2202.10446v2 [cs.LG] 11 Jan 2023

arxiv

EINNs: Epidemiologically-Informed Neural Networks

Alexander Rodriguez', Jiaming Cui!, Naren Ramakrishnan?, Bijaya Adhikari®, and
B. Aditya Prakash'

LCollege of Computing, Georgia Institute of Technology, Atlanta, USA
2Department of Computer Science, Virginia Tech, Arlington, USA
3Department of Computer Science, University of Iowa, Iowa City, USA
{arodriguezc, jiamingcuil997, badityap} @ gatech.edu, naren @cs.vt.edu, bijaya-adhikari @uiowa.edu

Abstract

We introduce EINNSs, a framework crafted for epidemic fore-
casting that builds upon the theoretical grounds provided by
mechanistic models as well as the data-driven expressibility
afforded by Al models, and their capabilities to ingest het-
erogeneous information. Although neural forecasting mod-
els have been successful in multiple tasks, predictions well-
correlated with epidemic trends and long-term predictions re-
main open challenges. Epidemiological ODE models contain
mechanisms that can guide us in these two tasks; however,
they have limited capability of ingesting data sources and
modeling composite signals. Thus, we propose to leverage
work in physics-informed neural networks to learn latent epi-
demic dynamics and transfer relevant knowledge to another
neural network which ingests multiple data sources and has
more appropriate inductive bias. In contrast with previous
work, we do not assume the observability of complete dy-
namics and do not need to numerically solve the ODE equa-
tions during training. Our thorough experiments on all US
states and HHS regions for COVID-19 and influenza fore-
casting showcase the clear benefits of our approach in both
short-term and long-term forecasting as well as in learning
the mechanistic dynamics over other non-trivial alternatives.

1 Introduction

The COVID-19 pandemic has led to a maturing of methods
for epidemic modeling and forecasting with the CDC estab-
lishing the first Center for Forecasting and Outbreak Analyt-
ics in 2021. A variety of forecasting innovations in machine
learning and deep learning were developed—e.g., (Rodriguez
et al. 2021a; Kamarthi et al. 2021)-with many lessons
learned for COVID-19 and future pandemics. As the current
experience has shown, predicting and preventing epidemics
is one of the major challenges with far reaching impacts on
health, economy and broad social well being.

From this perspective, active participation by several aca-
demic and industrial teams (including by coauthors) in mul-
tiple CDC-led forecasting initiatives has led to two broad
themes that are important for epidemic modeling. First,
modern disease surveillance has grown by leaps and bounds
yielding novel data sources that can shed light into hap-
penings real-time. Statistical/ML epidemic models leverage

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
!www.who.int/activities/preventing-epidemics-and-pandemics

these data sources to provide dramatic improvements in
short-term forecasting (usually 1-4 weeks ahead). At the
same time, as these methods do not explicitly learn mecha-
nistic dynamics, such methods do not provide understanding
of how the epidemic will unfold at even longer time hori-
zons, and do not support posing causal and counterfactual
questions (e.g., design of countermeasures). Such longer-
term forecasting remains the province of mechanistic epi-
demic models that can support scenario-based understanding
of epidemic progression (e.g., “what will happen if schools
are closed?”). However, these methods present scalability
issues, their calibration is prone to noise (Hazelbag et al.
2020), and they have limited capability to ingest multimodal
data sources (Viboud and Vespignani 2019). At the inter-
section of these two modeling approaches, we have hybrid
models that make compartmental models (based on ordinary
differential equations — ODEs) more informed of these data
sources (Shaman et al. 2013; Arik et al. 2020). However,
most of these approaches use the mechanistic model for pre-
diction, thus, they are not flexible enough to fit the complex
patterns in epidemics and have very few tunable parameters.
In addition, they are not easily generalizable to new model-
s/data sources or do not aim to incorporate ODE dynamics
from first principles (e.g. predict ODE parameters instead of
the ODE states).

In this paper, we develop a general framework for in-
corporating epidemic dynamics from a mechanistic model
into a neural framework for forecasting, which enables
seamless integration of multimodal data, greater representa-
tion power, and inclusion of composable neural modules of
learned representations. Our focus is to leverage the selec-
tive superiorities of both approaches (see Figure 1) to have
predictions that are accurate (low error) and well-correlated
with even longer-term epidemic trends, than what is usually
studied in past literature.

Recent lines of research (e.g., (Karniadakis et al. 2021))
aim to bridge scientific models (usually represented as dif-
ferential equations) and ML algorithms. Specifically, the
rapidly growing literature in physics-informed neural net-
works (PINNs) has demonstrated that integrating neural net-
works with ODEs can lead to large scalability improvements
as forward passes (over the ODE) are no longer needed (Lu
et al. 2021). In addition, the neural network flexibility and
gradient-based learning enables robust solutions in spite of

US National Region

Representation Power
Weekly death counts

SEIRM sv]

Epidemic Dynamics week
(a) Modeling spectrum (b) Examples of
and performance forecasts

Figure 1: Our method, EINNS, (a) takes the best from both
modeling approaches and is suitable for short- and long-term
forecasting, and (b) its predictions are well-correlated with
the epidemic trends.

noise (Yang et al. 2021). We propose to build upon this body
of work to incorporate the dynamics of a mechanistic epi-
demic model into deep neural models. Our goal requires in-
novations to the PINN literature as many of the compart-
ments in epi-models are latent (e.g. the actual number of
people exposed to the disease) while most work in PINNs
has only experimented with all states of the system dynam-
ics being observable.

In addition, PINNs are limited to working with the vari-
ables that are described in the mechanistic equations which
limits their capabilities to ingest data sources. On top of that,
PINNSs often use a simple multi-layer perceptron architec-
ture whose inductive bias is often insufficient for sequen-
tial data. The main technical innovation of this paper comes
from designing a transfer learning framework for transfer-
ring learned dynamics from a PINNs to a Recurrent Neu-
ral Network (RNN) that can ingest exogenous data features
(data not-represented in the ODE). The goal of this is to have
an RNN aware of epidemic ODE dynamics that has learned
how data features (inputs to the RNN) shape/connect to the
latent epidemic dynamics (outputs of the RNN).

We summarize our contributions as follows:

e Push the boundaries of data-driven epi forecast-
ing via integration of ODE-based mechanistic dynamics:
We introduce Epidemiologically-informed Neural Networks
(EINNSs), a new framework to bridge the gap between mech-
anistic and neural models for epidemiology. Our method in-
corporates epidemiological (expert) knowledge embedded
in ODE models into neural networks (NNs) that ingest het-
erogeneous sources of data. The key idea in EINNS is utiliz-
ing a PINN to learn the latent epidemic dynamics and trans-
fer its learned representations to another neural model with
more appropriate inductive bias (RNN) and capable of in-
gesting heterogeneous sources of data that are exogenous to
the ODE equations.

e Transfer learning via gradient matching of dynam-
ics: We propose a novel method to transfer learned repre-
sentations from a PINN (source model) to another neural
network (target model). This is based on matching the gra-
dients of mechanistic ODEs in the target model as we do
so when training the source model. This cannot be directly
done in the target model (RNN) due to its neural architecture
and data inputs. Therefore, we propose approximating inter-
nal representations of source and target models to enable the
target model to learn to match the ODE gradient.

e Extensive empirical evaluation: We evaluate our
method in the challenging task of weekly COVID-19 fore-
casting (in 48 geographical regions and a period of 8§
months) and flu (in 10 regions and 5 months). Our results
showcase that our method can indeed leverage the ‘best of
both worlds’ compared to other non-trivial ways of merging
such approaches. We believe this opens new venues for ex-
ploring how AI can better complement domain knowledge
in traditional epidemiology.

2 Related Work

Mechanistic and ML models for epidemic forecasting
Epidemic mechanistic models (Hethcote 2000) like the
popular SIR are designed using domain knowledge of the
epidemic dynamics. They model causal underpinnings to
explain empirically observed variables (e.g., mortality), and
ODE-based models have been a workhorse of epidemiology
since the late 18th century (Marathe et al. 2013). More
recently, there are several successful applications of ML
to short-term forecasting (Osthus et al. 2019; Brooks et al.
2018; Adhikari et al. 2019; Rodriguez et al. 2021a) which
led them to be often ranked among the top performing
models in these tasks (Cramer et al. 2022; Reich et al.
2019). Some of the recent deep learning innovations in-
clude advances in incorporting multi-view and multimodal
data (Kamarthi et al. 2022b), spatial correlations (Deng
et al. 2020; Jin et al. 2021), transfer learning for domain
adaptation (Rodriguez et al. 2021b) and non-parametric
approaches (Kamarthi et al. 2021; Zimmer et al. 2020).
Hybrid epidemic models They integrate mechanistic mod-
els and ML approaches (Rodriguez et al. 2022). Some lines
of work use statistical techniques to estimate the mechanistic
parameters (e.g. transmission rate) (Arik et al. 2020; Wang
et al. 2021a), learn from simulation-generated data (Wang
et al. 2019), or use the ODEs as regularization (Gao et al.
2021). However, in addition to the previously mentioned
flexibility problems, these models require a forward pass
over the mechanistic models, which may become very ex-
pensive for long periods and large mechanistic models. Fur-
thermore, they often need to discretize the continuous ODE
space, which is a delicate process as it has been found
that sub-optimal discretization can impede the learning pro-
cess (Thuerey et al. 2021). Our approach utilizes PINNs
which allows skipping forward passes and discretization.
Perhaps the most prominent in this line of research is the
work by (Shaman et al. 2013) that integrated search volume
data into an SIRS ODE model via the principle of data as-
similation. However developing such data assimilation ap-
proaches requires a large amount of domain knowledge and
cannot be used to incorporate many of the data features stud-
ied in our work (e.g., mobility).

Physics-informed neural networks (PINNs) PINNs are
universal function approximators via neural networks that
embed knowledge of ODEs and partial differential equations
(PDEs) via unsupervised loss functions based on these equa-
tions. They have been used for forward and inverse problems
with ODE:s in a variety of domains including computational
biology (Yazdani et al. 2020). PINNs have connections to
implicit neural representations (Sitzmann et al. 2020) in

the sense that they both provide continuous representations
breaking the discretization (grid) limitation, which is advan-
tageous for when data samples are irregular. Previous work
often use a multi-layer perceptron architecture because they
are amenable for direct computation of derivatives of neural
network outputs with respect to its inputs (via autograd). In-
deed, incorporating inductive biases into PINNSs is an active
research area—e.g., convolutional layers (Wandel et al. 2022)
and graph neural networks (Kumar and Chakraborty 2021)—
and to our best knowledge a recurrent neural architecture for
PINNSs remains an open problem. Also, incorporating exoge-
nous variables to this framework and working with partially
observable systems are largely unexplored problems (Cai
et al. 2021; Wang et al. 2021b). Our approach EINNS ex-
tends the capabilities of PINNs by directly addressing these
limitations in the context of epidemiology.

A remotely related but popular line of work for learning
dynamical systems is neural ODE (Chen et al. 2018). While
PINNSs learn from the system dynamics represented in an
ODE or PDE (which represent domain expert knowledge
from epidemiologists), neural ODEs learn an unknown ODE
via neural networks and do a continuous modeling using a
numeric ODE solver. Since neural ODEs cannot incorporate
domain ODEzs, they are not applicable to our problem.

3 Background

As mentioned earlier, we aim on merging neural models
with epidemiological dynamics from a mechanistic model.
Without loss of generality, here we introduce instantiations
of such models which we refer to as building blocks. Their
definitions help us to explain the formulation of the problem
INCORPORATING EPI-DYNAMICS IN NNS and later our
implementation and experiments. Additionally, we briefly
introduces PINNs as formulated for Systems Biology.

3.1 ODE-based mechanistic epidemic models

Our first building block is a mechanistic epidemic model.
Epidemiologists use different mechanistic models for each
disease because infection dynamics and disease progression
varies (Hethcote 2000). In this paper we use COVID-19 and
influenza as a vehicle to demonstrate the benefits of our gen-
eral framework, therefore, we use two different mechanis-
tic epidemic models: SEIRM and SIRS (SIRS description is
similar to SEIRM and can be found in our appendix).
SEIRM model for COVID-19 The SEIRM ODE model
consists of five compartments: Susceptible (S), Exposed
(E), Infected (1), Recovered (R), and Mortality (M). It is
parameterized by four variables Q = {8, a,~, u}, where
B is the infectivity rate, 1/« is the mean latent period for
the disease, 1/ is the mean infectious period, and u is
the mortality rate. Due to COVID-19’s prolonged incuba-
tion period, the SEIRM has been broadly used in modeling
its progression (Wu et al. 2020; Morozova et al. 2021). It
has also been used by the CDC in modeling transmission
of Ebola (Gaffey et al. 2018). To capture the evolving na-
ture of the dynamics and spread of COVID-19 (e.g. consider
the multiple variant waves), we leverage the dynamic ver-
sion of the SEIRM model, where the parameters governing

the disease progression themselves evolve over time. In such
a setting, the dynamics is governed by the set of param-
eters 0 = {8, ay, Ve, e b at the given time-stamp ¢. Let
st = [St, By, Iy, Ry, My]T be the values taken by the states
at time t. (ODE state .S; represents the number of susceptible
people at time t, similar for the other states). Then, the ODEs
describing the SEIRM model are given by fopg(st, :):

dS; Sl dE Sl
—_— = — —_— _— = _— E
dt Bt N dt Bt N Qg Loy
dI dR dM
dftt =By — vl — pely ditt =Yl Wt = pelt.

In our SEIRM model, only mortality is considered ob-
served (Wu et al. 2020), therefore, ODE states S;, F;, I,
and R; are latent. By solving the set of ODEs, we can dis-
cover the latent epidemic dynamics which are described by
the values of s; and €); for the entire period for which we
have observational data, i.e., Vt € {to,...,tn}.

3.2 RNN architecture

Our second building block is a Recurrent Neural Network
(RNN) with attention, which has been extensively used in
neural epidemic forecasting as a central building block (Ad-
hikari et al. 2019; Kamarthi et al. 2021; Wang et al. 2019).
Here, we introduce the base architecture of this model. Infor-
mally, at prediction time ¢ = ¢y we are given a multivariate
time series of features/signals X' = {Xt}g +o Withx; € RP=,
where D, is the number of features. And we are tasked to
predict K steps ahead in the future. We encode the feature
time series until ¢y by passing it through a Gated Recurrent
Unit (GRU) (Cho et al. 2014) to obtain a condensed repre-

sentation for each time step: {h;};¥, = GRU({x;}1~ t0)
where h; is the hidden state of the GRU for time step t.
To capture long-term relations and prevent over-emphasis on
last terms of sequence we use a self-attention layer (Vaswani
et al. 2017) which involves passing the embeddings into lin-
ear layers to extract meaningful similarities. Then, we use
the attention weights to combine the latent representations
and obtain a single embedding representing the time series
of data features and pass it to a feedforward network to make
the prediction y;—n k-

3.3 PINNs for Systems Biology

Recently, several works (Yazdani et al. 2020; Karniadakis
et al. 2021) in Systems Biology have used PINNs for solv-
ing forward and inverse problems with ODEs. The neural
network N(¢) is a function of single variable ¢ and ODE sys-
tem is in the form fopg () describing the rate of change (gra-
dient) of some function with respect to ¢. Gradient dljlgt) can
be using computed via Automatic Differentiation—autograd,
which in turn makes it possible to train the neural network
N(-) while minimizing the residual between the two gradi-

2
ents, e.g. loss (dljiigt) — fopr(t))".

4 Problem formulation

As mentioned earlier, we aim on harnessing the strengths
of both machine learning/deep learning approaches (which

have been very successful in short-term forecasting) and
mechanistic models (which are useful for long-term trend
projections). Hence, our problem is one of merging neural
models with mechanistic model dynamics while maintaining
benefits from both the techniques. To capture this specific
intention, we modify traditional forecasting problems (Ad-
hikari et al. 2019) in the following manner:

Problem: INCORPORATING EPI-DYNAMICS IN NNS
Given: e A base epidemiological model mathemati-
cally represented as a set of ODEs (for example, see
the SEIRM and SIRS models in Section 3.1). e A base
RNN (See Section 3.2). e Data: an observed multi-
variate time series of COVID/flu-related signals X =
{xt}g +, and corresponding values for the forecasting
target (new COVID-associated deaths or ILI flu counts)
Yy = {yt}g +,» Where t is the first day of the outbreak
and ¢y is the current date.

Predict: next K values of the forecasting target, i.e.
{g)NJrk}lf:l (here K is the size of the forecasting win-
dow/horizon), such that predictions are accurate and
well-correlated with the trends of the epidemic curve.

We are also interested in learning if taking advantage of
selective superiorities of both approaches can push the pre-
diction horizon (i.e., how many steps ahead we can fore-
cast). Typically, CDC forecasting initiatives request short-
term forecasts up to 4-weeks ahead (K = 4) — see (Cramer
et al. 2022; Jin et al. 2021). Longer forecasting horizons
have not been explored much, thus, we propose the double
of the current horizon (i.e., K = 8) in this paper.

5 Our Approach

To tackle the problem INCORPORATING EPI-DYNAMICS IN
NN, one can easily conjure ‘naive’ approaches. A simple
approach is to calibrate the given mechanistic model with
the observed targets), and train the base RNN using the
generated (synthetic) curve. Similarly, one could also use the
ODEs to regularize the neural predictions or could train an
ensemble with neural network’s and ODE-model’s predic-
tions. However, as we show later in our experiments, while
these approaches often can maintain the performance of the
base RNN, they do not generate well-correlated predictions.
Overview See Figure 2. We propose using an heteroge-
neous domain transfer learning setup (Moon and Carbonell
2017), where we transfer knowledge from a source model to
a target model. Here our source model is a PINN whose pur-
pose is discovering the latent epidemic dynamics (solving
ODEs). The gradients of our ODE epi-models (ds;/dt) are
with respect to time; therefore, as noted in Section 3.3, time
is the only input to this PINN. Thus, we refer to this PINN
as time module. The target model is an RNN which ingests
data features from heterogeneous sources—thus we call it
feature module—and incorporates appropriate inductive bias
to model sequential time series data. Note that both source
and target models predict the same output s;, which are the
ODE states. Therefore, the feature module learns a mapping
from a multivariate time series of COVID/flu-related sig-
nals X (exogenous data features, i.e., not-represented in the
ODE) to the epidemic dynamics s;. Next, we explain each

of these modules in detail.

5.1 Time module (source model): learning latent
time-varying dynamics

The time module interfaces with the set of ODEs describ-
ing an epidemic mechanistic model. Via PINNS, it learns
the latent epidemic dynamics given observational data. Fol-
lowing the introduction in Section 3.3, PINNs solve the
ODEs by jointly minimizing the observational error and the
residual between gradient given by the ODE and the gra-
dient of the neural network with respect to the time in-
puts (computed via autograd). As in most literature—see
Section 2—our time module Ny, (t) is parametrized by a
multi-layer perceptron that ingests time ¢ as input and pre-
dicts ODE states for time t, denoted as s; € RPs, where
Dy is the number of ODE states (e.g., 5 for SEIRM). We
want this neural network to make predictions that follow epi
dynamics described the set ODEs fopg. This is, we make
Nrime(t) = 8¢5 subject to ds; /dt = fope(st,), where §2;
are the learned ODE parameters for time ¢. We minimize the
ODE loss (unsupervised loss £OPET) while fitting the ob-
served data (supervised loss £P*2T):

tN 2
1 ds
[ODET _ 1 E [t — foDE(St?Qt):| (D
N+1 4 dt

1

N +1

t=to

uaT _ (1, — a1,]” @

where M, is predicted mortality by the time module. To dis-
cover the latent dynamics, we want to obtain s; and ;.
Constraining the optimization via epi domain knowledge
In contrast to the setting in most prior work in PINNs where
most states of the system dynamics are observed, most
states in our SEIRM model are latent. We found learning in
such a scenario can be very challenging. We alleviate this
by infusing additional epidemiological domain knowledge
in the form of monotonicity constraints. In particular, we
adapt monotonicity losses from (Muralidhar et al. 2018) to
our setting. They proposed to penalize consecutive predic-
tions if they are not monotonic in the required direction.
Note that the difference between consecutive predictions
are discrete approximation to the derivatives. Here, we
generalize this loss to continuous derivatives by taking the
limit lim;_, . Now, derivatives can be directly computed via
autograd. To incorporate these constraints, we use domain
knowledge. Using SEIRM as an example (similar can be
easily derived for other epidemiological models), we know
that the Susceptible state .S; monotonically decreases and
the Recovered state R; monotonically increases. Then, we
add a penalty when d.S;/dt is positive and when dR; /dt is
negative as follows:

tN 2
1 ds ds,
Mono t t
[—ReLU(—
£ N—s—l(t_z;;[dt eU(dt)} -

2 dR, dR, ?
;:O[IdtReLU(dt)]) 3)

(a) EINNs: time and feature modules ® Latent/unobserved ODE states (b) Gradient comp. via autograd

@ Observed ODE states

Temporal input (day)

{tn+1s o vk} ‘

{eth' ha etN+K}

Data features

Ib{} -
output {st+1' 'SfN+K}
Google (R]

O~ = N, RO~ RY

{ean’ o efN+K}

RPx - RPe

F F
{dstNﬂ dstN+K} {detNﬂ detN+K} {dsflvu ds!N+KI

a T a v Tdt | |def,, " del,,
[E | (C) ODE losses m<ﬂ
dSth dst+K m
—dt g o '—dt = fGDE({sLN+1' it stN+K} 'Qt)
dsf de dsf . de
m [de‘t"N“ ‘;IZH ey de:-N+K ;’Z+KI = fODE({SfN«{-l' o st+K} ’Qf)
tN+1 IN+K

Figure 2: Depiction of our proposed framework EINNS. (a) The pipeline of EINNs has two independent computational paths:
time module (source model) and feature module (target model). For simplicity, in our equations we refer to Nrjme as a single
module, but, in practice, this is implemented as two neural models: Noyiput © Nrime Where Noypy is @ multi-layer feedforward
network. Similarly, Ny is implemented as Noygput © Nrea- During training step 2, when e; ~ el’, we will freeze layers and
train only Noygpue. (b) Three gradients are computed via autograd: ds;/dt, de;/dt, and dsf / def . Using these gradients we
can compute ODE loss for the time module and approximate ds/ /dt via our gradient trick. (c) We utilize equations fopg to
compute the ODE losses. Approximation of ds!”/dt is used to compute the ODE loss for the feature module LOPEF. This loss
encourages integration of ODE dynamics from the time module (source model) into the feature module (target model).

where ReLU(x) = max(0, x) is the rectified linear function.
Note that S; and R, are part of s;, which is the output of the
time module; thus, % and % are computed via autograd.
Coping with spectral bias in neural networks One of the
central issues in fitting PINNs is the spectral bias of neu-
ral networks, which is the tendency of neural networks to
fit low frequency signals (Wang et al. 2021b). To overcome
this, usually the neural networks are given more flexibility to
fit high frequency systems. Here, we adopted Gaussian Ran-
dom Fourier feature mappings (Tancik et al. 2020): F(gv) =
[cos(27BvV), sin(27Bv)]?, where each entry in B € R4¥! is
sampled from N(0, 02), where o is a hyperparameter.
Handling time-varying ODE parameters As mentioned
earlier, our ODE model is time varying, therefore we have to
learn mechanistic parameters for each time step, which in-
creases the difficulty of the optimization. To make this more
tractable, we propose a consistency loss between consecu-
tive parameters.

1

EParam — m Z [Qt+1 _ Qt]2 (4)

t=to

5.2 Feature module (target model): connecting
features to epidemic dynamics via gradient
matching

The feature module is composed of a based RNN and in-
gests multivariate time-series of COVID/flu-related signals
X to predict the epidemic dynamics s!”. (Note: embeddings
and outputs of feature module have superscript F' to avoid
confusions with the ones from the time module). Here, we
want to ensure that the predictions made by the feature mod-
ule are consistent with the ones given by the ODE model.
Hence, we want the feature module neural network Ny (X))
to follow the learned latent dynamics from the time mod-
ule neural network Nime(t) (note the heterogeneous do-
mains). We can formalize our goal as follows: Ngey(X) =

F
sE'; subject to % = fooe(s’,), where sI” € R+, are the

ODE states predicted by the feature module and €2; are the
same ODE parameters used by in the time module.
Matching the ODE gradient We cannot directly calculate

F
d;—; via autograd from the inputs as we did for the time mod-

ule because our base RNN ingests features. We propose to
use internal representations (embeddings) so that we can ap-
proximate the gradient to an expression that can be com-
puted via autograd directly. Let ¢, € RP< and e/’ € RP-
be embeddings for the time module and feature module, re-
spectively (D, is embedding size). Then, by using the chain
rule, we propose to approximate the gradient of s!” assuming
e; ~ el” and have our gradient trick:

dsf ds{ de] _ dsi de 5)
dt — def dt " del dt
F
where ZZ—”F can be calculated in the feature module using au-
t
tograd because e{” is the only variable that is needed to com-
pute sf. Similarly, ¢ is the only input needed for computing
e;, thus, we can use autograd to compute %. To make this
approximation valid, we have to make these embeddings e,

and e!” similar. We do this with the following loss:

tNn
1 2
Emb F
L = m E [et — €] (6)
t=to
This derivation allows us to make the feature module to learn
the gradients learned by the time module by minimizing an
ODE loss for the feature module:
tN F 2
1 ds; de
L:ODE—F _ t t sF .Q 7
N+1 & |del" dt Jooe (st $2) M

to

Aligning with data and time module outputs Matching
the ODE gradient is not enough to ensure the dynamics
will be transferred. We have to make sure that the feature
module outputs are aligned with data and with the ODE

dynamics as found by the time module. For fitting the data,
we define data loss in a manner similar to the time module:

1 & 2
EDala-F _ MF - M (8)
N +1 Zt:o [t t]

where MF is the predicted mortality of the feature module.
To align the time and feature modules, we use knowledge
distillation (KD) (Ba et al. 2014), a popular transfer learning
method. We impose our KD loss on the outputs of these two:

tN
L:Oulpul _ ﬁ Z [St . Sf]Z . (9)

t=to

Note that our time module is able to predict for any
given time but our base RNN makes prediction for one
target in the future. To align these two, we make our fea-
ture module to make joint prediction using a decoder GRU
which takes uy,.¢, as the initial hidden state and roll the
GRU forward for every prediction step ahead taking time
as input. Thus, our decoder equations will be €e;—;, , =
GRU(uy,.¢,y,tN4x) and our final predictions y;—¢y.,,
FFN(et:tN+k)

5.3 Model training, inference, and
implementation

Training e Step 1: During the first training step, our goal

is to make e; =~ el” so that later we can use the gradient
approximation stated in Equation (5) so that we can then
match the gradient of the ODE. For this, we can train all pa-
rameters (neural networks and ODE parameters €2;) jointly
with all the losses except for the feature ODE loss LOPFr . o
Step 2: Once LEM i small, we can train all losses together,
however, it might be unstable and L™ may start to increas-
ing which in turn invalidates our gradient matching trick and
makes the minimization of LOPEF misleading. We found the
training is more stable when freezing all previous layers to
e; in the time module and all previous layers to e} in the
feature module. In this case, we only focus the learning in
the last layers, therefore, they should have enough represen-
tation power for this task. Inference At inference, although
we have predictions from both time and feature modules, we
solely utilize the feature module predictions as it ingests fea-
tures and we want to emphasize the utility of inserting dy-
namics in ML models. Implementation As previous work
notes (Yazdani et al. 2020) learning ODE dynamics with
PINNSs is challenging. We found it useful to bound ODE
parameters €); and initialize them based on the numerical
solution of the ODE as output by a standard solver, e.g.,
Nelder-Mead. We keep (2, kept learnable through the train-
ing process because the neural networks may find a better
solution. More details are in our appendix.

6 Experiments
6.1 Setup, metrics, and baselines

All experiments were conducted using a 4 Xeon E7-4850
CPU with 512GB of 1066 Mhz main memory and 4 GPUs

Tesla V100 DGXS 32GB. Our method implemented in Py-
Torch (implementation details in the appendix) trains on a
GPU in about 30 mins for one predictive task. Inference
takes only a few seconds. Appendix, code, and other re-
sources can be found online?.

Evaluation All the results are for forecasting COVID-
19 mortality in the US up to 8-weeks ahead in the fu-
ture. For COVID-19, as per previous CDC-coauthored pa-
pers (Cramer et al. 2022), we evaluate at state and national
level. Specifically, we include 47 states; we exclude 3 out of
the 50 states where the SEIRM mechanistic model had dif-
ficulties fitting due to sparsity of death counts (specifically
Alaska, Montana, and Wyoming). Our evaluation period is 8
months from Sept. 2020 to March 2021. which includes the
complete Delta wave in the US, and we make 8-weeks ahead
predictions for every two weeks in this period. We used June
2020 to Aug. 2020 to tune our models. For flu, we also fol-
low CDC (Biggerstaff et al. 2018) and predict for all 10 HHS
region® for a period of 5 months (Dec. 2017 to May 2018).
For each forecasting week, all models are trained with his-
torical data available until that week (i.e., they are trained
on every prediction week). In total, we make 5696 predic-
tions per model which requires training each of them 700+
times, therefore, is very computationally expensive to run all
models for multiple runs.

Metrics Our focus is in predictions that are accurate and
well-correlated the epidemic trends, thus we measure two
aspects of our predictive performance: error and trend corre-
lation. e Error metrics: As previous work in this area (Ad-
hikari et al. 2019), we adopt metrics based on root mean
squared error and absolute deviation. Because the number
of deaths largely vary across regions, we use normalize ver-
sions of popular error metrics so that we can aggregate per-
formance over multiple regions. We use two different ver-
sions of Normalized Root Mean Squared Error (NR1 and
NR2) and Normal Deviation (ND) following (Roy et al.
2021; Remy et al. 2021). These metrics are described in de-
tail in our appendix. For all of these metrics, we calculate
them at short-term forecasting (1-4 weeks) and long-term
forecasting (5-8 weeks) and calculate their mean value. e
Correlation metric: Following (Deng et al. 2020), we use
Pearson correlation and use their median across weeks.
Data We collected important publicly available signals from
a variety of trusted sources that are relevant to COVID-19
forecasting. For COVID-19, we collected 13 features in this
dataset, this include mobility from Google and Apple , social
media surveys from Facebook, hospitalization data from the
U.S. Depart. of Health & Human Services and CDC , and
cases and mortality from Johns Hopkins Univ. For flu, we
use the 14 signals from the Google symptom dataset. See
appendix for more details and links.

Baselines As we are the first to pose the INCORPORATING
EPI-DYNAMICS IN NNS problem, we do not have off-the-
shelf baselines. Instead, our focus is on how to incorpo-
rate ODE dynamics into NNs. Hence we focus on the dif-
ferent ways these have been explored in literature (Dash

Resources website: https:/github.com/Adityal.ab/EINNs
*hhs.gov/about/agencies/iea/regional-offices/index.html

https://github.com/AdityaLab/EINNs
hhs.gov/about/agencies/iea/regional-offices/index.html

Table 1: EINNS is the only one consistently providing accurate and well-calibrated forecasts and it is among the best performing
for all metrics (lower NR1, NR2 and ND is better; higher Pearson correlation is better). Top 2 models per column are in bold
(including tied models). These results are an average across 5696 predictions per model.

Trend
Short-term (1-4 wks) Long-term (5-8 wks) correlation
Model NR1 NR2 ND NR1 NR2 ND PC
Task 1: COVID-19 Forecasting (US National + 47 states)
RNN (GRU+Atten) 1.09 0.50 0.86 1.19 0.53 0.96 0.08
Mechanistic model (SEIRM) 2.35 1.13 1.36 7.14 2.99 3.11 0.53
GENERATION 0.79 0.35 0.60 0.93 0.40 0.74 -0.01
REGULARIZATION 1.05 0.48 0.81 1.19 0.53 0.97 0.09
ENSEMBLING 0.91 0.41 0.68 0.93 0.40 0.69 -0.01
EINNS (ours) 0.54 0.24 0.38 0.85 0.37 0.66 0.46
PINN (time module standalone) 0.84 0.38 0.64 0.93 0.40 0.72 0.24
EINNS-NoGradMatching 0.64 0.29 0.49 0.98 0.43 0.79 0.03
Task 2: Influenza Forecasting (10 HHS regions)

RNN (GRU+Atten) 0.72 0.38 0.67 1.19 0.51 1.14 -0.03
Mechanistic model (SIRS) 0.72 0.38 0.51 1.16 0.55 0.81 0.71
GENERATION 0.76 0.4 0.71 1.21 0.52 1.15 -0.14
REGULARIZATION 1.19 0.64 1.00 1.22 0.54 0.9 -0.45
ENSEMBLING 0.89 0.47 0.77 0.83 0.35 0.73 -0.69
EINNS (ours) 0.53 0.27 0.37 1.01 0.42 0.73 0.68
PINN (time module standalone) 0.55 0.29 0.44 1.13 0.48 1.02 -0.47
EINNSs-NoGradMatching 0.53 0.27 0.38 1.02 0.42 0.76 0.50

et al. 2022). « GENERATION: Similar to (Wang et al. 2019;
Sanchez-Gonzalez et al. 2020), the NN learns directly from
data generated by the numerical solution of SEIRM/SIRS. e
REGULARIZATION: Similar to (Gao et al. 2021; Gaw et al.
2019), the NN predicts both the ODE states and the ODE
parameters. Then uses the ODE parameters to regularize the
states via a loss based on the SEIRM/SIRS equations. @ EN-
SEMBLING: As per (Adiga et al. 2021; Yamana et al. 2017),
combines predictions from RNN and SEIRM/SIRS via a
NN that outputs final predictions.

6.2 Results in COVID-19 and influenza

Our results showcase EINN as an effective general frame-
work for incorporating epidemic dynamics from a mecha-
nistic model into a neural network. We first demonstrate that
we can leverage advantages from both modeling paradigms
resulting in consistently good forecasts across all tasks and
metrics. We also compare against other non-trivial methods
to incorporate ODE dynamics into neural models. To con-
textualize our model’s performance with the broader picture
of epidemic forecasting, we also have results with standard
data-driven baselines, which can be found in our appendix.

Q1: Leveraging advantages of both mechanistic models
and neural models. Our RNN has a lower or similar error in
short- and long-term forecasting than the SEIRM and SIRS,
but its predictions are much less correlated with epidemic
trends (see lines 1-2 of comprehensive results in Table 1). By
integrating mechanistic and neural models, EINNS is capa-
ble of taking advantage of both. Comparing EINNS with the
SEIRM/SIRS, Pearson correlations are close but our predic-
tions are much more accurate (up to 77% less error). Indeed,
EINNS not only improves RNN correlation by 475% but
also its accuracy up to 55% thanks to the incorporation of

short and long-term dynamics. Note that our goal was not to
beat the SEIRM/SIRS but have a method that has a consis-
tently good performance across accuracy and correlation.

Q2: Benefits over other ways to incorporate epidemic dy-
namics into neural models. EINNS has the lowest error
and best correlation in comparison with other existing ways
to incorporate epidemic dynamics to neural networks. We
can see that these methods may excel in one task (e.g., EN-
SEMBLING in long-term forecasting) but they are severely
worse in other important tasks. Instead, EINNS is the only
one consistently good in all tasks.

Q3: Ablation: time module PINN and gradient match-
ing. We perform ablation studies to understand what are the
contributions of the main components of our model. First,
we analyze our time module trained standalone, i.e., being
trained without the feature module with losses in Equations
(5-9) (PINN in Table 1). We can see that, although our time
module PINN directly interacts with the ODE and their be-
havior will be coupled during training, they have different
behavior in test. In fact, this points to the need that we need
features to be able to extract representations that general-
ize in test. Second, we assess the contribution of our gra-
dient matching trick (EINNS-NoGradMatching), for which
we train with all losses except for the ones in Equations (6)
and (7). In this scenario where only £ helps to transfer
the dynamics, we can see that it is a less effective way.

Q4: Case-study and QS5: Sensitivity to hyperpameters. In
our appendix, we conducted a case study in US National and
New York to visually analyze the advantages of our method
in both accuracy and correlation (see example for US Na-
tional in In Figure 1b). We found most hyperparameters are
not sensitive. See appendix for more results and details.

7 Discussion and Societal Impact

The COVID-19 pandemic has impacted possibly every as-
pect of life and has exemplified our vulnerability to major
public health threats. This underscores the importance of in-
fectious disease detection and prediction for shaping more
resilient societies. Preventing and responding to such pan-
demics requires trustworthy epidemic forecasts, e.g. fore-
casts well correlated with actual epidemic trends.

The ML community has been very active in CDC fore-
casting initiatives and has harnessed multiple successes.
However, generating trustworthy epidemic forecasts may re-
quire more than only data. In this paper we tackle this chal-
lenge by introducing EINNS to incorporate mechanistic dy-
namics (via the SEIRM/SIRS model) into neural models (us-
ing a RNN style base model). We show the effectiveness of
a principled method to transfer relevant knowledge via gra-
dient matching of the ODE equations, without integrating
(forward pass) the ODE model. Through extensive experi-
ments over states/regions in the US we also show the useful-
ness of EINNS in COVID-19 and flu forecasting and also
the importance of our various design choices. Overall, we
believe this work opens up new avenues for leveraging epi
domain knowledge into AI models for better decision mak-
ing. Connecting complex mechanistic models to neural net-
works also enables us to have learned representations useful
for other tasks downstream like what-if predictions, which
would be worth exploring. In addition investigating more
complex epidemiological models (like network based agent
models) would be fruitful.

Acknowledgments

This work was supported in part by the NSF (Expedi-
tions CCF-1918770, CAREER 1I5-2028586, RAPID IIS-
2027862, Medium IIS-1955883, Medium IIS-2106961,
CCF-2115126), CDC MInD program, ORNL, faculty re-
search award from Facebook and funds/computing resources
from Georgia Tech. B.A. was supported by CDC-MIND
U01CK000594 and start-up funds from University of Iowa.
NR was supported by US NSF grants Expeditions CCF-
1918770, NRT DGE-1545362, and OAC-1835660. We also
would like to thank Harsha Kamarthi for his helpful sugges-
tions which improved the paper.

References

Adhikari, B.; et al. 2019. EpiDeep: Exploiting Embeddings for
Epidemic Forecasting. In KDD.

Adiga, A.; et al. 2021. All Models Are Useful: Bayesian Ensem-
bling for Robust High Resolution COVID-19 Forecasting. In KDD.

Arik, S. O.; et al. 2020. Interpretable Sequence Learning for
COVID-19 Forecasting. NeurIPS.

Ba, J.; et al. 2014. Do deep nets really need to be deep? NIPS.

Biggerstaff, M.; et al. 2018. Results from the second year of a col-
laborative effort to forecast influenza seasons in the United States.
Epidemics.

Brooks, L. C.; et al. 2018. Nonmechanistic forecasts of seasonal in-
fluenza with iterative one-week-ahead distributions. PLOS Comp.
Biology.

Cai, S.; et al. 2021. DeepM&Mnet: Inferring the electroconvec-
tion multiphysics fields based on operator approximation by neural
networks. Journal of Comp. Physics.

Chen, R. T; et al. 2018. Neural ordinary differential equations. In
NeurlIPS.

Cho, K.; et al. 2014. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. EMNLP.
Cramer, E. Y.; et al. 2022. Evaluation of individual and ensemble
probabilistic forecasts of COVID-19 mortality in the US. PNAS.
Dash, T.; et al. 2022. A review of some techniques for inclusion of
domain-knowledge into deep neural networks. Scientific Reports.
Deng, S.; et al. 2020. Cola-GNN: Cross-location Attention based
Graph Neural Networks for Long-term ILI Prediction. In CIKM.
for Disease Control, C.; and Prevention. 2020. U.S. Influenza
Surveillance System: Purpose and Methods.

Gaffey, R. H.; et al. 2018. Application of the CDC EbolaResponse
modeling tool to disease predictions. Epidemics.

Gao, J.; et al. 2021. STAN: spatio-temporal attention network for
pandemic prediction using real-world evidence. JAMA.

Gaw, N.; et al. 2019. Integration of machine learning and mech-
anistic models accurately predicts variation in cell density of
glioblastoma using multiparametric MRI. Scientific reports.
Hazelbag, C. M.; et al. 2020. Calibration of individual-based mod-
els to epidemiological data: A systematic review. PLoS Comp Bio,
16(5): e1007893.

Hethcote, H. W. 2000. The Mathematics of Infectious Diseases.
SIAM Review.

Jin, X.; et al. 2021. Inter-Series Attention Model for COVID-19
Forecasting. In SDM.

Kamarthi, H.; et al. 2021. When in Doubt: Neural Non-Parametric
Uncertainty Quantification for Epidemic Forecasting. In NeurlPS.
Kamarthi, H.; et al. 2022a. Back2Future: Leveraging Backfill Dy-
namics for Improving Real-time Predictions in Future. /CLR.
Kamarthi, H.; et al. 2022b. CAMul: Calibrated and Accurate Multi-
view Time-Series Forecasting. WWW.

Karniadakis, G.; et al. 2021. Physics-informed machine learning.
Nature Reviews Physics.

Kumar, Y.; and Chakraborty, S. 2021. GrADE: A graph based
data-driven solver for time-dependent nonlinear partial differential
equations. arXiv.

Liu, X.; et al. 2021. Self-supervised learning: Generative or con-
trastive. TKDE.

Lu, L.; et al. 2021. DeepXDE: A deep learning library for solving
differential equations. SIAM Review.

Marathe, M.; et al. 2013. Comp. epidemiology. Comm. of the ACM.

Moon, S.; and Carbonell, J. G. 2017. Completely Heterogeneous
Transfer Learning with Attention-What And What Not To Transfer.
In IJCAL

Morozova, O.; et al. 2021. One year of modeling and forecasting
COVID-19 transmission to support policymakers in Connecticut.
Scientific reports.

Muralidhar, N.; et al. 2018. Incorporating Prior Domain Knowl-
edge into Deep Neural Networks. In /IEEE Big Data.

Osthus, D.; et al. 2019. Dynamic Bayesian Influenza Forecasting in
the United States with Hierarchical Discrepancy (with Discussion).
Bayesian Analysis.

Pei, S.; and Shaman, J. 2020. Aggregating forecasts of multi-

ple respiratory pathogens supports more accurate forecasting of
influenza-like illness. PLoS Comp Bio, 16(10): e1008301.

Reich, N. G.; et al. 2019. A collaborative multiyear, multimodel
assessment of seasonal influenza forecasting in the United States.
PNAS.

Remy, S. L.; et al. 2021. Overcoming Digital Gravity when using
Al in Public Health Decisions. arXiv.

Rodriguez, A.; et al. 2022. Data-centric epidemic forecasting: A
survey. arXiv preprint arXiv:2207.09370.

Rodriguez, A.; et al. 2021a. DeepCOVID: An Operational Deep
Learning-driven Framework for Explainable Real-time COVID-19
Forecasting. In AAAI

Rodriguez, A.; et al. 2021b. Steering a Historical Disease Fore-
casting Model Under a Pandemic: Case of Flu and COVID-19. In
AAAL

Roy, P; et al. 2021. Deep diffusion-based forecasting of COVID-19
by incorporating network-level mobility information. In ASONAM.
Sanchez-Gonzalez; et al. 2020. Learning to simulate complex
physics with graph networks. In /CLR.

Shaman, J.; Pitzer, V. E.; Viboud, C.; Grenfell, B. T.; and Lipsitch,
M. 2010. Absolute humidity and the seasonal onset of influenza in
the continental United States. PLoS biology, 8(2): e1000316.
Shaman, J.; et al. 2013. Real-time influenza forecasts during the
2012-2013 season. Nature Comm.

Sitzmann, V.; et al. 2020. Implicit neural representations with pe-
riodic activation functions. In NeurIPS.

Tancik, M.; et al. 2020. Fourier Features Let Networks Learn High
Frequency Functions in Low Dimensional Domains. In NeurIPS.
Thuerey, N.; et al. 2021. Physics-based Deep Learning. WWW.
Vaswani, A.; et al. 2017. Attention is all you need. NIPS.

Viboud, C.; and Vespignani, A. 2019. The future of influenza fore-
casts. PNAS.

Wandel, N.; et al. 2022. Spline-PINNs: Approaching PDEs without
data using fast, physics-informed hermite-spline CNNs. In AAAL
Wang, L.; et al. 2019. DEFSI: Deep Learning Based Epidemic
Forecasting with Synthetic Information. AAAL

Wang, R.; et al. 2021a. Bridging physics-based and data-driven
modeling for learning dynamical systems. In L4DC.

Wang, S.; et al. 2021b. Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM.

Wu, J. T.; et al. 2020. Nowcasting and forecasting the potential do-
mestic and international spread of the 2019-nCoV outbreak origi-
nating in Wuhan, China: a modelling study. The Lancet.

Yamana, T. K.; et al. 2017. Individual versus superensemble fore-
casts of seasonal influenza outbreaks in the United States. PLoS
Comp. Bio.

Yang, L.; et al. 2021. B-PINNSs: Bayesian physics-informed neural
networks for forward and inverse PDE problems with noisy data.
Journal of Comp. Physics.

Yazdani, A.; et al. 2020. Systems biology informed deep learning
for inferring parameters and hidden dynamics. PLOS Comp. Bio.

Zimmer, C.; et al. 2020. Influenza Forecasting Framework based
on Gaussian Processes. In ICML.

http://arxiv.org/abs/2207.09370

A Background (continuation)

SIRS model for seasonal influenza. The SIRS model has
been extensively used for modelling the seasonal influenza
outbreaks. Here we use the version proposed in (Shaman
et al. 2010) which other follow up papers have used to guide
their analysis (e.g., (Pei and Shaman 2020)). The model
consists of three compartments: Susceptible (S;), Infected
(1), and Recovered (R;). It is parameterized by three vari-
ables Q = {8, D, L}, where j is the infectivity rate, D is
the mean duration of immunity, and L is the mean duration
of the immunity period. Note that NV — .S — [is the number
of immune individuals. As per in SEIRM, we utilize time-
varying parameters 2y = {8, Dy, L;} at the given time-
stamp ¢ and denote the ODE states as s; = [S, Iy, Ry]7.
The ODEs describing the model is as follows:

S, N-S,—1I BLS,
dt L; N
dl, _ pudiS: I

(10)

dt N D,

Calibration. The target/calibration variable for COVID-
19 is associated mortality, while in flu it is percentage of pa-
tients with influenza-like-illness (ILI) symptoms, which is
not directly represented in the SIRS model. We provide de-
tails in Section E on how to connect ILI to the SIRS model.

B More details on data

Our datasets were collected from publicly available
sources*. We describe them in details as follows.

* Data signals 1: Mobility signals. The signals originate
from the record of people visiting points of interest (POI)
in various regions. According to Google, daily changes
in visits to various POI categories are collected and com-
pared with the period January 3 - February 6, 2020. Ad-
ditionally, we collected a daily change of visitors from
Apple, which shows the relative volume of directions re-
quested across different US states compared to January
13. Different non-pharmaceutical interventions (NPIs)
and different policies adopted by different states are im-
plicitly illustrated by mobility signals.

* Data signals 2: Symptomatic surveys. Every day, Face-
book collects statistics on COVID-like illness (%CLI)
and influenza-like illness (%ILI) across the US and dif-
ferent states. On the basis of symptoms reported in vol-
untary surveys, they estimate this percentage.

e Data signals 3: Symptom search data. Google collects
records of searches related to symptoms for multiple con-
ditions and syndromes across the US and different states.
Their system provides a metric that quantifies search vol-
ume associated with specific symptoms, which under-
goes a privacy-protecting mechanism before being publi-
cized. There are 400+ symptoms available in this dataset
dating back to 2017, from which we only use a subset of

“Data links: apple.com/covid19/mobility; google.com/
covid19/mobility; coronavirus.jhu.edu; healthdata.gov;
delphi.cmu.edu; gis.cdc.gov/grasp/COVIDNet/COVID19_3.html;
goo.gle/covid19symptomdataset

14. These are the following which are symptoms associ-
ated with influenza: Fever, Low-grade fever, Cough, Sore
throat, Headache, Fatigue, Vomiting, Diarrhea, Shortness
of breath, Chest pain, Dizziness, Confusion, Generalized
tonic—clonic seizure, and Weakness.

* Data signals 4: Number of hospitalizations. The US De-
partment of Health & Human Services provides daily
hospitalization admissions dating back to January 1,
2020. Several primary sources provide facility-level
granularity reports to create this signal: (1) HHS Tele-
Tracking, (2) reporting provided to HHS Protect by
state/territorial health departments on behalf of their
healthcare facilities, and (3) the National Healthcare
Safety Network.

* Data signals 5: Number of new deaths. The Johns Hop-
kins University reports daily mortality for COVID-19.
They collect and curate data from official websites of
state public health departments across the US. This has
been the source of data for the CDC COVID-19 forecast-
ing initiative (Craemer et al. 2022).

* Data signals 6: weighted Influenza-like Illness (wILI).
Time series data are collected by CDC from over
3,500 outpatient healthcare providers in the Outpatient
Influenza-like Illness Surveillance Network (ILINet).
Health care providers report voluntarily every week the
percentage of patients with Influenza-like Illness (ILI)
symptoms. ILI is defined as “fever (temperature of 100cF
[37.80C] or greater) and a cough and/or a sore throat
without a known cause other than influenza.” This has
been the source of data for previous iterations of the CDC
FluSight forecasting initiative (Reich et al. 2019).

C Experimental setup (extra details)

Code and data are available attached as a supplement. They
both will be made public upon acceptance.

Computational setup. All experiments were conducted us-
ing a 4 Xeon E7-4850 CPU with 512GB of 1066 Mhz main
memory and 4 GPUs Tesla V100 DGXS 32GB. Our method
implemented in PyTorch (implementation details in the ap-
pendix) trains on GPU in about 30 mins for one predictive
task. Inference is takes only a few seconds.

Real-time forecasting. We follow the literature on evalu-
ating epidemic forecasting methodologies (Shaman et al.
2013; Kamarthi et al. 2022b; Adhikari et al. 2019) and use
the real-time forecasting setup. We simulate real-time fore-
casting by making models train only using data available un-
til each of the prediction weeks and make predictions for
1 to 8 weeks ahead in the future. Data revisions in public
health data are large and may affect evaluation and conclu-
sions (Kamarthi et al. 2022a; Cramer et al. 2022), therefore,
we utilize fully revised data following previous papers on
methodological advances (Adhikari et al. 2019; Rodriguez
et al. 2021b).

Evaluation details. Some models may make daily predic-
tions while others weekly predictions. We follow CDC eval-
uation papers (Cramer et al. 2022; Reich et al. 2019) and
convert all forecasts to weekly. For this, we sum over 7 days
for COVID-19 and take a 7-day average for flu.

apple.com/covid19/mobility
google.com/covid19/mobility
google.com/covid19/mobility
coronavirus.jhu.edu
healthdata.gov
delphi.cmu.edu
gis.cdc.gov/grasp/COVIDNet/COVID19_3.html
goo.gle/covid19symptomdataset

D Implementation details
D.1 Data Preprocessing

Feature scaling. Time-series of exogenous features can
have wide range of values (e.g., number of confirmed cases
vs percentage of people with COVID-like symptoms in so-
cial media surveys) Therefore, we scale all signals per each
region for which we use standard scaling (normalization).
Time series for training. Although we may have long time
series, we found our RNN works better with no chunking.
As during training we have variable-length input sequences,
we use a mask that is utilized when calculating the attention
scores. As we follow the real-time forecasting setup, at in-
ference time we use the complete input sequence thus we do
not need a mask.

D.2 Architecture and hyperparameters

We describe in detail the hyperparameters for EINNS used
for our experiments. As mentioned in Section 5, we used
data from June 2020 to Aug. 2020 for model design and hy-
perparameter tuning.

o Time module: It is a feedforward network with input layer
layers 40x40x40x20 followed by output layers 20x40x40xS5,
and activation function tanh. Note that the input to this mod-
ule is time, which is of dimension 1, but this is immediately
transformed to 40 different signals via Gaussian Random
Fourier feature mapping which then enter to the neural net-
work. Between the input and output layers, we have our em-
beddings e;, which are of smaller size (20) than the other
hidden layers. We make this selection because we want to
make embeddings e; and el to be as close as possible, and
this is hard to achieve when we deal with high-dimensional
embeddings as it has been noted in the Contrastive Learn-
ing literature (Liu et al. 2021). Passing e; to the output
layer gives us s;. With respect to the learnable ODE param-
eters, we a tanh transformation following (Yazdani et al.
2020). This ensures that the actual parameter values will be
within their corresponding domain (0-1). In our experience,
we found that initializing the ODE parameters with the ones
found by the analytical solution works best.

o Feature module: As encoder, we used a bi-directional
GRU with 2 layers and hidden states of dimension 32. As de-
coder, we use another bi-directional GRU with 1 layer and
hidden states of dimension 32 and an feedforward output
layer of 32x20 to obtain e". To encourage transfer learning,
we utilize shared layers between the time and feature mod-
ules. Therefore, the embedding e/ is passed to the output
layer of the time module to obtain s!".

e Loss weights: All our results use loss weight of 1 except
for the following losses. For our ODE loss £OPF LOPE—F e
use weight loss of 10, and we weight the same in our mono-
tonicity loss £M°"°, Our parameter consistency loss £P2™ ig
weighted with 0.001. Finally, we have a helper loss for the
time module that ingests data from the analytical solution of
the ODE, to which we put a weight of 0.1

E Evaluation metrics

As noted in Section 5, we used two different versions of
Normalized Root Mean Squared Error (NR1 and NR2) and

Normal Deviation (ND) following (Roy et al. 2021; Remy
et al. 2021). Given prediction ,, . at prediction week w for
k-weeks ahead in the future, and the corresponding ground
truth value y,, 3, our error metrics are the following:

V7 Sk — Gui)?

ﬁ ijf ‘yw;k?

VR Sk Wk — Guk)?
NR2 = '
max (Yo k) — Min(Yuw k)
Zw,k |yw,k - gw,k|

Zw,k‘ |yw,k|

where W is the number of predictions weeks and K is num-
ber of weeks ahead in the future; for our setup we have
W = 14 and K = 8, which makes 112 different predictions
for model for a single region and makes 5376 predictions
per model over all regions. Note: In the case of COVID-19,
there are several states for which there was no death in a par-
ticular week, therefore, we add 1 death to the denominator
to avoid numerical issues. In flu, we do not need this.

Regarding correlation, we use Pearson correlation over
the sequence of 8 predictions in the future as per (Deng et al.
2020):

NR1 =

ND =

_ > ek — T6) (k. —)
Ve — 70 6 —)2

where ¥, and g, are the mean values of the ground truth and
the model’s predictions, respectively.

Calibration of ODE. The target variables for COVID-19
and flu forecasting are different. In COVID-19, we want to
calibrate/predict using COVID-associated mortality— which
is more reliable than confirmed cases (Cramer et al. 2022)—,
while in flu we use influenza-like-illness (ILI) counts, which
is collected by the CDC. ILI measures the percentage of
healthcare seekers who exhibit influenza-like-illness symp-
toms, defined as “fever (temperature of 100°F/37.8°C or
greater) and a cough and/or a sore throat without a known
cause other than influenza” (for Disease Control and Pre-
vention 2020). Data on COVID-19 mortality can be directly
associate to our SEIRM. However, to connect ILI to the SIS
model, we need to estimate it based on the available vari-
ables. For this, we use ILI % = %/(N -OR), where OR
is the outpatients ratio, which is the proportion of the popu-
lation that are outpatients in a given day. We set OR based
on CDC flu facts °.

PC

F Extra forecasting results
(vs. standard data-driven methods)

While the selection of our baselines is correct to address the
main focus of the paper, we compare our method against
standard data-driven baselines to contextualize our model’s
performance with the bigger picture of epidemic forecasting.
Following (Cramer et al. 2022), the COVID Forecast Hub

Scde.gov/flu/about/keyfacts.htm

cdc.gov/flu/about/keyfacts.htm

Table 2: EINNS vs standard data-driven baselines. Top model per column is in bold.

Trend
Short-term (1-4 wks) Long-term (5-8 wks) correlation
Model NR1 NR2 ND NR1 NR2 ND PC
Task 1: COVID-19 Forecasting (US National + 47 states)
EINNS (ours) 0.54 0.24 0.38 0.85 0.37 0.66 0.46
COVID Forecast Hub baseline 0.80 0.36 0.62 0.93 0.40 0.74 NaN
Autoregressive model 0.78 0.35 0.60 1.25 0.55 0.92 0.03
Lasso model w/ features 0.87 0.39 0.66 0.89 0.38 0.67 -0.18
Task 2: Influenza Forecasting (10 HHS regions)

EINNS (ours) 0.53 0.27 0.37 1.01 0.42 0.73 0.68
COVID Forecast Hub baseline 0.74 0.39 0.69 1.15 0.49 1.10 NaN
Autoregressive model 0.56 0.33 0.52 0.88 0.44 0.82 -0.19
Lasso model w/ features 0.60 0.36 0.55 0.85 0.43 0.80 -0.82

Table 3: Hyperparameter sensitivity for EINNS over states California, Georgia, Illinois, Texas, and US National.

Short-term (1-4 wks) Long-term (5-8 wks) Trend correlation

Hyperparameter Value NR1 NR2 ND NR1 NR2 ND PC
wCPE 1 0.41 050 035 052 073 048 0.68
10 038 046 032 051 0.70 0.47 0.72
100 034 039 029 057 073 050 0.55
qTransfer 1 038 046 032 051 070 0.47 0.72
10 039 046 033 053 070 049 0.75
100 039 046 034 053 071 049 0.76

baseline is a persistence baseline which always predicts the
past. We also an autoregressive and a LASSO model which
also takes the same features as input. As we can see in Ta-
ble 2, our method is the only one with consistently low error
(NR1, NR2, ND) and high correlation. Note that the per-
sistence baseline (COVID Forecast Hub baseline) predicts a
constant trend, thus, correlation is not defined (NaN).

G QS: Hyperparameter sensitivity

Overall, we found that most hyperparameters are not sensi-
tive. The most sensitive ones are the weights for ODE loss
for time module £OPF and feature module £OPEF, and em-
bedding £F™ and output losses LU, To illustrate this, we
vary the loss weight w°PE which is applied to both £OPF and
LOPEF and another loss weight w ™" which is applied to
both LEMP and £Ouput,

We analyze hyperparameters sensitivity on five geograph-
ical regions in the uptrend of the COVID-19 Delta wave
(over 2 months, specifically epidemic weeks 202048 to
202101) which is one of the most difficult to predict due
to the unprecedented infectiousness of the Delta variant and
shift in human behavior. In Table 3, we can see that EINNS
performance is stable across different values of hyperparam-
eters It is worth noting that it tuning is important to have a
correct balance on these losses as increasing one weight on
may improve error or correlation but degrade the one facet.
As noted in the literature (Wang et al. 2021b), this is com-
mon when working with theory-based constrains and how to
best proceed remains an open problem.

	1 Introduction
	2 Related Work
	3 Background
	3.1 ODE-based mechanistic epidemic models
	3.2 RNN architecture
	3.3 PINNs for Systems Biology

	4 Problem formulation
	5 Our Approach
	5.1 Time module (source model): learning latent time-varying dynamics
	5.2 Feature module (target model): connecting features to epidemic dynamics via gradient matching
	5.3 Model training, inference, and implementation

	6 Experiments
	6.1 Setup, metrics, and baselines
	6.2 Results in COVID-19 and influenza

	7 Discussion and Societal Impact
	A Background (continuation)
	B More details on data
	C Experimental setup (extra details)
	D Implementation details
	D.1 Data Preprocessing
	D.2 Architecture and hyperparameters

	E Evaluation metrics
	F Extra forecasting results (vs. standard data-driven methods)
	G Q5: Hyperparameter sensitivity

