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Abstract

We find a compactification of the SL(3,R)-Hitchin component by studying the
degeneration of the Blaschke metrics on the associated equivariant affine spheres. In
the process, we establish the closure in the space of projectivized geodesic currents
of the space of flat metrics induced by holomorphic cubic differentials on a Riemann
surface.

Introduction

Recently, people have been interested in the study of surface group representations
into higher rank Lie groups with the aim of understanding to what extent the clas-
sical Teichmiiller theory for PSL(2,R) can be generalized (see [35]). One of these
higher Teichmiiller spaces is the deformation space of convex real projective struc-
tures B(S) on a closed surface S, which were first introduced by Goldman [16]
as a generalization of hyperbolic structures and have been studied since then by
many authors using various topological and differential geometric techniques (see
[10], [14], [25], [36], [39]). In particular, Labourie [22] and Loftin [24] indepen-
dently have found a parameterization of B(S) as the bundle @3(S) of holomorphic
cubic differentials over the Teichmiiller space of S using tools from affine differential
geometry. They show that a convex real projective structure on a surface S is equiva-
lent to an equivariant embedding of S into R3 as a hyperbolic affine sphere. Certain
differential invariants of these affine spheres, namely, the conformal structure of the
Blaschke metric and the Pick differential, give the aforementioned homeomorphism
between B(S) and @3(S).

In this paper, we study degeneration of Blaschke metrics when the parameters
leave every compact set in @3(S). Our construction is inspired by Bonahon’s inter-
pretation of Thurston’s compactification of Teichmiiller space as geodesic currents
(see [6]). We remind the reader that geodesic currents are 77 (S)-invariant measures
on the space ¥ (§) of unoriented bi-infinite geodesics of S that give a way to compute
lengths of closed curves on S. The framework of geodesic currents is very convenient
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for these types of questions, as the space of geodesic currents up to scalar multi-
plication is compact, and the convergence of geodesic currents is equivalent to the
convergence of the length spectrum. Our construction follows a recent paper of the
first author [33] and consists in defining an embedding of the space Blaschke(S) of
Blaschke metrics on S into the space of projectivized geodesic currents IPCurr(.S)
and in studying their limits when the parameters leave all compact sets in @3(S). Our
main result can be stated as follows.

THEOREM A
dBlaschke(S) = PMix3(S).

Here, PMix3(S) C PCurr(S) is the space of mixed structures, that is, geodesic
currents that come from a flat metric with cone angles 27 + 2an
and from a measured lamination on the complement. A precise definition of a mixed
structure is given in Section 2.3.

This is related to a compactification of B(.S), because Blaschke(S) = B(S)/S!,
where S acts on cubic differentials by multiplication. Moreover, from the proof of
Theorem A, one can actually keep track of the circle action if the mixed structure
contains a flat part or else see that points in the same orbit tend toward the same
limiting lamination if the limiting mixed structure contains no flat parts.

We remark in addition that the same statement of Theorem A holds if one replaces
the Blaschke metric of the affine sphere with the induced metric on the minimal sur-
face in SL(3,R)/ SO(3), which is the image of the affine sphere under a generalized
Gauss map.

The proof of Theorem A follows the main ideas of [33, Theorem 5.5]: we com-
pare the Blaschke metric with the flat metric with conic singularities induced by the
Pick differential and show that both their limiting geodesic currents are mixed struc-
tures that enjoy the same decomposition into subsurfaces and coincide in their non-
laminar part. Thus, Theorem A follows once we establish the closure in P Curr(S)

on a subsurface

of the space of flat metrics with conic singularities Flat3(S) induced by holomorphic
cubic differentials on S. We show the following.

THEOREM B
dFlat3(S) = PMixs(S).

This result is analogous to the one proved in [12] for flat metrics induced by holo-
morphic quadratic differentials. However, their proof relies on a technical statement
about geometric limits of quadratic differentials proved by McMullen [30] that uses
in a crucial way the role of holomorphic quadratic differential in Teichmiiller theory.
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In the appendix, we are able to extend McMullen’s result to holomorphic cubic dif-
ferentials using convex real projective geometry instead. We expect that this theory of
geometric convergence will hold for higher-order holomorphic differentials as well.

The SL(3, R)-Hitchin component (defined in Section 3) is identified with B(S)
and is the fundamental example from higher Teichmiiller theory, as it is a gener-
alization of the classical Teichmiiller space. And so several authors have provided
compactifications to the SL(3,R)-Hitchin component or the deformation space of
convex real projective structures. Parreau [34] has shown that limits of surface group
representations into general Lie groups can be described as actions on R-buildings,
and Kim [20] has explicitly described some of these limiting buildings in the set-
ting of SL(3,R) as R-trees with copies of R? attached. Alessandrini [1] has utilized
techniques from tropical geometry to describe limits as tropical projective structures.
Loftin, in a series of papers (see [25]-[27]), has examined in detail the degeneration
of convex real projective structures under neck pinching. More recently, Loftin and
Zhang have provided coordinates to this space in [28].

Despite these numerous perspectives, the most natural compactification of Teich-
miiller space is the Thurston compactification, whose boundary objects are given by
(projective classes) of measured laminations. It has been an ongoing goal in higher
Teichmudller theory (see [35, Section 11]) to obtain a description of boundary points
of Hitchin components as geometric objects, generalizing measured laminations. Fur-
thermore, it would be interesting to obtain these boundary objects as a degeneration
of geometric objects, much in the same spirit as Thurston, where hyperbolic surfaces
degenerate to measured laminations. Here, our compactification contains the Thurston
compactification, and the new objects, the mixed structures, are natural generaliza-
tions of measured laminations. The Blaschke metrics, coming from affine spheres,
limit to these mixed structures, thereby achieving this goal for the SL(3, R)-Hitchin
component.

1. Geodesic currents

Let S be a closed surface of genus at least 2. For a fixed auxiliary hyperbolic metric o
on §, its universal cover (5,5*') is isometrically identified with H?. Denote by 19(§)
the space of bi-infinite unoriented geodesics. Then ﬁ(f) = (S!' xS\ A)/Zj,. Fol-
lowing Bonahon [6], we define a geodesic current to be a 71 (S)-equivariant Radon
measure on §(S). The topology on the space Curr(S) of geodesic currents is given
by the weak-* topology; that is, u,, — p if and only if, for any continuous real-valued
function f on 4(S) of compact support, one has that

fdpun— | fdu.
g(S) g(S)
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Observe that a priori the definition of a geodesic current seems to depend upon the
choice of hyperbolic metric, but by the Swar¢—Milnor lemma, any two hyperbolic
metrics are 1 (S)-equivariantly quasi-isometric to each other, and this quasi-isometry
extends to their ideal boundaries. Hence, there is a 1 (S)-equivariant homeomor-
phism between the two spaces of bi-infinite unoriented geodesics.

The first example of a geodesic current is given by the discrete measure §,, sup-
ported on the lifts of a closed geodesic y on a hyperbolic surface (S, o). This exam-
ple easily extends to measured laminations, that is, closed sets &£ of simple geodesics
on S endowed with a measure p on transverse arcs, which is invariant under trans-
verse homotopies. In fact, we may lift &£ to the universal cover to a closed set £
of geodesics which are 1 (S)-equivariant. To any geodesic arc k on the surface, the
transverse measure assigns a number denoted i (A, k). The arc k may be lifted to the
universal cover, and if C denotes the set of geodesics which intersect transversely
with k, then we have the geodesic current assign measure i (A, k) for C. This gives a
71(S)-equivariant Radon measure on § (§).

There is a notion of intersection number on the space of geodesic currents extend-
ing the geometric intersection number of simple closed curves. Denote by D& (§) the
set of pairs of bi-infinite unoriented geodesics which intersect transversely. Denote
the quotient by 71 (S) of D§ (§) by D% (S). The intersection number between two
geodesic currents v and 7 is defined to be

i(u,n)=/ dp xdn.
DE(S)

Bonahon shows that this is a continuous bilinear functional on the space of geodesic
currents (see [5]), extending the notion of the geometric intersection number for sim-
ple closed curves in the sense that if 4 = §, and v = §,+ are geodesic currents coming
from simple closed curves, then i (,,d,/) equals the geometric intersection number
between y and y’.

The intersection number captures all the information of a geodesic current in the
following sense. Let €(S) be the set of homotopy classes of closed curves on S.
As mentioned above, for each [y] € €(S), one can construct the corresponding
geodesic current §,,. Otal [32] shows that the map which assigns a geodesic current
its marked length spectrum {i (i, 8, ) }[y]ee(s) is injective. Moreover, the intersection
number completely characterizes measured laminations (see [0]): a geodesic current
€ Curr(S) arises from a measured lamination on S if and only if i (i, u) = 0.

An important facet of geodesic currents is that a host of geometric objects can
be represented by them. Historically, the first use of geodesic currents not arising
from measured laminations was in Bonahon’s construction of Liouville currents (see
[6]) representing hyperbolic structures. The length spectrum of a Liouville current is
given by the hyperbolic length of the unique geodesic representative in [y]. Later it
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was shown (see [32]) that, more generally, all negatively curved Riemannian metrics
on S can be realized as geodesic currents in the above sense. The self-intersection
number of any current constructed in this way is equal to % Area(S) (see [32]). More
recently, this construction has been generalized to locally CAT(—1) metrics on S
(see [17]) and nonpositively curved Riemannian metrics with conic singularities (see
(4], [15D.

The space of projectivized currents P Curr(S) is the quotient of Curr(S) by RT;
that is, two geodesic currents p and 7 are identified if there exists a positive constant
¢ so that u = cn. The space of projectivized currents with the quotient topology is
compact (see [6]).

2. Flat metrics induced by cubic differentials

2.1. Generalities on cubic differentials and flat metrics
Let X = (S, J) be a Riemann surface. A holomorphic cubic differential on X is a
holomorphic section of K3, where K is the canonical bundle of X . This means that
locally a cubic differential is of the form f(z) dz3, where z is a local coordinate chart
for X and f is holomorphic. If w is a different coordinate chart, then on the overlap,
one has the transformation property: f(z)dz3 = f(z(w))(z'(w))? dw3. The vector
space of cubic differentials will be denoted @3(X). By the Riemann—Roch theorem,
it has real dimension 10g — 10.

To any cubic differential ¢, one can form the tensor |¢| followed by its 2/3rd
power |g|*/3
it is a smooth metric with zero curvature away from the zeros of the cubic differen-

. This is associated to a well-defined symmetric bilinear form. In fact,

tial g. At each zero of order k > 1, there is a conic singularity of angle 27 (1 + %).
Conversely, to any smooth flat metric m with isolated conic singularities, all having
angle of the form 27 (1 + %), there is a complex structure on S and a holomorphic
cubic differential ¢, so that m = |¢|*/3 (see [2, Proposition 2.5]). For such a metric
m, we denote by cone(m) the set of conic singularities, and for any x € cone(m) we
define ¢(x) as the cone angle at x. The Gauss—Bonnet formula gives a restriction on
the conic singularities that can occur. In fact, the following must hold:

2y (S) = Z (27 — c(x)).

x €cone(m)

An important feature of flat metrics with conic singularities is the structure of
their geodesics. In particular, geodesics come in two distinct types (see [3, Proposi-
tion 2.2]).

PROPOSITION 2.1
Let m be a flat metric with conic singularities on S. A closed curve y is a geodesic for
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m if and only if y is either a closed Euclidean (i.e, not containing cone points in its
interior) geodesic or a concatenation of Euclidean line segments between cone points
such that the angles between consecutive segments are at least w on each side of y.

For any flat metric m with conic singularities, there is a unique geodesic repre-
sentative in each homotopy class except when there is a family of parallel geodesics
filling up a Euclidean cylinder (i.e., when they are of the first type in Proposition 2.1).
We will call the homotopy class of a curve with nonunique geodesic representatives
foliating a cylinder a cylindrical curve. A geodesic segment between two (not nec-
essarily distinct) cone points that has no cone points in its interior is called a saddle
connection. We say that a bi-infinite geodesic is nonsingular if it does not contain
any cone point. We denote by §(g) the space of bi-infinite geodesics on S for the flat
metric |q| 3. We think of 5(q) as the quotient of unit speed parameterized geodesics
for |q|% with the compact-open topology, where we forget the parameterization. We
denote by §°(g) the subspace of nonsingular geodesics. Let §*(¢) be the closure of
§%(q) in §(q). The properties of geodesics in §*(g) have been extensively studied
in [4, Section 2.4], and we refer to that for a complete account. In the same paper, the
authors defined a map

3, :8(q) = §(5)

that associates to a bi-infinite geodesic its endpoints. They showed that this map is
closed, but, in contrast with the case of negatively curved metrics, it fails to be injec-
tive; for instance, lifts of geodesics foliating a cylinder have the same endpoints.

2.2. Geodesic currents from flat metrics
In [4], the authors defined geodesic currents encoding the length spectrum of a flat
metric on S. We recall briefly here the main steps of their construction.

Let ¢ be a holomorphic cubic differential on X. The precurrent I:q for g is the
71(S)-invariant measure on §(g) defined as follows. By denoting by 7'! S™¢ the unit
tangent bundle over $™¢ = S \ ¢~1(0), the geodesic flow on T'!$™¢ has a canonical
invariant volume form given locally as one-half of the product of the area form on
S and the angle form on the fiber. Contracting this 3-form with the vector field
generating the flow gives a flow-invariant 2-form. The absolute value is an invariant
measure on the local leaf spaces of the foliation by flow lines. The flow lines are
precisely the (oriented) geodesics in §°(g); thus, the measure on the local leaf space
determines a 771 (S)-invariant measure on §°(g). This is then extended to zero for the
rest of §(q), so that the support of I:q is contained in €*(q). The geodesic current
associated to g is then defined as the pushforward

Ly = (84)*1:61
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of the precurrent I:q under the map d, : §(q) — 5(5).

It turns out that every nonsingular bi-infinite geodesic is contained in the support
of L4, so that supp(Lg,) = 94(8*(q)) := §*(S). Moreover, Bankovic and Leininger
found an explicit formula for this measure in local coordinates, which allows them to
prove that for any closed curve y on S,

i(qu(sy) = Kq ),

where £,4(y) denotes the length for the flat metric |q|% of a geodesic representative
in the homotopy class of y. Moreover, it follows from the definition of the precurrent
Ly thati(Ly, Ly) = % Area(S, |q|3).

Let @3(S) be the bundle of holomorphic cubic differentials over the Teichmiiller
space of . The construction above defines a continuous map

@3(S) — Curr(S),

q+— Lg.

This clearly fails to be injective, as holomorphic differentials that differ by multiplica-
tion by a complex number of modulus 1 induce the same flat metric and thus the same
geodesic current. However, combining the fact that geodesic currents are determined
by their length spectrum (see Section 1) and the spectral rigidity result for flat metrics
([4, Main Theorem]), we deduce that this is the only way injectivity fails. Therefore,
if we denote by Flat3(S) the quotient Q3(S)/S!, which describes the space of flat
metrics on S induced by holomorphic cubic differentials, then the induced map

7 :Flat3(S) — Curr(S)
is injective.

2.3. Degeneration of flat metrics

In order to describe a compactification of the space of flat metrics induced by cubic
differentials, we want to embed this space into P Curr(S) by considering the compo-
sition

Flat; 5 Curr(S) 5 P Curr(S).

However, this map is not injective, because two cubic differentials that differ by mul-
tiplication by a nonzero complex number have proportional currents. Therefore, we
consider the quotient Flaté (S) = @3(S)/C*, which is the space of unit-area flat met-
rics on S induced by cubic differentials, so that we now have an injective continuous
map
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L : Flat}(S) — P Curr(S).

Since the space P Curr(.S) is compact, a compactification of Flaté is obtained by look-
ing at limits of sequences of unit-area flat metrics induced by cubic differentials that
leave every compact set in Flaté (S). The result we obtain is analogous to that of unit-
area flat metrics coming from quadratic differentials proven in [12]: the boundary
consists of mixed structures, where the flat pieces are now flat metrics of finite area
induced by meromorphic cubic differentials. In particular, this will also show that the
map L is an embedding.

Let us now define more precisely what a mixed structure is. Let S” C S be a 7y -
injective subsurface of S with negative Euler characteristic. We view S’ as a surface
with punctures. We denote by Flatf (S’) the space of unit-area flat metrics with conic
singularities of angle 27 + Zan for some integer k > —2, where k is allowed to take
negative values only at the punctures. In other words, Flati’ (S’) is parameterized by
the bundle of unit-area meromorphic cubic differentials with poles of order at most 2
at the punctures over the Teichmiiller space of S’. This, in particular, implies that the
boundary curves are realized by punctures and have length O for the flat metric.

Given a subsurface S’ C S, a cubic differential metric ¢ € Flat}(S’), and a mea-
sured lamination A whose support can be homotoped to be disjoint from S”, we define
a mixed structure as the geodesic current

n=>A+Lyg.

We also allow for the possibility that S’ = @ or S’ = S. In these cases, the correspond-
ing mixed structure is a measured lamination or a flat metric, respectively. Now, let
Mix3(S) C Curr(S) denote the space of all mixed structures, and let PMix3(S) be its
projection into [P Curr(S). Observe that if n € Mix3(S) is not a pure measured lami-
nation, then i (1, n) = % Notice, moreover, that if « is a curve in the boundary of the
subsurface S’, then i (1, §o) = 0, but we do not exclude the possibility that « is in the
support of the laminar part A.

THEOREM 2.2
The closure of Flat}(S) in P Curr(S) is the space of PMix3(S).

Proof

The proof will be divided into two parts: first we show that, for any sequence ¢, in
Flat% (S), there exist a mixed structure 7 and a sequence of positive real numbers ?,
such that, up to subsequences,

lim 1,44, (y) =1i(n,6y)
n—-+4o00
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for every y € €(S). Then we will show that every mixed structure can be obtained as
such a limit.

Part 1
Let g, be a sequence of cubic differentials, and let ¢, be a sequence of positive real
numbers such that #, L4, converges to Lo, in P Curr(S). We have to show that, up to
rescaling, L is a mixed structure.

If the sequence #, converges to 0, then

b4
i(Loo, Loo) = lim t2i(Lg,,Lg,) == lim tZ=0.
( *° OO) n—+oo ( an q") 2 n—>+oo "
Therefore, Lo is a measured lamination.
Since every geodesic current has finite self-intersection number, the sequence #,
cannot diverge to +o00o. Thus, up to rescaling and extracting a subsequence if neces-
sary, we can assume that ¢, converges to 1. Consider the set

&= {a €€(S)|i(Loo,6e) =0andi(Loo,8p) >0 VP such thati(8y,8p) > 0}.

The structural theorem for geodesic currents ([7, Theorem 1.1]) allows us to decom-
pose the limiting geodesic current Lo, as

Lo = Z Mw + Zwa8a,

wWcS\é a€l

where the first sum varies over all connected components W of S \ & and the w,,’s are
nonnegative weights. Moreover, this sum is orthogonal with respect to the intersection
form i (-,-). We only need to understand the geodesic currents pyy that can appear in
the above decomposition. Following [7, Theorem 1.1], given a component W of S\ &,
we define the systole of Lo, on W, denoted sysy, (Loo), as the infimum of the set

D(W) ={i(Los.8,) | y € €(W),y nonperipheral}.

We distinguish two cases:

(1) If sysy(Loo) = 0, then a general result on geodesic currents ([7, Theo-
rem 1.1]) implies that the restriction of L, to W is a measured lamination.

(ii))  If sysy (L) > 0, then we have a uniform lower bound for the g,-length of
any nonperipheral simple closed curve and hence also of any nonperipheral
closed curve in W. Since W is a connected component of S \ &, the g, -lengths
of the boundary curves in W go to 0. Therefore, after choosing a basepoint in
W (away from the boundary) and passing to a subsequence, we can assume
that g, restricted to W converges geometrically to a holomorphic cubic dif-
ferential on W (Theorem A.9), with possible poles of order at most 2 at the
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punctures. (The condition on the order of the poles follows from the finite area
of the metric.) This, in particular, implies convergence of the length spectrum
and thus convergence in the space of geodesic currents.

This proves that L, is a mixed structure.

Part 11
We are now going to show that any mixed structure n appears as the limit of a
sequence of flat metrics induced by holomorphic cubic differentials.

Let n= A"+ L, € PMix3(S), where ¢ is a meromorphic cubic differential on a
71 -injective subsurface S’ C S and A’ is a lamination whose support is disjoint from
S’. Recall that the simple closed curves y; homotopic to the boundaries of S’ may
or may not be part of the lamination A’, so we will write A’ = A + >, w;8,,, for
some nonnegative weights w;. Let S” = S \ S’. We can find a complex structure on
S’ and a sequence of meromorphic cubic differentials ¢, such that (i) the boundary
components of S” are conformal to punctures, (ii) the length spectrum of the flat
metrics |qn|% converges to that of the lamination A, and (iii) its area goes to 0. In
fact, it is easy to explicitly build such a sequence when A is supported on a simple
closed curve o with weight ¢ > 0: first choose any flat metric in Flaté (S”) for which
o is a cylinder curve; then cut along «; and insert a flat cylinder of height cn. This
gives a sequence of meromorphic cubic differentials ¢,, of area 1 + O(n) such that
the rescaled length spectrum
Ly, =

n

S| =
h
IS

RS

n

converges to c¢8,. Hence, the sequence g,/n> has the desired properties. Since
weighted simple closed curves are dense in the space of measured laminations,
we can find a sequence of meromorphic cubic differentials limiting to any given
measured lamination A.

In order to glue together the flat structures on S’ and S”, we proceed as follows.
Let €, be a sequence of positive numbers converging to 0 as n — 400 with the
property that the ball of radius 2¢, centered at any puncture of S’ and S” (with respect
to the metric |g| % and |gn| 3 , respectively) does not contain any other cone singularity.
Inside each of these balls, we can then find an equilateral geodesic triangle with a
vertex at the puncture and edges of length €,. We cut these triangles and then glue the
resulting flat surfaces along the geodesic boundaries corresponding to the same curve
yi, possibly inserting a flat cylinder of height w; # 0, that we think of here as the
lateral surface of a prism with triangular base. One can easily check that for each n
the resulting flat surface has conic singularities with angles 2z + Zan for some k > 0
as long as g does not have any poles of order 2. In this case, we can thus conclude
that these flat metrics are induced by holomorphic cubic differentials ¢;, on S, and it
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follows immediately from the construction that L, converges to 7. If g has a pole of
order 2, a general procedure described in [2, Section 7] allows us to break up a double
pole into two arbitrarily close simple poles by modifying the metric |q|% only in a
neighborhood of the puncture (see also [29, Section 3]). We can then apply the same
surgery described above to these deformed metrics, where we now cut an equilateral
triangle having two vertices at the two simple poles. O

2.4. A dimension count
We conclude this section with an informal parameter count of 0 Flaté(S ).

First recall that, for a hyperbolic surface S’ of genus g and n punctures, the
Teichmiiller space of S’ has dimension 6g —6 + 2n. The vector space of meromorphic
cubic differentials with poles of order at most 2 at the punctures has dimension 10g —
10 4 4n. We deduce that

dim(Flat}(S)) = 16g —18  and dim(Flat}(S")) = 16 — 18 + 6n.

For any 7y-injective subsurface S” C S, we consider mixed structures n = L, + A
so that the support of the flat metric is S” = S \ S”. We denote this set as Mix3(S”).
By Theorem 2.2, elements in 0 Flaté (S) are all of this form, letting S” vary among all
possible 7q-injective subsurfaces. In particular, if S” in an annulus with core curve
o, then the mixed structures we are considering are all of the form wéy + L4, where
weRY and ¢ € Flaté (S7). If « is a nonseparating curve, then S’ is connected, has
genus one less than S, and has two punctures. Therefore,

dim(Flatj(S")) = 16(g — 1) — 18 + 6-2 = 16g — 22,

and the dimension of mixed structures in this family is 16g — 21, where the extra
dimension comes from the weight w. Notice that this subspace of the boundary has
codimension 3 in Flat}(S). Now let a be a separating curve. Then S’ = S} U S},
where S/ is a surface of genus g; with one puncture, with g = g + g». Therefore,

dim(Q>(S")) = (16g1 — 18 + 6) + (16g2 — 18 + 6) = 16g — 24,

and the space of flat metrics on S’ of unit area induced by cubic differentials has
dimension

dim(Flat}(S")) = dim(Q>(S")) —3 = 16g — 27,

because we quotient by the C*-action on each component with the constraint that the
total area must be 1. The space of mixed structures of the form n = wéy + L, with
q € Flaté (S7), has an extra dimension coming from the weight w € R™ and, thus,

has codimension 3 in Flaté (S). It is not hard to convince ourselves that, for larger
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complexity subsurfaces, the corresponding set of mixed structures has even higher
codimension.

Since BFlaté (S) is the union of the sets Mix3(S”) over all m;-injective sub-
surfaces, the dimension of 8Flat§(S ) coincides with the maximal dimension of the

subsets Mix3(S”). We conclude that o Flat% (S) has codimension 3 in Flaté ().

3. Affine spheres and the SL(3, R)-Hitchin component
In this section we review the connection between Hitchin representations of sur-
face groups into SL(3,R), convex RIP?-structures on surfaces, and equivariant affine
spheres in R3. Apart from Section 3.1, the material covered here is classical and can
be found, for instance, in [16], [24], and [22].

Let S be a closed, connected, oriented surface with negative Euler characteristic.
A convex real projective structure (1 on S is a maximal atlas of charts of S into the real
projective plane RIP? such that the transition functions are projective transformations
and the image of the developing map dev, : S > RP?isa strictly convex domain
Q C RP?. In this case, we can realize S as a quotient S = Q/T" of by a subgroup
I' < SL(3,R) acting freely and properly discontinuously on €2, which is the image
of the fundamental group of S under the holonomy representation hol,, : 71(S) —
SL(3,R). We denote by B(S) the deformation space of convex RP2-structures on S.
It turns out (see [10], [16]) that

hol : B(S) — Hom(m1(S),SL(3.R))/SL(3,R)

is an embedding and identifies B(S) with a connected component of the character
variety of dimension 8| x(S)]|.

Around the same time as [16] and [10], Hitchin in [18], using Higgs bundle tech-
niques, studied the connected components of Hom(z1 (S), SL(3,R))/SL(3,R) (and
more generally of representations into PSL(n,R)) and, in particular, found a distin-
guished connected component Hit3(S) generalizing Teichmiiller space, in the sense
that it is homeomorphic to a cell and contains conjugacy classes of representations of
the form

1(8) 2% PSL(2, R) & SL(3, R),

where pg : 71(S) — PSL(2, R) is both faithful and discrete (and hence is the holon-
omy of a hyperbolic structure on §) and PSL(2,R) < SL(3,R) is the unique (up to
conjugacy) irreducible embedding of PSL(2, R) into SL(3,R). The SL(3, R)-Hitchin
component coincides with hol(8B(S)).

Labourie in [22] and Loftin in [24] have independently found a parameteriza-
tion of the Hitchin component as the bundle over Teichmiiller space of holomorphic
cubic differentials. Since this is the point of view that we are going to take in order to
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describe a compactification of the Hitchin component, we recall here how to associate
to a Hitchin representation a conformal structure ¢ and a holomorphic cubic differ-
ential ¢ on (S, ¢). The correspondence goes through an affine differential geometric
object, called an affine sphere.

Let U C C be a simply connected domain. Consider a strictly convex immersion
f:U — R3, and choose £ a vector field transverse to H = f(U). This allows us to
split the standard flat connection D into a tangential part V and a transversal part

Df*Xf*Y = f*(VXY) +h(X’ Y)é,
Dy.x§ = —fi(B(X)) + t(X)E.

One can check that V is a torsion-free connection, % is a symmetric bilinear form, B is
an endomorphism of TH, and 7 is a one-form on H , for any choice of the transverse
vector field £&. We say that £ is an affine normal to f if it satisfies the following
requirements:

. h is positive definite;

. =0,

. for any linearly independent vectors X and Y, det(X,Y,£)?> = h(X,Y).

In this case, V is called the Blaschke connection, and h is the Blaschke metric. More-
over, we say that H is a hyperbolic affine sphere if B(X) = —X for every vector
field X. Up to translations, we can assume that £ = f, which reduces the structural
equations to

Dy x fxY = fu(VxY) + h(X.Y) f,
Dx f = fu(X).

The connection between affine spheres and convex real projective structures on sur-
faces is given by the following result.

THEOREM 3.1 ([9, Theorem 3], [8, Theorem 6])
Consider a convex, oriented, bounded domain @ C RIP?. There is a unique properly
embedded affine sphere H asymptotic to the positive cone €(2) C R3.

In fact, given a convex RP?-structure on an oriented surface S, the image of the
universal cover of S under the developing map is a bounded, oriented, convex sub-
set Q C RIP?; the theorem provides a unique affine sphere asymptotic to the positive
cone €(2) C R3, which by uniqueness must be equivariant under the action of the
holonomy. On the other hand, given a I'-equivariant affine sphere H C R3, its pro-
jection in RP? gives a bounded, oriented, convex domain on which T" acts properly
discontinuously.
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To obtain a holomorphic cubic differential from this construction, we extend V,
h, and D by complex linearity. We then choose coordinates so that the Blaschke
|2

metric & is given by & = e%0(z)|dz|? = e¥|dz|?, where 0 = o (z)|dz|? is the hyper-

bolic metric in the conformal class of /. This means that the complex tangent vectors
fo= ful@y) and f = fu() satisfy

h(fe f2)=h(fz. fz)=0  and h(fz,fz)zéew_

Let 6 and 6 be the matrices of one-forms expressing the Levi-Civita connection of A
and the Blaschke connection, respectively. We can easily compute

ol=6l=0, 6! =0yl =dy.

—

We define the Pick form C by
éij B 911 = Cijl.cpk’

where p! = dz and ,oi = dZ are the dual one-forms. The property of the affine nor-
mal, together with the total symmetry of the Pick form, implies that

o oF 00\ _( oy geVd:
- 911 911 - \geVd:z oy ’

where ¢ = C llle‘”. This reduces the structural equations to
Jez =Y fz + qe_wfg,
sz=qe VY fo 4 Vs /s

zZ = Eewf-

The integrability conditions then give the system of PDEs

q: =0,
(D

—2u |q|2 _

Asu =2e" —4e 3
o

27

where we recognize that the first equation simply says that ¢ is a holomorphic cubic
differential. Therefore, this construction gives a map ® from the space of convex
real projective structures to the bundle @3(S) of holomorphic cubic differentials over
Teichmiiller space by associating to an element p € B(S) the conformal class of the
Blaschke metric & and the holomorphic cubic differential g. We have the following.

THEOREM 3.2 ([24, Theorem 2], [22, Theorem 1.0.2])
The map ® is a homeomorphism.
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3.1. Some estimates
We conclude with some analytic properties of the Blaschke metric that will be useful
in the next section.

LEMMA 3.3 ([26, Proposition 1], [13, Theorem 5.1])
Let (0,q) € Q3(S). The Blaschke metric h = e*o satisfies h > 2% |q|%.

LEMMA 3.4
Let (0,q9) € Q3(S). The following estimate holds for the area of the quotient of the
affine sphere conformal to o and with Pick form q:

1 1
23|lq|| < Area(S,h) < 23|lq|| + 27 |x(S)|.
where |q|| = [ |q |% is the area of the flat metric induced by the cubic differential q.

Proof
By using the fact that the curvature «j, of the Blaschke metric can be computed as

1
kp=e " (_EAGM + KG')9
(1) can be rewritten as

lal?
1= —Kp + 2]’1—3
Integrating both sides with respect to the volume form of the Blaschke metric and
applying the Gauss—Bonnet formula, we get

lq?

Area(S.h) =27 |x(S)| +2 [ =5 dAp.
s h3

and the upper bound follows from the fact that

2 2 2 2
2|Z—|3dAh=2|Z—|2dxA dy < 2"" Cdx A dy =283,
231ql3

where the inequality follows from Lemma 3.3. The other inequality is also a direct
consequence of Lemma 3.3. O

COROLLARY 3.5
The Blaschke metric is strictly negatively curved.
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Proof
By the formula for the curvature above and Lemma 3.3, we have
g1 lq|?
kp=2—7—-1<2——=—-1=0.
h h3 2lq2 O

We consider now the quantity

- 3 1 2|ql?
¥ —5(“—§1°g( e )-

which describes the difference between the logarithmic densities of the Blaschke met-
ric h = e*o and the flat singular metric 2% lq] 3. This has already been studied in the
context of planar affine spheres in [13]. It turns out that ¥ plays a role analogous to
the inverse squared norm of the Beltrami differential of a harmonic map, in the case
of harmonic maps between hyperbolic surfaces (see [31], [33], [38]). Using (1), the
function ¥ satisfies the PDE

wIN

13 %

e
o

AgF =323 sinh(F). )

In particular, since ¥ > 0 by Lemma 3.3, we notice that ¥ is subharmonic. We use
this fact to get a coarse bound for ¥ on a compact set avoiding all zeros of g and then
improve it to an exponential decay behavior. This approach follows that of Minsky in
[31] in the context of harmonic maps.

LEMMA 3.6
Let p € S, and let r be the radius of a ball centered at p for the flat metric |q|% that
does not contain any zeros of q. Then

Area(S,h) )

F(p) <21 (
— 10
p_2 ¢ 23712

. . . . . . 2
In particular, if rq is the radius of such a ball for the renormalized metric |q|3 /||q||
of unit area, we have

F(p) < Elog(Area(S,h)).

2 " \23ng

2
I

Proof
Let B be the ball centred at p and radius r for the flat metric |g| 3 that does not contain
any zeros of g. By the subharmonicity of ¥ and the Jensen inequality, we have

3T W) < o3 fpFdag 5][ e%:pqu 22_%][ o dA, < Arela(S,h)
B B 237rr2

)

so the first estimate follows.



LIMITS OF BLASCHKE METRICS 1699

The second part of the statement is a simple reformulation, using the fact that
=rgliqll. O

LEMMA 3.7

Let S’ C S be a my-injective subsurface with negative Euler characteristic. Let g,
be a sequence of holomorphic cubic differentials on S. Assume that the unit-area flat
metrics |cjn|% = |qn|%/||qn|| converge uniformly on compact sets on S’ to |c}|%, for
some meromorphic cubic differential § on S’ of finite area, and ||q, || tends to infinity.
Fixe >0, and let p € S’ be at |(}|%—distance at least € from the zeros and poles of .
Then, there exist ng € N, a constant B > 0, and a sequence d, — +0o0 such that for
every n = ny,

B

P = @)

Proof

Fix n¢ such that all the zeros of ¢, are contained outside the ball centered at p of
radius €/2 in the |§| 3 _metric. Let d, be real numbers such that the ball of radius dj,
in the flat metric |g, |% centered at p does not contain any zeros of g,. Notice that we
can choose d,, so that limd, = +o00. Let U,, be the ball of radius %” centered at p.
Because g, has no zeros in U,,, we can choose a coordinate z,, such that g, = dzg in
U, . Moreover, by Lemmas 3.6 and 3.4, the sequence ¥,, is uniformly bounded on U,
by a constant B > 0. Equation (2) in the background metric |, |% can be written in
U, as

AFy =325 ||gnlle™"F sinh(F,).
The uniform upper bound on ¥, implies that there is a constant C > 0 such that
AFn 2 2C||gnll sinh(Fp) = 2C || gn | Fn.

Consider now the function

g(zy) = COSh( vV Clqnl Re(zn)) COSh( vV Cllqn] Jlm(zn))

co sh(d /2)

defined on U,. One can easily verify that g > B > ¥, on the boundary of U, and

Ag =2Cllgnlg-
From the maximum principle, we deduce that ¥,, < g on Uy, and, in particular,

B

?n(P)Eg(O)=m- O
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We deduce that, under the assumptions of Lemma 3.7, the sequence %, decays
exponentially as a function of ||g;, ||, outside the zeros of §. This gives a uniform bound
on the Laplacian of %,; hence, we actually have C !**-convergence to 0 outside the
zeros and poles of g.

It will also be useful to compare the Blaschke metric with the hyperbolic metric
o in the same conformal class. The following result can be found in [24].

PROPOSITION 3.8
The logarithmic density u of the Blaschke metric on the affine sphere with Pick form

q satisfies
1 lq1?
O<u< 3 log(r(mgx(F))),

where r(a) is the largest positive root of the polynomial p,(t) = 2t3 —2t> —4a. In

. 1 . 2
particular, 0 < h <r(a)2o, with a = maxg |Z—‘3.

4. Degeneration of Blaschke metrics

This section is devoted to the proof of Theorem A. We outline here the strategy of
the proof for the convenience of the reader. We first show that the space of Blaschke
metrics embeds into the space of projectivized currents. Since IP Curr(S) is compact,
we can extract convergent subsequences, and in order to describe a compactification
of Blaschke(S), we only need to characterize limits of sequences that leave every
compact set in Blaschke(.S'). This will be achieved by comparing the length spectrum
of the Blaschke metric and that of the flat metric induced by the Pick differential.

PROPOSITION 4.1

Let g1 and g, be holomorphic cubic differentials on (S, o), and let hy and hy be the
associated Blaschke metrics. Assume that q; # €¢'%q» for any 6 € [0,27]. Then h;
and hy are not homothetic.

Proof

Let us write i; = e*10 and h, = e*20. Assume by contradiction that /#; and &, are
homothetic. Then there exists a constant ¢ such that e*! ¢ = ¢*2. Without loss of
generality we can assume that ¢ > 0. We first show that necessarily ¢ = 0. If not, then
from (1), we deduce that

0=As(u1 —us)

2 2
= 2e%l — 4721 @ —De¥2 4 4o72u2 |(Z23|
o
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2 2
— DUl _ g,2uU1 |QI| A ujte —2u1—2c¢ |¢]2|
=2e 4e = 2e + 4e 3

2 2
=2¢"1 (1 — ) — 42 (lql3l ] )
o o

2 2
- 1 - 2
<_4e 2u1(|Q| —e 2c|q| )’
o3 o3
which is not possible, because at a zero of ¢, the last expression is nonpositive. Hence
¢ =0 and u; = u,. But in that case, replacing this relation in the above equation, we
get

2 2
— —2u |QI| |612|
0=~ (T =505):

which implies that |¢;| = |g2| at every point. Let f : S — S! be the smooth function
such that ¢; = f¢». Since f is also meromorphic, it must necessarily be constant.
Thus, ¢ = e'?g, for some 6 € [0, 2], contradicting our assumptions. O

REMARK 4.1
The proposition above implies that Blaschke(S) = @3(S)/S!. Recalling that @3(S)
can be identified with B(S), we obtain that Blaschke(S) = B(S)/S.

PROPOSITION 4.2
The space of Blaschke metrics embeds into the space of projectivized currents.

Proof

Recall that, in Corollary 3.5, the Blaschke metrics were shown to have strictly nega-
tive sectional curvature, so that by Otal’s work in [32], we may embed these metrics
into the space of geodesic currents. Proposition 4.1 allows us to pass to the projec-
tivization with the composition remaining injective. O

Given a Blaschke metric /1, we will denote by L, the associated geodesic current.
As the space of projectivized currents is compact, the closure of the space of Blaschke
metrics provides a length spectrum compactification. We now detail the closure of the
space of Blaschke metrics in the space of projectivized currents.

THEOREM 4.3

Let (04,qn) € Q3(S) be a sequence leaving every compact set. Let hy, be the corre-
sponding sequence of Blaschke metrics. Then there exist a sequence of positive real
numbers ty, and a mixed structure 1 so that t, Ly, — 1.
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Proof
We distinguish two cases, according to whether the area || ¢, is uniformly bounded
or not.

First case: sup||qn| < co. By Lemma 3.4, the self-intersection i(Lp,,, Lp,) is
uniformly bounded, it being proportional to the area of the Blaschke metric. We first
show that the sequence of hyperbolic metrics in the same conformal class o, must
necessarily diverge. Otherwise, up to subsequences we could assume that o, — 0o €
T (S) and we can write ¢, = 1,§,, Where
|gn|?

3
Oy

T = |lgnlloo := mégx — 400

and g, converges uniformly to a nonvanishing cubic differential o, € @(S,0) (as
unit balls in @3(S) are compact). But then we would have

2
3

2.2 2 [ 1Gnl
||qn||=/|rn|3|qn|3=|rn|3 "2 44, — +oo,
S S On
because
G5 Goo |
" ga, — [ 927 g4, 0.
S On S Oxo

This would however contradict our assumption that sup ||¢g,|| < oo. Therefore, the
sequence 0, of hyperbolic metrics in the conformal class of 4, diverges. Then, by
Proposition 3.8, the sequence of currents Ly, leaves all compact sets in Curr(S).
Since P Curr(S§) is compact, there exists a sequence t, — 0 such that 7, Lj, — L.
We easily deduce that i (Lo, L o) = 0; hence, the limiting geodesic current is a mixed
structure that is purely laminar.

Second case: sup ||g, || = oco. By Lemma 3.4, the self-intersection of L, diverges
as 23 llgn ||. As a preliminary rescaling, we consider the associated sequence with unit
self-intersection. Denote by L n, the sequence

- 1
Ly = 1—Lh"'
25 lgn
If the sequence 1:;," still leaves all compact sets in Curr(.S), then there is a sequence
tn, — 0 such that tnl: hy, = 1:00, which now has vanishing self-intersection; thus, Ly,
converges to a measured lamination.

If the sequence I:hn stays in a compact set of Curr(S), then by Lemma 3.3, also
the length spectrum of the unit area flat metrics |g, | 3 /1lgx |l is uniformly bounded.
Thus, from the proof of Theorem 2.2, the geodesic currents L4, converge projectively
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to a mixed structure p that is not purely laminar. This furnishes an orthogonal (for the
intersection form 7) decomposition of the surface S into a collection of 7} -injective
subsurfaces {S ; };"=1, obtained by cutting S along disjoint simple closed curves y;,
for which w is induced by a flat metric on each S ; and is a measured lamination on
the complement. Moreover, we can assume that each simple closed curve y; bounds at
least one flat part, induced by a meromorphic cubic differential g ;. On each S ; then,
by Lemma 3.7, the difference ¥, between the logarithmic densities of the Blaschke
. . 2 . . .

metric &, and the flat metric |g, |3 converges to 0 uniformly outside a neighborhood
of the zeros and the poles of G; as n — +oo. This implies that on S,

hn  €37qu]3 noo

1 - 1
25lgnll 23 ligall

. . . .\ ~ 2
uniformly on compact sets outside the conic singularities of |G;|3. We deduce that,
on each S”,

. 1
Loo= lim Ly, = lim ——=L,, =

n—-+oo n>+00 /gl aj

because uniform convergence of metrics implies convergence in the length spectrum
([33, Proposition 5.3]). In particular, we have

lim i(L ) =0.
n—ir-‘,l:lool( hws),j) 0

Moreover, for any closed curve 8 that intersects y;, by Lemma 3.3, we have

N 14
lim i(Lp,.88) = lim £, (B)> lim LB _ i(w,B)>0,
n—+o00 n—-+o00 n—+o00 IanII
where for the last inequality we used the defining property of the curves y; belonging
to the set & introduced in the proof of Theorem 2.2. Therefore, this collection of

curves y; belongs to the set
€ ={aec€(S)|i(Loos8x) =0andi(Loo,8p) >0V} such thati(8y,85) > 0}

and can thus be used for the orthogonal decomposition of ioo provided by [7, Theo-
rem 1.1]. We can then write

m
=Ly +4,
j=1
where A is a geodesic current supported in the complement of j S‘/-, and the above

splitting is orthogonal for the intersection form i. We claim that A is a measured
lamination: in fact,
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T T ( ~ ~ ) ( ~ ~ )
— = 1lmm 1 Lh ,Lh =1 lloo,l/oo
2 n—-+o00 " "

= i(Lg; Lg,) +i(AA) =i(u. ) +i(h,2)

j=1

lim ——i(Ly Lo )+i(hA) = % +i(h.A)
= lim —i s Lan A A)=—=4+i(A,A).
n—stoo ||q| Y 2

This shows that 1:00 is indeed a mixed structure. O

Proof of Theorem A

By Theorem 4.3, we know that dBlaschke(S) € PMix3(S). Consider now the family
of Blaschke metrics 4, associated to a ray (o,7¢q) € @3(S), for a fixed unit area cubic
differential g. By Lemma 3.7 and the proof of Theorem 4.3, we know that Lj, con-
verges to L, in P Curr(S). Therefore, dBlaschke(S) D Flaté (S) = PMix3(S), which
proves the theorem. O

4.1. Comparison with the induced metric on the minimal surface

Associated to a Hitchin representation p € Hitz(.S), there is a unique conformal struc-
ture X on S and conformal equivariant harmonic map f, : X > SL(3,R)/SO(3).
In fact, as discussed in [22], the map f, can be constructed directly from the affine
sphere discussed in Section 3 as a sort of generalized Gauss map. Our techniques also
allow us to understand the degeneration of the induced metric on the associated mini-
mal surface f, ()7 ). Using Higgs bundle techniques, one can write this metric explic-
itly (see, e.g., [11, p. 60]) in terms of the embedding data /& and ¢ of the affine sphere:

gp =122 + h.

Moreover, g, is negatively curved; thus, we can repeat the same construction of the
previous sections for g,: we can realize g, as a geodesic current and describe its
closure in P Curr(S). It is now straightforward to show that the limiting current Lo
is a mixed structure: first notice that 124 < g, < 24h; hence, the rescaling factor
that makes the length spectrum of g, converge is the same as that of the Blaschke
metric. Moreover, we observe that g, is conformal to the Blaschke metric /, and
since ¥ converges to 0 on all subsurfaces in which the systole of the unit area flat
metric |q|% /llg|l is bounded from below away from O (Lemma 3.7), the conformal
factor converges to a nonzero constant in all such regions. Therefore, the current L
enjoys the same decomposition into subsurfaces as the limiting geodesic current of
the Blaschke metric, and they share the same flat pieces. By an area argument, as in
Theorem 4.3, the restriction of L, to the other subsurfaces is necessarily a measured
lamination. We have thus proved the following.
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THEOREM 4.4

Let p, be a sequence of SL(3,R)-Hitchin representations that leaves all compact
sets in the character variety, and let g, be the induced metrics on the associated
equivariant minimal surfaces in SL(3,R)/SO(3). Then there is a mixed structure
i € PMix3(S) and a sequence of real numbers t,, such that, up to a subsequence,
thLg, = p € PCurr(S). Moreover, any mixed structure can be realized as such a
limit.

As in the case of the Blaschke metrics, the realizability of every mixed structure
follows from Theorem 2.2 and the fact that the length spectrum of the metrics g; aris-
ing from rays (0,1q) € @3(S) of cubic differentials over a fixed conformal structure
o in the Labourie-Loftin parameterization of Hit3(S) converges projectively to the
length spectrum of the flat metric |g| 3.

REMARK 4.2

The reference provided for the computation of g, uses notation and conventions dif-
ferent from ours. In particular, the harmonic metric h=" in [11] is %e"o, and the
cubic differential is half of our cubic differential.

4.2. Other compactifications
It would be remiss of us if we did not mention other compactifications of the SL(3, R)-
Hitchin component. Indeed, our work here is not the first such attempt at compact-
ifying a Hitchin component with a goal of understanding the boundary objects. For
example, Parreau [34] has developed a general compactification procedure for reduc-
tive Lie groups: conjugacy classes of surface group representations are assigned a
length function coming from the norm of a translation vector with values in a Weyl
chamber. In the Parreau compactification, the boundary objects are interpreted as
actions on R-buildings. Kim in [20] has applied the Parreau compactification to the
present setting of SL(3,R) and has shown that some of the affine buildings which
appear in the boundary are constructed from R-trees by attaching copies of R?.
Naturally, the tools employed in the Parreau compactification are quite different
from ours. While Parreau and Kim adopt a more algebraic and Lie-theoretic perspec-
tive, ours is of the analytic persuasion. The differences can most readily be seen in
the intermediary objects: the length spectra favored by Parreau and Kim record the
data of the eigenvalues of the representation, which is more closely aligned with the
Hilbert metric, whereas the Blaschke metric is defined using a PDE incorporating the
data of a Riemann surface and a holomorphic cubic differential. It would be interest-
ing to see what similarities the limits of Blaschke metrics share with those of their
corresponding Hilbert metrics.
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Another algebraic perspective of limits of convex real projective structures is
found in work of Alessandrini [1]. The logarithmic limit set and Maslov dequan-
tization from tropical geometry are used to show that the boundary objects in his
compactification may be interpreted as tropical projective structures.

Taking an analytic approach, Loftin ([25]-[27]) has constructed a partial com-
pactification of the moduli space of convex real projective structures. This is perhaps
the closest compactification to ours, as both utilize the Labourie—Loftin parameteri-
zation of B(S) by the bundle of cubic differentials over Teichmiiller space. In par-
ticular, for a sequence of representations corresponding to a fixed Riemann surface
and a sequence f,qo along a ray of cubic differentials, our findings are consistent
with his: the limiting object can be interpreted as the flat metric |go|. Where our
perspectives begin to diverge is when the Riemann surface structure is allowed to
degenerate: Loftin considers the moduli space of Riemann surfaces with the Deligne—
Mumford compactification, whereas we have opted to use Teichmiiller space with the
Thurston compactification. Furthermore, Loftin imposes an additional requirement
on such sequences, namely, that the cubic differentials converge (nonprojectively) to
a regular cubic differential on the limiting noded surface. This assumption is used to
show that the limit points in his compactifcation can be interpreted as convex real
projective structures on noded surfaces. It would be interesting to see what the lim-
its would be for a sequence not converging to a regular cubic differential or if the
Riemann surface degenerates to a measured lamination which is not a multicurve.

Appendix. Geometric limits of cubic differentials

For the convenience of the reader, in this appendix we explain the notion of geomet-
ric limits of holomorphic cubic differentials over Riemann surfaces, giving a direct
translation of McMullen’s appendix [30] to the setting of cubic differentials. In the
reference, McMullen focuses solely on quadratic differentials, but the construction is
very general and can be adapted to higher-order differentials as well. Only the proof
of [30, Proposition A.3.2] deeply uses the geometry of Poincaré series associated to
simple closed curves, namely, their being the Weil-Petersson symplectic gradient of
hyperbolic length functions (see [37]). The analogous results for cubic differentials
still hold, as we show using recent work of Labourie and Wentworth from [23] and
Kim from [19].

A.l. Riemann surfaces in the geometric topology
For « € [—1, 0], consider the metric

4 2
_ 2 2 _(__* 2
8o =A@z = () 142
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of constant curvature ¥ on a domain U, which is the complex plane if k = 0 and
the disk U, = {z € C||z| < R}, where R = JL—T if k < 0. Notice that (Uy, g¢) is a
complete Riemannian manifold.

Let X denote the space of pairs (Ug,I"), where I' is a discrete subgroup of
Mobius transformations acting freely on U,.. To this data, we associate a framed Rie-
mannian manifold X = U, /", where the distinguished frame v is the image of the
unit vector at the origin pointing along the positive real axis. Moreover, we require
that the injectivity radius of X at v is at least 1. Notice that X is naturally endowed
with a complex structure. Conversely, a framed Riemann surface (X, v) with a com-
plete Riemannian metric of constant curvature x € [—1, 0] with injectivity radius at
least 1 at v uniquely determines an element of X. We give X the geometric topology:
a sequence of pairs (U, ,,) converges to (U, I') if and only if «, tends to « and
I',, converges to I' in the Hausdorff topology of closed subsets of PSL(2,C). The
following results are well known; we refer the interested reader to [30] for a historical
overview.

PROPOSITION A.1
The space X, endowed with the geometric topology is compact.

We denote by X, C X the space of surfaces of genus g and n punctures. We
will always assume that 2 —2g —n < 0, and we will say that X € X , is hyperbolic
if 2 —2g —n < 0 and flat otherwise. Notice that being hyperbolic in this context only
means that we can rescale the metric on X to have constant curvature —1, but X is
not necessarily endowed with a hyperbolic metric.

PROPOSITION A.2

The space of hyperbolic surfaces of genus g and n punctures is compactified in X
by the plane, the punctured plane, and hyperbolic surfaces of smaller complexity.
Precisely, if n > 0, then

xg,n=U{xh,m|2h—|—m§2g+n,0§h§g,mzl},

h.m

andifn =0and g > 2, then
Xg,0=Xg0UXg_1,2-
Consider the bundle over X given by

€ ={(z,(U.D)) | ze U} cCx X,



1708 OUYANG and TAMBURELLI

and take the quotient of each fiber over (U,,I') by the action of I'. The result
is a bundle € over X, called the universal curve, whose fiber over (U,,T") is
X =U,/T.

We say that a closed set £ C X is a geometric limit of E,, C X,, if E,, converges
to E in the Hausdorff topology of closed subsets of the universal curve. The con-
vergence is faithful if any neighborhood of E contains E, for n sufficiently large.
Similarly, a sequence of continuous maps f, : X, — Z converges to f : X — Z in
the geometric topology if their graphs converge in the Hausdorff topology of € x Z.
This means that f,, converges to f if and only if the domains converge in the geo-
metric topology and lifts of the functions f; to the universal cover converge to f
uniformly on compact sets.

Let ¥ C X x X denote the set of triples (U, 'x,y), where I'y < I'y are dis-
crete subgroups of PSL(2, C). Each element of ¥ gives a unique pair of framed Rie-
mannian surfaces (X, v) and (Y, w), where X = U,/ T'y and Y = U,/ 'y, admitting
a covering map p : Y — X such that dp(v) = w. We endow ¥ with the subspace
topology of X x X.

Let & be the space of triples (X, v, S), where S # @ is a finite system of pairwise
distinct, nontrivial isotopy classes of disjoint simple closed curves in X . To define the
geometric topology on &, we first assume that X is hyperbolic. The Poincaré metric
on X induces a thin-thick decomposition of X . For every [y] € S we denote by K([y])
the geodesic representative of [y] if this is in the thick part, and the corresponding
component of the thin part if the geodesic representative is short or [y] is peripheral.
We set

K($)={J K]

[vles

If X is not hyperbolic, we define K(S) = X. We say that (X,,v,,S,) converges
geometrically to (X, v, S) if and only if (X,,v,) converges to (X,v) and K(S,)
converges faithfully to K(S).

A.2. Riemann surfaces with fundamental group 7.
A Riemann surface with fundamental group Z is biholomorphic to C*, the punctured
disk A*, or an annulus A(R) ={z € (C|% < |z| < 1} for some R > 1. In these cases,
we can explicitly write the complete Riemannian metrics of constant curvature that
they can carry.

The punctured plane C* can be endowed with the complete flat metrics

r? |dz|?
22 22

r? 2 2
gor = —3ho(z)ldz]? =
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where r > 1 is the injectivity radius at any point. The punctured disk carries metrics
of constant curvature k € [—1,0) given by

_ |alz|2
A" = (2l log 22

Depending on how a sequence of base frames v, is chosen in A*, the punctured disks
(A*, vy, gk,.A*) can have different geometric limits. Assume that the sequence of
basepoints v, remains in a compact set of A*. If the injectivity radius is uniformly
bounded, then the curvature «, must converge (after passing to a subsequence) to
some k # 0, and it is evident that the geometric limit is a punctured disk with constant
curvature k; otherwise, the geometric limit is the plane C with the standard flat metric.
More interesting is when the sequence of base frames v, tends toward the puncture.
In this case the condition on the injectivity radius being at least 1 at v,, implies that
the curvatures k, must tend to 0. Again, if the injectivity radius at v,, goes to infinity,
then the limit is necessarily C with the standard flat metric. Otherwise, we can rescale
coordinates by sending z to A,z for some A, € C with the property that A,z, —
w € C*, where the z,,’s are the points where the frames v;, are based. Notice that this
implies that |A,| tends to infinity. In these new coordinates the punctured disk takes
the form

Ar={zeCl0o<|z| < ||}

endowed with the metric

|dz|?
—kn|z|?(log |z| —log|A, )2’

8kn, A =

which converges to (C*, go.,), where 72/ r? is the value of the limit of «, log? |, |
that is bounded away from 0 and infinity because of our assumption on the injectivity
radius.

The annulus A(R) = {z € C| % < |z| < 1} has complete metrics of constant cur-
vature k € [—1,0) given by

e AR) = hicy (2)%]dz]?
_ w2 |dz|?
"~ —«klog(R)? |z|?sin(r log|z|/log R)?’

The real parameter R is related to the modulus of the annulus, which is a conformal
invariant,

log(R)
2

’

mod(A(R)) =
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and to the hyperbolic length of the core geodesic y = {z € C||z| = \LFR}’
272
ngl,A(R) (V) = 10g(R) :

Let us describe the possible geometric limits of the annuli (A(R), g¢ 4(r))- If the
curvature goes to 0 and R remains bounded, then the injectivity radius of (A(R), g«,r)
tends to infinity at every point and a sequence of balls around the basepoint converges
geometrically to C. On the other hand, if the curvature remains bounded and R goes
to infinity, then the annuli (4(R), g,) converge, up to subsequences, to the punctured
disk A* with a metric of constant curvature.

In view of what will follow in Section A.5, we are interested more in the case
where (A(R), g¢,r) converges geometrically to C*. This can be achieved by taking a
sequence of frames v, based at points z, tending toward the core geodesic, while this
is getting pinched in the hyperbolic metric. This means that |z, | = ﬁ + o(ﬁ)
and R, goes to infinity. In the hyperbolic metric, the injectivity radius at the base-
points tends to 0, but if A(R;) is endowed with a metric of constant curvature x, =
ﬂm?%nﬂ + o(log(R,)™?), then the injectivity radius converges to r > 1. The change

of coordinates z — +/Rpz sends (A(Ry). g, ) to the round annulus

A’(R,,):{ze@‘ J;_n<|z|<\/R—n}

endowed with the metric
w2 |dz|?
—kn 10g(Rn)? |z|? sin( (log|z| — log(v/R,)/ log Ry)?’

and it is now evident that the sequence (A'(Ry), &«,,,4’(R,)) converges geometrically
to (C*, go,r), up to subsequences.

8kn,A'(Ry) =

A.3. Holomorphic cubic differentials

The bundle @3 of holomorphic cubic differentials over X is the space of triples
(U, T, q), where (U,,T") € X and ¢ is a holomorphic section of the third symmetric
power of the canonical bundle K of X = U,/ T.

The topology on @3 is such that a sequence of holomorphic cubic differentials
qn converges to ¢ in the geometric topology if and only if the domains converge
geometrically and the lifts of g, and ¢ to the universal covers converge uniformly on
compact sets.

We say that a cubic differential ¢ = ¢(z) dz> on (Y, w) is integrable if

lql:= [F 19| Ae () dz]? < +oo,
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where F' is a fundamental domain for Y in U,. We will often write the above integral

as
/ 1Az
Y

with the understanding that the weight A, is the induced metric on Y from its univer-
sal cover U,.

We denote by (,‘2;”" C @3 the space of integrable holomorphic cubic differentials
on a surface of genus g and n punctures. In local coordinates, these can be written as
f(z)dz3, where f is meromorphic with at most simple poles at the punctures.

Consider now a covering p : (Y, w) — (X, v). The pushforward p«(q) of q is
defined as follows. Let U C X be a sufficiently small ball. The preimage p~!(U) is
a disjoint union of balls V;, on which an inverse p; : U — V; of p is defined. We set

Pe@iy =Y Pf (@)

The pushforward is well-defined as long as q is fiberwise integrable; that is, for every
compact set K C X we have

/ lgIAst < +o0.
p~H(K)

Under some assumptions that we are going to illustrate, the pushforward of holo-
morphic cubic differentials is continuous in the geometric topology. Precisely, let
DPn : (Y, wy) = (X, v,) be a sequence of coverings, and let ¢, be a sequence of
integrable holomorphic cubic differentials on Y. Assume that they converge geomet-
rically to a covering p : (Y, w) — (X, v) and a holomorphic cubic differential g. The
sequence g, defines a sequence of measures on the associated fibers of the universal
curve: on each Y, we can consider the volume form |q,,|)L;nl. We say that g, con-
verges to ¢ faithfully if, for every € > 0, there is an n¢ € N and a compact set K on
the universal curve such that

[ lgnlAs! <
Yu\(KNYy)

for every n > ng and

[t <e
Y\(KNY)

PROPOSITION A.3
The pushforward varies continuously under faithful convergence.



1712 OUYANG and TAMBURELLI

Proof

Fix € > 0, and let K’ be a compact set in the universal curve provided by the definition
of faithful convergence. Let K,, = K' NY,,and let K = K’ NY. Up to enlarging K’
if necessary, we can assume that K, converges to K faithfully. Since g, converges
to g geometrically, we already have that the restriction of ¢, to K, converges to the
restriction of g to K uniformly. Therefore, (pn)«((qn)|x, ) converges uniformly to
P+(q| ). Now, for every n sufficiently large,

/ |Qn|/x;n1 <€
Yu\Ky

thus,

” (Pn)«(gn) — (pn)*((Qn)\K,,)” = l;( |(Pn)*(Qn) - (pn)*((Qn)lKn ) |A;1

-1
5[ lgnlA,, <e.
Y \Kn

Similarly, || p«(q) — p«(qx )|l < €. Because for holomorphic functions convergence
in the L!-norm implies uniform convergence on compact sets, the pushforward is
indeed continuous. O

LEMMA A.4
Faithful convergence is equivalent to geometric convergence without loss of mass,
that is, with the additional assumption that

li At = At
Jim [t = [ laia;

Proof
Faithful convergence together with geometric convergence implies conservation of
mass, as only an arbitrarily small amount of mass lies outside a compact set and we
have uniform convergence on compact sets.

For the other implication, fix € > 0. Since q is integrable, we can find a compact

set K C Y such that
€
|6]|)t_1 < —.
/}"\K o2

Let K,, C Y, be a sequence of compact sets converging faithfully to K. By geometric
convergence, g, restricted to K, converges uniformly to g restricted to K. In partic-
ular,

T / g1z,
Ky K

n—+o0o
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The conservation of mass implies then that

€
li At =/ A<=
Jdim K, lgnlA, " lq| Ay 3

hence, for n sufficiently large, we have

/ gnlAZ) <.
YH\K}'I

The compact set K’ obtained by taking the union of all K,,’s and K in the universal
curve satisfies the condition of faithful convergence. O

Similarly, in the same setting as above, we say that g, converges to g fiberwise
faithfully if it converges geometrically and

lim / gnlig! = / g1A;!
n—>too g,y Sy

for any sequence of compact sets K, C X, faithfully converging to K C X. The same
argument of Proposition A.3 proves the following.

PROPOSITION A.5
If g, converges to q fiberwise faithfully, then (py)«(qn) converges geometrically to

P«(q)

A.4. Meromorphic functions

We denote by Ry the space of triples (X, v, f), where f : X — Cis holomorphic
and at most d-to-1. We say that f : X — C is meromorphic if f does not send every
point of X to infinity, and we say that f is invertible if f is not constantly zero. We
endow R, with the geometric topology, so that a sequence (X,, vy, f,) converges
to (X, v, f) if and only if (X}, v,) converges to (X, v) geometrically and there exist
finite sets £, C X, and E C X so that f, converges to f uniformly on compact sets
on X, \ E,.

THEOREM A.6 ([30, Theorem A.2.6])

We have that R, is compact. Moreover, for any sequence f, of invertible meromor-
phic functions, there exist constants c, such that ¢, f, subconverges to an invertible
function.

A.5. Cubic differentials from simple closed curves
Let (Y, w) be a framed Riemannian surface with constant curvature ¥ and fundamen-
tal group Z. Standard models for these surfaces have been described in Section A.2.
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Choose a biholomorphism
hiY—)A(F,R)Z{ZE(C|F<|Z|<R}

with 0 <r < R < 400. We set ¢(Y,w) = h*(dZL;). It is clear from the discussion
in Section A.2 that ¢ (Y, w) depends continuously on (¥, w) € X. Up to a constant
multiple, one has that ¢ (Y, w) is the only cubic differential on Y invariant under the
automorphisms of Y.

Given (X,v,S) € &, every element [y;] € S determines a covering p; :
(Y;,w;) = (X,v), where Y; is a Riemann surface with fundamental group Z. We
define the holomorphic cubic differential associated to the system of curves S as

0(X,v,8) =D (p)«d Vi, wy).

i=1

The following is a key proposition which requires a different argument than the
proof found in McMullen’s appendix (see [30, Proposition A.3.2]).

PROPOSITION A.7

The differential 0(X,v, S) is holomorphic with poles of order at most 3 at the punc-
tures of X. Moreover, 0 0.

Proof

If Y; is an annulus, then ¢(Y;, w;) is integrable, and hence its pushforward is inte-
grable. Otherwise, Y; is a punctured plane or a punctured disk. Each puncture of Y;
has a neighborhood that is mapped injectively to a neighborhood of a puncture in
X, creating a pole of order 3 for 6. Since ¢ (Y;, w;) is integrable outside a neigh-
borhood of the punctures, its pushforward is holomorphic. It is clear that 8 is not
identically zero when S contains a peripheral curve, as 6 has a triple pole at the
corresponding puncture. Therefore, we are only left to consider the case of X hyper-
bolic and S consisting of homotopy classes of disjoint simple closed curves. This will
follow from the fact that the cubic differentials (p; )« (¢ (Y;, w;)) are linearly indepen-
dent. Let pg : 771 (X) — SL(3,R) denote the Fuchsian representation uniformizing X .
A Hitchin representation p € Hit3(.S) has the property that every simple closed curve
y is sent to a diagonalizable matrix p(y) with distinct eigenvalues A; > A, > 1> A3
(see [16], [21]). Kim in [19] showed that the differentials of the length functions
m; = %log()tz(p(yi)) are linearly independent in Tp*0 Hit; and annihilate any vector
tangent to the Fuchsian locus (see [19, Theorem 0.1]). On the other hand, Labourie
and Wentworth proved a generalization of Gardiner’s formula ([23, Theorem 4.0.2])
that relates dm; with the cubic differentials (p;)«¢(Y;, w;). More precisely, if we
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identify the tangent space T, Hits with H(X, K?) @ HO(X, K3), there is a con-
stant ¢ such that

amitq) = eRe( [ a(pp(¥iouna)

for every ¢ € H%(X, K3). Since H%(X, K?) has trivial intersection with the tangent
space to the Fuchsian locus, it follows that the dm;’s are linearly independent if and
only if (p;)«¢(Y;, w;) are linearly independent, as claimed. O

PROPOSITION A.8
The map 6 : 8 — @3 associating a holomorphic cubic differential to a system of
curves is COntinuous.

Proof

The proof follows the same arguments of [30, Proposition A.3.3]. We report here the
main ideas of the proof for the convenience of the reader. Let (X,, v,,S,) be con-
verging to (X, v, S). By linearity, we can reduce to the case of S, consisting of only
one curve. Then K(S) has one or two connected components, depending on whether
a separating or nonseparating curve is pinched off. Let us assume first that S contains
only one curve y. Let p, : (Y, w,) — (X5, v,) be the associated sequence of cover-
ings converging to p : (Y, w) — (X, v). Since we already know that ¢,, = ¢ (Y, wy)
converges geometrically to ¢ = ¢ (Y, w), the proposition follows if we show that the
convergence is also faithful (Proposition A.3) or fiberwise faithful (Proposition A.5).
We check this case by case:

(1) X =C*.

(a) X, = C* for every n. In this case the coverings p, and p are trivial so
the convergence is clearly fiberwise faithful.

(b) X}, is hyperbolic, and K(S,) is the thin part of X,, containing a short
geodesic y,. Each Y}, is then an annulus endowed with a metric of
constant curvature k, tending to 0, and the sequence of basepoints is
getting closer to the core geodesic. Up to isometries we can assume that
Y, = A’(R,) as described in Section A.2 and that ¢, = dZ—Z;. For the
hyperbolic metric, the length of the core geodesic is tending to 0, and
the thin part of Y, is an annulus around the core geodesic that is sent

injectively by the covering p, onto the thin part of X, (see Figure 1).
ldz|?

2|2 >
Y, a cylinder of circumference 27 and finite height. Moreover, in this

metric, the boundaries of the thin part are at uniform bounded distance
from the boundaries of A’(R,). The limit ¥ endowed with the flat
metric |¢|3 is instead an infinite cylinder of the same circumference.

which makes

. . 2
We can also endow Y, with the flat metric |¢, |3 =
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Y, Y
. n—4o00 ! ;
y}ni Vn + 1 - W E
Pu p

)

(©)

=g noteo |
: -V

X

X

Figure 1. Hyperbolic surfaces converging to the punctured plane.

Let K, C X,, be a sequence of compact sets that faithfully converges
to K C X. For n large enough, K, is entirely contained in K(S,), and
its preimage in Y, consists of one component in the thin part, which
persists in the limit, and other components in the thick part, confined
in a narrow neighborhood of the ends of Y;,, whose |¢,| 3 _area goes to
0 (cf. [30]). Therefore, noticing that in the thick part of Y, there is a
constant C > 0 such that A,, (z)~! < C|z|, we have

2
/ gulrgl <C / ldzf
P (KOt it Koy 2]

2
e / 1gal3
P (KN

which tends to 0. We conclude that ¢, converges to ¢ fiberwise faith-
fully.

X, is hyperbolic, and K(S,) is a neighborhood of a puncture. The
argument from part (b) applies using the punctured disk (A}, g, ax)
as the model.

X is hyperbolic. This implies that X,, is hyperbolic for all n, and we can
distinguish three cases:

(a)

K([y]) is a geodesic that is a limit of geodesics K([y,]). We have that

n—+o0o

o e
Y, Y



LIMITS OF BLASCHKE METRICS 1717

=

n—-+oo

¢

near end

~

(b)

e

P far end

N\

.m n—>+00

Xll

Figure 2. Separating geodesic limiting to a puncture.

because the value of the above integral depends continuously on the
hyperbolic length of y, and the curvature «,, which are both converg-
ing.

K([y]) is a neighborhood of a puncture that is a limit of a neighbor-
hood of a puncture K([y,]). Each Y}, is a punctured disk with constant
curvature k, converging geometrically to a punctured disk ¥ with con-
stant curvature k. Since the portion at fixed |¢;, | % _distance (resp., |¢] 3
distance) from the boundary of A* injects into a neighborhood of the
puncture in X, (resp., X), the convergence is fiberwise faithful.
K([y]) is a neighborhood of a puncture that is a limit of the thin part of
X, containing a separating geodesic y,. In this case K(Sy) is bounded
by a “near” end and a “far” end with respect to the basepoints v, (see
Figure 2). The distance of a faithfully convergent sequence of compact
sets K, from the far end tends to infinity. The covering Y, is an annu-
lus with constant curvature k,, which in the |¢n|%-metric is a finite
cylinder. The limit Y is a punctured disk with constant curvature « that
in the |¢| 3 _metric is a half-infinite cylinder. The lifts of K, in the near
end persist in the limit, while those in the far end are confined in a col-
lar with |¢, | 3 area tending toward zero. By identifying Y, with A(R;)
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endowed with a metric of constant curvature k, (see Section A.2), the
collar containing the lifts in the far end is an annulus of the form

N(R,,):{zec‘Rin<|z|<%}

. . . 2
with C,, tending to 1, because its |¢, |3 -area must tend to 0. Therefore,

[ al2z!

Pt (K
</ —/—Kn10g(Ry) |z|sin( log|z|/log(Ry))
~ IN®RY)

s 2

|dz|?

7 sin(m log(r)/log(Ry)) dr

= —2/—kn10g(Ry) . .
_ /—logz(Rn) i
=2 _KnTO _Cos(log(Rn) log(Cn))>,

which converges to zero as n goes to infinity, so we can conclude that

the convergence is fiberwise faithful.
We are left to analyze the case of S consisting of two curves. This happens when a
nonseparating geodesic is pinched in the hyperbolic metric, so that K(S) is the dis-
joint union of two neighborhoods of two punctures. Now both ends of K(S,) remain
at bounded distance from the basepoints. Let (¥, w) and (Y’, w’) denote the two cov-
erings of X associated to the two peripheral curves around the two punctures. We may
choose basepoints w,,w,, € Y, near each of the two ends of Y, such that (¥,,w,)
converges to (¥, w) and (¥, w;,) converges to (Y',w’) (see Figure 3). Let K, C X,
be faithfully converging to K C X. The preimages of K, near one end persist in
(Y, w), while those near the other persist in (Y’, w’). Since 8(X, v, S) is defined as
the sum of these two contributions, we have that 6(X,,, v,, S) converges to 8(X, v, S).
O

A.6. Geometric limits of holomorphic cubic differentials

We have all the ingredients to prove the main result of this appendix. Let PQ3 denote
the space of nonzero holomorphic cubic differentials up to multiplication by a com-
plex scalar. We denote by IP’C‘Z;Z’,’n the subspace of integrable holomorphic cubic dif-
ferentials on a surface of genus g and n punctures.

THEOREM A.9
The space PQ; ,, has compact closure in PQ>.
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wn:’ ,': ~ n: w1’1 :: n—>+oo
L A Vn ' ¢

Py

Figure 3. Nonseparating geodesic limiting to a pair of punctures.

Proof

Let (X, Um,[gm]) be a sequence in IP’(Qz,’n. By the compactness of X, we may
assume that (X,,, v,,) converges geometrically to (X, v). Suppose that X is hyper-
bolic with a simple closed geodesic [y]. We can find a sequence of homotopy
classes [y;;] of curves in X,, such that, setting S, = {[ym]} and S = {[y]},
the triple (X, VUm,Sm) € 8 converges geometrically to (X,v,S). By Proposi-
tion A.8, the sequence of holomorphic differentials 6,, = (X, Vi, Sm) converges
to 8 = 0(X, v, S). Each of these cubic differentials is nonzero and has poles of order
at most 3 by Proposition A.7; hence, the functions f,, = g_Z are meromorphic. By
Theorem A.6, there is a sequence of constants c,, and finite sets E, C X, and
E C X such that ¢, f;, has a subsequence converging to an invertible function f
uniformly on compact sets on X \ E. Since ¢y, is holomorphic, ¢,,,¢,, converges geo-
metrically even at E to f0 = ¢; thus, [¢] converges to [¢]. Now, if X is a punctured
plane or a three-punctured sphere, then the same argument applies, taking S = {[y]},
where now [y] is the homotopy class of a peripheral curve. We are left to consider
the case X = (C,0). We can rescale the metrics on X,, so that the injectivity radius
at vy, is constantly equal to 1. This modified sequence (X,.v;,.q,,) converges, up
to subsequences, to a limit (X’,v’,q’), because X’ # C and the previous part of
the proof applies. It follows that [¢,,] converges to a polynomial holomorphic cubic
differential over C with degree bounded above by the order of the zeros of ¢’ at the
basepoint v’. O
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