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Abstract
We find a compactification of the SL.3;R/-Hitchin component by studying the
degeneration of the Blaschke metrics on the associated equivariant affine spheres. In
the process, we establish the closure in the space of projectivized geodesic currents
of the space of flat metrics induced by holomorphic cubic differentials on a Riemann
surface.

Introduction
Recently, people have been interested in the study of surface group representations
into higher rank Lie groups with the aim of understanding to what extent the clas-
sical Teichmüller theory for PSL.2;R/ can be generalized (see [35]). One of these
higher Teichmüller spaces is the deformation space of convex real projective struc-
tures B.S/ on a closed surface S , which were first introduced by Goldman [16]
as a generalization of hyperbolic structures and have been studied since then by
many authors using various topological and differential geometric techniques (see
[10], [14], [25], [36], [39]). In particular, Labourie [22] and Loftin [24] indepen-
dently have found a parameterization of B.S/ as the bundle Q3.S/ of holomorphic
cubic differentials over the Teichmüller space of S using tools from affine differential
geometry. They show that a convex real projective structure on a surface S is equiva-
lent to an equivariant embedding of eS into R3 as a hyperbolic affine sphere. Certain
differential invariants of these affine spheres, namely, the conformal structure of the
Blaschke metric and the Pick differential, give the aforementioned homeomorphism
between B.S/ and Q3.S/.

In this paper, we study degeneration of Blaschke metrics when the parameters
leave every compact set in Q3.S/. Our construction is inspired by Bonahon’s inter-
pretation of Thurston’s compactification of Teichmüller space as geodesic currents
(see [6]). We remind the reader that geodesic currents are !1.S/-invariant measures
on the space G .eS/ of unoriented bi-infinite geodesics of eS that give a way to compute
lengths of closed curves on S . The framework of geodesic currents is very convenient
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for these types of questions, as the space of geodesic currents up to scalar multi-
plication is compact, and the convergence of geodesic currents is equivalent to the
convergence of the length spectrum. Our construction follows a recent paper of the
first author [33] and consists in defining an embedding of the space Blaschke.S/ of
Blaschke metrics on S into the space of projectivized geodesic currents P Curr.S/
and in studying their limits when the parameters leave all compact sets in Q3.S/. Our
main result can be stated as follows.

THEOREM A
@Blaschke.S/D P Mix3.S/.

Here, P Mix3.S/! P Curr.S/ is the space of mixed structures, that is, geodesic
currents that come from a flat metric with cone angles 2! C 2k!

3
on a subsurface

and from a measured lamination on the complement. A precise definition of a mixed
structure is given in Section 2.3.

This is related to a compactification of B.S/, because Blaschke.S/DB.S/=S1,
where S1 acts on cubic differentials by multiplication. Moreover, from the proof of
Theorem A, one can actually keep track of the circle action if the mixed structure
contains a flat part or else see that points in the same orbit tend toward the same
limiting lamination if the limiting mixed structure contains no flat parts.

We remark in addition that the same statement of Theorem A holds if one replaces
the Blaschke metric of the affine sphere with the induced metric on the minimal sur-
face in SL.3;R/=SO.3/, which is the image of the affine sphere under a generalized
Gauss map.

The proof of Theorem A follows the main ideas of [33, Theorem 5.5]: we com-
pare the Blaschke metric with the flat metric with conic singularities induced by the
Pick differential and show that both their limiting geodesic currents are mixed struc-
tures that enjoy the same decomposition into subsurfaces and coincide in their non-
laminar part. Thus, Theorem A follows once we establish the closure in P Curr.S/
of the space of flat metrics with conic singularities Flat3.S/ induced by holomorphic
cubic differentials on S . We show the following.

THEOREM B
@Flat3.S/D P Mix3.S/.

This result is analogous to the one proved in [12] for flat metrics induced by holo-
morphic quadratic differentials. However, their proof relies on a technical statement
about geometric limits of quadratic differentials proved by McMullen [30] that uses
in a crucial way the role of holomorphic quadratic differential in Teichmüller theory.
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In the appendix, we are able to extend McMullen’s result to holomorphic cubic dif-
ferentials using convex real projective geometry instead. We expect that this theory of
geometric convergence will hold for higher-order holomorphic differentials as well.

The SL.3;R/-Hitchin component (defined in Section 3) is identified with B.S/

and is the fundamental example from higher Teichmüller theory, as it is a gener-
alization of the classical Teichmüller space. And so several authors have provided
compactifications to the SL.3;R/-Hitchin component or the deformation space of
convex real projective structures. Parreau [34] has shown that limits of surface group
representations into general Lie groups can be described as actions on R-buildings,
and Kim [20] has explicitly described some of these limiting buildings in the set-
ting of SL.3;R/ as R-trees with copies of R2 attached. Alessandrini [1] has utilized
techniques from tropical geometry to describe limits as tropical projective structures.
Loftin, in a series of papers (see [25]–[27]), has examined in detail the degeneration
of convex real projective structures under neck pinching. More recently, Loftin and
Zhang have provided coordinates to this space in [28].

Despite these numerous perspectives, the most natural compactification of Teich-
müller space is the Thurston compactification, whose boundary objects are given by
(projective classes) of measured laminations. It has been an ongoing goal in higher
Teichmúller theory (see [35, Section 11]) to obtain a description of boundary points
of Hitchin components as geometric objects, generalizing measured laminations. Fur-
thermore, it would be interesting to obtain these boundary objects as a degeneration
of geometric objects, much in the same spirit as Thurston, where hyperbolic surfaces
degenerate to measured laminations. Here, our compactification contains the Thurston
compactification, and the new objects, the mixed structures, are natural generaliza-
tions of measured laminations. The Blaschke metrics, coming from affine spheres,
limit to these mixed structures, thereby achieving this goal for the SL.3;R/-Hitchin
component.

1. Geodesic currents
Let S be a closed surface of genus at least 2. For a fixed auxiliary hyperbolic metric "
on S , its universal cover .eS;e"/ is isometrically identified with H2. Denote by G .eS/
the space of bi-infinite unoriented geodesics. Then G .eS/D .S1 " S1 n#/=Z2. Fol-
lowing Bonahon [6], we define a geodesic current to be a !1.S/-equivariant Radon
measure on G .eS/. The topology on the space Curr.S/ of geodesic currents is given
by the weak-* topology; that is, $n! $ if and only if, for any continuous real-valued
function f on G .eS/ of compact support, one has that

Z
G .eS/

f d$n!
Z
G .eS/

f d$:
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Observe that a priori the definition of a geodesic current seems to depend upon the
choice of hyperbolic metric, but by the Swarc̆–Milnor lemma, any two hyperbolic
metrics are !1.S/-equivariantly quasi-isometric to each other, and this quasi-isometry
extends to their ideal boundaries. Hence, there is a !1.S/-equivariant homeomor-
phism between the two spaces of bi-infinite unoriented geodesics.

The first example of a geodesic current is given by the discrete measure ı" sup-
ported on the lifts of a closed geodesic % on a hyperbolic surface .S;"/. This exam-
ple easily extends to measured laminations, that is, closed sets L of simple geodesics
on S endowed with a measure $ on transverse arcs, which is invariant under trans-
verse homotopies. In fact, we may lift L to the universal cover to a closed set QL
of geodesics which are !1.S/-equivariant. To any geodesic arc k on the surface, the
transverse measure assigns a number denoted i.&; k/. The arc k may be lifted to the
universal cover, and if C denotes the set of geodesics which intersect transversely
with ek, then we have the geodesic current assign measure i.&; k/ for C . This gives a
!1.S/-equivariant Radon measure on G .eS/.

There is a notion of intersection number on the space of geodesic currents extend-
ing the geometric intersection number of simple closed curves. Denote by DG .eS/ the
set of pairs of bi-infinite unoriented geodesics which intersect transversely. Denote
the quotient by !1.S/ of DG .eS/ by DG .S/. The intersection number between two
geodesic currents ' and ( is defined to be

i.$;(/D
Z
DG .S/

d$" d(:

Bonahon shows that this is a continuous bilinear functional on the space of geodesic
currents (see [5]), extending the notion of the geometric intersection number for sim-
ple closed curves in the sense that if $D ı" and ' D ı" 0 are geodesic currents coming
from simple closed curves, then i.ı" ; ı" 0/ equals the geometric intersection number
between % and % 0.

The intersection number captures all the information of a geodesic current in the
following sense. Let C.S/ be the set of homotopy classes of closed curves on S .
As mentioned above, for each Œ%) 2 C.S/, one can construct the corresponding
geodesic current ı" . Otal [32] shows that the map which assigns a geodesic current
its marked length spectrum ¹i.$; ı" /ºŒ"#2C.S/ is injective. Moreover, the intersection
number completely characterizes measured laminations (see [6]): a geodesic current
$ 2 Curr.S/ arises from a measured lamination on S if and only if i.$;$/D 0.

An important facet of geodesic currents is that a host of geometric objects can
be represented by them. Historically, the first use of geodesic currents not arising
from measured laminations was in Bonahon’s construction of Liouville currents (see
[6]) representing hyperbolic structures. The length spectrum of a Liouville current is
given by the hyperbolic length of the unique geodesic representative in Œ%). Later it
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was shown (see [32]) that, more generally, all negatively curved Riemannian metrics
on S can be realized as geodesic currents in the above sense. The self-intersection
number of any current constructed in this way is equal to !

2 Area.S/ (see [32]). More
recently, this construction has been generalized to locally CAT.$1/ metrics on S
(see [17]) and nonpositively curved Riemannian metrics with conic singularities (see
[4], [15]).

The space of projectivized currents P Curr.S/ is the quotient of Curr.S/ by RC;
that is, two geodesic currents $ and ( are identified if there exists a positive constant
c so that $D c(. The space of projectivized currents with the quotient topology is
compact (see [6]).

2. Flat metrics induced by cubic differentials

2.1. Generalities on cubic differentials and flat metrics
Let X D .S;J / be a Riemann surface. A holomorphic cubic differential on X is a
holomorphic section of K3, where K is the canonical bundle of X . This means that
locally a cubic differential is of the form f .z/dz3, where z is a local coordinate chart
for X and f is holomorphic. If w is a different coordinate chart, then on the overlap,
one has the transformation property: f .z/dz3 D f .z.w//.z0.w//3 dw3. The vector
space of cubic differentials will be denoted Q3.X/. By the Riemann–Roch theorem,
it has real dimension 10g $ 10.

To any cubic differential q, one can form the tensor jqj followed by its 2=3rd
power jqj2=3. This is associated to a well-defined symmetric bilinear form. In fact,
it is a smooth metric with zero curvature away from the zeros of the cubic differen-
tial q. At each zero of order k % 1, there is a conic singularity of angle 2!.1C k

3 /.
Conversely, to any smooth flat metric m with isolated conic singularities, all having
angle of the form 2!.1C k

3
/, there is a complex structure on S and a holomorphic

cubic differential q, so that mD jqj2=3 (see [2, Proposition 2.5]). For such a metric
m, we denote by cone.m/ the set of conic singularities, and for any x 2 cone.m/ we
define c.x/ as the cone angle at x. The Gauss–Bonnet formula gives a restriction on
the conic singularities that can occur. In fact, the following must hold:

2!*.S/D
X

x2cone.m/

!
2! $ c.x/

"
:

An important feature of flat metrics with conic singularities is the structure of
their geodesics. In particular, geodesics come in two distinct types (see [3, Proposi-
tion 2.2]).

PROPOSITION 2.1
Letm be a flat metric with conic singularities on S . A closed curve % is a geodesic for
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m if and only if % is either a closed Euclidean (i.e, not containing cone points in its
interior) geodesic or a concatenation of Euclidean line segments between cone points
such that the angles between consecutive segments are at least ! on each side of % .

For any flat metric m with conic singularities, there is a unique geodesic repre-
sentative in each homotopy class except when there is a family of parallel geodesics
filling up a Euclidean cylinder (i.e., when they are of the first type in Proposition 2.1).
We will call the homotopy class of a curve with nonunique geodesic representatives
foliating a cylinder a cylindrical curve. A geodesic segment between two (not nec-
essarily distinct) cone points that has no cone points in its interior is called a saddle
connection. We say that a bi-infinite geodesic is nonsingular if it does not contain
any cone point. We denote by G .q/ the space of bi-infinite geodesics on eS for the flat
metric jqj 23 . We think of G .q/ as the quotient of unit speed parameterized geodesics
for jqj 23 with the compact-open topology, where we forget the parameterization. We
denote by G 0.q/ the subspace of nonsingular geodesics. Let G !.q/ be the closure of
G 0.q/ in G .q/. The properties of geodesics in G !.q/ have been extensively studied
in [4, Section 2.4], and we refer to that for a complete account. In the same paper, the
authors defined a map

@q W G .q/! G .eS/
that associates to a bi-infinite geodesic its endpoints. They showed that this map is
closed, but, in contrast with the case of negatively curved metrics, it fails to be injec-
tive; for instance, lifts of geodesics foliating a cylinder have the same endpoints.

2.2. Geodesic currents from flat metrics
In [4], the authors defined geodesic currents encoding the length spectrum of a flat
metric on S . We recall briefly here the main steps of their construction.

Let q be a holomorphic cubic differential on X . The precurrent OLq for q is the
!1.S/-invariant measure on G .q/ defined as follows. By denoting by T 1S reg the unit
tangent bundle over S reg D S n q"1.0/, the geodesic flow on T 1S reg has a canonical
invariant volume form given locally as one-half of the product of the area form on
S reg and the angle form on the fiber. Contracting this 3-form with the vector field
generating the flow gives a flow-invariant 2-form. The absolute value is an invariant
measure on the local leaf spaces of the foliation by flow lines. The flow lines are
precisely the (oriented) geodesics in G 0.q/; thus, the measure on the local leaf space
determines a !1.S/-invariant measure on G 0.q/. This is then extended to zero for the
rest of G .q/, so that the support of OLq is contained in G !.q/. The geodesic current
associated to q is then defined as the pushforward

Lq D .@q/! OLq
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of the precurrent OLq under the map @q W G .q/! G .eS/.
It turns out that every nonsingular bi-infinite geodesic is contained in the support

of Lq , so that supp.Lq/D @q.G !.q// WD G !.eS/. Moreover, Bankovic and Leininger
found an explicit formula for this measure in local coordinates, which allows them to
prove that for any closed curve % on S ,

i.Lq; ı" /D `q.%/;

where `q.%/ denotes the length for the flat metric jqj 23 of a geodesic representative
in the homotopy class of % . Moreover, it follows from the definition of the precurrent
OLq that i.Lq;Lq/D !

2 Area.S; jqj 23 /.
Let Q3.S/ be the bundle of holomorphic cubic differentials over the Teichmüller

space of S . The construction above defines a continuous map

Q3.S/! Curr.S/;

q 7!Lq :

This clearly fails to be injective, as holomorphic differentials that differ by multiplica-
tion by a complex number of modulus 1 induce the same flat metric and thus the same
geodesic current. However, combining the fact that geodesic currents are determined
by their length spectrum (see Section 1) and the spectral rigidity result for flat metrics
([4, Main Theorem]), we deduce that this is the only way injectivity fails. Therefore,
if we denote by Flat3.S/ the quotient Q3.S/=S1, which describes the space of flat
metrics on S induced by holomorphic cubic differentials, then the induced map

bL W Flat3.S/! Curr.S/

is injective.

2.3. Degeneration of flat metrics
In order to describe a compactification of the space of flat metrics induced by cubic
differentials, we want to embed this space into P Curr.S/ by considering the compo-
sition

Flat3
bL$! Curr.S/

!$! P Curr.S/:

However, this map is not injective, because two cubic differentials that differ by mul-
tiplication by a nonzero complex number have proportional currents. Therefore, we
consider the quotient Flat13.S/DQ3.S/=C!, which is the space of unit-area flat met-
rics on S induced by cubic differentials, so that we now have an injective continuous
map
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L W Flat13.S/! P Curr.S/:

Since the space P Curr.S/ is compact, a compactification of Flat13 is obtained by look-
ing at limits of sequences of unit-area flat metrics induced by cubic differentials that
leave every compact set in Flat13.S/. The result we obtain is analogous to that of unit-
area flat metrics coming from quadratic differentials proven in [12]: the boundary
consists of mixed structures, where the flat pieces are now flat metrics of finite area
induced by meromorphic cubic differentials. In particular, this will also show that the
map L is an embedding.

Let us now define more precisely what a mixed structure is. Let S 0 ! S be a !1-
injective subsurface of S with negative Euler characteristic. We view S 0 as a surface
with punctures. We denote by Flat31.S

0/ the space of unit-area flat metrics with conic
singularities of angle 2! C 2k!

3 for some integer k %$2, where k is allowed to take
negative values only at the punctures. In other words, Flat31.S

0/ is parameterized by
the bundle of unit-area meromorphic cubic differentials with poles of order at most 2
at the punctures over the Teichmüller space of S 0. This, in particular, implies that the
boundary curves are realized by punctures and have length 0 for the flat metric.

Given a subsurface S 0 ! S , a cubic differential metric q 2 Flat13.S
0/, and a mea-

sured lamination & whose support can be homotoped to be disjoint from S 0, we define
a mixed structure as the geodesic current

(D &CLq :

We also allow for the possibility that S 0 D; or S 0 D S . In these cases, the correspond-
ing mixed structure is a measured lamination or a flat metric, respectively. Now, let
Mix3.S/! Curr.S/ denote the space of all mixed structures, and let P Mix3.S/ be its
projection into P Curr.S/. Observe that if ( 2Mix3.S/ is not a pure measured lami-
nation, then i.(;(/D !

2
. Notice, moreover, that if ˛ is a curve in the boundary of the

subsurface S 0, then i.(; ı˛/D 0, but we do not exclude the possibility that ˛ is in the
support of the laminar part &.

THEOREM 2.2
The closure of Flat13.S/ in P Curr.S/ is the space of P Mix3.S/.

Proof
The proof will be divided into two parts: first we show that, for any sequence qn in
Flat13.S/, there exist a mixed structure ( and a sequence of positive real numbers tn
such that, up to subsequences,

lim
n!C1

tn`qn.%/D i.(; ı" /
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for every % 2 C.S/. Then we will show that every mixed structure can be obtained as
such a limit.

Part I
Let qn be a sequence of cubic differentials, and let tn be a sequence of positive real
numbers such that tnLqn converges to L1 in P Curr.S/. We have to show that, up to
rescaling, L1 is a mixed structure.

If the sequence tn converges to 0, then

i.L1;L1/D lim
n!C1

t2n i.Lqn ;Lqn/D
!

2
lim

n!C1
t2n D 0:

Therefore, L1 is a measured lamination.
Since every geodesic current has finite self-intersection number, the sequence tn

cannot diverge to C1. Thus, up to rescaling and extracting a subsequence if neces-
sary, we can assume that tn converges to 1. Consider the set

E D
®
˛ 2 C.S/ j i.L1; ı˛/D 0 and i.L1; ıˇ / > 0 8ˇ such that i.ı˛; ıˇ / > 0

¯
:

The structural theorem for geodesic currents ([7, Theorem 1.1]) allows us to decom-
pose the limiting geodesic current L1 as

L1 D
X

W#SnE
$W C

X
˛2E

w˛ı˛;

where the first sum varies over all connected componentsW of S nE and thew˛’s are
nonnegative weights. Moreover, this sum is orthogonal with respect to the intersection
form i.&; &/. We only need to understand the geodesic currents $W that can appear in
the above decomposition. Following [7, Theorem 1.1], given a componentW of S nE ,
we define the systole of L1 on W , denoted sysW .L1/, as the infimum of the set

D.W /D
®
i.L1; ı" / j % 2 C.W /;% nonperipheral

¯
:

We distinguish two cases:
(i) If sysW .L1/ D 0, then a general result on geodesic currents ([7, Theo-

rem 1.1]) implies that the restriction of L1 to W is a measured lamination.
(ii) If sysW .L1/ > 0, then we have a uniform lower bound for the qn-length of

any nonperipheral simple closed curve and hence also of any nonperipheral
closed curve inW . SinceW is a connected component of S nE , the qn-lengths
of the boundary curves in W go to 0. Therefore, after choosing a basepoint in
W (away from the boundary) and passing to a subsequence, we can assume
that qn restricted to W converges geometrically to a holomorphic cubic dif-
ferential on W (Theorem A.9), with possible poles of order at most 2 at the
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punctures. (The condition on the order of the poles follows from the finite area
of the metric.) This, in particular, implies convergence of the length spectrum
and thus convergence in the space of geodesic currents.

This proves that L1 is a mixed structure.

Part II
We are now going to show that any mixed structure ( appears as the limit of a
sequence of flat metrics induced by holomorphic cubic differentials.

Let (D &0CLq 2 P Mix3.S/, where q is a meromorphic cubic differential on a
!1-injective subsurface S 0 ! S and &0 is a lamination whose support is disjoint from
S 0. Recall that the simple closed curves %i homotopic to the boundaries of S 0 may
or may not be part of the lamination &0, so we will write &0 D & CPi wiı"i , for
some nonnegative weights wi . Let S 00 D S n S 0. We can find a complex structure on
S 00 and a sequence of meromorphic cubic differentials qn such that (i) the boundary
components of S 00 are conformal to punctures, (ii) the length spectrum of the flat
metrics jqnj

2
3 converges to that of the lamination &, and (iii) its area goes to 0. In

fact, it is easy to explicitly build such a sequence when & is supported on a simple
closed curve ˛ with weight c > 0: first choose any flat metric in Flat13.S

00/ for which
˛ is a cylinder curve; then cut along ˛; and insert a flat cylinder of height cn. This
gives a sequence of meromorphic cubic differentials qn of area 1CO.n/ such that
the rescaled length spectrum

1

n
Lqn DL qn

n3

converges to cı˛ . Hence, the sequence qn=n3 has the desired properties. Since
weighted simple closed curves are dense in the space of measured laminations,
we can find a sequence of meromorphic cubic differentials limiting to any given
measured lamination &.

In order to glue together the flat structures on S 0 and S 00, we proceed as follows.
Let +n be a sequence of positive numbers converging to 0 as n! C1 with the
property that the ball of radius 2+n centered at any puncture of S 0 and S 00 (with respect
to the metric jqj 23 and jqnj

2
3 , respectively) does not contain any other cone singularity.

Inside each of these balls, we can then find an equilateral geodesic triangle with a
vertex at the puncture and edges of length +n. We cut these triangles and then glue the
resulting flat surfaces along the geodesic boundaries corresponding to the same curve
%i , possibly inserting a flat cylinder of height wi ¤ 0, that we think of here as the
lateral surface of a prism with triangular base. One can easily check that for each n
the resulting flat surface has conic singularities with angles 2!C 2k!

3 for some k % 0
as long as q does not have any poles of order 2. In this case, we can thus conclude
that these flat metrics are induced by holomorphic cubic differentials q0n on S , and it
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follows immediately from the construction that Lq0n converges to (. If q has a pole of
order 2, a general procedure described in [2, Section 7] allows us to break up a double
pole into two arbitrarily close simple poles by modifying the metric jqj 23 only in a
neighborhood of the puncture (see also [29, Section 3]). We can then apply the same
surgery described above to these deformed metrics, where we now cut an equilateral
triangle having two vertices at the two simple poles.

2.4. A dimension count
We conclude this section with an informal parameter count of @Flat13.S/.

First recall that, for a hyperbolic surface S 0 of genus g and n punctures, the
Teichmüller space of S 0 has dimension 6g$6C2n. The vector space of meromorphic
cubic differentials with poles of order at most 2 at the punctures has dimension 10g$
10C 4n. We deduce that

dim
!
Flat13.S/

"
D 16g $ 18 and dim

!
Flat13.S

0/
"
D 16$ 18C 6n:

For any !1-injective subsurface S 00 ! S , we consider mixed structures (D Lq C &
so that the support of the flat metric is S 0 D S n S 00. We denote this set as Mix3.S 00/.
By Theorem 2.2, elements in @Flat13.S/ are all of this form, letting S 00 vary among all
possible !1-injective subsurfaces. In particular, if S 00 in an annulus with core curve
˛, then the mixed structures we are considering are all of the form wı˛ CLq , where
w 2 RC and q 2 Flat13.S

0/. If ˛ is a nonseparating curve, then S 0 is connected, has
genus one less than S , and has two punctures. Therefore,

dim
!
Flat13.S

0/
"
D 16.g $ 1/$ 18C 6 & 2D 16g $ 22;

and the dimension of mixed structures in this family is 16g $ 21, where the extra
dimension comes from the weight w. Notice that this subspace of the boundary has
codimension 3 in Flat13.S/. Now let ˛ be a separating curve. Then S 0 D S 01 [ S 02,
where S 0i is a surface of genus gi with one puncture, with gD g1C g2. Therefore,

dim
!
Q3.S 0/

"
D .16g1 $ 18C 6/C .16g2 $ 18C 6/D 16g $ 24;

and the space of flat metrics on S 0 of unit area induced by cubic differentials has
dimension

dim
!
Flat13.S

0/
"
D dim

!
Q3.S 0/

"
$ 3D 16g $ 27;

because we quotient by the C!-action on each component with the constraint that the
total area must be 1. The space of mixed structures of the form (D wı˛ CLq , with
q 2 Flat13.S

0/, has an extra dimension coming from the weight w 2 RC and, thus,

has codimension 3 in Flat13.S/. It is not hard to convince ourselves that, for larger
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complexity subsurfaces, the corresponding set of mixed structures has even higher
codimension.

Since @Flat13.S/ is the union of the sets Mix3.S 00/ over all !1-injective sub-
surfaces, the dimension of @Flat13.S/ coincides with the maximal dimension of the

subsets Mix3.S 0/. We conclude that @Flat13.S/ has codimension 3 in Flat13.S/.

3. Affine spheres and the SL.3;R/-Hitchin component
In this section we review the connection between Hitchin representations of sur-
face groups into SL.3;R/, convex RP2-structures on surfaces, and equivariant affine
spheres in R3. Apart from Section 3.1, the material covered here is classical and can
be found, for instance, in [16], [24], and [22].

Let S be a closed, connected, oriented surface with negative Euler characteristic.
A convex real projective structure$ on S is a maximal atlas of charts of S into the real
projective plane RP2 such that the transition functions are projective transformations
and the image of the developing map dev$ W eS ! RP2 is a strictly convex domain
,!RP2. In this case, we can realize S as a quotient S D,=- of , by a subgroup
- < SL.3;R/ acting freely and properly discontinuously on ,, which is the image
of the fundamental group of S under the holonomy representation hol$ W !1.S/!
SL.3;R/. We denote by B.S/ the deformation space of convex RP2-structures on S .
It turns out (see [10], [16]) that

hol WB.S/!Hom
!
!1.S/;SL.3;R/

"
=SL.3;R/

is an embedding and identifies B.S/ with a connected component of the character
variety of dimension 8j*.S/j.

Around the same time as [16] and [10], Hitchin in [18], using Higgs bundle tech-
niques, studied the connected components of Hom.!1.S/;SL.3;R//=SL.3;R/ (and
more generally of representations into PSL.n;R/) and, in particular, found a distin-
guished connected component Hit3.S/ generalizing Teichmüller space, in the sense
that it is homeomorphic to a cell and contains conjugacy classes of representations of
the form

!1.S/
%0$! PSL.2;R/

irr
,$! SL.3;R/;

where .0 W !1.S/! PSL.2;R/ is both faithful and discrete (and hence is the holon-
omy of a hyperbolic structure on S ) and PSL.2;R/ ,! SL.3;R/ is the unique (up to
conjugacy) irreducible embedding of PSL.2;R/ into SL.3;R/. The SL.3;R/-Hitchin
component coincides with hol.B.S//.

Labourie in [22] and Loftin in [24] have independently found a parameteriza-
tion of the Hitchin component as the bundle over Teichmüller space of holomorphic
cubic differentials. Since this is the point of view that we are going to take in order to
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describe a compactification of the Hitchin component, we recall here how to associate
to a Hitchin representation a conformal structure c and a holomorphic cubic differ-
ential q on .S; c/. The correspondence goes through an affine differential geometric
object, called an affine sphere.

Let U !C be a simply connected domain. Consider a strictly convex immersion
f W U ! R3, and choose / a vector field transverse to H D f .U /. This allows us to
split the standard flat connection D into a tangential part r and a transversal part

Df!Xf!Y D f!.rXY /C h.X;Y //;
Df!X/ D$f!

!
B.X/

"
C 0.X//:

One can check that r is a torsion-free connection, h is a symmetric bilinear form,B is
an endomorphism of TH , and 0 is a one-form on H , for any choice of the transverse
vector field / . We say that / is an affine normal to f if it satisfies the following
requirements:
$ h is positive definite;
$ 0 D 0;
$ for any linearly independent vectors X and Y , det.X;Y; //2 D h.X;Y /.
In this case, r is called the Blaschke connection, and h is the Blaschke metric. More-
over, we say that H is a hyperbolic affine sphere if B.X/ D $X for every vector
field X . Up to translations, we can assume that / D f , which reduces the structural
equations to

Df!Xf!Y D f!.rXY /C h.X;Y /f;
DXf D f!.X/:

The connection between affine spheres and convex real projective structures on sur-
faces is given by the following result.

THEOREM 3.1 ([9, Theorem 3], [8, Theorem 6])
Consider a convex, oriented, bounded domain ,! RP2. There is a unique properly
embedded affine sphere H asymptotic to the positive cone C.,/!R3.

In fact, given a convex RP2-structure on an oriented surface S , the image of the
universal cover of S under the developing map is a bounded, oriented, convex sub-
set ,! RP2; the theorem provides a unique affine sphere asymptotic to the positive
cone C.,/ ! R3, which by uniqueness must be equivariant under the action of the
holonomy. On the other hand, given a --equivariant affine sphere H ! R3, its pro-
jection in RP2 gives a bounded, oriented, convex domain on which - acts properly
discontinuously.
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To obtain a holomorphic cubic differential from this construction, we extend r ,
h, and D by complex linearity. We then choose coordinates so that the Blaschke
metric h is given by hD eu".z/jdzj2 D e jdzj2, where " D ".z/jdzj2 is the hyper-
bolic metric in the conformal class of h. This means that the complex tangent vectors
fz D f!. @@z / and f Nz D f!. @@ Nz / satisfy

h.fz ; fz/D h.f Nz; f Nz/D 0 and h.fz ; f Nz/D
1

2
e :

Let O1 and 1 be the matrices of one-forms expressing the Levi-Civita connection of h
and the Blaschke connection, respectively. We can easily compute

O11N1 D O1
N1
1 D 0; O111 D @ O1

N1
N1 D N@ :

We define the Pick form C by

O1ji $ 1
j
i D C

j
ik.

k;

where .1 D dz and . N1 D d Nz are the dual one-forms. The property of the affine nor-
mal, together with the total symmetry of the Pick form, implies that

1 D
 
111 11N1
11N1 1 N1N1

!
D
#

@ qe" d Nz
qe" dz N@ 

$
;

where q D C N111e . This reduces the structural equations to

fzz D zfz C qe" f Nz ;
f Nz Nz D qe" fz C Nzf Nz ;

fz Nz D
1

2
e f:

The integrability conditions then give the system of PDEs

q Nz D 0;

#&uD 2eu $ 4e"2u
jqj2
"3
$ 2;

(1)

where we recognize that the first equation simply says that q is a holomorphic cubic
differential. Therefore, this construction gives a map ˆ from the space of convex
real projective structures to the bundle Q3.S/ of holomorphic cubic differentials over
Teichmüller space by associating to an element $ 2B.S/ the conformal class of the
Blaschke metric h and the holomorphic cubic differential q. We have the following.

THEOREM 3.2 ([24, Theorem 2], [22, Theorem 1.0.2])
The map ˆ is a homeomorphism.
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3.1. Some estimates
We conclude with some analytic properties of the Blaschke metric that will be useful
in the next section.

LEMMA 3.3 ([26, Proposition 1], [13, Theorem 5.1])
Let ."; q/ 2Q3.S/. The Blaschke metric hD eu" satisfies h > 2

1
3 jqj 23 .

LEMMA 3.4
Let ."; q/ 2 Q3.S/. The following estimate holds for the area of the quotient of the
affine sphere conformal to " and with Pick form q:

2
1
3 kqk'Area.S;h/' 2 13 kqkC 2!

ˇ̌
*.S/

ˇ̌
;

where kqk D
R
S jqj

2
3 is the area of the flat metric induced by the cubic differential q.

Proof
By using the fact that the curvature 2h of the Blaschke metric can be computed as

2h D e"u
%
$1
2
#&uC 2&

&
;

(1) can be rewritten as

1D$2hC 2
jqj2
h3

:

Integrating both sides with respect to the volume form of the Blaschke metric and
applying the Gauss–Bonnet formula, we get

Area.S;h/D 2!
ˇ̌
*.S/

ˇ̌
C 2

Z
S

jqj2
h3

dAh;

and the upper bound follows from the fact that

2
jqj2
h3

dAh D 2
jqj2
h2

dx ^ dy ' 2jqj2

2
2
3 jqj 43

dx ^ dy D 2 13 jqj 23 ;

where the inequality follows from Lemma 3.3. The other inequality is also a direct
consequence of Lemma 3.3.

COROLLARY 3.5
The Blaschke metric is strictly negatively curved.
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Proof
By the formula for the curvature above and Lemma 3.3, we have

2h D 2
jqj2
h3
$ 1 < 2 jqj

2

2jqj2 $ 1D 0:

We consider now the quantity

F D 3

2

%
u$ 1

3
log
%2jqj2
"3

&&
;

which describes the difference between the logarithmic densities of the Blaschke met-
ric hD eu" and the flat singular metric 2

1
3 jqj 23 . This has already been studied in the

context of planar affine spheres in [13]. It turns out that F plays a role analogous to
the inverse squared norm of the Beltrami differential of a harmonic map, in the case
of harmonic maps between hyperbolic surfaces (see [31], [33], [38]). Using (1), the
function F satisfies the PDE

#&F D 3 & 2 43 jqj
2
3

"
e"

F
3 sinh.F /: (2)

In particular, since F > 0 by Lemma 3.3, we notice that F is subharmonic. We use
this fact to get a coarse bound for F on a compact set avoiding all zeros of q and then
improve it to an exponential decay behavior. This approach follows that of Minsky in
[31] in the context of harmonic maps.

LEMMA 3.6
Let p 2 S , and let r be the radius of a ball centered at p for the flat metric jqj 23 that
does not contain any zeros of q. Then

F .p/' 3
2

log
%Area.S;h/

2
1
3!r2

&
:

In particular, if r0 is the radius of such a ball for the renormalized metric jqj 23 =kqk
of unit area, we have

F .p/' 3
2

log
%Area.S;h/

2
1
3!kqkr20

&
:

Proof
LetB be the ball centred at p and radius r for the flat metric jqj 23 that does not contain
any zeros of q. By the subharmonicity of F and the Jensen inequality, we have

e
2
3F .p/ ' e 23

ffl
B F dAq '

 
B

e
2
3F dAq D 2"

1
3

 
B

eu dA& '
Area.S;h/

2
1
3!r2

;

so the first estimate follows.
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The second part of the statement is a simple reformulation, using the fact that
r2 D r20kqk.

LEMMA 3.7
Let S 0 ! S be a !1-injective subsurface with negative Euler characteristic. Let qn
be a sequence of holomorphic cubic differentials on S . Assume that the unit-area flat
metrics j Qqnj

2
3 D jqnj

2
3 =kqnk converge uniformly on compact sets on S 0 to j Qqj 23 , for

some meromorphic cubic differential Qq on S 0 of finite area, and kqnk tends to infinity.
Fix + > 0, and let p 2 S 0 be at j Qqj 23 -distance at least + from the zeros and poles of Qq.
Then, there exist n0 2 N, a constant B > 0, and a sequence dn!C1 such that for
every n% n0,

Fn.p/'
B

cosh.dn=2/
:

Proof
Fix n0 such that all the zeros of qn are contained outside the ball centered at p of
radius +=2 in the j Qqj 23 -metric. Let dn be real numbers such that the ball of radius dn
in the flat metric jqnj

2
3 centered at p does not contain any zeros of qn. Notice that we

can choose dn so that limdn DC1. Let Un be the ball of radius dn
2 centered at p.

Because qn has no zeros in Un, we can choose a coordinate zn such that qn D dz3n in
Un. Moreover, by Lemmas 3.6 and 3.4, the sequence Fn is uniformly bounded on Un
by a constant B > 0. Equation (2) in the background metric j Qqnj

2
3 can be written in

Un as

#Fn D 3 & 2
1
3 kqnke"

Fn
3 sinh.Fn/:

The uniform upper bound on Fn implies that there is a constant C > 0 such that

#Fn % 2Ckqnk sinh.Fn/% 2CkqnkFn:

Consider now the function

g.zn/D
B

cosh.dn=2/
cosh

!p
CkqnkRe.zn/

"
cosh

!p
CkqnkIm.zn/

"

defined on Un. One can easily verify that g %B % Fn on the boundary of Un and

#gD 2Ckqnkg:

From the maximum principle, we deduce that Fn ' g on Un, and, in particular,

Fn.p/' g.0/D
B

cosh.dn=2/
:
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We deduce that, under the assumptions of Lemma 3.7, the sequence Fn decays
exponentially as a function of kqnk, outside the zeros of Qq. This gives a uniform bound
on the Laplacian of Fn; hence, we actually have C 1;˛-convergence to 0 outside the
zeros and poles of Qq.

It will also be useful to compare the Blaschke metric with the hyperbolic metric
" in the same conformal class. The following result can be found in [24].

PROPOSITION 3.8
The logarithmic density u of the Blaschke metric on the affine sphere with Pick form
q satisfies

0 < u' 1
2

log
%
r
%

max
S

% jqj2
"3

&&&
;

where r.a/ is the largest positive root of the polynomial pa.t/D 2t3 $ 2t2 $ 4a. In
particular, " < h' r.a/ 12 " , with aDmaxS

jqj2
&3

.

4. Degeneration of Blaschke metrics
This section is devoted to the proof of Theorem A. We outline here the strategy of
the proof for the convenience of the reader. We first show that the space of Blaschke
metrics embeds into the space of projectivized currents. Since P Curr.S/ is compact,
we can extract convergent subsequences, and in order to describe a compactification
of Blaschke.S/, we only need to characterize limits of sequences that leave every
compact set in Blaschke.S/. This will be achieved by comparing the length spectrum
of the Blaschke metric and that of the flat metric induced by the Pick differential.

PROPOSITION 4.1
Let q1 and q2 be holomorphic cubic differentials on .S;"/, and let h1 and h2 be the
associated Blaschke metrics. Assume that q1 ¤ ei'q2 for any 1 2 Œ0; 2!). Then h1
and h2 are not homothetic.

Proof
Let us write h1 D eu1" and h2 D eu2" . Assume by contradiction that h1 and h2 are
homothetic. Then there exists a constant c such that eu1Cc D eu2 . Without loss of
generality we can assume that c % 0. We first show that necessarily c D 0. If not, then
from (1), we deduce that

0D#& .u1 $ u2/

D 2eu1 $ 4e"2u1 jq1j
2

"3
$ 2eu2 C 4e"2u2 jq2j

2

"3
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D 2eu1 $ 4e"2u1 jq1j
2

"3
$ 2eu1Cc C 4e"2u1"2c jq2j

2

"3

D 2eu1.1$ ec/$ 4e"2u1
% jq1j2
"3
$ e"2c jq2j

2

"3

&

<$4e"2u1
% jq1j2
"3
$ e"2c jq2j

2

"3

&
;

which is not possible, because at a zero of q2 the last expression is nonpositive. Hence
c D 0 and u1 D u2. But in that case, replacing this relation in the above equation, we
get

0D$4e"2u1
% jq1j2
"3
$ jq2j

2

"3

&
;

which implies that jq1j D jq2j at every point. Let f W S! S1 be the smooth function
such that q1 D f q2. Since f is also meromorphic, it must necessarily be constant.
Thus, q1 D ei'q2 for some 1 2 Œ0; 2!), contradicting our assumptions.

REMARK 4.1
The proposition above implies that Blaschke.S/DQ3.S/=S1. Recalling that Q3.S/

can be identified with B.S/, we obtain that Blaschke.S/DB.S/=S1.

PROPOSITION 4.2
The space of Blaschke metrics embeds into the space of projectivized currents.

Proof
Recall that, in Corollary 3.5, the Blaschke metrics were shown to have strictly nega-
tive sectional curvature, so that by Otal’s work in [32], we may embed these metrics
into the space of geodesic currents. Proposition 4.1 allows us to pass to the projec-
tivization with the composition remaining injective.

Given a Blaschke metric h, we will denote by Lh the associated geodesic current.
As the space of projectivized currents is compact, the closure of the space of Blaschke
metrics provides a length spectrum compactification. We now detail the closure of the
space of Blaschke metrics in the space of projectivized currents.

THEOREM 4.3
Let ."n; qn/ 2Q3.S/ be a sequence leaving every compact set. Let hn be the corre-
sponding sequence of Blaschke metrics. Then there exist a sequence of positive real
numbers tn and a mixed structure ( so that tnLhn! (.
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Proof
We distinguish two cases, according to whether the area kqnk is uniformly bounded
or not.

First case: supkqnk <1. By Lemma 3.4, the self-intersection i.Lhn ;Lhn/ is
uniformly bounded, it being proportional to the area of the Blaschke metric. We first
show that the sequence of hyperbolic metrics in the same conformal class "n must
necessarily diverge. Otherwise, up to subsequences we could assume that "n! "1 2
T .S/ and we can write qn D 0n Qqn, where

0n D kqnk1 WDmax
S

jqnj2
"3n
!C1

and Qqn converges uniformly to a nonvanishing cubic differential Qq1 2Q.S;"1/ (as
unit balls in Q3.S/ are compact). But then we would have

kqnk D
Z
S

j0nj
2
3 j Qqnj

2
3 D j0nj

2
3

Z
S

j Qqnj
2
3

"n
dA&n!C1;

because

Z
S

j Qqnj
2
3

"n
dA&n!

Z
S

j Qq1j
2
3

"1
dA&1 ¤ 0:

This would however contradict our assumption that supkqnk <1. Therefore, the
sequence "n of hyperbolic metrics in the conformal class of hn diverges. Then, by
Proposition 3.8, the sequence of currents Lhn leaves all compact sets in Curr.S/.
Since P Curr.S/ is compact, there exists a sequence tn! 0 such that tnLhn ! L1.
We easily deduce that i.L1;L1/D 0; hence, the limiting geodesic current is a mixed
structure that is purely laminar.

Second case: supkqnk D1. By Lemma 3.4, the self-intersection ofLhn diverges
as 2

1
3 kqnk. As a preliminary rescaling, we consider the associated sequence with unit

self-intersection. Denote by OLhn the sequence

OLhn D
1q

2
1
3 kqnk

Lhn :

If the sequence OLhn still leaves all compact sets in Curr.S/, then there is a sequence
tn! 0 such that tn OLhn! OL1, which now has vanishing self-intersection; thus, Lhn
converges to a measured lamination.

If the sequence OLhn stays in a compact set of Curr.S/, then by Lemma 3.3, also
the length spectrum of the unit area flat metrics jqnj

2
3 =kqnk is uniformly bounded.

Thus, from the proof of Theorem 2.2, the geodesic currentsLqn converge projectively
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to a mixed structure $ that is not purely laminar. This furnishes an orthogonal (for the
intersection form i ) decomposition of the surface S into a collection of !1-injective
subsurfaces ¹S 0j ºmjD1, obtained by cutting S along disjoint simple closed curves %i ,
for which $ is induced by a flat metric on each S 0j and is a measured lamination on
the complement. Moreover, we can assume that each simple closed curve %i bounds at
least one flat part, induced by a meromorphic cubic differential Qqj . On each S 0j then,
by Lemma 3.7, the difference Fn between the logarithmic densities of the Blaschke
metric hn and the flat metric jqnj

2
3 converges to 0 uniformly outside a neighborhood

of the zeros and the poles of Qqj as n!C1. This implies that on S 0j ,

hn

2
1
3 kqnk

D e
2
3Fn jqnj

2
3

2
1
3 kqnk

n!1$$$$! jQqj j
2
3

uniformly on compact sets outside the conic singularities of j Qqj j
2
3 . We deduce that,

on each S 0j ,

OL1 D lim
n!C1

OLhn D lim
n!C1

1p
kqnk

Lqn DLQqj ;

because uniform convergence of metrics implies convergence in the length spectrum
([33, Proposition 5.3]). In particular, we have

lim
n!C1

i. OLhn ; ı"j /D 0:

Moreover, for any closed curve ˇ that intersects %j , by Lemma 3.3, we have

lim
n!C1

i. OLhn ; ıˇ /D lim
n!C1

`hn.ˇ/% lim
n!C1

`qn.ˇ/p
kqnk

D i.$; ˇ/ > 0;

where for the last inequality we used the defining property of the curves %j belonging
to the set E introduced in the proof of Theorem 2.2. Therefore, this collection of
curves %j belongs to the set

OE D
®
˛ 2 C.S/ j i. OL1; ı˛/D 0 and i. OL1; ıˇ / > 0 8ˇ such that i.ı˛; ıˇ / > 0

¯

and can thus be used for the orthogonal decomposition of OL1 provided by [7, Theo-
rem 1.1]. We can then write

OL1 D
mX
jD1

LQqj C &;

where & is a geodesic current supported in the complement of
S
j S
0
j , and the above

splitting is orthogonal for the intersection form i . We claim that & is a measured
lamination: in fact,
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!

2
D lim
n!C1

i. OLhn ; OLhn/D i. OL1; OL1/

D
mX
jD1

i.LQqj ;LQqj /C i.&;&/D i.$;$/C i.&;&/

D lim
n!C1

1

kqk i.Lqn ;Lqn/C i.&;&/D
!

2
C i.&;&/:

This shows that OL1 is indeed a mixed structure.

Proof of Theorem A
By Theorem 4.3, we know that @Blaschke.S/( P Mix3.S/. Consider now the family
of Blaschke metrics ht associated to a ray ."; tq/ 2Q3.S/, for a fixed unit area cubic
differential q. By Lemma 3.7 and the proof of Theorem 4.3, we know that Lht con-

verges to Lq in P Curr.S/. Therefore, @Blaschke.S/) Flat13.S/D P Mix3.S/, which
proves the theorem.

4.1. Comparison with the induced metric on the minimal surface
Associated to a Hitchin representation . 2Hit3.S/, there is a unique conformal struc-
ture X on S and conformal equivariant harmonic map f% W eX ! SL.3;R/=SO.3/.
In fact, as discussed in [22], the map f% can be constructed directly from the affine
sphere discussed in Section 3 as a sort of generalized Gauss map. Our techniques also
allow us to understand the degeneration of the induced metric on the associated mini-
mal surface f%.eX/. Using Higgs bundle techniques, one can write this metric explic-
itly (see, e.g., [11, p. 60]) in terms of the embedding data h and q of the affine sphere:

g% D 12.e"2F C 1/h:

Moreover, g% is negatively curved; thus, we can repeat the same construction of the
previous sections for g%: we can realize g% as a geodesic current and describe its
closure in P Curr.S/. It is now straightforward to show that the limiting current L1
is a mixed structure: first notice that 12h < g% < 24h; hence, the rescaling factor
that makes the length spectrum of g% converge is the same as that of the Blaschke
metric. Moreover, we observe that g% is conformal to the Blaschke metric h, and
since F converges to 0 on all subsurfaces in which the systole of the unit area flat
metric jqj 23 =kqk is bounded from below away from 0 (Lemma 3.7), the conformal
factor converges to a nonzero constant in all such regions. Therefore, the current L1
enjoys the same decomposition into subsurfaces as the limiting geodesic current of
the Blaschke metric, and they share the same flat pieces. By an area argument, as in
Theorem 4.3, the restriction of L1 to the other subsurfaces is necessarily a measured
lamination. We have thus proved the following.
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THEOREM 4.4
Let .n be a sequence of SL.3;R/-Hitchin representations that leaves all compact
sets in the character variety, and let gn be the induced metrics on the associated
equivariant minimal surfaces in SL.3;R/=SO.3/. Then there is a mixed structure
$ 2 P Mix3.S/ and a sequence of real numbers tn such that, up to a subsequence,
tnLgn ! $ 2 P Curr.S/. Moreover, any mixed structure can be realized as such a
limit.

As in the case of the Blaschke metrics, the realizability of every mixed structure
follows from Theorem 2.2 and the fact that the length spectrum of the metrics gt aris-
ing from rays ."; tq/ 2Q3.S/ of cubic differentials over a fixed conformal structure
" in the Labourie–Loftin parameterization of Hit3.S/ converges projectively to the
length spectrum of the flat metric jqj 23 .

REMARK 4.2
The reference provided for the computation of g% uses notation and conventions dif-
ferent from ours. In particular, the harmonic metric h"1 in [11] is 1

2
eu" , and the

cubic differential is half of our cubic differential.

4.2. Other compactifications
It would be remiss of us if we did not mention other compactifications of the SL.3;R/-
Hitchin component. Indeed, our work here is not the first such attempt at compact-
ifying a Hitchin component with a goal of understanding the boundary objects. For
example, Parreau [34] has developed a general compactification procedure for reduc-
tive Lie groups: conjugacy classes of surface group representations are assigned a
length function coming from the norm of a translation vector with values in a Weyl
chamber. In the Parreau compactification, the boundary objects are interpreted as
actions on R-buildings. Kim in [20] has applied the Parreau compactification to the
present setting of SL.3;R/ and has shown that some of the affine buildings which
appear in the boundary are constructed from R-trees by attaching copies of R2.

Naturally, the tools employed in the Parreau compactification are quite different
from ours. While Parreau and Kim adopt a more algebraic and Lie-theoretic perspec-
tive, ours is of the analytic persuasion. The differences can most readily be seen in
the intermediary objects: the length spectra favored by Parreau and Kim record the
data of the eigenvalues of the representation, which is more closely aligned with the
Hilbert metric, whereas the Blaschke metric is defined using a PDE incorporating the
data of a Riemann surface and a holomorphic cubic differential. It would be interest-
ing to see what similarities the limits of Blaschke metrics share with those of their
corresponding Hilbert metrics.
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Another algebraic perspective of limits of convex real projective structures is
found in work of Alessandrini [1]. The logarithmic limit set and Maslov dequan-
tization from tropical geometry are used to show that the boundary objects in his
compactification may be interpreted as tropical projective structures.

Taking an analytic approach, Loftin ([25]–[27]) has constructed a partial com-
pactification of the moduli space of convex real projective structures. This is perhaps
the closest compactification to ours, as both utilize the Labourie–Loftin parameteri-
zation of B.S/ by the bundle of cubic differentials over Teichmüller space. In par-
ticular, for a sequence of representations corresponding to a fixed Riemann surface
and a sequence tnq0 along a ray of cubic differentials, our findings are consistent
with his: the limiting object can be interpreted as the flat metric jq0j. Where our
perspectives begin to diverge is when the Riemann surface structure is allowed to
degenerate: Loftin considers the moduli space of Riemann surfaces with the Deligne–
Mumford compactification, whereas we have opted to use Teichmüller space with the
Thurston compactification. Furthermore, Loftin imposes an additional requirement
on such sequences, namely, that the cubic differentials converge (nonprojectively) to
a regular cubic differential on the limiting noded surface. This assumption is used to
show that the limit points in his compactifcation can be interpreted as convex real
projective structures on noded surfaces. It would be interesting to see what the lim-
its would be for a sequence not converging to a regular cubic differential or if the
Riemann surface degenerates to a measured lamination which is not a multicurve.

Appendix. Geometric limits of cubic differentials
For the convenience of the reader, in this appendix we explain the notion of geomet-
ric limits of holomorphic cubic differentials over Riemann surfaces, giving a direct
translation of McMullen’s appendix [30] to the setting of cubic differentials. In the
reference, McMullen focuses solely on quadratic differentials, but the construction is
very general and can be adapted to higher-order differentials as well. Only the proof
of [30, Proposition A.3.2] deeply uses the geometry of Poincaré series associated to
simple closed curves, namely, their being the Weil–Petersson symplectic gradient of
hyperbolic length functions (see [37]). The analogous results for cubic differentials
still hold, as we show using recent work of Labourie and Wentworth from [23] and
Kim from [19].

A.1. Riemann surfaces in the geometric topology
For 2 2 Œ$1; 0), consider the metric

g( D &(.z/2jdzj2 D
% 4

4C 2jzj2
&2
jdzj2
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of constant curvature 2 on a domain U( , which is the complex plane if 2 D 0 and
the disk U( D ¹z 2 Cjjzj < Rº, where R D 2p"( if 2 < 0. Notice that .U( ; g(/ is a
complete Riemannian manifold.

Let X denote the space of pairs .U( ;-/, where - is a discrete subgroup of
Möbius transformations acting freely on U( . To this data, we associate a framed Rie-
mannian manifold X D U(=- , where the distinguished frame v is the image of the
unit vector at the origin pointing along the positive real axis. Moreover, we require
that the injectivity radius of X at v is at least 1. Notice that X is naturally endowed
with a complex structure. Conversely, a framed Riemann surface .X; v/ with a com-
plete Riemannian metric of constant curvature 2 2 Œ$1; 0) with injectivity radius at
least 1 at v uniquely determines an element of X. We give X the geometric topology:
a sequence of pairs .U(n ;-n/ converges to .U( ;-/ if and only if 2n tends to 2 and
-n converges to - in the Hausdorff topology of closed subsets of PSL.2;C/. The
following results are well known; we refer the interested reader to [30] for a historical
overview.

PROPOSITION A.1
The space X endowed with the geometric topology is compact.

We denote by Xg;n !X the space of surfaces of genus g and n punctures. We
will always assume that 2$ 2g $ n' 0, and we will say that X 2Xg;n is hyperbolic
if 2$ 2g$ n < 0 and flat otherwise. Notice that being hyperbolic in this context only
means that we can rescale the metric on X to have constant curvature $1, but X is
not necessarily endowed with a hyperbolic metric.

PROPOSITION A.2
The space of hyperbolic surfaces of genus g and n punctures is compactified in X

by the plane, the punctured plane, and hyperbolic surfaces of smaller complexity.
Precisely, if n > 0, then

Xg;n D
[
h;m

¹Xh;m j 2hCm' 2gC n; 0' h' g;m% 1º;

and if nD 0 and g % 2, then

Xg;0 DXg;0 [Xg"1;2:

Consider the bundle over X given by

OC D
®!
z; .U( ;-/

"
j z 2 U(

¯
!C"X;
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and take the quotient of each fiber over .U( ;-/ by the action of - . The result
is a bundle C over X, called the universal curve, whose fiber over .U( ;-/ is
X D U(=- .

We say that a closed set E !X is a geometric limit of En !Xn if En converges
to E in the Hausdorff topology of closed subsets of the universal curve. The con-
vergence is faithful if any neighborhood of E contains En for n sufficiently large.
Similarly, a sequence of continuous maps fn W Xn! Z converges to f W X ! Z in
the geometric topology if their graphs converge in the Hausdorff topology of C "Z.
This means that fn converges to f if and only if the domains converge in the geo-
metric topology and lifts of the functions fn to the universal cover converge to f
uniformly on compact sets.

Let Y !X "X denote the set of triples .U( ;-X ;-Y /, where -Y < -X are dis-
crete subgroups of PSL.2;C/. Each element of Y gives a unique pair of framed Rie-
mannian surfaces .X; v/ and .Y;w/, where X D U(=-X and Y D U(=-Y , admitting
a covering map p W Y ! X such that dp.v/ D w. We endow Y with the subspace
topology of X "X.

Let S be the space of triples .X; v;S/, where S ¤; is a finite system of pairwise
distinct, nontrivial isotopy classes of disjoint simple closed curves in X . To define the
geometric topology on S , we first assume that X is hyperbolic. The Poincaré metric
onX induces a thin-thick decomposition ofX . For every Œ%) 2 S we denote byK.Œ%)/
the geodesic representative of Œ%) if this is in the thick part, and the corresponding
component of the thin part if the geodesic representative is short or Œ%) is peripheral.
We set

K.S/D
[
Œ"#2S

KŒ%):

If X is not hyperbolic, we define K.S/ D X . We say that .Xn; vn; Sn/ converges
geometrically to .X; v;S/ if and only if .Xn; vn/ converges to .X; v/ and K.Sn/
converges faithfully to K.S/.

A.2. Riemann surfaces with fundamental group Z
A Riemann surface with fundamental group Z is biholomorphic to C!, the punctured
disk #!, or an annulus A.R/D ¹z 2Cj 1R < jzj< 1º for some R > 1. In these cases,
we can explicitly write the complete Riemannian metrics of constant curvature that
they can carry.

The punctured plane C! can be endowed with the complete flat metrics

g0;r D
r2

!2
&0.z/

2jdzj2 D r2

!2
jdzj2
jzj2 ;
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where r % 1 is the injectivity radius at any point. The punctured disk carries metrics
of constant curvature 2 2 Œ$1; 0/ given by

g(;)! D
jdzj2

$2.jzj log jzj/2 :

Depending on how a sequence of base frames vn is chosen in#!, the punctured disks
.#!; vn; g(n;)!/ can have different geometric limits. Assume that the sequence of
basepoints vn remains in a compact set of #!. If the injectivity radius is uniformly
bounded, then the curvature 2n must converge (after passing to a subsequence) to
some 2 ¤ 0, and it is evident that the geometric limit is a punctured disk with constant
curvature 2; otherwise, the geometric limit is the plane C with the standard flat metric.
More interesting is when the sequence of base frames vn tends toward the puncture.
In this case the condition on the injectivity radius being at least 1 at vn implies that
the curvatures 2n must tend to 0. Again, if the injectivity radius at vn goes to infinity,
then the limit is necessarily C with the standard flat metric. Otherwise, we can rescale
coordinates by sending z to &nz for some &n 2 C with the property that &nzn !
w 2C!, where the zn’s are the points where the frames vn are based. Notice that this
implies that j&nj tends to infinity. In these new coordinates the punctured disk takes
the form

#!n D
®
z 2C j 0 < jzj< j&nj

¯

endowed with the metric

g(n;)!n D
jdzj2

$2njzj2.log jzj$ log j&nj/2
;

which converges to .C!; g0;r/, where !2=r2 is the value of the limit of 2n log2 j&nj
that is bounded away from 0 and infinity because of our assumption on the injectivity
radius.

The annulus A.R/D ¹z 2 Cj 1
R
< jzj< 1º has complete metrics of constant cur-

vature 2 2 Œ$1; 0/ given by

g(;A.R/ D &(n.z/2jdzj2

D !2

$2 log.R/2
jdzj2

jzj2 sin.! log jzj= logR/2
:

The real parameter R is related to the modulus of the annulus, which is a conformal
invariant,

mod
!
A.R/

"
D log.R/

2!
;
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and to the hyperbolic length of the core geodesic % D ¹z 2Cjjzj D 1p
R
º,

`g"1;A.R/.%/D
2!2

log.R/
:

Let us describe the possible geometric limits of the annuli .A.R/;g(;A.R//. If the
curvature goes to 0 andR remains bounded, then the injectivity radius of .A.R/;g(;R/
tends to infinity at every point and a sequence of balls around the basepoint converges
geometrically to C. On the other hand, if the curvature remains bounded and R goes
to infinity, then the annuli .A.R/;g(/ converge, up to subsequences, to the punctured
disk #! with a metric of constant curvature.

In view of what will follow in Section A.5, we are interested more in the case
where .A.R/;g(;R/ converges geometrically to C!. This can be achieved by taking a
sequence of frames vn based at points zn tending toward the core geodesic, while this
is getting pinched in the hyperbolic metric. This means that jznj D 1p

Rn
C o. 1p

Rn
/

and Rn goes to infinity. In the hyperbolic metric, the injectivity radius at the base-
points tends to 0, but if A.Rn/ is endowed with a metric of constant curvature 2n D

!4

r2 log.Rn/2
Co.log.Rn/"2/, then the injectivity radius converges to r % 1. The change

of coordinates z 7!
p
Rnz sends .A.Rn/; g(n/ to the round annulus

A0.Rn/D
°
z 2C

ˇ̌
ˇ 1p

Rn
< jzj<

p
Rn

±

endowed with the metric

g(n;A0.Rn/ D
!2

$2n log.Rn/2
jdzj2

jzj2 sin.!.log jzj$ log.
p
Rn/= logRn/2

;

and it is now evident that the sequence .A0.Rn/; g(n;A0.Rn// converges geometrically
to .C!; g0;r/, up to subsequences.

A.3. Holomorphic cubic differentials
The bundle Q3 of holomorphic cubic differentials over X is the space of triples
.U( ;-; q/, where .U( ;-/ 2X and q is a holomorphic section of the third symmetric
power of the canonical bundle K of X DU(=- .

The topology on Q3 is such that a sequence of holomorphic cubic differentials
qn converges to q in the geometric topology if and only if the domains converge
geometrically and the lifts of qn and q to the universal covers converge uniformly on
compact sets.

We say that a cubic differential q D q.z/dz3 on .Y;w/ is integrable if

kqk WD
Z
F

ˇ̌
q.z/

ˇ̌
&(.z/

"1jdzj2 <C1;
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where F is a fundamental domain for Y in U( . We will often write the above integral
as

Z
Y

jqj&"1(

with the understanding that the weight &( is the induced metric on Y from its univer-
sal cover U( .

We denote by Q3
g;n !Q3 the space of integrable holomorphic cubic differentials

on a surface of genus g and n punctures. In local coordinates, these can be written as
f .z/dz3, where f is meromorphic with at most simple poles at the punctures.

Consider now a covering p W .Y;w/! .X; v/. The pushforward p!.q/ of q is
defined as follows. Let U !X be a sufficiently small ball. The preimage p"1.U / is
a disjoint union of balls Vi , on which an inverse .i W U ! Vi of p is defined. We set

p!.q/jU D
X
i

.!i .q/:

The pushforward is well-defined as long as q is fiberwise integrable; that is, for every
compact set K !X we have

Z
p"1.K/

jqj&"1( <C1:

Under some assumptions that we are going to illustrate, the pushforward of holo-
morphic cubic differentials is continuous in the geometric topology. Precisely, let
pn W .Yn;wn/! .Xn; vn/ be a sequence of coverings, and let qn be a sequence of
integrable holomorphic cubic differentials on Yn. Assume that they converge geomet-
rically to a covering p W .Y;w/! .X; v/ and a holomorphic cubic differential q. The
sequence qn defines a sequence of measures on the associated fibers of the universal
curve: on each Yn we can consider the volume form jqnj&"1(n . We say that qn con-
verges to q faithfully if, for every + > 0, there is an n0 2 N and a compact set K on
the universal curve such that

Z
Ynn.K\Yn/

jqnj&"1(n < +

for every n% n0 and
Z
Y n.K\Y /

jqj&"1( < +:

PROPOSITION A.3
The pushforward varies continuously under faithful convergence.
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Proof
Fix + > 0, and letK 0 be a compact set in the universal curve provided by the definition
of faithful convergence. Let Kn DK 0 \ Yn, and let K DK 0 \ Y . Up to enlarging K 0

if necessary, we can assume that Kn converges to K faithfully. Since qn converges
to q geometrically, we already have that the restriction of qn to Kn converges to the
restriction of q to K uniformly. Therefore, .pn/!..qn/jKn / converges uniformly to
p!.qjK /. Now, for every n sufficiently large,

Z
YnnKn

jqnj&"1(n < +I

thus,
''.pn/!.qn/$ .pn/!!.qn/jKn

"''D
Z
Xn

ˇ̌
.pn/!.qn/$ .pn/!

!
.qn/jKn

"ˇ̌
&"1(

'
Z
YnnKn

jqnj&"1(n < +:

Similarly, kp!.q/ $ p!.qjK /k < +. Because for holomorphic functions convergence
in the L1-norm implies uniform convergence on compact sets, the pushforward is
indeed continuous.

LEMMA A.4
Faithful convergence is equivalent to geometric convergence without loss of mass,
that is, with the additional assumption that

lim
n!C1

Z
Yn

jqnj&"1(n D
Z
Y

jqj&"1( :

Proof
Faithful convergence together with geometric convergence implies conservation of
mass, as only an arbitrarily small amount of mass lies outside a compact set and we
have uniform convergence on compact sets.

For the other implication, fix + > 0. Since q is integrable, we can find a compact
set K ! Y such that Z

Y nK
jqj&"1( <

+

2
:

Let Kn ! Yn be a sequence of compact sets converging faithfully to K . By geometric
convergence, qn restricted to Kn converges uniformly to q restricted to K . In partic-
ular,

lim
n!C1

Z
Kn

jqnj&"1(n D
Z
K

jqj&"1( :
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The conservation of mass implies then that

lim
n!C1

Z
YnnKn

jqnj&"1(n D
Z
Y nK
jqj&"1( <

+

2
I

hence, for n sufficiently large, we have
Z
YnnKn

jqnj&"1(n < +:

The compact set K 0 obtained by taking the union of all Kn’s and K in the universal
curve satisfies the condition of faithful convergence.

Similarly, in the same setting as above, we say that qn converges to q fiberwise
faithfully if it converges geometrically and

lim
n!C1

Z
p"1n .Kn/

jqnj&"1(n D
Z
p"1.K/

jqj&"1(

for any sequence of compact setsKn !Xn faithfully converging toK !X . The same
argument of Proposition A.3 proves the following.

PROPOSITION A.5
If qn converges to q fiberwise faithfully, then .pn/!.qn/ converges geometrically to
p!.q/

A.4. Meromorphic functions
We denote by Rd the space of triples .X; v; f /, where f W X ! OC is holomorphic
and at most d -to-1. We say that f WX! OC is meromorphic if f does not send every
point of X to infinity, and we say that f is invertible if f is not constantly zero. We
endow Rd with the geometric topology, so that a sequence .Xn; vn; fn/ converges
to .X; v; f / if and only if .Xn; vn/ converges to .X; v/ geometrically and there exist
finite sets En !Xn and E !X so that fn converges to f uniformly on compact sets
on Xn nEn.

THEOREM A.6 ([30, Theorem A.2.6])
We have that Rd is compact. Moreover, for any sequence fn of invertible meromor-
phic functions, there exist constants cn such that cnfn subconverges to an invertible
function.

A.5. Cubic differentials from simple closed curves
Let .Y;w/ be a framed Riemannian surface with constant curvature 2 and fundamen-
tal group Z. Standard models for these surfaces have been described in Section A.2.
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Choose a biholomorphism

h W Y !A.r;R/D
®
z 2C j r < jzj<R

¯

with 0 ' r < R ' C1. We set 3.Y;w/ D h!.dz3
z3
/. It is clear from the discussion

in Section A.2 that 3.Y;w/ depends continuously on .Y;w/ 2X. Up to a constant
multiple, one has that 3.Y;w/ is the only cubic differential on Y invariant under the
automorphisms of Y .

Given .X; v;S/ 2 S , every element Œ%i ) 2 S determines a covering pi W
.Yi ;wi /! .X; v/, where Yi is a Riemann surface with fundamental group Z. We
define the holomorphic cubic differential associated to the system of curves S as

1.X; v;S/D
sX
iD1
.pi /!3.Yi ;wi /:

The following is a key proposition which requires a different argument than the
proof found in McMullen’s appendix (see [30, Proposition A.3.2]).

PROPOSITION A.7
The differential 1.X; v;S/ is holomorphic with poles of order at most 3 at the punc-
tures of X . Moreover, 1 ¤ 0.

Proof
If Yi is an annulus, then 3.Yi ;wi / is integrable, and hence its pushforward is inte-
grable. Otherwise, Yi is a punctured plane or a punctured disk. Each puncture of Yi
has a neighborhood that is mapped injectively to a neighborhood of a puncture in
X , creating a pole of order 3 for 1 . Since 3.Yi ;wi / is integrable outside a neigh-
borhood of the punctures, its pushforward is holomorphic. It is clear that 1 is not
identically zero when S contains a peripheral curve, as 1 has a triple pole at the
corresponding puncture. Therefore, we are only left to consider the case of X hyper-
bolic and S consisting of homotopy classes of disjoint simple closed curves. This will
follow from the fact that the cubic differentials .pi /!.3.Yi ;wi // are linearly indepen-
dent. Let .0 W !1.X/! SL.3;R/ denote the Fuchsian representation uniformizingX .
A Hitchin representation . 2Hit3.S/ has the property that every simple closed curve
% is sent to a diagonalizable matrix ..%/ with distinct eigenvalues &1 > &2 % 1 > &3
(see [16], [21]). Kim in [19] showed that the differentials of the length functions
mi D 3

2
log.&2...%i // are linearly independent in T !%0 Hit3 and annihilate any vector

tangent to the Fuchsian locus (see [19, Theorem 0.1]). On the other hand, Labourie
and Wentworth proved a generalization of Gardiner’s formula ([23, Theorem 4.0.2])
that relates dmi with the cubic differentials .pi /!3.Yi ;wi /. More precisely, if we
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identify the tangent space T%0 Hit3 with H 0.X;K2/˚H 0.X;K3/, there is a con-
stant c such that

dmi .q/D cRe
%Z
X

Nq.pi /!3.Yi ;wi /&"4"1
&

for every q 2H 0.X;K3/. Since H 0.X;K3/ has trivial intersection with the tangent
space to the Fuchsian locus, it follows that the dmi ’s are linearly independent if and
only if .pi /!3.Yi ;wi / are linearly independent, as claimed.

PROPOSITION A.8
The map 1 W S ! Q3 associating a holomorphic cubic differential to a system of
curves is continuous.

Proof
The proof follows the same arguments of [30, Proposition A.3.3]. We report here the
main ideas of the proof for the convenience of the reader. Let .Xn; vn; Sn/ be con-
verging to .X; v;S/. By linearity, we can reduce to the case of Sn consisting of only
one curve. Then K.S/ has one or two connected components, depending on whether
a separating or nonseparating curve is pinched off. Let us assume first that S contains
only one curve % . Let pn W .Yn;wn/! .Xn; vn/ be the associated sequence of cover-
ings converging to p W .Y;w/! .X; v/. Since we already know that 3n D 3.Yn;wn/
converges geometrically to 3 D 3.Y;w/, the proposition follows if we show that the
convergence is also faithful (Proposition A.3) or fiberwise faithful (Proposition A.5).
We check this case by case:
(1) X DC!.

(a) Xn DC! for every n. In this case the coverings pn and p are trivial so
the convergence is clearly fiberwise faithful.

(b) Xn is hyperbolic, and K.Sn/ is the thin part of Xn containing a short
geodesic %n. Each Yn is then an annulus endowed with a metric of
constant curvature 2n tending to 0, and the sequence of basepoints is
getting closer to the core geodesic. Up to isometries we can assume that
Yn D A0.Rn/ as described in Section A.2 and that 3n D dz3

z3
. For the

hyperbolic metric, the length of the core geodesic is tending to 0, and
the thin part of Yn is an annulus around the core geodesic that is sent
injectively by the covering pn onto the thin part of Xn (see Figure 1).
We can also endow Yn with the flat metric j3nj

2
3 D jdzj2jzj2 , which makes

Yn a cylinder of circumference 2! and finite height. Moreover, in this
metric, the boundaries of the thin part are at uniform bounded distance
from the boundaries of A0.Rn/. The limit Y endowed with the flat
metric j3j 23 is instead an infinite cylinder of the same circumference.
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Figure 1. Hyperbolic surfaces converging to the punctured plane.

Let Kn ! Xn be a sequence of compact sets that faithfully converges
to K !X . For n large enough, Kn is entirely contained in K.Sn/, and
its preimage in Yn consists of one component in the thin part, which
persists in the limit, and other components in the thick part, confined
in a narrow neighborhood of the ends of Yn, whose j3nj

2
3 -area goes to

0 (cf. [30]). Therefore, noticing that in the thick part of Yn there is a
constant C > 0 such that &(n.z/

"1 ' C jzj, we have
Z
p"1n .Kn/\Y thick

n

j3nj&"1(n ' C
Z
p"1n .Kn/\Y thick

n

jdzj2
jzj2

D C
Z
p"1n .Kn/\Y thick

n

j3nj
2
3 ;

which tends to 0. We conclude that 3n converges to 3 fiberwise faith-
fully.

(c) Xn is hyperbolic, and K.Sn/ is a neighborhood of a puncture. The
argument from part (b) applies using the punctured disk .#!n; g(;)!n/
as the model.

(2) X is hyperbolic. This implies that Xn is hyperbolic for all n, and we can
distinguish three cases:
(a) K.Œ%)/ is a geodesic that is a limit of geodesics K.Œ%n)/. We have that

lim
n!C1

Z
Yn

j3nj&"1(n D
Z
Y

j3j&"1( ;
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Figure 2. Separating geodesic limiting to a puncture.

because the value of the above integral depends continuously on the
hyperbolic length of %n and the curvature 2n, which are both converg-
ing.

(b) K.Œ%)/ is a neighborhood of a puncture that is a limit of a neighbor-
hood of a puncture K.Œ%n)/. Each Yn is a punctured disk with constant
curvature 2n converging geometrically to a punctured disk Y with con-
stant curvature 2. Since the portion at fixed j3nj

2
3 -distance (resp., j3j 23 -

distance) from the boundary of #! injects into a neighborhood of the
puncture in Xn (resp., X ), the convergence is fiberwise faithful.

(c) K.Œ%)/ is a neighborhood of a puncture that is a limit of the thin part of
Xn containing a separating geodesic %n. In this caseK.Sn/ is bounded
by a “near” end and a “far” end with respect to the basepoints vn (see
Figure 2). The distance of a faithfully convergent sequence of compact
sets Kn from the far end tends to infinity. The covering Yn is an annu-
lus with constant curvature 2n, which in the j3nj

2
3 -metric is a finite

cylinder. The limit Y is a punctured disk with constant curvature 2 that
in the j3j 23 -metric is a half-infinite cylinder. The lifts of Kn in the near
end persist in the limit, while those in the far end are confined in a col-
lar with j3nj

2
3 -area tending toward zero. By identifying Yn with A.Rn/
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endowed with a metric of constant curvature 2n (see Section A.2), the
collar containing the lifts in the far end is an annulus of the form

N.Rn/D
°
z 2C

ˇ̌
ˇ 1
Rn

< jzj< Cn

Rn

±

with Cn tending to 1, because its j3nj
2
3 -area must tend to 0. Therefore,

Z
p"1n .Kn/far

j3nj&"1(n

'
Z
N.Rn/

$p$2n log.Rn/
!

jzj sin.! log jzj= log.Rn//
jzj3 jdzj2

D$2p$2n log.Rn/
Z Cn

Rn

1
Rn

sin.! log.r/= log.Rn//
r

dr

D 2p$2n
log2.Rn/

!

%
1$ cos

% !

log.Rn/
log.Cn/

&&
;

which converges to zero as n goes to infinity, so we can conclude that
the convergence is fiberwise faithful.

We are left to analyze the case of S consisting of two curves. This happens when a
nonseparating geodesic is pinched in the hyperbolic metric, so that K.S/ is the dis-
joint union of two neighborhoods of two punctures. Now both ends of K.Sn/ remain
at bounded distance from the basepoints. Let .Y;w/ and .Y 0;w0/ denote the two cov-
erings ofX associated to the two peripheral curves around the two punctures. We may
choose basepoints wn;w0n 2 Yn near each of the two ends of Yn such that .Yn;wn/
converges to .Y;w/ and .Yn;w0n/ converges to .Y 0;w0/ (see Figure 3). Let Kn !Xn
be faithfully converging to K ! X . The preimages of Kn near one end persist in
.Y;w/, while those near the other persist in .Y 0;w0/. Since 1.X; v;S/ is defined as
the sum of these two contributions, we have that 1.Xn; vn; S/ converges to 1.X; v;S/.

A.6. Geometric limits of holomorphic cubic differentials
We have all the ingredients to prove the main result of this appendix. Let PQ3 denote
the space of nonzero holomorphic cubic differentials up to multiplication by a com-
plex scalar. We denote by PQ3

g;n the subspace of integrable holomorphic cubic dif-
ferentials on a surface of genus g and n punctures.

THEOREM A.9
The space PQ3

g;n has compact closure in PQ3.
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Figure 3. Nonseparating geodesic limiting to a pair of punctures.

Proof
Let .Xm; vm; Œqm)/ be a sequence in PQ3

g;n. By the compactness of X, we may
assume that .Xm; vm/ converges geometrically to .X; v/. Suppose that X is hyper-
bolic with a simple closed geodesic Œ%). We can find a sequence of homotopy
classes Œ%m) of curves in Xm such that, setting Sm D ¹Œ%m)º and S D ¹Œ%)º,
the triple .Xm; vm; Sm/ 2 S converges geometrically to .X; v;S/. By Proposi-
tion A.8, the sequence of holomorphic differentials 1m D 1.Xm; vm; Sm/ converges
to 1 D 1.X; v;S/. Each of these cubic differentials is nonzero and has poles of order
at most 3 by Proposition A.7; hence, the functions fm D qm

'm
are meromorphic. By

Theorem A.6, there is a sequence of constants cm and finite sets Em ! Xm and
E ! X such that cmfm has a subsequence converging to an invertible function f
uniformly on compact sets on X nE . Since qm is holomorphic, cmqm converges geo-
metrically even at E to f 1 D q; thus, Œqm) converges to Œq). Now, if X is a punctured
plane or a three-punctured sphere, then the same argument applies, taking S D ¹Œ%)º,
where now Œ%) is the homotopy class of a peripheral curve. We are left to consider
the case X D .C; 0/. We can rescale the metrics on Xm so that the injectivity radius
at vm is constantly equal to 1. This modified sequence .X 0m; v

0
m; q

0
m/ converges, up

to subsequences, to a limit .X 0; v0; q0/, because X 0 ¤ C and the previous part of
the proof applies. It follows that Œqm) converges to a polynomial holomorphic cubic
differential over C with degree bounded above by the order of the zeros of q0 at the
basepoint v0.
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