’,Lan) < nli)n;o tntni(Loye,s Loye,) = nli)n;o tntyEn =0,

where the inequality follows from o, < 0,e, as metrics, and the last equality by the
boundedness of the sequence of total energy &, along with the sequences 7, 7, tending
towards zero. |

5.3 Mixed structures as limits

As some of the possible limits are the singular flat metrics arising from a holomorphic
quadratic differential, the closure of the space of induced metrics on the minimal surface
must include mixed structures, as these arise as limits of singular flat metrics. The main
theorem asserts these are precisely all the possible limits of the degenerating minimal
surfaces.

Theorem 5.5 Let 0,e, be a sequence of induced metrics such that o, leaves all
compact sets in T (S) or &, — oo. Then there exists a sequence t,, — 0 such that, up to
a subsequence, we have ty, Lo, — 1= (S’, ¢, 1) € Mix(S) C Curr(S). Furthermore,
given any n € Mix(S), there exists a sequence of induced metrics o,e,, and a sequence
of constants t, — 0, such that t, L, e, — 1. Hence, the closure of the space of induced
metrics in the space of projectivized currents is Ind(S) = Ind(S) LI PMix(S).
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The proof of the main theorem will follow from a series of intermediate results, and
will be at the end of the section. The strategy is to show that if the sequence of
currents coming from the induced metrics is not converging projectively to a measured
lamination, then scaling the induced metrics to have total area 1 is enough to ensure
convergence in length spectrum. To each normalized induced metric, we produce a
quadratic differential metric in the same conformal class as the induced metric, which
will serve as a lower bound. Convergence of the quadratic differential metric to a mixed
structure will yield a decomposition of the surface into a flat part and a laminar part.
On each flat part, we will prove the conformal factor between the normalized induced
metric and the quadratic differential converges to 1 uniformly (away from finitely many
points). An area argument will show the complement is laminar.

The following proposition allows us to analyze sequences of induced metrics which
are not converging to projectivized measured laminations. If the sequence of induced
metrics is not converging to a projectivized measured lamination, we may scale the
current associated to the induced metric by the square root of its area (which is also the
total energy). We remark that in the case where the limiting geodesic current is not a
measured lamination, scaling the induced metrics by total energy of the associated har-
monic map is strong enough to ensure length-spectrum convergence, yet delicate enough
to ensure the limiting length spectrum is not identically zero. This should be compared
to the situation in [45; 8], where one always scales the metric by the total energy.

Proposition 5.6 Suppose the conformal class of the minimal surface leaves all compact
sets in T(S), and the sequence of total energy is unbounded, that is, £, — co. Then,

up to a subsequence, there exists a sequence ¢, — 0 and a geodesic current . such
that cy Lg, e, — . If p is a measured lamination, then ¢, = 0(5,,_1/2
measured lamination, then ¢, =< 8;1/ 2,

). If u is not a

Proof By Theorem 4.9, one has an embedding of the space of induced metrics into
the space of projectivized geodesic currents, which is compact. Taking the closure
implies the first result. If [i] is the limiting projective geodesic current, then one can
choose a fixed representative; call it .

If p is a measured lamination, then dividing the current L, ¢, by 5,1/ 2 hormalizes the
current to have self-intersection number 1. Then, as the measured laminations have
self-intersection 0, the second result follows.
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Suppose then that p is not a measured lamination. Then its self-intersection number is
positive and finite. But

i(, )= lim i(cpLoye,.Cnloye,) = hm i l(La”en,Lgnen)

n—>oo

= lim cn = Area(S Onen) = hm c onen dzy Ndzy

n—00 2
b4
= lim 02 En,
n—o00 2
so that 0 < limy— o c,% Ep < 00; that is, ¢, < 8;1/2, as desired. O

With this normalization, the self-intersection of the current will be %; that is to say we
have scaled the induced metric to have total area 1.

The following proposition shows the relation of the induced metric to the corresponding
Hopf differential metric.

Proposition 5.7 Away from the zeros of ®, one has the identity

1
oe =[P B |+|v|

Oné€n 22|q>n|-

Consequently,

Proof This result follows immediately by manipulation of the formulae involving H
and L. One has

H L 1
02e? = 0% (H* + 2HL 4 L*) = P HL (Z+2+ g) = |<1>|2(| B +2+ |v|2)

Taking a square root on both sides yields the result. |

For a given sequence oye, we consider the associated smooth (away from the zeros
of the quadratic differential) function 1/|v,| + |v,|. This function is well-defined for
each n by Lemma 4.5.

The following proposition due to Wolf allows us to pass freely between the L!'-norm
of a Hopf differential and the total energy of the corresponding harmonic map. The
original proof was for a fixed Riemann surface as the domain, but the argument holds
when the domain is allowed to change. For the ease of the reader, we have included
the adapted proof.
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Proposition 5.8 [44, Lemma 3.2] For any Riemann surface (S, J) and hyperbolic
surface (S, 0), it id: (S, J) — (S, o) is a harmonic map with Hopf differential ® and
total energy &, then

E+2mx(s) 2@ <& —=2mx(S).

Proof AsH—L=J and [ Jo dzdzZ = —2my, we have
/’Hadzd?—l—%rx=/Eodzd§=[fbvdzd2,
as the integrands agree. But, recalling that |v| < 1, we have
/CDvdszS/|<I>|dzd§=/7—[|v|UdszE/Hadzd2=/£odzd3—2nx.
Summing up the first two and last two integrals respectively yields
/eodzd?+27rx§2/|<I>|dzd§§/eodzd§—2nx,

proving the proposition. |

Corollary 5.9 If the sequence ® , of unit-norm quadratic differential metrics con-
verges projectively to a measured lamination, then so does the associated sequence
Lo,e,/ 5,1/ % of geodesic currents.

Proof Suppose that L|g,,| — [A] in the space of projectivized currents. Since
i(Li®,,0» L@ ,|) = 5» while i (A, 1) = 0, there exists a sequence #, — 0 such that
the length spectrum of #,|®y ,| converges to that of some A € [A]. This is to say, there
is a curve class [y] for which the length of its geodesic representative against the metric
|®¢,,| is unbounded, so by Propositions 5.7 and 5.8, the sequence of lengths of the
[y]-geodesic against the metrics 0,e,/E, is unbounded. Hence there is a sequence
sp — 0 such that s, Lg, ¢, / E,}/ 2 converges to a current ;. But as the self-intersection of
Lg,e,/En is exactly %, the intersection of u with itself is zero, from which the result
follows. d

The previous corollary allows us to exclude the case where the sequence of flat metrics
tends towards a projectivized measured lamination, for in that case, we have that the
sequence of induced metrics also tends towards a projectivized measured lamination.
Hence, we need only consider the case where the sequence of flat metrics converges to
a nontrivial mixed structure, say 7. The data of n gives us a subsurface S’ for which the
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restriction of 7 is a flat metric arising from a quadratic differential. Here we consider
S’ up to isotopy.

The remainder of the section is devoted towards showing that if the sequence of unit-
norm quadratic differential metrics converges to a mixed structure that is not entirely
laminar, then so does the sequence of unit-area induced metrics. This will then complete
the proof of Theorem 5.5.

We begin by recording the following useful bound due to Minsky, for the function
G =log(1/|v]).

Proposition 5.10 [29, Lemma 3.2] Let p € S be a point with a neighborhood U such
that U contains no zeros of ® and in the |®|-metric is a round disk of radius r centered

at p. Then there is a bound
o 1x(S)]
G(p) <sinh (—r2 .

Proof The PDE AG =27 > 0 shows that G is subharmonic in U. It suffices therefore
to bound the average of G on U in the |®|-metric. Some algebra yields

. 1 o
hGg=-—J.
sinh G 2 |J

Using the concavity of sinh™! on the positive real axis, we obtain

G(p) < |P|-Avgy (9) (by subharmonicity of G)
= |D|-Avgy sinh™! 1o
2|
.1 10 . .1
<sinh (|<I>|—Ang(§@)) (by concavity of sinh™ ")
1 o
= sinh ™! / — JdA(|®
™57 [ o7 7 44000)
S
<sinh™! (M) (by Gauss—Bonnet). O
r

As we are in the setting where the sequence Lg,, , of currents coming from unit-area
holomorphic quadratic differential metrics converges to a nontrivial mixed structure
n=(S’, Pso, A), we have that the restriction of the metric |®¢ ,| to S’ converges to
the metric |®o|. On this systole positive collection S’ of subsurfaces, we have the
following proposition.

Geometry & Topology, Volume 27 (2023)



1722 Charles Ouyang

Proposition 5.11 Given e, ¢’ > 0, there exists N = N (¢, €’) such that forn > N,

m|¢o.,1|({peS: (| : | +|vn|)(p)>z+e }) e

Consequently the limiting function 1/|v| + |v| is equal to 2 almost everywhere with
respect to the | D |—metric.

Proof By Proposition 5.7, one has the equality

On€n |q)n| 1 ||q>n|| |q>n| 1
—— = ——\ — +|va] + |val ).
En En |Vn| En ”Cbn” |Vn|

L—cu _ %l

2 &
one has ¢, — 0 by virtue of Proposition 5.8. Observe that ¢, > 0, as the function
1/|vn| 4 |vn| = 2, the area of |®g ,,| = |Py|/||Pr|| is 1 and the area of the scaled metric
onen/Eyn is also 1. If m,, then denotes the |®g ,|-measure of the set of points for which

Defining

the function 1/|v,| + |vy,| is at least 2 + €', then one has

1 1—c
/ (—+|vn|)( ) dA(on])
(p:(1/|vn |+ vl (p)=2+€} \ |Vn] 2

1 1—c
+ ( y )( n)dA(|q>0,n|)
(p:(1/Ivnl+lvaD(p)<2+€3 \ |Vn 2
:/dA(G"e") =1
En

The integrand in the first integral is at least (2 + €")(1 — ¢,)/2, whereas the second

integrand is at least 2(1 — ¢,)/2. Multiplying these lower bounds with the measures of

_ 1—
C”)m,,+2( 20”)(1—m,,)51.

Some basic algebraic manipulation leads from

) ~f1—cn ) 1 —cy - ¢ - 2¢y
m(ee(52)2(5)) za 0 ms i

and as €’ is now fixed, one may find a sufficiently large N to guarantee m, < €. As the

their respective sets yields

<2+e')(1

metric |®o| has finite total area, convergence in measure of the sequence of functions
1/|va| 4 |vn| to the constant function 2 implies that up to a subsequence, one has
convergence to the constant function 2 almost everywhere. |
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Sets of measure zero can be rather problematic if we wish to say something about
length of curves. The following proposition shows that we actually have convergence
off the zeros and poles of |Do|.

Proposition 5.12 Suppose &, — co. Then, up to a subsequence,

1
— + vy =2
[val

everywhere on S’ except at the zeros and poles of |®|.

Proof Observe that the function 1/|v,| 4 |v,| is not defined at the zeros of |®,|, but is
well-defined everywhere else. Moreover, the auxiliary function G = log(1/|v|) satisfies
the partial differential equation
AlogL =2T,>0,
[Vn |

so that the function G and hence 1/|vy| 4 |vy,| never attains an interior maximum on
the complement of the zeros. It follows that 1/|v,| + |v,]| is only unbounded in a
neighborhood of a zero of a corresponding quadratic differential ®,. The sequence of
flat metrics |®g ,| on S’ converges geometrically to |®o|, and so the zeros of |y,
on S’ will converge to the zeros of |®s|. For any € > 0, consider balls of radius 3¢
about each zero of |®|, choosing € sufficiently small that balls about distinct zeros
do not intersect. Call this collection B. Then for large n, balls of radius € in the |®g , |-
metric about the zeros of |®,| will be contained in B. For each boundary component
of S’, which in the geometric limit is collapsed to a puncture, choose a geodesic curve
with respect to the | D |-metric, homotopic to the puncture and enclosing the puncture,
of length /¢ > 3¢, so that the | P |-distance of each point of the curve to the puncture
is at least 3¢, possibly choosing a smaller € until such a configuration is possible. This
gives an annulus for each boundary component of S’. Call the collection of these
annuli 4.

For any point in the complement of both A and B, for large n, the injectivity radius
with respect to the |®g ,|-metric is at least € and the distance to any of the zeros is at
least €. Moreover, each point p in the region satisfies the property that any ¢ € B¢/»(p)
has injectivity radius at least § and distance at least 5 to any zero or the boundary of
the cylindrical region. Hence, by Proposition 5.10, the value of log(1/|v,|) is at most
M, />, where the constant no longer depends on n, once n is chosen sufficiently large.
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As the function log(1/|v,]|) is subharmonic, by the mean-value property, one has at
any point p in this set that

1
() < / log —— dAja,,| < (1Ponl-Area(Be/s(p)€’ + Mejze"
Bep(p)  |val

for n large enough, so that log(1/|v,|) < €’ outside a set of measure at most €” by

1

log
[V |

Proposition 5.11. As the choice of € was arbitrary, the conclusion follows. |
This collection of propositions proves the following result:

Theorem 5.13 Suppose L, ,| converges to a nontrivial mixed structure . Then
the corresponding metrics oyen/Ey as €, — 00, restricted to S’, converge in length
spectrum to |Poo|.

Proof Defining A and B as in the previous proof, on the region S’ \ (4 U B)
Proposition 5.12 guarantees that we have uniform bounds on the sequence of functions
1/|va| + |vn| whose limit was the constant function 2. Hence, by Arzela—Ascoli, up
to a subsequence, we have uniform convergence on this region. Hence, by the same
argument as that of Proposition 5.3, the length spectrum of the scaled induced metric
on this domain converges to the limiting length spectrum of the sequence |®¢ |, which
is [Pl a

Proof of Theorem 5.5 Recall that for any flat metric arising from a holomorphic
quadratic differential, one can find a sequence of induced metrics so that the chosen
flat metric is the limit in the space of geodesic currents (Proposition 5.3). Hence by
Theorem 2.5, any mixed structure 7 can be obtained by a sequence L, ¢, of currents
coming from the induced metrics. On the other hand, to any sequence of induced
metrics leaving all compact sets, then either it converges projectively to a measured
lamination or it does not. If it does not converge to a measured lamination, then the
energy is unbounded and the corresponding sequence of normalized Hopf differential
metrics must converge to a mixed structure i which is not purely laminar. The previous
theorem thus ensures there is a nonempty collection of incompressible subsurfaces, S’,
on which the limiting current 7 is a flat metric. But on the complement of S’, the
current 7 restricts to a measured lamination (as on this complement the areas of the
metric tend to zero), so the proof of Theorem 5.5 is complete. |
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5.4 Dimension of the boundary

We end this section with a remark about the compactification of the induced metrics.
Recall the dimension of the space of induced metrics (being homeomorphic to Qg /S 1
was 12g — 13. The dimension of the singular flat metrics can be readily seen to be
12g — 14. The actual mixed structures are stratified by the subsurfaces for which
the mixed structure is a flat metric. A subsurface of lower complexity yields fewer
free parameters in the choice of a flat structure, and the extra choices one gains for a
measured lamination on the complementary subsurface is strictly less in our loss of
choice for the flat structure. Hence the boundary of the compactification of the induced
metrics via projectivized geodesic currents is of codimension one.

6 Analysis of the limits

In this section, we wish to relate the mixed structures with cores of R—trees arising
from measured laminations. To this end, we elucidate the relation between the mixed
structure and the pair of projective measured laminations obtained from the pair of
degenerating hyperbolic surfaces.

6.1 R-trees

Here we recall some basic facts about R—trees. An R—tree 7" is a metric space for
which any two points are connected by a unique topological arc, and such that the arc
is a geodesic. Equivalently, if (X, d) is a metric space, for any pair of points x, y € X,
define the segment [x, y]={z € X :d(x,y) =d(x,z) +d(z, y)}. Then an R-tree is
a real nonempty metric space (7, d) satisfying:

(i) For all x, y € T, the segment [x, y] is isometric to a segment in R.
(i) The intersection of two segments with an endpoint in common is a segment.

(iii)) The union of two segments of 7" whose intersection is a single point which is an
endpoint of each is itself a segment.

A group T acts on T by isometry if there is a group homomorphism 6: I' — Isom(7T").
The action is from the left. An action is said to be small if the stabilizer of each arc
does not contain a free group of rank two. An action is said to be minimal if no proper
subtree is invariant under I.
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A particularly important class of R—trees comes from the leaf space of a lift of a
measured foliation on a closed surface to its universal cover. Any measured foliation F
on a closed surface of genus g > 2 may be lifted to a 71 S—equivariant measured
foliation on its universal cover. The leaf space can be made into a metric space,
by letting the distance be induced from the transverse measure. This is an R—tree
with a I' = 1S action by isometries. Naturally, not all R—trees with a .S action
arise from this construction. A theorem of Skora [41] shows that an R—tree with a
1S action comes from a measured foliation if and only if the action is small and
minimal. Alternatively, one may start with a measured lamination (A, ©) on S and
lift it to a measured lamination (X, W) on the universal cover. Then an R—tree may be
formed by taking the connected components of S \ A with edges between two vertices
if the two components were adjacent (separated by a geodesic), and then metrically
completing the distance induced by the transverse measure. The R—tree comes equipped
with a 771§ action, and is 1 S—equivariantly isometric to the R—tree constructed from
the corresponding measured foliation. In what follows, we will deal exclusively with
R-trees with a 771.S action coming from the leaf space of the lift of a measured foliation.
There is a rich theory of convergence of hyperbolic space to R—trees in the literature
from a number of different perspectives; see [3; 30; 31; 41; 46].

6.2 Convergence of metric spaces

In this section, we construct noncompact metric spaces admitting a 71S action by
isometries.

Definition 6.1 Let X and X’ be two metric spaces and let € > 0. An e—approximation
between X and X’ is arelation R in X x X' that is onto, and such that for every x, y € X
and every x’, y’ € X’, the conditions x Rx” and yRy’ imply |dy (x, y)—dx/(x’, y")| <e.

Definition 6.2 Let X, be a sequence of metric spaces, each admitting an isometric
action by a group I, and let X, be a supposed limiting metric space, also admitting
an isometric action by the same group I'. We say X, converges to X in the sense of
Gromov—Hausdorff if for every € > 0 and every finite set A C I', and for every compact
subset K C X0, then, for n sufficiently large, there is a compact set K, C X, and
an e—approximation R, which is A—equivariant between K and K in the following
sense: for every x € K, every x,, yn € K, and every « € A, the conditions ax € K
and x, R,x and y, Ryax imply d(axy, yn) < €.
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We construct a sequence of noncompact metric spaces X, with an isometric action
by I' = 1S, as follows. Take the induced metric (S, one,) and lift the metric to
the universal cover (§ ,O0nen). We will deal with the case where the induced metric
converges in length spectrum to a mixed structure that is not entirely laminar — this
is to ensure so that we can scale our metric spaces by total energy; for the case of
a mixed structure that is entirely laminar, the same discussion holds after amending
the sequence of constants. The sequence of noncompact metric spaces thus will be
Xn = (§ ,Onen/En). The following proposition is clear.

Proposition 6.1 The manifold X, = (§ ,Onen/En) is a noncompact metric space
admitting an isometric action by the group I' = 71 S..

Proof As X, itself is a noncompact Riemannian manifold with I' = 7;.S acting on it
by isometries, the result follows immediately. O

Up to a subsequence, the metrics (S, one,/E,) will converge in length spectrum to
a nontrivial mixed structure n = (S’, ¢, A). We construct a noncompact metric space
Xoo = Xy from the mixed structure 1. Regard n as a geodesic current on (§ ,g2). To
any two distinct points x, y € S, one can form the geodesic arc o connecting the
two points. Let ¢ be the set of bi-infinite geodesics which intersect o transversely.
Then the intersection number i (1, &) is given by the n—measure of c¢. This yields a
pseudometric space coming from the geodesic current 1. Notice that it is possible for
the intersection number to be zero, for instance if the geodesic arc is disjoint from the
support of the current, or if it forms no nontransverse intersection with the support of 7.
Taking the quotient by identifying points which are distance 0 from each other, and
then taking the metric completion, yields a noncompact metric space Xoo. As I' =1 S
acted on 1 equivariantly, I" acts by isometries on X,. For a more detailed discussion
about the construction of a metric space from the data of a geodesic current, see [5].

Remark In the setting where 7 is a measured foliation, the metric space X, is a familiar
one. It is an R—tree dual to the foliation. The space is constructed by collapsing the
leaves of the foliation with the distance on the tree inherited by intersection number and
then completing; see [32]. The case where 7 is a nontrivial mixed structure follows the
same spirit of this construction. The laminar part is treelike, formed on the universal
cover by collapsing leaves of the supported lamination and then completing. On the
flat part, the metric space is formed by the product of the trees dual to the vertical and
horizontal lamination of a quadratic differential whose metric is the given flat metric.
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The preceding discussion is summarized by the following proposition.

Proposition 6.2 To any mixed structure n, the construction above gives a noncompact
metric space Xy admitting an isometric action by I' = m; §.

Using the Gromov—Hausdorff topology, one has the following.

Theorem 6.3 A subsequence of the metric spaces (§ ,Onen/En) converges in the
sense of Gromov—Hausdorff to a noncompact metric space X, coming from a mixed
structure n acted upon by I' = 1 S.

Before presenting the proof, we record one useful fact regarding convergence of maps.
This follows from work of Korevaar and Schoen.

Theorem 6.4 (Korevaar and Schoen [21]; see also [8]) Let M be the universal cover
of a compact Riemannian manifold. Let uy, : M — X, 1« be a sequence of maps such that

(a) each X} is an NPC space, and

(b) the uj have uniform modulus of continuity: for each x, there is a monotone
function w(x, -) such that

lim w(x,R) =0 and max d(ug(x),ur(y)) <w(x,R).
R—0 B(x,R)

Then the pullback metrics d,, converge (possibly after passing to a subsequence)
pointwise, locally uniformly to a pseudometric dyo.

Proof of Theorem 6.3 Recall from Theorem 5.13 that on S” we have uniform con-
vergence of the induced metric to the flat metric. For the complementary subsurface,
recall that metric spaces were obtained as the induced metric on the minimal surface,
so that the metric came from a pullback of a harmonic map. By Proposition 5.6, the
scaled metric is the pullback metric of a harmonic map with energy at most 1. Hence,
by Theorem 6.4 (see [21, Proposition 3.7] or [8, Theorem 2.2]), the metrics converge
uniformly. As the lifts of the induced metrics admitted an .S action by isometries, so
does the limit. d

6.3 Convergence of harmonic maps

Not only do the metric spaces converge in a suitable topology, the harmonic maps do as
well. As we have shown in the preceding section that the domains converge in the sense
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of Gromov—Hausdorff to a metric space arising from a mixed structure, and as shown
in work of Wolf [46], one has that the lifts of a sequence of degenerating hyperbolic
metrics, when properly scaled, subconverge in the sense of Gromov—Hausdorff to R—
trees dual to a particular measured lamination in the projective class of the associated
point on the Thurston boundary. Hence we have both domain and target converging in
the same topology to noncompact metric spaces with isometric actions by I' = 1 S.
It is natural to expect some sort of convergence in the harmonic maps. In Wolf [46],
the domain is a fixed Riemann surface, and the target is changing. Here, we have both
domain and target changing (and converging). We begin by reviewing the necessary
definitions.

Definition 6.3 Let X, and X, be metric spaces admitting an action of a group I"
and let (Y, dy) and (Yoo, doo) be metric spaces admitting an isometric action of T'.
Suppose fn: X — Yy and foo: Xoo — Yoo are equivariant maps. Then we say that
Jfn converges (uniformly) to f if

(i) both X}, and Y, converge (uniformly) to X and Y respectively in the sense of
Gromoyv, and

(i) for every € > 0, there is an N (€) such that for n > N (€), the e—approximations
Ry, R), satisfy the condition that for every x, R,x, one has f,(x,) R}, f(x).

We will require a notion of harmonic map for maps between singular spaces. The
following can be found in more detail in [10]. While the general theory of harmonic
maps between Riemannian polyhedra is covered there, in what follows, we only deal
with singular flat metrics and metric graphs.

Definition 6.4 Let X be an admissible Riemannian polyhedron and Y a metric space.
Let ¢ € L2 (X, Y). The approximate energy density is defined for € > 0 by

loc
dy ($(x), p(x"))

em+2 dug(x').

@) = [

Bx (x,¢)

Definition 6.5 The energy E(¢) of a map ¢ of class L2 (X, Y) is

loc

@)= s (timsop [ eco)du )

fECC(Xa[Oal]) €—>0
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Definition 6.6 A harmonic map ¢: X — Y is a continuous map of class Wlééz (X,Y)
which is bi-locally £—minimizing in the sense that X can be covered by relatively
compact subdomains U for each of which there is an open set V D ¢(U) in Y such
that

E(plv) = EWlu)
for every continuous map ¥ € Wl’z(X, Y)withy(U)CVandy =¢ in X \U.

loc

We obtain a classification of the flat parts of the mixed structure arising from the data of
the limits of the sequences X7 , and X ,. Let S’ be a connected subsurface for which
the limiting mixed structure 7 is a flat metric. For each n, denote by S;, the subsurface
isotopic to S’ such that the boundary components are geodesics with respect to the
induced metric ope,/E,. Let X 1/ , denote the restriction of the hyperbolic metric X
to the subsurface of S, in the same isotopy class of S’, but which has geodesic boundary
with respect to the hyperbolic metric. Then let u;.,n denote the restriction to S, of the
harmonic map u; ,: (S, onen) = Xin.

Theorem 6.5 Consider a connected component of S’. The sequence of harmonic
maps ”/1,n: (S onen/En) = X1,n/2En converges to a w1 (S")—equivariant harmonic
map u': (S',|Po|) — Ty, where T is the R—tree dual to A = limy 00 X1 ,/2En.
The Hopf ditferential is given by ®,. Likewise, the same holds for A, and —® .
Hence, the laminations are the vertical and horizontal foliations of ®.

Proof We begin by showing that A; is a well-defined measured lamination in the
projective class of [A;], which is the limit on the Thurston boundary of the sequence X7 ,.
This will follow from standard estimates on stretching and geodesic curvature of an arc
of the horizontal foliation which avoids the zeros. This will be an adaptation of the
argument employed in [45], for the case where the domain conformal structure is fixed
and the Hopf differentials lie along a ray.

We first show boundedness of the Jacobian. For any neighborhood U of the surface
which avoids a zero of @ ;, one has the usual PDE

1
(6-1) Ag, log ——= = 4T, > 0,
V|
and, consequently,
1
(6-2) A, | Pnlllog e 4| Tn > 0.
n
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Using the conformal invariance of harmonic maps, we replace the metric o, on the
neighborhood U with a metric cr,’, in the same conformal class as o, but one which is
flat on U. Subharmonicity of the function ||®, | log(1/|vy |2) yields

(6-3) [®nlllog —=(p) = —> 1@l log —— dA(o,)
| n| 7R* JBr(p) | n|
on a ball of o, radius R contained in U. Some algebra yields
1®nlllog|val(p) _ 1
GO [ iealos s de.
g TIn(p) 7TR2 Br(p) In " gl n|2
and hence

(6-5) Tu(p) <
jn(p) ( ||q>n||10glvn|_2(Q)) 1 / /
su JIn dA(0y).
10l 10g [val2() \ geBotsy  In(@) 2R Jgoim "

But one has that

In _ |q)0,n| (1- |Vn|2)
| ®nlllog|va|=2  On|val log|v,|=2"

(6-6)

so that in applying Proposition 5.12 to the expression (6-6), one obtains that (6-5) may
be rewritten as

6-7) Tn(p) < en / Tn dA(L),

Br(p)

where ¢, will depend on the metric |®g |, |vx|, R and 0,. But, on the neighborhood U,
we know for sufficiently large n that |®,| — |P|, and |v,| — 1 and 0, — 00, Where
Oco 18 the uniformizing metric of ®,. Hence ¢, remains bounded on U. But, finally,

(6-8) / In dA(U;;) = / njn dA(op) < sup _/ Jn dA(0n)
Br(p) Br(p) O
= —ZEX(S)C,“

where here ¢], will only depend upon the injectivity radius of the metric o, on the
neighborhood U, which for large n will be close to the injectivity radius of 0.

From (6-7), (6-8) and the PDE in (6-1), by elliptic regularity (see [14, Problem 4.8a])
one obtains that |v,| — 1 in C1**(U), where U does not contain a zero or pole of ®n,

In the natural coordinates of the quadratic differential, the hyperbolic metric gy 5 is
given by (onep + 2[|Pnll) d¢; + (onen —2[|Pull) dny.
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Recall that the geodesic curvature of an arc of the horizontal foliation of ®g , in the
natural coordinates for ®¢ , = d{? = d&?2 + dn? is given by the equation

1 0g11,n
2gll,n«/gZZ,n 377n

so that for y an arc of the horizontal foliation of ®q , avoiding the zeros, one has

(6'9) K(V)r]=constant = -

1
2(0nen+2||q)n||)(0nen 2”(1)11”)1/28
1 0

—O0pt
2Tn(onen +2[®pl)1/2 Iy "

(6‘10) K(y)nzconstant = - (Unen +2||q> ”)

But simple algebra yields that oe, = ||y ||| Do, |(|vn] ™! + |va]), so that in the natural
coordinates as |® ,| = 1, one actually has oye, = || Pp||(|vn|~" + |vn]). Hence

1y - —1/2 O
61D k(y) =3I Pall(1 = val) T vl Onen + 2] @ul) ™12 5 fn]

n

1y - 12 0
(6-12) = 21 @all?y " vnl 2 nen + 20 ul) ™2 5
n

|Vn|a
as Jp = Hu(1 = |vu]?). As ||<I>n||7-{;1 = |vu|/|®o,n|, rewriting (6-12) gives

1 d
(1o nl - [val)(Onen +2(@ul)1/2 O

(6-13) =1 vl

and as |v,| — 1 in C1%(U), one obtains Kgi o (V) = o(|@,71?) = 0(8,,_1/2).

Then to any arc y of the horizontal foliation of ®,,, one has that it is mapped close to
its geodesic in the target hyperbolic surface. The following standard calculation on
the stretching shows that by normalizing the target hyperbolic manifold by the total
energy, the resulting length is given by the intersection number with the measured
lamination A . One has

gln(y)—/?'-[l/z—l-ﬁl/zds /H},/z(l+|vn|)dsgn

/ 1@ |12 Do /2

172

(1+[vn

[Val ‘/2

1
— ||d>n||1/z/(1+(—|v e —1))(2—(1—|u,,|))ds|¢0|
Y n

= 2[|® |2y, | (¥) + O(I@all 2 (1 = [val)),
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recalling that in order to obtain the metric oe, one has to divide both hyperbolic
surfaces by twice the energy, which is approximately four times the L'—norm of the
Hopf differential for sufficiently large energy, independent of the Riemann surface
structure; see Proposition 5.8. Meanwhile, a similar calculation shows that an arc of
the vertical foliation of ®,,, say «, has length in the target hyperbolic surface given by

o) = [ #if2 =l = [ 20 = ds,
o [0

@, 1/2
[l (1= |vnl) dsq,
1/2| |1/2
Vn
|Vn
—||<1>n|“2[| 175 dsio0.
=o(&}?).

Noting that a horizontal arc of ®, is a vertical arc of —®,, one sees the A1 and A,
are the horizontal and vertical foliations of ®, (the geometric limit of ®,; see [27]),
respectively.

To get our desired harmonic map from the flat subsurface to the two trees, notice that
the above estimates show that a horizontal arc of ®¢ , gets mapped close to a geodesic
in the target space which is a hyperbolic surface scaled by the reciprocal of total energy.
As the scaled induced metric limits to the flat metric |®|, a horizontal arc of ®
will thus be mapped by an isometry to the tree 77 and any vertical arc collapsed, so
that the limiting map in the universal cover is given by a projection onto the leaf space
of the vertical foliation of ®,. The same argument holds for 75. |

Proposition 6.6 For any closed curve y on the surface S, one has the inequalities

lgi (V) Zloye,(v) and lg, ,(¥) <ls,e,(¥).

Consequently, if ty Lo, e, —> 1 as currents, then the length spectra of limy o0ty Lg; ,
are well-defined. If the limiting currents are denoted by Aj, then

i(hj.-) <i(n.-).

Proof As the minimal surface has induced metric of the form g , + g2 ,, where the
gi.n 1s a hyperbolic metric, both inequalities follow immediately. The final comment
follows from choosing a closed curve y = y;, to be a 0,e,—geodesic and using the
inequality ltﬁgi,n (IyD < ltﬁgi,n (). |
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Combining Proposition 6.6 and Theorem 6.5, we obtain a necessary and sufficient
condition on the pair of measured laminations A; and A, to determine a corresponding
flat part on the mixed structure. Recall that a pair of measured laminations Ay, A, fill if
for any measured lamination A3, one has i (A1, A3) + i (Ao, A3) > 0.

Corollary 6.7 Let )\;. =limy o0 X, l.’ . /2&, be a pair of nonzero measured laminations
on a subsurface S’. Then the pair of laminations fill if and only if the restriction of the
mixed structure 1 to S’ is flat.

Proof If 7 is flat on S’, the preceding theorem shows the pair of laminations are dual
and hence fill. If the pair of laminations do fill, then for any third lamination A’ one
has by Proposition 6.6 that i (n, A") > 0, so that it cannot be a lamination, and hence
must be flat by definition of a mixed structure. |

Proposition 6.8 On the subsurface S”" = S \ S’, the laminations A1 and ), restrict to
a pair of measured laminations which have no transverse intersection. If A denotes the
measured lamination part of the mixed structure, theni(A, ;) =i(A,A2) =0.

Proof By Proposition 6.6, since i(A,A) = 0, one has that i (A;,A) = i(Ay,A) = 0.
Using the inequality again yields i (A;,A2) < i(A,A) = 0, from which the result
follows. O

In the setting where both singular spaces are finite metric graphs, the resulting harmonic
maps are affine maps. Each edge of the domain graph is mapped via the constant map,
or mapped linearly to the target graph. The following result of Lebeau characterizes all
such harmonic maps.

Theorem 6.9 (Lebeau [25]) Given two finite metric graphs G and G’, every continu-
ous map between G and G’ is homotopic to an affine map which minimizes the energy
within its homotopy class. Furthermore, the map is unique up to parallel transport.

Proposition 6.10 Suppose L, ., /c, converges to A, where A is a Jenkins—Strebel
lamination (measured lamination supported on finitely many closed curves). Then
the sequence of metric spaces (S, open/Cy,) converges geometrically to a finite metric

graph.

Proof This follows immediately from Theorem 6.4 (see also [21, Proposition 3.7]), as
the induced metrics are the pullback metrics of a harmonic map from H? to H? x H?,

Geometry & Topology, Volume 27 (2023)



High-energy harmonic maps and degeneration of minimal surfaces 1735

which is NPC. The assumption on the modulus of continuity follows from the bound
on the total energy of the maps uj, to the rescaled target, so that total energy is at
most 1. Hence, the limiting metric space is the dual graph of A, which is a finite metric
graph. a

Theorem 6.11 Let C;, — oo, so that Ly, /c, — 1, Where n is a mixed structure
with laminar part supported on a finite collection of simple closed curves. Suppose
Ly, ,/c, = i, where ; are measured laminations also supported on a finite collection
of simple closed curves. Then the sequence of harmonic maps u; »: (S, open/Cy) —
Xin/Cy converges to a map u;: X, — T;, which is a union of harmonic maps.

Proof Recall that X;, is the metric completion of the metric space obtained from the
geodesic current 1 by creating a pseudometric space from the intersection number
with 7, and then identifying points with 0 distance.

As the case where 1 is flat has been previously handled in Theorem 6.5, we first
construct a 771 S—equivariant map between the laminar part of X; and 77 (here we will
consider only the case where 7 is a Jenkins—Strebel lamination). The same construction
will produce a similar map to 7. Let D be a connected fundamental domain of the
laminar region of X3. Then D is a finite metric graph. We embed the graph D into the
laminar region S” of the minimal surface as follows: we map each vertex of D to its
corresponding thick region on S”. The geometric convergence of the minimal surfaces
to D from Proposition 6.10 allows us to determine which region of the minimal surface
will converge to a given vertex. Once we have made our choice of where to send each
vertex of D, if there is an edge e connecting two vertices of D, then we send the edge e
to the geodesic arc connecting the two points on the minimal surface where we have
mapped our two vertices. (The limiting map we will obtain later will not depend on
this choice, as distances will converge uniformly.)

As we have convergence in length spectrum and as there are only finitely many edges,
we can ensure that for large n > N (¢), the length of the image of each edge has changed
by at most €. We require that the embedding is proportional to arclength. Then there is
a collection of continuous maps ¢, : D — X}, with the property that given € > 0, there
isan N = N (e) so that ¢, is a (1+€)—quasi-isometry.

Likewise, as X 1,n/ Cn converges geometrically to an R-tree, a fundamental domain of
X1,n/ Cy will converge geometrically to a finite graph G ; see for instance [46]. Hence,
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there is a collection of continuous maps ¥, : X1 ,/C, — G with the same property as
bn.

Form the composition g, = Y ouy 0 ¢n: D — Gy, where uy ,: (S, 0ne,/Cy) —
X1,n/Cy is a harmonic map with total energy at most 1. We claim this sequence of
maps g, is uniformly bounded and equicontinuous. Uniform boundedness is clear
as the target graph G is a finite graph. To see it is equicontinuous, we note that,
as ¢, and ¥, were (14€)—quasi-isometries, and since there is a uniform Lipschitz
constant of the maps u ,, as the total energy of the maps are bounded by 1 (see [20,
Theorem 2.4.6]), equicontinuity follows. Hence, by the Arzela—Ascoli theorem, we
have a subsequence g converging uniformly toamap g: D — G.

We have that g is harmonic as a map between singular spaces, for we have uniform
convergence of distances (see [21]) between the approximate metric spaces coming
from our scaled induced metrics and the limiting R—tree. Hence all the quantities
in the definitions of the approximate energy density, and the energy, converge. As
there is a unique energy minimizer (up to parallel transport, by Theorem 6.9) between
the limiting spaces (which are finite graphs), the map g must be this unique energy
minimizer. (If g were not the energy minimizer, it would have larger energy than
the unique energy minimizer, by say §. One could then construct a map between the
approximate Riemannian manifolds, which would have energy lower than the harmonic
maps u 1, contradicting the harmonicity of u; ;.)

From Theorem 6.5, we obtained a limiting harmonic map u’ on the flat part of X, to
the tree 77, and now we have a limiting harmonic map g from the laminar part of X,
to the tree 7. Taking the union yields the desired u: X, — 7. The same argument
holds for 75. O

6.4 Cores of trees

Here we review some basics of cores of R—trees. A more detailed overview of this
material may be found in [18; 46].

For any R—tree, a direction at a point x € T is a connected component of 7\ x. A
quadrant in Ty x T is the product §; x 6, of two directions §; C T and 6, C T,. We
will say that the quadrant is based at (x1, x,) € T x T», where x; is the basepoint for
the direction §;.

Let T, T, be a pair of trees with a common group action by I'. Let x = (x1,x;) €
T1 x T be a basepoint.
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Definition 6.7 Consider a quadrant Q = §; x §, C T1 x T,. Then Q is said to be
heavy if there exists a sequence y, € I' such that

@) v-xe0,

() di(yr-xi,xij) >ocask —>oofori =1,2.

Otherwise we say Q is light.

We define the core of a product of trees to be the product 77 x T, with all light quadrants
removed.

Definition 6.8 (Guirardel [18]) The core C of T7 x T, is the subset

C=T1xT2\[ g Q].

Q light quadrant

Take a pair y1, y; of simple closed geodesics on a hyperbolic surface and let 7 and 7>
be the trees dual to the laminations. On the surface .S, foliate by parallel curves a small
open tubular neighborhood A; = y; X (—¢, €) of each of the curves. Define the map
Di: S — T; which maps the connected components of S \ A to the corresponding
vertex of Tj and each A; to the corresponding edge of 7;. This construction extends to
measured laminations, as the simple closed curves are dense in the space of measured
laminations. The following proposition characterizes the core in terms of the map

p = (p1.p2)-

Proposition 6.12 [18] Let Ty and T, be dual to a pair of measured laminations A
and A,, respectively. Consider the map p = (py, p2): S - T x T3, as defined above.
Then C(T; x T») = p(S).

Proof The result will follow from the claim that any quadrant Q = 81 x 8, in Ty X T
is light if and only if pl_1 (61) ﬂpz_l (8,) = @. Itis clear that if pl_1 61) ﬂpz_l (6) =2,
then Q is light, as for each point x € 5, the orbit of (p1(x), p2(x)) does not intersect Q.
Conversely, if p1_1(51) intersects p, 1(8,), then take Us, to be an open half-plane
in S with bounded Hausdorff distance from P; 1(8;), where Us, is bounded by a
geodesic in Xi. As pl_l(él) has nonempty intersection with p3 1(8,), so do Us,
and Us,. Moreover, there exists an & € m1.S whose axis y intersects the pair of
geodesics bounding Us, and Us,. Then / is hyperbolic in both 7' and 75, and /1 makes
O heavy. a
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Remark This characterization of the core of two trees is particularly useful in our
setting. When the trees come from a pair of dual measured laminations, the map
P = p1 X p> has the same image as the map which sends H? to the corresponding
leaf space of each of the measured foliations. However, the map defined above is not
quite projection to the leaf space when the two laminations are not dual. One has
to refine the pair of laminations to A7, A%, so that each now has the same support as
supp(A1) Usupp(Az). We describe the measure on A{ by describing the case where A
and X, are a collection of simple closed curves. To A; we add the weighted curves in A,
not in A and vice versa for A,. We now take the image of the projection of H? onto the
leaf space of the trees dual to A}, followed by projection of the tree 7} to 7;. This map
now has image coinciding with the core. This slight modification is required to ensure
the core is one-dimensional when the laminations have no transverse intersection; see
[18, Theorem 6.1].

We present our next main result concerning the relation between the mixed structures
we obtain as limits of the induced metrics and the limits of the corresponding graphs
of the minimal lagrangians.

Theorem 6.13 Suppose C, — oo, so that Ls,,/c, — 1 and X1 ,/Cy — Ty and
X3 n/Cy — T,. Then the metric space Xy is isometric to the core of the pair of trees
(T, T»). Consequently, the minimal lagrangians £,/ C, C H?/C, x H2/ C;, converge
geometrically to the core C(Ty x Tp) C T x T>.

Proof Define the auxiliary map ¥: P(ML x ML) — PMix(S) by
V(A1 A2]) = lim [Lo,e,],
n—>oo

where X, C X , X X 5 is the minimal lagrangian with induced metric 20,,¢, and the
(X1,n, X2 ) converge projectively to [(A1,Az)]. We claim the map is well-defined.

Choose [(A1,A2)] € PIML x ML) and a representative (A;,A;) € [(A1,A2)]. Then
if both (X ,/kn, X2 n/kn) and (Y} ,,/dp, Y2 n/dy) converge in length spectrum to
(A1, Az), then for large enough n, we will have that X; ,,/ k, will be close to Y7 ,/dy
as negatively curved Riemannian surfaces (and likewise for X3 ,/k, and Y3 ,/dy)
by [33]. Hence the induced metrics on the respective pairs of minimal lagrangians will
have close length spectra, so that W is well-defined.

To see that W is continuous, observe that the induced metric on the minimal surface
varies continuously as a map defined on 7(S) x 7(S), and since the length spectrum of
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the induced metric varies continuously as one takes a sequence of hyperbolic surfaces
(X1.n, X2.0) = [(A1, A2)] € PAIML xML), one finds the space of mixed structures varies
continuously on P(ML x ML) by a diagonal argument.

But we now have a union of harmonic maps from X3 to 71 x T5. From Theorem 6.5,
the harmonic map on the flat part is given by projection to its vertical and horizontal
lamination. By Theorem 6.11, the harmonic map from the laminar part is given by an
affine map, when both trees come from Jenkins—Strebel differentials.

As the homotopy classes of the maps were given by the identity map, one sees that
vertices on the domain graph are mapped to the vertices of the target graph — the thick
regions of the minimal surface are necessarily mapped to the thick regions of the target
scaled hyperbolic surface; for if a vertex were to be mapped away from vertices, the
approximating thick region of the minimal surface would be mapped deep into a thin
region of the target scaled hyperbolic surface, so that the thick region of the minimal
surface would not have diameter going to zero, contradicting the geometric convergence
of the thick region to a vertex. Hence by Theorem 6.9, the map is an affine map which
maps vertices to the corresponding vertices.

But this yields the product metric for the core of the two trees; see Proposition 6.12
and the remark which follows. The equality of the metric space associated to the mixed
structure and the core of the trees then holds for pairs of R—trees dual to a pair of
Jenkins—Strebel foliations, which is a dense set in P(ML x ML), and both quantities
vary continuous for P(ML x ML), thus the theorem follows. |

7 Applications to maximal surfaces in AdS>

In this section, we prove the required analogues of the minimal lagrangian setting to
show a similar result for limits of maximal surfaces.

Proposition 7.1 On a fixed hyperbolic surface (S, o) one has H; = H, if and only if
€1 = ej.

Proof If e; = e, then |©| = |®,| by Lemma 4.5. From |®;| = |®;|, one ha,s by
some basic algebra, £, = H;L1/H;. From the Bochner formula, one has
AlogH =2H—-2L-2,
1

7‘[1 Hl
—Alog—=H1—Hr)—(L1—Ly)=H{—Hr)—L[1——].
7 Og”;‘—lz (4 2) — (L1 — L) = (Hy 2) 1( Hz)
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At a point p € S for which the quotient 1 /H, achieves its maximum (which without
loss of generality we may assume to be greater than 1, or else as before we may
re-index), the left-hand side of the preceding calculation must be nonpositive, but the
right-hand side is positive, hence H{ = H, everywhere. a

Proposition 7.2 On a fixed hyperbolic surface (S, o), if Hy = c¢H, thenc = 1.

Proof Without loss of generality, take ¢ > 1 or we may re-index to ensure this is the
case. Once again by the Bochner formula,

H
Alog 2+ = 2(H1 —H2) = 2(L1 — L2),
Ho
0= Alogc = 2(6‘7‘[2 —7‘[2) —2(£1 —[:2) = 27‘[2(6‘ - 1) —2(£1 —L:z).
Hence, everywhere one has
ﬁl —[:2 =H2(C—1) > 0.

But £, vanishes at the zeros of the quadratic differential ®{, a contradiction. Hence
c=1. O

Proposition 7.3 Let H = [HdA(c). Then & = 2H + 4ny. Consequently, if
En — 00, then limy, 00 £,/ Hy = 2.

Proof AsJT=H—-L andijdsz:—2er, one has

/Hadzd2+2nx = /Ladzd?.
Adding the terms yields

5=f(7—[+£)odzd3=2/7—[0dzd§+4nx=2H+4nx. O

Recall from Section 2.6 the existence and uniqueness of a spacelike, embedded maximal
surface in any GHMC AdS® manifold.

Proposition 7.4 [22, Lemma 3.6] The induced metric on the maximal surface is of
the form Ho'.

Proposition 7.5 The induced metric on the maximal surface has strictly negative
curvature.
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Proof The formula for curvature is given by

1 11 (AlogH Alogo -J
Kyyg=——AlogHo = ——— ==
Ho 2Ho N 27—[( o + o ) H

where the last step comes from the Bochner equation and the curvature of the hyperbolic

’

metric. O

Theorem 7.6 There exists an embedding of the space of maximal surfaces into the
space of projectivized currents.

Proof As the induced metrics on the maximal surfaces are negatively curved, they
may be realized as geodesic currents. By Proposition 7.2, the projectivization remains
injective. O

Theorem 7.7 The closure of the space of induced metrics on the maximal surfaces
is given by the space of flat metrics arising from unit-norm holomorphic quadratic
differentials and projectivized mixed structures.

Proof To any induced metric #o on the maximal surface, there is a unique singular
quadratic differential metric |®| associated to it. Some algebra shows that

=H>

Ho =
[v]

||,

which for high energy, Proposition 7.3 tells us H approximates the L!-norm of
the quadratic differential, so that if the sequence of unit-norm quadratic differentials
converges to measured lamination, then so does the projective current associated to the
induced metric on the maximal surface. (If the energy is bounded, an adaptation of the
proof of Proposition 5.4 shows that the limit of induced metrics will be a measured
lamination.) Hence, we assume the sequence of unit-norm quadratic differential metrics
converges to a mixed structure. On the flat part of the mixed structure, from the
proof of Proposition 5.12 we know that up to a subsequence the Beltrami differentials
converge uniformly to 1 outside of a small region about the zeros of the differential
and a cylindrical neighborhood of the boundary curves. But then we know that on this
subsurface the maximal surface metric will converge to |®| in terms of its length
spectrum. As the total area of the mixed structure is 1 and we have normalized the
maximal surface metric by the total holomorphic energy, on the complement, the area
of the metric tends to 0, so that the restriction of the limiting current is a measured
lamination. |
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We observe there is a rather interesting trichotomy at play here. For high energy, on the
subsurface S’, if the quadratic differentials converge to |®o| then so do the associated
sequence of minimal surface metrics and the sequence of maximal surface metrics.

8 Compactification of maximal representations to
PSL(2,R) x PSL(2,R)

In this final section, we provide an application of our work to compactifying the maximal
component of the character variety x(PSL(2,R) x PSL(2,R)). The theory of maximal
representations is defined for general Hermitian Lie groups G and is considerably
more straightforward to define in our specific setting of G = PSL(2, R) x PSL(2, R).
Nevertheless, we will define a maximal representation in the general setting before
providing a straightforward characterization in our setting.

Let G be a Hermitian Lie group, that is, a noncompact simple Lie group whose
symmetric space G/K is a Kidhler manifold. Equivalently, there is a G—invariant
two-form w on G/ K. Let S be a closed, orientable, smooth surface of genus g > 2.
Then given a representation p: 71 S — G, there is a p—equivariant map f 'S > G/K
defined by taking any smooth section of the flat bundle £, = S x 0 G/K — S. Define
the Toledo invariant to be

T(p):= %/Sf*w

The Toledo invariant will be well-defined for each such representation as the number
obtained will not depend on the choice of section chosen above; a different section
would yield another map differing by a p—equivariant homotopy, giving the same
number. A well-known Milnor—Wood type inequality holds for the Toledo invariant,

[T (p)| = [x(s)]-rank(G/ K).

Representations whose Toledo invariant attains the upper bound are known as maximal
representations. We now restrict our attention specifically to the group G =PSL(2, R) x
PSL(2, R), whose associated symmetric space is H? x H?.

For each representation to the group PSL(2,R) x PSL(2, R), one obtains a pair of
representations to the group PSL(2, R). By work of Goldman [17], the Euler num-
ber of representations to PSL(2, R) characterizes the connected components of the
representation variety. The maximal representations are precisely those whose pro-
jections live in the Hitchin component of PSL(2, R) representations, that is, those
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representations that are both discrete and faithful. Hence, such a representation yields
a pair of points in Teichmiiller space and an associated minimal surface. We may
parametrize such representations by the equivariant minimal lagrangian in H? x H?
from Theorem 3.1. As a final consequence of our study of these minimal lagrangians, we
obtain a compactification of the maximal component of surface group representations
to PSL(2,R) x PSL(2, R).

Theorem 8.1 Let S be a closed surface of genus g > 1. The space of maximal
representations of 1(S) to PSL(2,R) x PSL(2, R) embeds into the space of w1 S—
equivariant minimal lagrangians in H? x H?. The scaled Gromov—Hausdorff limits of
the minimal lagrangians are given by cores in the product T1 x T, of trees, where T
and T, are a pair of R—trees coming from a projective pair of measured foliations.

Proof For any maximal representation p = (p1, p»), we may look at the two closed
hyperbolic surfaces given by X; = H?\ p; and X, = H?\ p,. This gives a clear
homeomorphism between the maximal component and two copies of Teichmiiller space
and thus, by Theorem 3.3, to the bundle of holomorphic quadratic differentials over
Teichmiiller space. By Theorem 3.1, we obtain a minimal lagrangian between X
and X, which respects the marking. Taking the lift gives a 71 S—equivariant minimal
lagrangian in H? x H?2. As distinct representations have distinct minimal lagrangians
(distinguished by both the metric via Corollary 4.6 and the second fundamental form
via Proposition 4.3), we have our desired embedding.

If pn = (1,1, P2.n) s a sequence of representations leaving all compact sets, then there
exists a sequence of constants C,, — oo such that passing to a subsequence one has
fl n/Cn — T and fz,,,/Cn — T5, where T and T, are both R—trees, and at most
one of the trees is just a single vertex. By Theorem 6.13, the Gromov—Hausdorff limit
of the minimal lagrangians scaled by C,, converges to the core of the product 77 x T3,
which suffices for the proof. |
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