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ORTHOGONAL RATIONAL FUNCTIONS WITH REAL POLES,

ROOT ASYMPTOTICS, AND GMP MATRICES

BENJAMIN EICHINGER, MILIVOJE LUKIĆ, AND GIORGIO YOUNG

Abstract. There is a vast theory of the asymptotic behavior of orthogonal
polynomials with respect to a measure on R and its applications to Jacobi
matrices. That theory has an obvious affine invariance and a very special role
for ∞. We extend aspects of this theory in the setting of rational functions with
poles on R = R∪{∞}, obtaining a formulation which allows multiple poles and
proving an invariance with respect to R-preserving Möbius transformations.
We obtain a characterization of Stahl–Totik regularity of a GMP matrix in
terms of its matrix elements; as an application, we give a proof of a conjecture
of Simon – a Cesàro–Nevai property of regular Jacobi matrices on finite gap
sets.

1. Introduction

There is a vast theory of orthogonal polynomials with respect to measures on
C and their root asymptotics, exemplified by the Ullman–Stahl–Totik theory of
regularity. Let µ be a compactly supported probability measure and {pn}∞n=0 the
corresponding orthonormal polynomials, obtained by the Gram–Schmidt process
from {zn}∞n=0 in L2(dµ). Then

(1.1) lim inf
n→∞

|pn(z)|1/n ≥ eGE(z,∞)

for z outside the convex hull of supp µ, where E is the essential support of µ and GE

denotes the potential theoretic Green function for the domain C \E; if that domain
is not Greenian, one takes GE = +∞ instead. For measures compactly supported
in R, this theory can be interpreted in terms of self-adjoint operators. In particular,
for any bounded half-line Jacobi matrix

J =





b1 a1

a1 b2 a2

a2
. . .

. . .
. . .





with a! > 0, b! ∈ R,

(1.2) lim sup
n→∞

(
n∏

!=1

a!

)1/n

≤ Capσess(J),
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where Cap denotes logarithmic capacity. For both of these universal inequalities,
the case of equality (and existence of limit) is called Stahl–Totik regularity [27]; the
theory originated with the case E = [−2, 2], first studied by Ullman [30].

We extend aspects of this theory to the setting of rational functions with poles in
R = R∪{∞}. One motivation for this is the search for a more conformally invariant
theory. Statements such as (1.1), (1.2) rescale in obvious ways with respect to
affine transformations (automorphisms of C) which preserve R, so it is obvious
that an affine pushforward of a Stahl–Totik regular measure is Stahl–Totik regular.
However, the point ∞ has a very special role throughout the theory: for a Möbius
transformation f which does not preserve ∞, pn ◦ f are rational functions with
a pole at f−1(∞), and f(J) as defined by the functional calculus is not a finite
band matrix. Thus, it is a nontrivial question whether a Möbius pushforward of a
Stahl–Totik regular measure is Stahl–Totik regular.

The set of Möbius transformations which preserve R is the semidirect group
product PSL(2, R) ! {id, z (→ −z}, whose normal subgroup PSL(2, R) corresponds
to the orientation preserving case. Denote by f∗µ the pushforward of µ, defined
by (f∗µ)(A) = µ(f−1(A)) for Borel sets A. As an example of our techniques, we
obtain the following:

Theorem 1.1. Let f ∈ PSL(2, R) ! {id, z (→ −z}. If µ is a Stahl–Totik regular
measure on R and ∞ /∈ supp(f∗µ), then the pushforward measure f∗µ is also Stahl–
Totik regular.

However, we will mostly work in the more general setting when multiple poles
on R are allowed, which arises naturally in the spectral theory of self-adjoint op-
erators. Denote by Tf,dµ the multiplication operator by f in L2(dµ). The matrix
representation for Tx,dµ(x) in the basis of orthogonal polynomials is a Jacobi ma-
trix, and through this classical connection, the theory of orthogonal polynomials is
inextricably linked to the spectral theory of Jacobi matrices. In this matrix rep-
resentation, resolvents T(c−x)−1,dµ(x) are not finite-diagonal matrices. However, in
a basis of orthogonal rational functions with poles at c1, . . . , cg,∞, the multiplica-
tion operators T(c1−x)−1,dµ(x), . . . , T(cg−x)−1,dµ(x), Tx,dµ(x) all have precisely 2g +1
nontrivial diagonals. The corresponding matrix representations are called GMP
matrices; they were introduced by Yuditskii [32].

Self-adjoint operators and their matrix representations are an important part of
this work, so we choose to present the theory in a more self-contained way, using
self-adjoint operators from the ground up; this has similarities with [22]. Some
proofs could be shortened by using orthogonal polynomials with respect to varying
weights [27, Chapter 3], but some facts rely on the precise structure obtained by
the periodically repeating sequence of poles.

We should also compare this to the case of CMV matrices: for a measure sup-
ported on the unit circle, Stahl–Totik regularity is still defined in terms of orthogo-
nal polynomials, but the CMV basis [4,22] is given in terms of positive and negative
powers of z, i.e., orthonormal rational functions with poles at ∞ and 0. The sym-
metries in that setting lead to explicit formulas for the CMV basis in terms of the
orthogonal polynomials; it is then a matter of calculation to relate the exponen-
tial growth rate of the CMV basis to that of the orthogonal polynomials, and to
interpret regularity in terms of the CMV basis. In our setting, there is no such sym-
metry and no formula for orthonormal rational functions in terms of orthonormal
polynomials.
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In order to state our results in a conformally invariant way, we will use the
following notations and conventions throughout the paper. The measure µ will be
a probability measure on R. We denote by supp µ its support in R, and we consider
its essential support (the support with isolated points removed), denoted

E = ess supp µ.

We will always assume that µ is nontrivial; equivalently, E *= ∅.
Fix a finite sequence with no repetitions, C = (c1, . . . , cg+1) with ck ∈ R\supp µ

for all k. Consider the sequence {rn}∞n=0 where r0 = 1 and for n = j(g + 1) + k,
1 ≤ k ≤ g + 1,

(1.3) rn(z) =

{
1

(ck−z)j+1 ck ∈ R,

zj+1 ck = ∞.

Applying the Gram–Schmidt process to this sequence in L2(dµ) gives the sequence
of orthonormal rational functions {τn}∞n=0 whose behavior we will study. We note
that the special case supp µ ⊂ R, g = 0, C = (∞) corresponds to the standard
construction of orthonormal polynomials associated to the measure µ (note that,
since we denote by supp µ the support in R, the statement supp µ ⊂ R implies that
µ is compactly supported in R), and our first results are an extension of the same
techniques.

The first result is a universal lower bound on the growth of {τn}∞n=0 in terms of a
potential theoretic quantity. If E is not a polar set, we use the (potential theoretic)
Green function for the domain C \ E, denoted GE, and we define

(1.4) GE(z,C) =

{
1

g+1

∑g+1
k=1 GE(z, ck) E is not polar,

+∞ E is polar.

Theorem 1.2. For all z ∈ C \ R,

lim inf
n→∞

|τn(z)|1/n ≥ eGE(z,C).

This is a good place to point out that our current setup is not related to the
recent paper [13], in which the behavior was compared to a Martin function at a
boundary point of the domain. Here, the behavior is compared to a combination
of Green functions (1.4), all the poles are in the interior of the domain C \ E, and
the difficulty comes instead from the multiple poles.

Another universal inequality for orthonormal polynomials comes from comparing
their leading coefficients to the capacity of E. In our setting, the analog of the
leading coefficient must be considered in a pole-dependent way. Denote

Ln = span{r! | 0 ≤ # ≤ n}.

By the nature of the Gram–Schmidt process, there is a κn > 0 such that

τn − κnrn ∈ Ln−1.

The Gram–Schmidt process can be reformulated as the L2(dµ)-extremal problem

(1.5) κn = max
{
Reκ : f = κrn + h, h ∈ Ln−1, ‖f‖L2(dµ) ≤ 1

}
.

By strict convexity of the L2-norm, these L2-extremal problems have unique ex-
tremizers given by f = τn, and κn is explicitly characterized as a kind of leading
coefficient for τn with respect to the pole at ck where n = j(g+1)+k, 1 ≤ k ≤ g+1.



4 B. EICHINGER, M. LUKIĆ, AND G. YOUNG

Below, we will also relate the constants κn to off-diagonal coefficients of certain ma-
trix representations.

The growth of the leading coefficients κn will be studied along sequences n =
j(g + 1) + k for a fixed k, and bounded by quantities related to the pole ck. If E is
not a polar set, it is a basic property of the Green function that the limits

γk
E =

{
limz→ck(GE(z, ck) + log |z − ck|), ck *= ∞,

limz→ck(GE(z, ck) − log |z|), ck = ∞

exist. Note that if ck = ∞, γk
E is precisely the Robin constant for the set E. We

further define constants λk by

(1.6) log λk =





γk

E +
∑

1≤!≤g+1
! &=k

GE(ck, c!) E is not polar,

+∞ E is polar.

Theorem 1.3. For all 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

(1.7) lim inf
j→∞

κ1/n(j)
n(j) ≥ λ1/(g+1)

k .

Theorem 1.4. The following are equivalent:

(i) For some 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

lim
j→∞

κ1/n(j)
n(j) = λ1/(g+1)

k ;

(ii) For all 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

lim
j→∞

κ1/n(j)
n(j) = λ1/(g+1)

k ;

(iii)

lim
n→∞

(
g+1∏

!=1

κn+!

)1/n

=

(
g+1∏

k=1

λk

)1/(g+1)

;

(iv) For q.e. z ∈ E, we have lim supn→∞ |τn(z)|1/n ≤ 1;
(v) For some z ∈ C+, lim supn→∞ |τn(z)|1/n ≤ eGE(z,C);
(vi) For all z ∈ C, lim supn→∞ |τn(z)|1/n ≤ eGE(z,C);
(vii) Uniformly on compact subsets of C \ R, limn→∞ |τn(z)|1/n = eGE(z,C).

Definition 1.5. The measure µ is C-regular if it obeys one (and therefore all) of
the assumptions of Theorem 1.4.

In this terminology, Stahl–Totik regularity is precisely (∞)-regularity, i.e., C-
regularity for the special case supp µ ⊂ R, g = 0, C = (∞). Theorems 1.2, 1.3,
1.4 are closely motivated by foundational results for Stahl–Totik regularity. A new
phenomenon appears through the periodicity with which poles are taken in (1.3) and
the resulting subsequences n(j) = j(g+1)+k: since κn is a normalization constant
for τn, it is notable that control of κn along a single subsequence n(j) = j(g+1)+k in
Theorem 1.4(i) provides control over the entire sequence. This phenomenon doesn’t
have an exact analog for orthogonal polynomials, where g = 0. We will also see
below that this is essential in order to characterize the regularity of a GMP matrix
using only the entries of the matrix itself and not its resolvents.

Moreover, we show that the regular behavior described by Theorem 1.4 is inde-
pendent of the set of poles C:
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Theorem 1.6. Let C1,C2 be two finite sequences of elements from R\ supp µ, not
necessarily of the same length. Then µ is C1-regular if and only if it is C2-regular.

Corollary 1.7. Let supp µ ⊂ R. Let C be a finite sequence of elements from
R \ supp µ. Then µ is C-regular if and only if it is Stahl–Totik regular.

Thus, Theorem 1.4 should not be seen as describing equivalent conditions for a
new class of measures, but rather a new set of regular behaviors for the familiar
class of Stahl–Totik regular measures.

We consistently work with poles on R since our main interest is tied to self-
adjoint problems. Some of our results are in a sense complementary to the setting
of [27, Section 6.1], where poles are allowed in the complement of the convex hull of
supp µ, and the behavior of orthogonal rational functions is considered with respect
to a Stahl–Totik regular measure. Due to this, it is natural to expect that these
results hold more generally, for measures on C and general collections of poles and
Möbius transformations. Moreover, in our setup the poles are repeated exactly
periodically, but we expect this can be generalized to a sequence of poles which has
a limiting average distribution. Related questions for orthogonal rational functions
were also studied by [3, 10].

As noted in [27, Section 6.1], poles in the gaps of supp µ can cause interpolation
defects in the problem of interpolation by rational functions. In our work, these
interpolation defects show up as possible reductions in the order of the poles. For
example, consider C = (∞, 0). Then, by construction, τ2j+1 is allowed a pole at
0 of order at most j. However, if µ is symmetric with respect to z (→ −z, the
functions τn will have an even/odd symmetry. Since τ2j+1 contains a nontrivial
multiple of zj+1, it follows that τ2j+1(z) = (−1)j+1τ2j+1(−z). By this symmetry,
the actual order of the pole at 0 is j + 1− k for some even k, so it cannot be equal
to j (it will follow from our results that in this case, the order of the pole is j − 1).
The same effect can be seen for the pole at ∞ for C = (0,∞). In the polynomial
case, this does not occur: pn always has a pole at ∞ of order exactly n.

We will consider at once the distribution of zeros of τn and the possible reductions
in the order of the poles. We will prove that all zeros of τn are real and simple, and
that n − g ≤ deg τn ≤ n. We define the normalized zero counting measure

νn =
1

n

∑

w:τn(w)=0

δw.

Although we normalize by n, νn may not be a probability measure: however 1 −
g/n ≤ νn(R) ≤ 1. Therefore, normalizing by deg τn instead of by n would not affect
the limits as n → ∞.

We will now describe the weak limit behavior of the measures νn as n → ∞. To
avoid pathological cases, we assume that E is not polar; in that case, denoting by
ωE(dx, w) the harmonic measure for the domain C \E at the point w, we define the
probability measure on E,

ρE,C =
1

g + 1

g+1∑

j=1

ωE(dx, cj).

The results below describe weak limits of measures in the topology dual to C(R).

Theorem 1.8. Let µ be a probability measure on R. Assume that E is not a polar
set.
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(a) If µ is C regular, then w-limn→∞ νn = ρE,C.
(b) If w-limn→∞ νn = ρE,C, then µ is C regular or there exists a polar set

X ⊂ E such that µ(R \ X) = 0.

We now turn to matrix representations of self-adjoint operators. Fix a sequence
C = (c1, . . . , cg+1) such that ck∞ = ∞ for some 1 ≤ k∞ ≤ g + 1. A half-line GMP
matrix [32] is the matrix representation for multiplication by x in the basis {τn}∞n=0

for this sequence C; its matrix elements are

Amn =

∫
τm(x)xτn(x) dµ(x).

The condition that ck∞ = ∞ for some k∞ guarantees that Amn = 0 for |m − n| >
g +1, so these matrix elements generate a bounded operator A on #2(N0) such that
Amn = 〈em, Aen〉, where (en)∞n=0 denotes the standard basis of #2(N0). We say that
A ∈ A(C).

GMP matrices have the property that some of their resolvents are also GMP
matrices; namely, for any k *= k∞, (ck − A)−1 ∈ A(f(C)) where f is the Möbius
transform f : z (→ (ck − z)−1 and f(C) = (f(c1), . . . , f(cg+1)).

Note that the special case g = 0, C = (∞) gives precisely a Jacobi matrix. A
Jacobi matrix is said to be regular if it is obtained by this construction from a
regular measure; analogously, we will call a GMP matrix regular if it is obtained
from a regular measure. Just as regularity of a Jacobi matrix can be characterized
in terms of its off-diagonal entries, we will show that regularity of a GMP matrix
can be characterized in terms of its entries in the outermost nontrivial diagonal.
We will also obtain a GMP matrix analog of the inequality (1.2).

The GMP matrix has an additional block matrix structure; in particular, for a
GMP matrix with ck∞ = ∞, on the outermost nonzero diagonal m = n−g−1, the
only nonzero terms appear for n = j(g + 1) + k∞, and those are strictly positive.
Thus, we denote

(1.8) βj = 〈ej(g+1)+k∞ , Ae(j+1)(g+1)+k∞〉.

Theorem 1.9. Fix a probability measure µ with supp µ ⊂ R and a sequence C =
(c1, . . . , cg+1) with ck = ∞. Then

(1.9) lim sup
j→∞

(
j∏

!=1

β!

)1/j

≤ λ−1
k∞

.

Moreover, the measure µ is Stahl–Totik regular if and only if

(1.10) lim
j→∞

(
j∏

!=1

β!

)1/j

= λ−1
k∞

.

The proof will use a relation between the sequence {βj}∞j=1 and the constants
{κj(g+1)+k∞}∞j=1. In particular, the characterization of regularity in Theorem 1.9
is made possible by the characterization of regularity in terms of the subsequence
{κj(g+1)+k}∞j=1 for any single k. Theorem 1.9 also corroborates the perspective that
regularity of the measure is the fundamental notion which manifests itself equally
well in many different matrix representations.

Since the resolvents (ck − A)−1 are also GMP matrices and their measures are
pushforwards of the original measure, they are also regular GMP matrices; in this
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sense, Theorem 1.9 provides g + 1 criteria for regularity, one corresponding to each
subsequence n(j) = j(g + 1) + k, 1 ≤ k ≤ g + 1.

As an application of this theory, we show that it provides a proof of a theorem
for Jacobi matrices originally conjectured by Simon [23]. Let E ⊂ R be a compact
finite gap set,

(1.11) E = [b0, a0] \
g⋃

k=1

(ak,bk),

and denote by T +
E the set of almost periodic half-line Jacobi matrices with σess(J) =

σac(J) = E [5, 14]. Through algebro-geometric techniques and the reflectionless
property, this class of Jacobi matrices has been widely studied for their spectral
properties and quasiperiodicity (see also [26, 31] for more general spectral sets).
They also provide natural reference points for perturbations, which is our current
interest. On bounded half-line Jacobi matrices J , we consider the metric

(1.12) d(J, J̃) =
∞∑

k=1

e−k(|ak − ãk| + |bk − b̃k|).

On norm-bounded sets of Jacobi matrices, convergence in this metric corresponds
to strong operator convergence. However, instead of distance to a fixed Jacobi
matrix J̃ , we will consider the distance to T +

E ,

d(J, T +
E ) = inf

J̃∈T +
E

d(J, J̃) = min
J̃∈T +

E

d(J, J̃).

Denote by S+ the right shift operator on #2(N0), S+en = en+1. The condition
d((S∗

+)mJSm
+ , T +

E ) → 0 as m → ∞ is called the Nevai condition. For E = [−2, 2],
this corresponds simply to the commonly considered condition an → 1, bn → 0
as n → ∞ [18]. In general, as a consequence of [21], the Nevai condition implies
regularity. The converse is false; however:

Theorem 1.10. If E ⊂ R is a compact finite gap set and J is a regular Jacobi
matrix with σess(J) = E, then

(1.13) lim
N→∞

1

N

N∑

m=1

d((S∗
+)mJSm

+ , T +
E ) = 0.

The condition (1.13) is described as the Cesàro–Nevai condition; it was first
studied by Golinskii–Khrushchev [15] in the OPUC setting with essential spectrum
equal to ∂D. Theorem 1.10 was conjectured by Simon [23] and proved in the special
case when E is the spectrum of a periodic Jacobi matrix with all gaps open by using
the periodic discriminant and techniques from Damanik–Killip–Simon [7] to reduce
to a block Jacobi setting. It was then proved by Krüger [17] by very different
methods under the additional assumption infn an > 0. While this is a common
assumption in the ergodic literature, regular Jacobi matrices do not always satisfy
it: [22, Example 1.4] can easily be modified to give a regular Jacobi matrix with
spectrum [−2, 2] and inf an = 0. We prove Theorem 1.10 in full generality by
applying Simon’s strategy and, instead of the periodic discriminant and techniques
from [7], using the Ahlfors function, GMP matrices, and techniques of Yuditskii
[32].

For the compact finite gap set E ⊂ R, among all analytic functions C \ E → D
which vanish at ∞, the Ahlfors function Ψ takes the largest value of Re(zΨ(z))|z=∞.
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The Ahlfors function has precisely one zero in each gap, denoted ck ∈ (ak,bk) for
1 ≤ k ≤ g, a zero at cg+1 = ∞, and no other zeros; see also [25, Chapter 8]. In
particular, for the finite gap set E, this generates a particularly natural sequence of
poles CE = (c1, . . . , cg,∞).

The Ahlfors function was used by Yuditskii [32] to define a discriminant for finite
gap sets,

(1.14) ∆E(z) = Ψ(z) +
1

Ψ(z)
.

This function is not equal to the periodic discriminant, but it has some similar prop-
erties and it is available more generally (even when E is not a periodic spectrum).
Namely, ∆E extends to a meromorphic function on C and (∆E)−1([−2, 2]) = E.
It was introduced by Yuditskii to solve the Killip–Simon problem for finite gap
essential spectra. In fact, the discriminant is a rational function of the form

∆E(z) = λg+1z + d +
g∑

k=1

λk

ck − z
(1.15)

for some d ∈ R; in particular, we will explain that the constants λj > 0 in (1.15)
match the general definition (1.6).

As a first glimpse of our proof of Theorem 1.10, we note that it uses the fol-
lowing chain of implications. Starting with a regular Jacobi matrix with essential
spectrum E, by a change of one Jacobi coefficient, which does not affect regularity,
we can assume that ck /∈ supp µ (Lemma 7.1). Under this assumption, regularity
of the Jacobi matrix implies regularity of the corresponding GMP matrix A and
the resolvents (ck − A)−1, k = 1, . . . , g, which can be characterized in terms of
their coefficients by Theorem 1.9. By properties of the Yuditskii discriminant, this
further implies regularity of the block Jacobi matrix ∆E(A). Let us briefly recall
that a block Jacobi matrix is of the form

(1.16) J =





w0 v0

v∗0 w1 v1

v∗1 w2 v2

v∗2
. . .

. . .
. . .




,

where vj and wj are d × d matrices, wj = w∗
j , and det vj *= 0 for each j. Type 3

block Jacobi matrices have each vj lower triangular and positive on the diagonal.
An extension of regularity to block Jacobi matrices was developed by Damanik–
Pushnitski–Simon [8]; in particular, J is regular for the set [−2, 2] if σess(J) = [−2, 2]
and

(1.17) lim
n→∞




n∏

j=1

|det vj |




1/n

= 1.

This chain of arguments will result in Lemma 1.11:

Lemma 1.11. Let J be a regular Jacobi matrix, E = σess(J) a finite gap set, and
CE the corresponding sequence of zeros of the Ahlfors function. Assuming ck /∈ σ(J)
for 1 ≤ k ≤ g, denote by A the GMP matrix corresponding to J with respect to the
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sequence CE. Then ∆E(A) is a regular type 3 block Jacobi matrix with essential
spectrum [−2, 2].

With Lemma 1.11, it will follow that J = ∆E(A) obeys a Cesàro–Nevai condition.
That Cesàro–Nevai condition will imply (1.13) by a modification of arguments of
[32]. The strategy is clear: just as [32] uses a certain square-summability in terms
of vj , wj to prove finiteness of #2-norm of {d((S∗

+)mJSm
+ , T +

E )}∞m=0, we will use
Cesàro decay in terms of vj , wj to conclude the Cesàro decay (1.13). This can be
expected due to a certain locality in the dependence between the terms of the series
considered; this idea first appeared in [23] in the setting of periodic spectra with
all gaps open. However, some care is needed, since the locality is only approximate
in some steps; this is already visible in (1.12). Also, substantial modifications are
needed throughout the proof due to the possibility of lim inf‖vj‖ = 0 (this cannot
happen in the Killip–Simon class), which locally breaks some of the estimates. The
fix is that this can only happen along a sparse subsequence, but the combination of
a bad sparse subsequence and approximate locality means that we cannot simply
ignore a bad subsequence once from the start; we must maintain it throughout
the proof. A related issue arises with the Cesàro version of a Killip–Simon type
functional. We will describe the necessary modifications to the detailed analysis in
[32].

The rest of the paper will not exactly follow the order given in this section.
In Section 2, we describe the behavior of our problem with respect to Möbius
transformations, and we describe the distribution of zeros of the rational function
τn. In Section 3, we recall the structure of GMP matrices and relate their matrix
coefficients to the quantities κn, and use this to provide a first statement about
exponential growth of orthonormal rational functions on C \ R. In Section 4, we
combine this with potential theoretic techniques to characterize limits of 1

n log|τn|
as n → ∞ and prove the universal lower bounds. In Section 5, we prove the results
for C-regularity and Stahl–Totik regularity. In Section 6 we describe a proof of
Theorem 1.10.

2. Orthonormal rational functions and Möbius transformations

In Section 1, starting from the measure µ and sequence of poles C, we defined
a sequence {rn}∞n=0 and the orthonormal rational functions {τn}∞n=0. In the next
statement, we will denote these by rn(z;C) and τn(z; µ,C), in order to state pre-
cisely the invariance of the setup with respect to Möbius transformations.

Lemma 2.1. If f is a Möbius transformation which preserves R, then

(2.1) τn(z; µ,C) = ρnτn(f(z); f∗µ, f(C)),

where f(C) = (f(c1), . . . , f(cg+1)) and

ρ =

{
+1 f ∈ PSL(2, R),

−1 f ∈ (PSL(2, R) ! {id, z (→ −z}) \ PSL(2, R).

Proof. Note that the sequence {rn}∞n=0 does not have this property: rn(z;C) is not
equal to ρnrn(f(z); f(C)). However, if we denote

Ln(C) = span{r!(·;C) | 0 ≤ # ≤ n},
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then it suffices to have

(2.2) rn(f(z); f(C))− cnρ
nrn(z;C) ∈ Ln−1(C)

for some constants cn > 0. If (2.2) holds, then applying the Gram–Schmidt process
to the sequences {rn(f(z); f(C))}∞n=0 and {rn(z;C)}∞n=0 will give the same sequence
of orthonormal functions, up to the sign change ρn, which is precisely (2.1).

Note that if (2.1) holds for f1, f2, it holds for their composition, so it suffices
to verify (2.2) for a set of generators of PSL(2, R) ! {id, z (→ −z}. In particular,
(2.2) is checked by straightforward calculations for affine transformations and for
the inversion f(z) = −1/z, which implies the general statement since affine maps
and inversion generate PSL(2, R) ! {id, z (→ −z}. !

Let us emphasize what Lemma 2.1 does and what it doesn’t do. Since the Möbius
transformation acts on both the measure and the sequence of poles, Lemma 2.1 does
not by itself prove Theorem 1.1. Lemma 2.1 can only say that if µ is Stahl–Totik
regular, then f∗µ is (f(∞))-regular, which is not sufficient unless f is affine. The
proof of Theorem 1.1 will be more involved.

However, Lemma 2.1 provides a very useful conformal invariance for many of
our proofs. This can be compared to choosing a convenient reference frame. Since
potential theoretic notions such as Green functions are conformally invariant, our
results will be invariant with respect to Möbius transformations. We will often use
this invariance in the proofs to fix a convenient point at ∞.

Note that this will be possible even though some objects are not conformally
invariant. Some of our results compare the sequences κn with the λk, and although
those objects are not preserved under conformal transformations, both sequences
are affected in a compatible way so that the inequalities and equalities are preserved.
Explicitly, fix k and n = j(g + 1) + k and a Möbius transformation f ∈ PSL(2, R)
(a reflection can be considered separately). Let us denote a local dilation factor

f ′(ck) = limz→ck

rk(z,C)
rk(f(z),f(C)) . Then, we use Lemma 2.1 to compute

κn(j) = lim
z→ck

τn(z, µ,C)

rn(z,C)
= lim

z→ck

τn(f(z), f∗µ, f(C))

rn(z,C)
=

κ̃n(j)

f ′(ck)j+1
,

where κ̃n(j) is the leading coefficient τn(z, f∗µ, f(C))−κ̃nrn(z, f(ck))∈Ln−1(f(C)).
If E is nonpolar, the Green function is conformally invariant so we find by another
computation

log λ̃k := lim
w→f(ck)

(
Gf(E)(w, f(ck)) − log|rk(w, f(C))|

)
+

∑

1≤!≤k
! &=k

Gf(E)(f(ck), f(c!))

= lim
z→ck

(
GE(z, ck)−log|rk(z,C)|+log

∣∣∣∣
rk(z,C)

rk(f(z), f(C))

∣∣∣∣

)
+

∑

1≤!≤k
! &=k

GE(ck, c!)

= log λk + log(f ′(ck)),

where we have used that f ∈ PSL(2, R) =⇒ f ′ > 0 on R. Thus, λ̃k = f ′(ck)λk. If
E is polar, then f(E) is as well. From these calculations, it becomes elementary to
verify that statements such as those in Theorems 1.3, 1.4 are conformally invariant.

Note that technical ingredients of the proof, such as polynomial factorizations,
give a preferred role to ∞ so they break symmetry. For instance, we will often use
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the observation that the subspace Ln can be represented as

(2.3) Ln =

{
P

Rn
| P ∈ Pn

}

for some suitable polynomial Rn with factors which account for finite poles ck *= ∞.
We will use the representation (2.3) after placing a convenient point at ∞. This
idea is already seen in the next proof.

Lemma 2.2. All zeros of the rational function τn are simple and lie in R. More-
over, n − g ≤ deg τn ≤ n.

Let n = j(g + 1) + k, 1 ≤ k ≤ g + 1, and denote by I the connected component
of ck in R \ supp µ. Then τn has no zeros in I and at most one zero in any other
connected component of R \ supp µ.

Proof. Fix 1 ≤ k ≤ g + 1 and without loss of generality, assume ck = ∞. Then,
in the representations (2.3), we can notice that Rn−1 = Rn. In particular, then
τn ∈ Ln \ Ln−1 implies the representation τn(j) = Pn

Rn
for some polynomial Pn of

degree n.
Recall that τn, n = k + (j − 1)(g + 1) is the unique minimizer for the extremal

problem (1.5). By complex conjugation symmetry, the minimizer is real. To proceed
further, we study zeros of Pn by using Markov correction terms.

We say that a rational function M is an admissible Markov correction term if
M > 0 a.e. on E and M(z)Pn(z) ∈ Pn−1. In this case, using 〈Mτn, τn〉 > 0, we see
that the function g(ε) = ‖τn − εMτn‖2 obeys

g′(0) = −2〈Mτn, τn〉 < 0.

Thus, for small enough ε > 0, the function

τ̃n = τn − εMτn

obeys ‖τ̃n‖L2(dµ) < ‖τn‖L2(dµ). Since τ̃n is of the form τ̃n = κnzj+1 + h(z) for
some h(z) ∈ Ln−1 and in particular has the same leading coefficient as τn, the
function τ̃n/‖τ̃n‖L2(dµ) ∈ Ln contradicts extremality of τn. In other words, for the
extremizer τn, there cannot be any admissible Markov correction terms.

Assume that Pn has a nonreal zero w ∈ C\R. Then, since τn is real, Pn(w) = 0,
so the Markov correction term M(z; w) = 1

(z−w)(z−w̄) would be admissible, leading
to contradiction.

Assume that Pn has two zeros x1, x2 in the same connected component of R \
supp µ; then, the Markov correction term

M(z; x1, x2) =
1

(z − x1)(z − x2)

would be admissible, leading to contradiction.
There are no zeros of Pn in I. Otherwise, if x ∈ I was a zero, the Markov term

M(z, x) =

{
1

z−x , x < inf E,
1

x−z , x > sup E

would be admissible.
Finally, all zeros of Pn are simple: otherwise, if x0 ∈ R was a double zero, the

Markov term

M(z, x0) =
1

(z − x0)2
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would be admissible.
The properties of zeros of τn follow from those of Pn. There may be cancellations

in the representation τn = Pn
Rn

, but since Pn has at most a simple zero at c!, the
only possible cancellations are simple factors (z−c!), # *= k. Thus, n−g ≤ deg τn ≤
n. !

The use of Markov correction factors is standard in the Chebyshev polynomial
literature and is applied here with a modification for the L2-extremal problem (in
the L∞-setting, singularities in M are treated with a separate argument near the
singularity, which would not work here).

Corollary 2.3. The measures νn are a precompact family with respect to weak
convergence on C(R). Any accumulation point ν = lim!→∞ νn! is a probability
measure and supp ν ⊂ E.

Proof. By Lemma 2.2, νn(R) ≤ 1, so precompactness follows by the Banach-Alaoglu
theorem. If ν = lim!→∞ νn! , then since 1 − g

n!
≤ νn!(R) ≤ 1, ν(R) = 1.

Let (a,b) be a connected component of R \ E. Let us prove that ν((a,b)) = 0.
By Möbius invariance, it suffices to assume that (a, b) is a bounded subset of R.

Fix r ∈ N. As supp µ \ E is a discrete set, we have

#{x ∈ supp µ : a + 1/r < x < b − 1/r} = M < ∞.

So, by Lemma 2.2, νn!((a+1/r,b−1/r)) ≤ 2M+1
n!

and by the Portmanteau theorem
and sending r → ∞, ν((a,b)) = 0 and supp ν ⊂ E. !

3. GMP matrices and exponential growth of orthonormal rational
functions

In this section, we consider orthonormal rational functions through the frame-
work of GMP matrices. We begin by recalling the structure of GMP matrices [32].
The GMP matrix has a tridiagonal block matrix structure, with the beginnings of
new blocks corresponding to occurrences of ck∞ = ∞. Explicitly,

A =





B̃0 Ã0

Ã∗
0 B1 A1

A∗
1 B2 A2

A∗
2

. . .
. . .

. . .




,

where B̃0 is a k∞ × k∞ matrix, Ã0 is a k∞ × (g + 1) matrix. For j ≥ 0, Aj , Bj

are (g + 1) × (g + 1) matrices; while for j ≥ 1 these appear in A unmodified in the
above, Ã0 and B̃0 are projections of A0 and B0 respectively. More precisely, let
X− denote the upper triangular part of a matrix X (excluding the diagonal) and
X+ the lower triangular part (including the diagonal). Then, indexing the entries
of Aj , Bj , j ≥ 0 from 0 to g, we see they are of the form

Aj = .pj
.δ ᵀ
0 , Bj = Ĉ + (.qj.p

ᵀ
j )+ + (.pj.q

ᵀ
j )−,(3.1)

where .pj , .qj ∈Rg+1 , with (.pj)0 >0 and Ĉ = diag{0, ck∞+1, . . . , cg+1, c1, . . . , ck∞−1}
(with the obvious modification if k∞ = 1 or k∞ = g+1) and .δ0 denotes the standard
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first basis vector of Rg+1. Ã0 and B̃0 are projections of A0 and B0,

Ã0 = ΠA0 B̃0 = ΠB0Π
∗

with Π the block matrix Π :=
[
0k∞×(g+1−k∞)|Ik∞×k∞

]
. We will refer to {.pj , .qj}j≥1

as the GMP coefficients of A. While the precise structure will not be essential
throughout the paper, we point out two things. First on the outermost diagonal
of A in each block there is only one nonvanishing entry, given by (.pj)0, which is
positive and which is at a different position depending on the position of ∞ in the
sequence C. And secondly, in general as a self-adjoint matrix Bj could depend on
(g+1)(g+2)/2 parameters, but we see that in fact they only depend on 2(g+1). This
is not that surprising due to their close relation to three-diagonal Jacobi matrices.
A similar phenomenon also appears for their unitary analogs [6].

Remark 1. For later reference, we provide an alternative point of view on the block
structure of A. The structure provided above is chosen so that ck∞ is at the first
diagonal position of the B-blocks. Recall also that to these blocks we attached
a column .p (with positive first entry (.p)0 > 0) to the right and a row .p ᵀ

j at the
bottom. If, instead of viewing this as a block matrix structure with blocks of size
(g+1)×(g+1), we view this structure as overlapping blocks of size (g+2)×(g+2)
which overlap at the positions of ck∞ , then those would contain all nonvanishing
entries of the GMP matrix (i.e., it would also include the vector .pj). Moreover,
the positive entries are exactly at the upper right and the lower left corner of the
bigger block. Now placing the window of size (g + 1) × (g + 1) on the top of the
bigger block corresponds to the structure presented above. We will encounter in
Section 6 that in other settings it may be more natural to place the block at the
lower corner, and in this case the B blocks will have structure similar to (3.1).

Now the various notations for the off-diagonal blocks Aj , the vectors .pj which
determine them, and the coefficients βj defined in (1.8) are related as

βj = 〈ej(g+1)+k∞ , Ae(j+1)(g+1)+k∞〉 = (Aj)00 = (.pj)0.

The coefficients βj are a special case of the coefficients Λn defined for n = j(g+1)+k,
1 ≤ k ≤ g + 1 as

(3.2) Λn =

{
〈ej(g+1)+k, (ck − A)−1e(j+1)(g+1)+k〉 k *= k∞,

〈ej(g+1)+k, Ae(j+1)(g+1)+k〉 k = k∞.

Namely βj = Λj(g+1)+k∞ , and the coefficients Λj(g+1)+! for k *= k∞ instead occur
as outermost diagonal coefficients for the GMP matrix (ck − A)−1. In our later
applications to the discriminant of A, both the coefficients of A and of its resolvents
will appear, so we will work with Λn throughout.

Next, we connect the coefficients (3.2) to the solutions of the L2-extremal prob-
lem (1.5).

Lemma 3.1. For all n,
κn

κn+g+1
= Λn.(3.3)

Proof. Let n = j(g + 1) + k. By self-adjointness,

Λn = 〈en, rk(A)en+g+1〉 = 〈rkτn, τn+g+1〉 = 〈κnrn+g+1 + h, τn+g+1〉
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for some h ∈ Ln+g. By orthogonality, 〈τn+g+1, h〉 = 0, so 〈τn+g+1, rn+g+1〉 =
1

κn+g+1
implies that

Λn = 〈τn+g+1,κnrn+g+1 + h〉 =
κn

κn+g+1
. !

We now adapt to GMP matrices ideas from the theory of regularity for Jacobi
matrices [22].

Lemma 3.2. Let A ∈ A(C). For all j ≥ 1, ‖.pj‖ ≤ ‖A‖.

Proof. Fix j ≥ 1 and denote n = j(g + 1) + k∞. For any # = 0, . . . , g,

(pj)! = 〈en−g−1+!, Aen〉 =

∫
τn−g−1+!(x)xτn(x)dµ(x).

Since the vectors τn−g−1+! are orthonormal, by the Bessel inequality,

‖.pj‖2 ≤
∫

|xτn(x)|2dµ(x) ≤ ‖A‖2

∫
|τn(x)|2dµ(x) = ‖A‖2

since ‖A‖ = supx∈supp µ|x|. !
Lemma 3.3. For z ∈ C \ R,

(3.4) lim inf
n→∞

1

n
log |τn(z)| > 0.

Proof. We adapt the proof of [22, Proposition 2.2]. It suffices to prove (3.4) along
the subsequences n(j) = j(g + 1) + k, j → ∞, for 1 ≤ k ≤ g + 1. Moreover, due to
R-preserving conformal invariance, it suffices to fix k and prove

(3.5) lim inf
j→∞

1

n(j)
log |τn(j)(z)| > 0

under the assumption that ck = ∞. This allows us to use the associated GMP
matrix A ∈ A(C).

Note that for any m, since {τ!}∞!=0 is an orthonormal basis of L2(dµ),
∑

!

Am!τ!(z) =
∑

!

〈zτm(z), τ!(z)〉τ!(z) = zτm(z).

This equality holds in L2(dµ), but since all functions are rational, it also holds
pointwise. Thus, if we fix z ∈ C \ R, the sequence .ϕ = {τ!(z)}∞!=0 is a formal
eigensolution for A at energy z, i.e. (A − z).ϕ = 0 componentwise. Since A is
represented as a block tridiagonal matrix, let us also write .ϕ in a matching block
form, as .ϕ+ =

[
.u+

0 .u+
1 .u+

2 . . .
]

where

.u+
0 =

[
τ0(z) . . . τk−1(z)

]
, .u+

j =
[
τn(j−1)−1(z) . . . τn(j)−1(z)

]
, j ≥ 1.

We also consider the projection of .ϕ onto the first j + 1 blocks,

.ϕ+
j =

[
.u+

0 . . . .u+
j 0 . . .

]
,

and compute (A− z).ϕj . By the block tridiagonal structure of A, for m < n(j − 1)
we have 〈em, (A − z).ϕj〉 = 0. For 0 ≤ # ≤ g, we have

〈en(j−1)+!, (A − z).ϕ〉 − 〈en(j−1)+!, (A − z).ϕj〉 = (pj)!τn(j)(z)

so that 〈en(j−1)+!, (A − z).ϕj〉 = −(pj)!τn(j)(z). Moreover,

〈en(j), (A − z).ϕj〉 = 〈en(j), A.ϕj〉 = (.pj)
∗uj(z).



ORTHOGONAL RATIONAL FUNCTIONS WITH REAL POLES 15

For m > n(j), we again have 〈em, (A − z).ϕj〉 = 0. In conclusion, (A − z).ϕj has
only two nontrivial blocks,

((A − z).ϕj)
+ =

[
0 . . . 0 −(.pjτn(j)(z))+ ((.pj)∗uj)+ 0 . . .

]
.

In particular, we can compute

(3.6) 〈.ϕj , (A − z).ϕj〉 = −.u∗
jτn(j)(z).pj .

Since A is self-adjoint and .ϕj ∈ #2(N0), by a standard consequence of the spectral
theorem [29, Lemma 2.7.],

|Im z|‖.ϕj‖2 ≤ |〈.ϕj , (A − z).ϕj〉|.

Using (3.6) and the Cauchy–Schwarz inequality gives

|Im z|
j∑

m=0

‖.um‖2 ≤ |τn(j)(z)|‖.pj‖‖.uj‖.

By Lemma 3.2, with C = |Im z|/‖A‖,

C
j∑

m=0

‖.um‖2 ≤ |τn(j)(z)|‖.uj‖.(3.7)

Applying the AM-GM inequality to the right-hand side of (3.7) gives

|τn(j)(z)|‖.uj(z)‖ ≤ 1

2

(
C‖.uj(z)‖2 + C−1|τn(j)(z)|2

)

which together with (3.7) implies

|τn(j)(z)|2 ≥ C2
j∑

m=0

‖.um‖2.(3.8)

Since |τn(j)(z)|2 ≤ ‖.uj+1‖2, this implies that

j+1∑

m=0

‖.um‖2 ≥
(
1 + C2

) j∑

m=0

‖.um‖2.

Since ‖.u0‖ ≥ |τ0(z)| = 1, this implies by induction that

j∑

m=0

‖.um‖2 ≥
(
1 + C2

)j
.

Combining this with (3.8) gives a lower bound on |τn(j)(z)| which implies (3.5). !

The estimates in the previous proof also lead to the following:

Corollary 3.4. For any z ∈ C \ R, the quantities

lim inf
j→∞

1

j(g + 1) + k
log |τj(g+1)+k(z)|, lim sup

j→∞

1

j(g + 1) + k
log |τj(g+1)+k(z)|

are independent of k ∈ {1, . . . , g + 1}.
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Proof. Assume j ≥ 1. For k − g − 1 ≤ # ≤ k − 1, the estimate (3.8) gives

|τj(g+1)+k(z)|2 ≥ C2‖.uj‖2 ≥ C2|τj(g+1)+!(z)|2

which implies

lim inf
j→∞

1

j(g + 1) + k
log |τj(g+1)+k(z)| ≥ lim inf

j→∞

1

j(g + 1) + #
log |τj(g+1)+!(z)|(3.9)

and

lim sup
j→∞

1

j(g + 1) + k
log |τj(g+1)+k(z)| ≥ lim sup

j→∞

1

j(g + 1) + #
log |τj(g+1)+!(z)|.

(3.10)

Clearly, the right-hand sides don’t change if # is shifted by g + 1, so (3.9), (3.10)
hold for all k, # ∈ {1, . . . , g + 1} with k *= #. By symmetry, since the roles of k, #
can be switched, we conclude that equality holds in (3.9), (3.10). !

4. Growth rates of orthonormal rational functions

In this section, we will combine the positivity (3.4) with potential theory tech-
niques in order to study exponential growth rates of orthonormal rational functions.
Our main conclusions will be conformally invariant, but our proofs will use potential
theory arguments and objects such as the logarithmic potential of a finite measure
ν,

Φν(z) =

∫
log|z − x|dν(x),

which is well defined when supp ν does not contain ∞.

Theorem 4.1. Fix 1 ≤ k ≤ g + 1 and denote by I the connected component of
R \ supp µ containing ck. Suppose there is a subsequence n! = j!(g + 1) + k such
that w-lim!→∞ νn! = ν and 1

n!
log κn! → α ∈ R ∪ {−∞, +∞} as # → ∞. Then

uniformly on compact subsets of (C \ R) ∪ (I \ {ck}), we have

h(z) := lim
!→∞

1

n!
log |τn!(z)|.

The function h is determined by ν and α; in particular, if ck = ∞,

(4.1) h(z) = α + Φν(z) − 1

g + 1

g+1∑

m=1
m &=k

log |cm − z|.

Moreover,

(a) α = −∞ is impossible;
(b) If α = +∞, the limit is h = +∞;
(c) If α ∈ R, the limit h extends to a positive harmonic function on C \ (E ∪

{c1, . . . , cg+1}) such that

h(z) = − 1

g + 1
log|cm − z| + O(1), z → cm *= ∞,(4.2)

h(z) =
1

g + 1
log|z| + O(1), z → cm = ∞.(4.3)
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Proof. By using R-preserving conformal invariance, we can assume without loss of
generality that ck = ∞. We will use the representation (2.3) of the subspace Ln.
For n = j(g + 1) + k, counting degrees of the poles leads to

τn =
Pn

Rn
, Rn(z) =

k−1∏

m=1

(cm − z)
g+1∏

m=1
m &=k

(cm − z)j ,

with deg Pn = n. This may not be the minimal representation of τn, but by the
proof of Lemma 2.2, the only possible cancellations are simple factors (cm − z) for
each m *= k, so we get the minimal representation τn(z) = P (z)/Q(z) with

P (z) = κn

∏

w:τn(w)=0

(z − w), Q(z) =
g+1∏

m=1
m &=k

(cm − z)j+δm,j ,

where |δm,j | ≤ 1 for each j. All that matters is that δm,j/j → 0 as j → ∞.
It will be useful to turn this rational function representation into a kind of Riesz
representation,

(4.4) log|τn(z)| = log κn + n

∫
log|x − z|dνn(x) −

∑

1≤m≤g+1
m &=k

(j + δm,j) log|cm − z|.

Since ck = ∞, note that K = R\ I is a compact subset of R. Denote Ω = C\K.
For any z ∈ Ω, the map x (→ log |x− z| is continuous on K, so Φνn!

(z) → Φν(z) as
# → ∞. In fact, convergence is uniform on compact subsets of Ω: since supp(νn!) ⊂
K and νn!(K) ≤ 1 for all #, the estimate

log

∣∣∣∣
x − z1

x − z2

∣∣∣∣ ≤ log

(
1 +

|z1 − z2|
dist(z2, K)

)
≤ |z1 − z2|

dist(z2, K)
, z1, z2 ∈ Ω,

implies uniform equicontinuity of the potentials Φn! on compact subsets of Ω, and
the Arzelà–Ascoli theorem implies uniform convergence on compacts.

Note that (b) follows from (4.1). By Corollary 2.3, supp ν ⊂ E and Φν(z)
is harmonic on C \ E, so the right hand side extends to a harmonic function on
C \ (E ∪ {c1, . . . , cg+1}) and we denote this extension also by h. By Lemma 3.3, h
is positive on C+ ∪ C−, so α *= −∞; moreover, by the mean value property, h is
positive on C \ (E ∪ {c1, . . . , cg+1}).

The remaining asymptotic properties follow from (4.1). Under the assumption
ck = ∞, supp ν is a compact subset of R, and Φν(z) = log |z| + O(1), z → ∞.
It then follows that h(z) = 1

g+1 log |z| + O(1) as z → ∞. Of course, h(z) =

− 1
g+1 log |z − cm| + O(1) near each cm *= ck. !

Theorem 4.1 motivates interest in positive harmonic functions on
C\(E∪{c1, . . . , cg+1}). If E is polar, by Myrberg’s theorem [2, Theorem 5.3.8], any
such function is constant. If E is not polar, knowing the asymptotic behavior of h
at the poles, positivity of h improves to the following lower bound on h. Lemma 4.2
reflects a standard minimality property of the Green function [11, Section VII.10].

Lemma 4.2. Assume that E is a nonpolar closed subset of R. Let h be a positive
superharmonic function on C \ (E∪ {c1, . . . , cg+1}). Suppose h(z)+ 1

g+1 log |z− ck|
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has an existent limit at ck for each finite ck, and h(z)− 1
g+1 log |z| has an existent

limit at ∞ if one of the ck = ∞. Then

h(z) ≥ GE(z,C)(4.5)

for z ∈ C \ E. For 1 ≤ k ≤ g + 1, define

αk =

{
limz→ck(h(z) + 1

g+1 log |z − ck|), ck *= ∞,

limz→∞(h(z) − 1
g+1 log |z|), ck = ∞.

Then

αk ≥ log λk

g + 1
.(4.6)

Proof. We will use a stronger, q.e. version of the maximum principle [20, Thm
3.6.9]. Define

h̃(z) := GE(z,C) − h(z),

which is bounded at ck for 1 ≤ k ≤ g +1 and so extends to a subharmonic function
on C \ E. Since GE vanishes q.e. on E, we have for q.e. t ∈ E,

lim sup
z→t

h̃(z) = − lim inf
z→t

h(z) ≤ 0.

Now we show h̃ is bounded above on C\E. Let U be a union of small neighborhoods
containing the points ck in C \E. By the definition of the Green function, GE(z,C)
defines a harmonic and bounded function on C \ (E ∪ U). That is, there exists M
such that for all z ∈ C \ (U ∪ E) we have

GE(z,C) ≤ M.

Since h ≥ 0, it follows on C \ (U ∪ E) that

h̃(z) = GE(z,C) − h(z) ≤ GE(z,C) ≤ M.

On the other hand, by properties of the Green functions we have

log λk

g + 1
=

{
limz→ck(GE(z,C) + 1

g+1 log |z − ck|), ck *= ∞,

limz→∞(GE(z,C) − 1
g+1 log |z|), ck = ∞.

Then, by assumption, for 1 ≤ k ≤ g + 1, h̃(z) = log λk

g+1 − αk + o(1) as z → ck and,

in particular, the difference is bounded in a small neighborhood of ck. Thus, h̃ is
bounded above on C \ E.

So, by the maximum principle h̃ ≤ 0 =⇒ GE(z,C) ≤ h(z) on C \ E. Since
0 ≥ limz→ck h̃(z) = log λk

g+1 − αk, we have (4.6). !

Lemma 4.3. Under the same assumptions as Lemma 4.2, the following are equiv-
alent:

(i) Equality in (4.6) for all k with 1 ≤ k ≤ g + 1
(ii) Equality in (4.6) for a single k with 1 ≤ k ≤ g + 1
(iii) Equality holds in (4.5)

Proof. (i) =⇒ (ii) is trivial. Suppose then (ii); with the notation of Lemma 4.2,
by assumption, h̃(ck) = 0 and h̃ achieves a global maximum. By the maximum
principle for subharmonic functions [20, Theorem 2.3.1], h̃ ≡ 0 on C \ E. Finally, if
(iii) holds, then evaluating h̃(ck) for each 1 ≤ k ≤ g + 1 yields (i). !
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We will now prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Using conformal invariance, we take ck = ∞. Fix z ∈ C \ R
and select a sequence (n!)∞!=1 such that

lim inf
n→∞

1

n
log |τn(z)| = lim

!→∞

1

n!
log |τn!(z)|.

By precompactness of the (νn), we may pass to a further subsequence, which we
denote again by (n!)∞!=1, so that w-lim!→∞ νn! = ν and 1

n!
log κn! → α for some ν

and α. Then for h as in Theorem 4.1,

lim
!→∞

1

n!
log |τn!(z)| = h(z),

on C \ R. If α = +∞, then there is nothing to show. Suppose α < ∞. If E is not
polar we apply (a) of Theorem 4.1 to find α ∈ R, and we may use (c) of the same
theorem and Lemma 4.2 to conclude.

If instead E is polar, by Myrberg’s theorem, h is constant on C\(E∪{c1, . . . , cg+1}).
Computing the limit at ck we see h ≡ +∞. In particular, lim infn→∞

1
n log |τn(z)| =

+∞ for z ∈ C \ R. !
Proof of Theorem 1.3. Fix 1 ≤ k ≤ g+1 and assume again by conformal invariance
that ck = ∞. Using precompactness of the measures (νn), we find a subsequence
n! = j!(g + 1) + k with

lim
!→∞

1

n!
log κn! = lim inf

j→∞

1

n(j)
log κn(j) =: α

and w-lim!→∞ νn! = ν. If α = +∞, we are done. Suppose then α < ∞, then
we have by Theorem 4.1(a), α ∈ R. Furthermore, if E is nonpolar, by (c) and
Lemma 4.2, h(z) ≥ GE(z,C) on C \ E. In particular, by the representation (4.1) we
see that α = limz→∞(h(z) − 1

g+1 log |z|), and so (4.6) yields the desired inequality.

If instead E is polar, by Theorem 1.2, for each z ∈ C \ R,

h(z) = lim
!→∞

1

n!
log |τn! | ≥ lim inf

n→∞

1

n
log |τn(z)| = +∞,

and so by Theorem 4.1(b), α = +∞. !

5. Regularity

We will begin by proving a version of Theorem 1.4 for a fixed k.

Lemma 5.1. Fix k ∈ {1, . . . , g + 1}. Along the subsequence n(j) = j(g + 1) + k,
the following are equivalent:

(i) limj→∞ κ1/n(j)
n(j) = λ1/(g+1)

k ;

(ii) For q.e. z ∈ E, we have lim supj→∞ |τn(j)(z)|1/n(j) ≤ 1;

(iii) For some z ∈ C+, lim supj→∞ |τn(j)(z)|1/n(j) ≤ eGE(z,C);

(iv) For all z ∈ C, lim supj→∞ |τn(j)(z)|1/n(j) ≤ eGE(z,C);

(v) Uniformly on compact subsets of C \ R, limj→∞ |τn(j)(z)|1/n(j) = eGE(z,C).

Proof. Using conformal invariance, we will assume throughout the proof that ck =
∞. First, suppose that E is polar. In this case (ii) is vacuous, and since GE ≡ +∞,
(iii) and (iv) are trivially true. Since λk = +∞, (i) follows from Theorem 1.3.
As in the proof of Theorem 4.1, weak convergence of measures implies uniform
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on compacts convergence of their potentials. Thus, since νn are a precompact
family, so are Φνn . Thus, the convergence limj→∞

1
n(j) log κn(j) = +∞ implies that

limj→∞
1

n(j) log|τn(j)(z)| = +∞ uniformly on compact subsets of C\R, so (v) holds.
For the remainder of the proof, we will assume E is not polar. Moreover, we

will repeatedly use the fact that if any subsequence of a sequence in a topological
space has a further subsequence which converges to a limit, then the sequence itself
converges to this limit. In particular, when concluding (v), we apply this fact in
the Fréchet space of harmonic functions on C \ R with the topology of uniform
convergence on compact sets.

(iii) =⇒ (v): Given a subsequence of n(j) = j(g + 1) + k, using precompact-
ness of the measures νn, we pass to a further subsequence n! = j!(g + 1) + k
with w-lim!→∞ νn! = ν and lim!→∞

1
n!

log κn! =: α, with α real or infinite. By
Theorem 4.1, uniformly on compact subsets of C \ R,

h(z) = lim
!→∞

1

n!
log |τn!(z)|

with h given by (4.1). Using the assumption, for some z0 ∈ C+, we have

h(z0) ≤ lim sup
j→∞

1

n(j)
log |τn(j)(z0)| < ∞.

So, by Theorem 4.1, α ∈ R and h has a harmonic extension to C\(E∪{c1, . . . , cg+1}).
Furthermore, by Lemma 4.2, h ≥ GE. By assumption, we have the opposite inequal-
ity at z0 ∈ C+, and so, by the maximum principle for harmonic functions, h = GE

on C \ (E ∪ {c1, . . . , cg+1}), and in particular on C \ R. Thus, we have (v).
(v) =⇒ (iv): For z ∈ {c1, . . . , cg+1}, GE(z,C) = +∞ and there is nothing

to show. Fix z ∈ C \ {c1, . . . , cg+1} and let n! = j!(g + 1) + k be a subsequence
with lim!→∞

1
n!

log |τn!(z)| = lim supj→∞
1

n(j) log |τn(j)(z)|. By passing to a further

subsequence, we may assume w-lim!→∞ νn! = ν, and lim!→∞
1
n!

log κn! =: α where

α is real or infinite. By the assumption, we have h = lim!→∞
1
n!

log |τn! | = GE on

C \ R. So, by (a) and (b), α ∈ R and h extends to a harmonic function on C \ (E∪
{c1, . . . , cg+1}). By the representation (4.1), we may extend h subharmonically to
C \ {c1, . . . , cg+1}. On this set, GE is also subharmonic, so, by the weak identity
principle [20, Theorem 2.7.5], h = GE on C \ {c1, . . . , cg+1}. Thus, by the principle
of descent [27, A.III], we have

lim
!→∞

1

n!
log |τn!(z)| ≤ h(z) = GE(z,C)(5.1)

and (iv) follows.
(v) =⇒ (i): Given a subsequence of n(j) = j(g+1)+k, we use precompactness of

the νn to pass to a further subsequence n! = j!(g+1)+k with lim!→∞
1
n!

log κn! =:

α ∈ R ∪ {−∞, +∞} and w-lim!→∞ νn! = ν. Then in the notation of Theorem 4.1
and by assumption, for a z ∈ C \ R

lim
!→∞

log |τn!(z)| = h(z) = GE(z,C).

So by Lemma 4.3, α = log λk

g+1 . Thus, λ1/(g+1)
k is the only accumulation point of

κ1/n(j)
n(j) in R ∪ {−∞, +∞} and we have (i).

(i) =⇒ (v): As before, we fix a subsequence of n(j) = j(g+1)+k and use precom-
pactness to pass to a further subsequence n! = j!(g+1)+k with w-lim!→∞ νn! = ν.
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Then, by Theorem 4.1 and in the notation introduced there, uniformly on compact
subsets of C \ R,

lim
!→∞

1

n!
log |τn!(z)| = h(z),

where h is given by (4.1) with α = log λk

g+1 . Thus, by Lemma 4.3(ii), h(z) = GE(z,C)

on C \ R. Since the initial subsequence was arbitrary, we have (v).
(iv) =⇒ (ii): Recalling that the Green function vanishes q.e. on E, the claim

follows.
(ii) =⇒ (v): Fixing a subsequence of n(j), we again use precompactness to

select a further subsequence n! = j!(g + 1) + k such that w-lim!→∞ νn! = ν and
lim!→∞

1
n!

log κn! =: α, α ∈ R∪{−∞, +∞}. By the upper envelope theorem, there
is a polar set X1 ⊂ C such that on C \ X1, lim sup!→∞ Φνn!

= Φν . Now, we let

X2 := {t ∈ E : lim supn→∞
1
n log |τn(t)| > 0}, which is polar by assumption, and

X3 := {z ∈ C : Φ∞(z) = −∞}, which is polar by [20, Theorem 3.5.1]. Then, for a
t ∈ E \ (X1 ∪ X2 ∪ X3), we have

α ≤ lim sup
n→∞

1

n
log |τn(t)| − Φν(t) +

1

g + 1

g+1∑

m=1
m &=k

log |cm − t| < ∞.

So α ∈ R by Theorem 4.1(a). Thus, by (c) of the same theorem, uniformly on
compact subsets of C \ R

h(z) = lim
!→∞

1

n!
log |τn!(z)|

and h extends to a positive harmonic function on C \ (E ∪ {c1, . . . , cg+1}) with
logarithmic poles at each of the cm. So, h − GE extends to a harmonic function on
C \ E, and h−GE ≥ 0 there by Lemma 4.2. We now show that in fact h = GE using
the stronger, q.e. maximum principle.

We use the equality in (4.1) to extend h to a subharmonic function on C \
{c1, . . . , cg+1}. By the upper envelope theorem and the assumption again, for
t ∈ E \ (X1 ∪ X2)

h(t) = lim sup
!→∞

1

n!
log |τn!(t)| ≤ 0.

Then, for these t, since GE is positive, we have

lim sup
z→t

z∈C\E

(h(z) − GE(z,C)) ≤ lim sup
z→t

z∈C\E

h(z) ≤ h(t) ≤ 0

by upper semicontinuity. So, lim sup z→t
z∈C\E

(h(z) − GE(z,C)) ≤ 0 for q.e. t ∈ E.

Since h is upper semicontinuous on the compact set E, there is an M so that
supt∈E h(t) ≤ M . As in the above, now for any t ∈ E, we have

lim sup
z→t

z∈C\E

(h(z) − GE(z,C)) ≤ lim sup
z→t

z∈C\E

h(z) ≤ h(t) ≤ M.

So, there is a neighborhood U of E with supz∈U∩(C\E)(h − GE) ≤ M + 1. Since the

difference is harmonic on C \ U , we conclude that supz∈C\E(h(z) − GE(z,C)) < ∞.

Thus, by the maximum principle and the reverse inequality, h = GE on C \E. Since
the first sequence was arbitrary, we have (v).

Since the implication (iv) =⇒ (iii) is clear, we may conclude. !
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We now put the subsequences together and use Corollary 3.4 to show that regular
behavior occurs for one k if and only if it happens for all.

Proof of Theorem 1.4. Applying Lemma 5.1 for all k implies equivalence of condi-
tions (ii), (iv), (v), (vi), (vii) from Theorem 1.4. By Corollary 3.4, for some z ∈ C+,
the condition

lim sup
j→∞

1

j(g + 1) + k
log|τj(g+1)+k(z)| ≤ GE(z,C)

holds for one value of k if and only if it holds for all. Due to Lemma 5.1, this
immediately implies equivalence of conditions (i) and (iii) from Theorem 1.4. It
remains to prove equivalence of (ii), (iii).

(ii) =⇒ (iii): For n ∈ N and 1 ≤ k ≤ g + 1, denote by N(n, k) the integer
such that n + 1 ≤ N(n, k) ≤ n + g + 1 and N(n, k) − k is divisible by g + 1. Then

N(n, k)/n → 1 as n → ∞ so (ii) implies limn→∞ κ1/n
N(n,k) = λ1/(g+1)

k . Taking the

product over k = 1, . . . , g + 1 gives (iii).
(iii) =⇒ (ii): Similarly to the above, Theorem 1.3 shows that for all k,

(5.2) lim inf
n→∞

κ1/n
N(n,k) ≥ λ1/(g+1)

k .

Thus, if (ii) was false, this would mean that for some k = m, lim supn→∞ κ1/n
N(n,m) >

λ1/(g+1)
m . Taking products over k, we would have

lim sup
n→∞

(
g+1∏

k=1

κN(n,k)

)1/n

≥ lim sup
n→∞

κ1/n
N(n,m) lim inf

n→∞

(
∏

1≤k≤g+1
k &=m

κN(n,k)

)1/n

>

(
g+1∏

k=1

λk

)1/(g+1)

(the last step again uses (5.2) for all k *= m). This would contradict (iii), so the
proof is complete. !

We now prove a seemingly special case of Corollary 1.7.

Proposition 5.2. Assume that the sequence C contains ∞. Then µ is Stahl–Totik
regular if and only if it is C-regular.

Proof. Let us assume that µ is C-regular and let pn denote the orthonormal poly-
nomial with respect to µ. Fix z ∈ C. Since ∞ is in C, pn ∈ Ln(g+1), so the
orthonormal polynomials can be expressed on the basis of orthonormal rational
functions as

pn(z) =

n(g+1)∑

m=0

cmτm(z),

n(g+1)∑

m=0

|cm|2 = 1.

Thus, in particular, |c!| ≤ 1 and we get

(5.3) |pn(z)| ≤ (1 + n(g + 1)) sup
0≤m≤n(g+1)

|τm(z)|.

By Theorem 1.4, for q.e. z ∈ E,

(5.4) lim sup
!→∞

1

#
log|τ!(z)| ≤ 0.
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Thus, for q.e. z ∈ E, (5.3) implies

(5.5) lim sup
n→∞

1

n
log |pn(z)| ≤ 0.

Thus, µ is Stahl–Totik regular.
Conversely, assume that µ is Stahl–Totik regular. For n = j(g + 1) + k, the

polynomial Rn is a divisor of Rj+1
g+1, so we can write τn = Pn

Rj+1
g+1

where deg Pn ≤ n+g.

For any ε > 0 there exists a polynomial Qε such that 1− ε ≤ QεRg+1 ≤ 1 + ε on E.
Thus,

(5.6) |τn(z)| ≤ (1 − ε)−j−1|Pn(z)Qj+1
ε (z)|

and ‖PnQj+1
ε ‖ ≤ (1 + ε)j+1 since τn is normalized. Since PnQj+1

ε is a polynomial
of degree at most n + g + (j + 1) deg Qε, similarly to the above, representing it in
the basis of polynomials shows
(5.7)
|Pn(z)Qj+1

ε (z)| ≤ (1 + ε)j+1(n + g + 1 + (j + 1) deg Qε) sup
0≤m≤n+g+(j+1) deg Qε

|pn(z)|.

Since n + g + (j + 1) deg Qε = O(n) as n → ∞, the supremum in (5.7) grows
subexponentially whenever (5.5) holds. By (5.6), this implies

lim sup
n→∞

1

n
log|τn(z)| ≤ 1

g + 1
log

(
1 + ε

1 − ε

)
.

Since ε > 0 is arbitrary, we conclude that (5.5) implies (5.4), so (5.4) holds q.e. on
E. !

From this seemingly special case, Theorem 1.6 and Corollary 1.7 follow easily:

Proof of Theorem 1.6. By applying a conformal transformation, the special case
shows that µ is C1-regular if and only if it is (ck)-regular for any single ck in C1.
By applying this twice, we conclude that if C1, C2 have a common element, then
µ is C1-regular if and only if it is C2-regular.

By applying that conclusion twice, we will finish the proof. Namely, for arbitrary
C1, C2, choose a sequence C3 which has common elements with both C1 and C2.
Then µ is C1-regular if and only if it is C3-regular if and only if it is C2-regular. !
Proof of Corollary 1.7. The result follows by taking C2 = (∞) in Theorem 1.6. !
Proof of Theorem 1.1. By Lemma 2.1, f∗µ is Stahl–Totik regular if and only if µ is
(f−1(∞))-regular, and by Corollary 1.7, this is equivalent to Stahl–Totik regularity
of µ. !
Proof of Theorem 1.8. (a) We note that by Corollary 1.7 we may use Theorem 1.4.
Fix 1 ≤ k ≤ g + 1, and use conformal invariance to assume ck = ∞. Given a
subsequence of n(j) = j(g + 1) + k, we use precompactness to pass to a further
subsequence n! = j!(g + 1) + k with w-lim!→∞ νn! = ν. We write

GE(z,C) = ΦρE,C(z) +
1

g + 1
log λk − 1

g + 1

g+1∑

m=1
m &=k

log |z − cm|(5.8)

which we will use to show Φν = ΦρE,C . By (ii), we may apply Theorem 4.1 with
α = 1

g+1 log λk. Then, (vii) yields h = GE off the real line, and thus the equality



24 B. EICHINGER, M. LUKIĆ, AND G. YOUNG

between the representations (4.1) and (5.8) gives Φν(z) = ΦρE,C(z) on C \ R. By
the weak identity principle, this equality extends to C. Applying the distributional
Laplacian to both sides gives ν = ρE,C. Thus, w-limn→∞ νn = ρE,C.

(b) The main ingredient is a variant of Schnol’s theorem; for any n,
∫

|τn|2 dµ = 1,
so

∞∑

n=1

n−2

∫
|τn|2 dµ < ∞.

By Tonelli’s theorem, it follows that
∑∞

n=1 n−2|τn|2 < ∞ µ-a.e., so there exists a
Borel set B ⊂ C with µ(C \ B) = 0 such that

(5.9) lim sup
n→∞

1

n
log|τn(z)| ≤ 0, ∀z ∈ B.

Suppose µ is not regular. Then, by Theorem 1.4(ii), there is a 1 ≤ k ≤ g + 1 with

lim sup
j→∞

1

n(j)
log κn(j) >

1

g + 1
log λk.

Using conformal invariance, we may assume ck = ∞, and we can pass to a subse-
quence n! = j!(g + 1) + k such that α := lim!→∞

1
n!

log κn! > 1
g+1 log λk, where

α ∈ R∪ {+∞} by Theorem 4.1(a). Since w-limn→∞ νn = ρE,C, by comparing (4.1)
and (5.8), we have for z ∈ C \ R,

(5.10) lim
!→∞

1

n!
log|τn!(z)| = GE(z,C) + d,

where d = α − log λk

g+1 > 0. By the upper envelope theorem applied to the sequence

{νn!}!∈N, there exists a polar set X such that (5.10) also holds for all z ∈ C \ X.
Moreover, since GE(z,C) ≥ 0 for all z ∈ C, we conclude that

lim sup
n→∞

1

n
log|τn(z)| ≥ lim

!→∞

1

n!
log|τn!(z)| ≥ d, ∀z ∈ C \ X.

Comparing with (5.9) shows that B ⊂ X, so µ is supported on the polar set X. !

Proof of Theorem 1.9. Defining n(j) = j(g + 1) + k∞ and using Lemma 3.1 to
compute a telescoping product,

(5.11)

(
j∏

!=1

β!

)1/j

=

(
j∏

!=1

κn(!)

κn(!+1)

)1/j

= κ1/j
n(1)κ

−1/j
n(j+1).

The first term on the right-hand side is independent of j, so κ1/j
n(1) → 1 as j → ∞.

For the second factor, using Theorem 1.3 we compute

lim inf
j→∞

κ1/j
n(j+1) ≥ λk∞

and we have the upper bound (1.9) for the lim sup of (5.11). Similarly, using the
criterion Theorem 1.4(ii), it follows from (5.11) that µ is C-regular if and only if
(1.10) holds. !
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6. GMP matrices 2

The proof of Theorem 1.10 will rely heavily on the results of [32]. In this section
we will recall some properties of GMP matrices from [32] which we will use in the
proof of Theorem 1.10. However, in order to justify the use of those constructions,
we need to add some explanation of the structure of GMP matrices. This technical
explanation is necessary in order to understand the action on Jacobi matrices caused
by a single coefficient stripping step on GMP matrices; since such a step changes the
location of ∞ in the sequence of poles, it links our GMP matrices which naturally
arise from ORF expansions, and those in [32], which naturally arise from functional
models of reflectionless operators. This link will allow us to use parts of the analysis
of [32].

As noted in the beginning of Section 3, GMP matrices split up into blocks due
to the appearance of some ck∞ = ∞. However, there is a choice whether to place
the “window” of block size (g + 1) × (g + 1) so that ck∞ is the last element of
the previous block, or the first element of the next block. In this paper, the latter
choice has been more natural (i.e., to split before ∞), because it corresponds to the
choice τ0 = 1 in the rational function construction. From now on, we will call this
the RF structure. On the other hand, in [32] the first choice was more natural (i.e.,
to split after ∞) for the functional model construction, and we will call this the FM
structure. Alternatively, recall that we discussed in Remark 1 that one could view
the GMP structure also as overlapping (g + 2) × (g + 2) blocks. The RF-structure
then corresponds to placing the (g + 1) × (g + 1) B block at the upper left corner
of the bigger block, whereas the FM structure corresponds to placing the B blocks
at the lower right corner. This is shown in the figure below, where the blue lines
indicate a B block corresponding to the RF structure and the red lines a B block
corresponding to the FM structure. Moreover, p̃0 denotes the positive entry on the
outermost diagonal:

. . .
∞ p̃0

p̃0 ∞
. . .

⎡
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⎣

⎡
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⎣

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The two structures can be translated into each other, by means of the formulas
(6.1). Moreover, we will show below that they are also linked by a coefficient
stripping formula.

For the reader’s convenience, we recall the FM structure of GMP matrices as
introduced in [32]. Although the RF and FM structures are just a different inter-
pretation of the same object, namely a GMP matrix, it will be convenient to have
a separate notation. For a GMP matrix written in the FM structure we will use
A, respectively for its blocks Ak, Bk, and we will use Ã, Ãk, B̃k, for GMP matrices
written in the RF structure. Note that this is a change from the notation used in
previous sections.
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Fix a finite sequence C = (c1, . . . , cg) and recall that X− denotes the upper
triangular part of a matrix X (excluding the diagonal), and X+ the lower trian-
gular part (including the diagonal). Then we say that A acting on #2(Z) is GMP
structured, and denote it by A ∈ A, if it is a (g + 1)-block Jacobi matrix

A =





. . .
. . .

. . .
A∗

−1 B−1 A0

A∗
0 B0 A1

. . .
. . .

. . .





such that

Aj = δg.pj
∗, Bj = (.qj.pj

∗)− + (.pj.qj
∗)+ + Ĉ, .pj , .qj ∈ Rg+1,

and

Ĉ =





c1

. . .
cg

0




, .pj =





p(j)
0
...

p(j)
g



 , .qj =





q(j)
0
...

q(j)
g



 , p(j)
g > 0.

We then say an operator A ∈ A is a two-sided GMP matrix if the resolvents
(c! − A)−1 exist for all 1 ≤ # ≤ g and S−!(c! − A)−1S! ∈ A. In this case we
write A ∈ GMP(C). Again we call the generating coefficients {.pj , .qj}j∈Z the GMP
coefficients of A.

We encounter several differences compared to the RF structure presented in
Section 3. First of all the 0 in Ĉ is now in the last, rather than in the first,
position. Moreover, in the definition of Aj , the vector .pj is now a row vector in
the last row, rather than a column vector in the first column. This is exactly due
to shifting the position of ∞ as described above. Extending the structure of GMP
matrices to two-sided operators on #2(Z), it is not hard to see that the RF and the
FM structures can be translated into each other, simply by shifting the window of
size (g + 1) × (g + 1) by one. In this process the role of pj and qj changes, that is,
for 1 ≤ k ≤ g we have

p̃(j)
k = q(j)

k−1p
(j)
g , q̃(j)

k =
p(j)

k−1

p(j)
g

.(6.1)

More importantly for us is that the positive entries are the same, i.e.,

p(j)
g = p̃(j)

0 .

Following [32], we explain how to associate to a given GMP matrix a Jacobi matrix.
Let ej denote the standard basis vectors in #2(Z); recall that {e−1, e0} forms a
spectral basis for two-sided Jacobi matrices in the sense that {Jnej | n ∈ N0, j =
−1, 0} is dense in #2(Z). Define the matrix resolvent function by

RJ (z) =

[
〈(J − z)−1e−1, e−1〉 〈(J − z)−1e0, e−1〉
〈(J − z)−1e−1, e0〉 〈(J − z)−1e0, e0〉

]
.

Let #2+ = #2(N0) and #2− = #2(Z)4#2+ and Π± denote the projection onto #2±. Define
J± = Π±JΠ± and define the half-line resolvent functions by

mJ
+(z) = 〈(J+ − z)−1e0, e0〉, mJ

−(z) = 〈(J− − z)−1e−1, e−1〉.
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Then, essentially due to the structure

J =

[
J− 0
0 J+

]
+ a0(〈·, e−1〉e0 + 〈·, e0〉e−1),

one can see that

RJ (z) =

[
mJ

−(z)−1 a0

a0 mJ
+(z)−1

]−1

;(6.2)

cf. [9, pg 758].
For GMP matrices, we need to modify the spectral basis. Define

ẽ0 =
1

a0
Π+Ae−1, a0 = ‖Π+Ae−1‖,(6.3)

with the natural embedding into #2(Z). Note that

a0ẽ
ᵀ
0 =

[
. . . 0 | p(0)

0 p(0)
1 . . . p(0)

g 0 . . .
]
.

Then {e−1, ẽ0} form a spectral basis for A and similarly as for Jacobi matrices we
have

A =

[
A− 0
0 A+

]
+ a0(〈·, e−1〉ẽ0 + 〈·, ẽ0〉e−1).

This allows us to define

RA(z) =

[
〈(A − z)−1e−1, e−1〉 〈(A − z)−1ẽ0, e−1〉
〈(A − z)−1e−1, ẽ0〉 〈(A − z)−1ẽ0, ẽ0〉

]
,

and

mA
−(z) = 〈(A− − z)−1e−1, e−1〉, mA

+(z) = 〈(A+ − z)−1ẽ0, ẽ0〉(6.4)

and find similar to the Jacobi case that

RA(z) =

[
mA

−(z)−1 a0

a0 mA
+(z)−1

]−1

.

For a given GMP matrix A, the associated Jacobi matrix is simply defined by
setting the resolvent functions to be equal, i.e.,

RJ (z) = RA(z).(6.5)

Note that this defines J uniquely. Due to the common vector e−1, it follows that

b−1 = 〈Je−1, e−1〉 = 〈Ae−1, e−1〉 = p(−1)
g q(−1)

g ,(6.6)

a0 = ‖Π+Je−1‖ = ‖Π+Ae−1‖ = ‖.p0‖,

which explains in hindsight the definition of a0 in (6.3).
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6.1. Shifts on GMP matrices. For a vector x ∈ #2(Z), let | denote the splitting
of #2− and #2+, i.e., we write xᵀ =

[
. . . x−1|x0 . . .

]
. We chose the vector of poles in

the following way
[
. . . ∞|c1 . . . cg ∞ c1 . . .

]
. That is for A+ = Π+AΠ+

the first pole is c1 ∈ R. However, if we consider Ã+ = Π+SAS−1Π+, where
Sek = ek+1 denotes the right shift, then the first pole of Ã+ is ∞.

Ã+ =

∞
c1

A+








.

The resolvent functions of A+ and Ã+ are related by a coefficient stripping
formula:

Lemma 6.1. Let A ∈ GMP(C), A+ = Π+AΠ+, ẽ0, a0, b−1 as in (6.3), (6.6) and
define Ã+ = Π+SAS−1Π+. Then the resolvent functions

m+(z) = 〈(A+ − z)−1ẽ0, ẽ0〉, m̃+(z) = 〈(Ã+ − z)−1e0, e0〉

are related by the coefficient stripping formula

m̃+(z) =
1

b−1 − z − a2
0m+(z)

.(6.7)

Proof. Recall that S+ denotes the right shift on #2+ and define

f0 = S+ẽ0 =
1

a0

[
0 p(0)

0 p(0)
1 . . . p(0)

g 0 . . .
]
.

Then we have

Ã+ =

[
b−1 0
0 A+

]
+ a0(〈·, e0〉f0 + 〈·, f0〉e0).

Then as for Jacobi matrices this implies (6.7); cf. [24, Theorem 3.2.4]. !

Lemma 6.1 has a very natural interpretation. As we discussed above, GMP
matrices split into blocks where ck∞ = ∞ and then there is some choice if we place
∞ as the last or the first element of a block. However, this discussion is irrelevant
for Jacobi matrices, where all ck ≡ ∞. Thus, if we associate to A a Jacobi matrix
J by (6.5) and define J+ = Π+JΠ+ and J̃+ = Π+SJS−1Π+ and the associated
m+, m̃+, then (6.7) becomes the standard coefficient stripping for Jacobi matrices.

There is another natural shift on GMP matrices. Namely, since the shift A(1) =
S−(g+1)AS(g+1) preserves the GMP structure, one can describe how the resolvent
functions of A and A(1) are related. This will be done by so-called elementary
Blaschke-Potapov factors of the third kind with poles at c1, . . . , cg,∞; cf. [1, 19].
In the following it will be convenient to use the notation

p = (p, q), .p = (.p, .q).

Definition 6.2. For p, q, c ∈ R
(6.8)

a(z, c;p) = I − 1

c − z

[
p
q

] [
p q

]
j = exp

(
− 1

c − z

[
p
q

] [
p q

]
j

)
, j =

[
0 −1
1 0

]
,
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represents the so-called Blaschke-Potapov factor of the third kind with a real pole
c. If c = ∞ it is of the form

(6.9) a(z;p) = a(z,∞;p) =

[
0 −p
1
p

z−pq
p

]
.

Define the matrix function

A(z, .p) =

[
A11 A12

A21 A22

]
(z, .p) = a(z, c1;p0) . . . a(z, cg;pg−1)a(z;pg).(6.10)

The important role of the function A(z, .p) will become clear by Theorem 6.3.

Theorem 6.3 ([32, Theorem 2.13 and Theorem 2.15]). Let A ∈ GMP(C), A(1) =

S−(g+1)AS(g+1) and A+ and A(1)
+ the projections onto #2+. Let mA

+ and mA(1)

+ be

the resolvent functions defined by (6.4). Let a2
0 = ‖.p0‖2, (a(1)

0 )2 = ‖.p (1)
0 ‖2. Then

a2
0m

A
+(z) =

A11(z, .p0)((a
(1)
0 )2mA(1)

+ (z)) + A12(z, .p0)

A21(z, .p0)((a
(1)
0 )2mA(1)

+ (z)) + A22(z, .p0)
.(6.11)

6.2. Periodic GMP matrices. We call a two-sided GMP matrix 1-periodic or

simply periodic if Sg+1AS−(g+1) = A. In this case mA(1)

+ = mA
+ and (6.11) is a

quadratic equation for mA
+. This allows to describe the spectrum of A in terms of

the function A(z).

Theorem 6.4 ([12, Theorem 1.8]). Let A = A(.p) ∈ GMP(C) be a periodic GMP
matrix and A(z, .p) be as in (6.10) and define the discriminant by

∆(z) = trA(z, .p).

Then the spectrum of A is a finite union of intervals, it is purely absolutely contin-
uous and of multiplicity 2 and it is given by

σ(A) = ∆−1([−2, 2]) = {z ∈ C| ∆(z) ∈ [−2, 2]}.

The inverse problem can also be answered explicitly. Namely, given a finite
union of intervals E, are there periodic GMP matrices with the given spectrum and
if so can one describe the set of all such matrices? Crucially, the answer to both
questions is positive for the special choice C = CE, where CE denotes the zeros of
the Ahlfors function associated to E. We define the isospectral torus of periodic
two-sided GMP matrices by

TE(CE) = {Å ∈ GMP(CE), Å is periodic and σ(Å) = E}.

Henceforth, we will use Å for elements from TE(CE). We point out that for arbitrary
finite gap sets, the isospectral torus of Jacobi matrices usually consists of almost
periodic operators, whereas for GMP matrices we can always work with periodic
operators. This also makes it possible to characterize the isospectral torus by
a magic formula for GMP matrices. Moreover, this then can be used to describe
TE(CE) also as an algebraic manifold. Recall that Λn denotes the outermost positive
entry of the resolvents (c!−A)−1. That is if A ∈ GMP(C) is a periodic GMP matrix
let

Λ!(A) = 〈e!, (c!+1 − A)−1e!+g+1〉 for 0 ≤ # ≤ g − 1,

Λg(A) = 〈eg, Ae2g+1〉.
The resolvent entries can again be given explicitly in terms of ∆(z).
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Lemma 6.5 ([32, Theorem 2.17]). Let A ∈ GMP(C) be a periodic GMP matrix.
Then for 0 ≤ # ≤ g − 1

Λ!(A)=−(Resc!+1 ∆)−1

(6.12)

=−
(
tr

( !−1∏

k=0

a(c!+1, ck+1;pk)

[
p!
q!

][
p! q!

]
j
g−1∏

k=!+1

a(c!+1, ck+1;pk)a(c!+1,pg)

))−1

.

This allows to describe TE(CE) as an algebraic manifold. Let us fix a finite union
of g + 1 intervals and let ∆E denote the associated discriminant defined in terms
of the Ahlfors function (1.15). Then for coefficients .p let A(.p) ∈ GMP(CE) be a
periodic GMP matrix and define

f0(.p) = λg+1〈.p, .q〉 + d,

f!(.p) = Λ!−1(A(.p))λ! − 1, for 1 ≤ # ≤ g + 1,

and FE : U ⊂ R2(g+1) → Rg+2 by

FE(.p) =
(
f0(.p), . . . fg+1(.p)

)
.(6.13)

We then define the isospectral manifold by

ISE = {.p ∈ R2g : FE(.p) = 0}.

The name is justified by Theorem 6.6:

Theorem 6.6 ([12, Theorem 1.6 and Theorem 1.10]). Let A ∈ GMP(CE), then

A ∈ TE(CE) ⇐⇒ ∆E(A) = Sg+1 + S−(g+1).(6.14)

Moreover, for .p such that A(.p) ∈ GMP(CE) we have that

A(.p) ∈ TE(CE) ⇐⇒ FE(.p) = 0.

6.3. Resolvents in the general case and the Jacobi flow. Similar to (6.12)
one can also find explicit expressions for Λn for general (not necessarily periodic)
GMP matrices. Let A ∈ GMP(C) and for n = j(g + 1) + # for j ∈ Z and 0 ≤ # ≤ g
set

Λn(A) =

{
〈en, (c!+1 − A)−1en+g+1〉, # *= g,

〈en, Aen+g+1〉.

Lemma 6.7 ([32, Lemma 3.2]). Let A ∈ GMP(C). Then for n = j(g + 1) + # and
# *= g we have

Λn(A)

(6.15)

=−
(
tr

( !−1∏

k=0

a(c!+1, ck+1;p
(j+1)
k )

[
p(j+1)
!

q(j+1)
!

][
p(j)
! q(j)

!

]
j
g−1∏

k=!+1

a(c!+1, ck+1;p
(j)
k )a(c!+1,p

(j)
g )

))−1

.

The explicit representation will be crucial in the following. Moreover, let us
mention that due to the finite band block structure of GMP matrices, building
(formal) resolvents is a purely local computation (compare e.g. [32, eq (3.8)]). This
can be seen by the formula above, where only the entries of A from the blocks j
and j + 1 are needed to compute Λn.
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Recall that we discussed already in the beginning of this section that to any
GMP matrix A we can associate a Jacobi matrix J , namely by setting the resolvent
functions equal to (6.5). Let us denote this map by F . It is a deep result from
[32, Proposition 5.5.] that this map is (up to a certain identification) invertible.
An important question is if we can express the Jacobi parameters of J = FA in
terms of the coefficients of A. Let {.pj} denote the GMP coefficients and {aj , bj}
the Jacobi coefficients. Then we have already seen that

a0 = ‖.p0‖, b−1 = q(−1)
g p(−1)

g .

Let

SJ = S−1JS,

and note that

a0(SJ) = a1(J), b−1(SJ) = b0(J),

where by ak(J), bk(J) we mean the Jacobi parameters of the Jacobi matrix J . Thus,
if one understands the transform on GMP matrices which is induced by the shift
action on Jacobi matrices, one can inductively obtain the Jacobi parameters by the
formulas above. This leads to the definition of the Jacobi flow on GMP matrices,
which is defined by the following commutative diagram:

(6.16)

GMP
J−→ GMP

F
I F

I

Jacobi
S−→ Jacobi

Let us mention that this is one of the reasons why it is convenient to work with
two-sided operators. If in this construction we considered the shift action on #2+,
which is not unitary, then it is possible that for some m, ck ∈ σ((S∗

+)mJ+Sm
+ ), and

thus the corresponding half-line GMP matrix would not be well defined.
The Jacobi flow is defined and discussed in [32, Section 4]. We provide the

motivating ideas of the Jacobi flow and its precise definition below. First, note that
in [32], we have the ordering of the poles

CA :=
[

. . . ∞ c1 c2 . . . cg ∞ c1 . . .
]

and recall that we anchored the blocks between ∞ (at position −1) and c1 (at
position 0). Note that for Jacobi matrices, all poles are equal to ∞, and SJ
corresponds to shifting an ∞-pole from position 0 to position −1. Now applying
the spacial shift to GMP matrices would be of a different flavor, as it shifts c1 from
0 to −1. Thus, one first has to shift ∞, which is now at position g +1, to the front,
and then one may apply the spacial shift. This is done in g-steps. The O transform
defined below corresponds changing the order from CA to

C̃A =
[

. . . cg c1 c2 . . . cg−1 ∞ cg c1 . . .
]
.

Letting

o(φ) =

[
sinφ cosφ
cosφ − sinφ

]
,

we make Definition 6.8.
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Definition 6.8. We define the map:

O : GMP(c1, c2, . . . , cg) → GMP(cg, c1, . . . , cg−1)

in the following way. Let O = OA be the block-diagonal matrix

O =





. . .
O−1

O0

. . .




,

where Ok are the (g + 1) × (g + 1) orthogonal matrices

Ok =

[
Ig−2 0

0 o(φk)

]
,

[
sinφk cosφk

]
=

[
p(k)

g−1 p(k)
g

]

√
(p(k)

g−1)
2 + (p(k)

g )2
.(6.17)

Then

OA := SO∗
AAOAS−1.(6.18)

As explained above, the Jacobi flow then is defined by applying O g-times, in
order to shift ∞ through the full block. This leads to Definition 6.9:

Definition 6.9. We define the Jacobi flow transform

J : GMP(CA) → GMP(CA)

by
J A := S−(g+1)O◦gASg+1.

It is shown in [32, Equation (4.8) and Lemma 4.4] that there exists a block-
diagonal unitary mapping UA, such that

J A = S−1U∗
AAUAS.(6.19)

Let us also note that

S−(g+1)O(A)S(g+1) = O(S−(g+1)AS(g+1)),(6.20)

which has the consequences

O(J ◦mA) = J ◦m(OA)(6.21)

and
S−(g+1)(J ◦mA)S(g+1) = J ◦m(S−(g+1)AS(g+1)).

7. Proof of Theorem 1.10

Lemma 7.1 allows us to extend J+ to a two-sided Jacobi matrix J acting on
#2(Z) in a way such that ck belong to the resolvent domain of J .

Lemma 7.1. Let µ be a compactly supported probability measure such that E =
ess supp µ is a union of g + 1 intervals. Let

m+(z) =

∫ ∞

−∞

1

x − z
dµ(x)

and J+ the associated Jacobi matrix and let ck ∈ R \ E for 1 ≤ k ≤ g. Then there
exists a two-sided Jacobi matrix J with the following properties:

(i) J+ = Π+JΠ+;
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(ii) there exists J̊ ∈T (E) so that J− :=Π−SJS−1Π− obeys J−=Π−SJ̊S−1Π−;
(iii) ck belong to the resolvent domain of J ;
(iv) ck belong to the resolvent domain of J̃+ := Π+SJS−1Π+.

Proof. Let J denote the extended two-sided matrix. Note that J is defined by J+,
a0, a−1, b−1 and J−. We fix J+ and a0, a−1 and choose J− and b−1 appropriately.

By (6.7) we have

m̃+(z) =
1

b−1 − z − a2
0m+(z)

.

Thus, ck is a pole of m̃+(z) if and only if it is a zero of b−1 − z − a2
0m+(z). Choose

b−1 so that

b−1 − ck − a2
0m+(ck) *= 0.

This already defines J̃+.
Let us write (6.2) at position −1 rather than at position 0 and let m− be the

resolvent function of J− and m̃+ the resolvent function of J̃+. Then we see that

− 1

R−2−2(z)
= − 1

m−(z)
+ a2

0m̃+(z), − 1

R−1,−1(z)
= − 1

m̃+(z)
+ a2

0m−(z).

If m̃+(ck) ∈ {0,∞}, we choose m− so that m−(ck) /∈ {0,∞} and if m̃+(ck) /∈
{0,∞} we set m−(ck) = 0. In both cases R−2,−2(ck) *= ∞ and R−1,−1(ck) *= ∞
and we obtain (iii). !

We will apply Lemma 7.1 in the following way. First we choose c1, . . . cg as the
zeros of the Ahlfors function of C\E. Let µ be a given Stahl-Totik regular measure
and E = ess supp µ. To this measure we construct J as above. Let further µ̃ be
the spectral measure of J̃+. Clearly E = ess supp µ̃ and from the characterization
of regularity by existence of the limit and equality in (1.2) it follows that also µ̃ is
regular. Due to (iii) we can form orthogonal rational functions with respect to the
periodic sequence C = (c1, . . . , cg,∞, c1, c2, . . . ). On the other hand (iv) allows us
to associate to J a two-sided GMP matrix in the sense of [32]. In particular, J̃+

satisfies the assumptions of Lemma 1.11.
It was noted in [32, Section 2.2] that

(7.1) − log|Ψ(z)| =
g+1∑

k=1

GE(z, ck)

and that the Yuditskii discriminant has the form (1.15) for some λk > 0 and d ∈ R.
Note that the constants λk can be found by computing the residue of ∆E at the
poles ck. By using (1.14) and (7.1), we find the residues to be the same constants
λk defined in a more general setting in (1.6).

Proof of Lemma 1.11. Denote by µ the canonical spectral measure for J . Note that

σess(A) = ess supp µ = E = ∆−1
E ([−2, 2]).

Since ∆E maps R\{c1, . . . , cg} to R and is piecewise strictly monotone, by a spectral
mapping theorem, this implies that for J = ∆E(A), σess(J) = [−2, 2].

As noted in Section 1, regularity of the Jacobi matrix J implies CE-regularity by
Corollary 1.7, and this can be characterized in terms of GMP matrix coefficients
by Theorem 1.9. The GMP matrix structure together with (1.15) implies that



34 B. EICHINGER, M. LUKIĆ, AND G. YOUNG

J = ∆E(A) is a type 3 block Jacobi matrix (1.16); the diagonal entries of the off-
diagonal blocks vj are given by λkΛj(g+1)+k for k = 0, . . . , g, with the convention
λ0 = λg+1. Thus,

det vj =
g∏

k=0

λkΛj(g+1)+k.

By applying the criterion for regularity in Theorem 1.9 to the GMP matrix A and
to its resolvents (ck − A)−1, we conclude that J obeys (1.17). It follows that J is
regular with σess(J) = [−2, 2]. !

If Ã+ is such that σess(Ã+) = E and the corresponding measure is regular on
E, then ∆E(Ã+) is a block Jacobi matrix which due to Lemma 1.11 is regular for
[−2, 2]. Therefore, if {v!, w!} denote the block Jacobi coefficients of ∆E(Ã+), by
[23, Theorem 3.1] we have

lim
N→∞

1

N

N∑

!=1

‖v! − I‖ + ‖w!‖ = 0.(7.2)

We note that since C = sup!(‖v!(A) − I‖ + ‖w!‖) < ∞, it follows from Cauchy-
Schwarz and the AM-GM inequality that
(

1

N

N∑

!=1

‖v!−I‖+‖w!‖
)2

≤ 2

N

N∑

!=1

‖v!−I‖2+‖w!‖2≤2C
1

N

N∑

!=1

‖v!−I‖+‖w!‖

and thus

lim
N→∞

1

N

N∑

!=1

‖w!‖2 + ‖v! − I‖2 = 0 ⇐⇒ lim
N→∞

1

N

N∑

!=1

‖w!‖ + ‖v! − I‖ = 0.(7.3)

We will use this equivalence freely in the following.
In the setting of periodic Jacobi matrices and polynomial discriminants (i.e., ∆

is a polynomial and {v!, w!} are the coefficients of the block Jacobi matrix ∆(J+))
it is shown in [7] that

∞∑

!=1

‖w!‖2 + ‖v! − I‖2 < ∞ ⇐⇒
∞∑

m=1

d((S∗
+)mJSm

+ , T +
E )2 < ∞.(7.4)

It was then stated in [23] that since all the arguments in [7] are local, in this setting
(7.3) yields (1.13). Let us emphasize that finite gap sets whose isospectral torus
consists of periodic Jacobi matrices are very special and the arguments in [23] only
apply to this setting. Yuditskii [32] has extended the work of [7] and one has the
same localness, but since the construction is quite involved, we will provide the
main ideas of proof. In this case, the condition on the right-hand side of (7.4)
is still the same, i.e., a condition for a Jacobi matrix J+, but on the left-hand
side {v!, w!} are the coefficients of the block Jacobi matrix ∆E(A), where A is an
associated GMP matrix and ∆E is the rational function as defined in (1.15).

We will start with the main ingredients of the proof that the left-hand side in
(7.4) implies the right-hand side and mention certain modifications to our setting.
After this preparatory work will show how this can be applied to our setting.

We concluded from regularity that J = ∆E(Ã+) satisfies (7.2). As may be seen in
[7], and [32], it is convenient to rewrite this condition into a “multiplicative form”.
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This leads to the notion of the Killip-Simon functional that we will define below.
For a GMP matrix A ∈ GMP(CE), we define the functional as in [32, Section 6] by

H+(A) =
∞∑

!=0

h(v!, w!, v!+1),(7.5)

where

h(v!, w!, v!+1) =
1

2
tr(v∗!v! + w2

! + v!+1v
∗
!+1) − (g + 1) − log det v!v!+1.

For a square matrix X its modulus is defined by |X| :=
√

X∗X. Moreover, define
G(|X|) = |X|2 − I − log |X|2. Then we have

2h(v!, w!, v!+1) = tr
(
w2

! + G(|v!|) + G(|v∗!+1|)
)
.

In particular, it follows from |v!|, |v!+1| > 0 that h(v!, w!, v!+1) > 0. In fact even
more is true. There exists C̃ > 1 so that if ‖v! − I‖ < 1

2 then by [7, Proposition
11.12]

1

C̃
‖v! − I‖ ≤ ‖|v!| − I‖ ≤ C̃‖v! − I‖.

Thus, if C̃‖v! − I‖ < 1
2 we conclude that ‖|v!| − I‖ < 1

2 and thus the eigenvalues
of |v!| are greater than 1

2 . Under this assumption (for # and # + 1) it is shown in
[7, Theorem 11.13] that there exists a constant C so that

1

C
h(v!, w!, v!+1) ≤

(
‖v! − I‖2 + ‖w!‖2 + ‖v!+1 − I‖2

)
≤ Ch(v!, w!, v!+1).(7.6)

A key observation is that the functional H+(A) is related to the shift action of Sg+1

on the GMP matrix A. But finally we want to conclude something about

SJ = S∗JS,

i.e., the shift action on J . This is another motivation of the Jacobi flow as defined
above.

The following key lemma, which follows essentially from (6.19), allows for the
computation of the “derivative” in the Jacobi flow direction, and is essential in
order to extract from the finiteness of H+(A) properties of the associated Jacobi
matrix J .

Lemma 7.2 ([32, Lemma 6.1]). Let v(!)
jk , w(!)

jk denote the matrix entries of v!, w!

and

δJH+(A) =
1

2
〈∆E(J A)e−1,∆E(J A)e−1〉 − 1 − log(J v)(−1)

g,g (J v)(0)g,g.

Then

H+(A) = H+(J A) + δJH+(A).(7.7)

Proof. Using (6.19) the proof is based on the realization that due to the diagonal
structure of UA, conjugating A by UA does not affect H+. Thus, δJH+(A) corrects
for the term which is omitted in H+(J A) due to the shift. !

For later reference let us mention that due to (6.18) we can also relate H+(A)
and H+(ÕA). Moreover, it is easy to see that we can also relate H+(A) and
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H+(S−(g+1)AS(g+1)) explicitly. Moreover, Lemma 7.2 allows to obtain #2 condi-
tions for the coefficients of J ◦m(A) from finiteness of H+(A). We sketch the idea
in the following. Let us define

H̃+(A) =
∞∑

m=0

δJH+(A(m)), where A(m) = J ◦m(A).

Since all terms are positive, iterating (7.7) yields

H̃+(A) ≤ H+(A).

In particular, H+(A) < ∞ implies H̃+(A) < ∞. The vector ∆E(A(m))e−1 has only
2g+3 nonvanishing entries which are entries of the last columns of v−1(m), w−1(m)
and v0(m). Let us denote this 2g + 3-dimensional vector by x(m) and note that

the first and the last components are the positive entries x0(m) = (v(m))(−1)
g,g and

x2g+2(m) = (v(m))(0)g,g. With this notation we have

δJH+(A(m)) =
1

2

(
G(x0(m)) + G(x2g+2(m)) +

2g+1∑

j=1

xj(m)2
)

.(7.8)

Thus, H̃+(A) < ∞ implies already #2-conditions for the vector x(m). This is used
to conclude from H̃+(A) < ∞ that A(m) is #2-close to be periodic and that the
periodic operator is #2-close to ISE. That is, if {.pj(m), .qj(m)}m∈N0 denote the
GMP parameters of A(m), then [32, Theorem 1.20]

(7.9)
{.p0(m) − .p−1(m)}m∈N0 ∈ #2(N0, R2(g+1)),

{FE(.p0(m))}m∈N0 ∈ #2(N0, Rg+2).

To show how one obtains from (7.9) convergence of (S∗
+)mJSm

+ to T +
E in the sense

of (7.4), we need one more ingredient: it is well known that there are continu-
ous functions, A, B, on Rg/Zg, which can be expressed explicitly in terms of the
Riemann theta function associated to E1 [28, Theorem 9.4.], and a fixed element
χ ∈ Rg/Zg, such that

TE = {J(α) : α ∈ Rg/Zg}(7.10)

and J(α) is the Jacobi matrix built from the coefficients

am(α) = A(α− mχ), bm(α) = B(α− mχ).(7.11)

Recall that by the definition of the Jacobi flow, if J is the Jacobi matrix associated
to A, then S−mJSm is the Jacobi matrix associated to A(m). Since every point of
ISE = F−1

E (0) is regular for FE, by [7, Lemma 11.3] there exists a constant C > 0,
such that

dist(.p, ISE) ≤ C‖FE(.p)‖,(7.12)

where .p are chosen from a fixed compact neighborhood of ISE, see also [32, page
755]. Taking an element Åm ∈ TE(CE) so that

dist(.p(n), ISE) = dist(A(.p(n)), Åm),

1To be precise it is the Riemann theta function of the Riemann surface of the function√∏g
k=0(z − ak)(z − bk), where ak,bk denote the gap edges of E, cf. (1.11).
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one can conclude from (7.9) and (7.12) that
∑

n≥0

dist(A(.p(n)), Åm)2 < ∞.(7.13)

Letting J(αm) ∈ TE be the Jacobi matrix with F (Åm) = J(αm), then (6.6) implies
that

a(m)2 − A(αm) ∈ #2+, b(m) − B(αm) ∈ #2+.

Using in addition the smoothness of the Jacobi flow, one can show that

αn =
n∑

j=1

εαm − mχ, εαm ∈ #2(N0, Rg).

This is even stronger than (7.4); cf. [32, Lemma 7.2].
Before we start with our construction, we have to mention a certain technical

issue. If {fm} is a sequence, then clearly {fm − 1} ∈ #2 implies

lim inf
m→∞

fm > 0.

If |fm − 1| is only Cesáro summable, then this is not necessarily the case. However,
for any δ > 0 the set with fm < δ will be sparse in the following sense. Let us
introduce the notation {fm} ∈ CS for sequences {fm} satisfying

lim
N→∞

1

N

N∑

m=1

|fm| = 0,

and we call a set T ⊂ N sparse if

lim
N→∞

|T ∩ {1, 2, . . . , N}|
N

= 0.

An elementary observation, which will be used repeatedly, is that for f ∈ CS, the
set {m ∈ N | |fm| ≥ δ} is sparse for any δ > 0. This follows immediately from
Markov’s inequality.

We have already concluded from regularity that one and hence both of the con-
ditions in (7.3) hold. Due to the phenomena described above and the log in the
definition of h(v!, w!, v!+1) it is not immediately clear that (7.3) also implies

lim
N→∞

1

N

N∑

!=0

h(v!, w!, v!+1) = 0.(7.14)

However, using in addition once again regularity, we can show (7.14).

Lemma 7.3. Let a Jacobi matrix satisfy the conditions of Lemma 1.11 and {v!, w!}
denote the coefficients of the associated block Jacobi matrix J = ∆E(A). Then (7.14)
holds.

Proof. Recall that

h(v!, w!, v!+1) =
1

2
tr
(
(|v!|2 − I) + (|v∗!+1|2 − I) + w2

!

)
− log det v!v!+1.

Regularity allows us to consider the terms in h(v!, w!, v!+1) separately. It follows
directly from (7.3) that

lim
N→∞

1

N

N∑

!=0

tr w2
! = 0.
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Moreover, (1.17) implies that

lim
N→∞

1

N

N∑

!=0

log det v! = 0.

Thus it remains to show that

lim
N→∞

1

N

N∑

!=0

tr(|v!|2 − I) = 0, lim
N→∞

1

N

N∑

!=0

tr(|v∗! |2 − I) = 0.(7.15)

For a matrix A ∈ Mat(n, R), let σi(A) denote its singular values and note that
tr |A| =

∑
σi(A). For A, B ∈ Mat(n, R) we will need the following inequalities

| trA| ≤ tr |A|,
n∑

i=1

σi(AB) ≤
n∑

i=1

σi(A)σi(B),(7.16)

which can be found for instance in [16, eq. (3.3.35) and Theorem 3.3.14]. Thus we
have∣∣∣∣∣

1

N

N∑

!=0

tr(|v!|2 − I)

∣∣∣∣∣ ≤
1

N

N∑

!=0

tr(
∣∣|v!|2 − I

∣∣) =
1

N

N∑

!=0

tr(|(|v!| − I)(|v!| + I)|).

Using (7.16) and a uniform bound on σi(|v!| + I) we get

tr(|(|v!| − I)(|v!| + I)|) =
g∑

j=0

σj((|v!| − I)(|v!| + I)) ≤ C
g∑

j=0

σj(|v!| − I),

where C does not depend on #. The last sum is the trace norm for |v!|− I and thus
by the equivalence of norms on Mat(n, R) we find C2 so that

∣∣∣∣∣
1

N

N∑

!=0

tr(|v!|2 − I)

∣∣∣∣∣ ≤ C2
1

N

N∑

!=0

‖|v!| − I‖.

Define the set

IN =

{
# : C̃‖v! − I‖ >

1

2

}
∩ [1, N ]

and note that (7.2) implies

lim
N→∞

|IN |
N

= 0.(7.17)

It follows as in [7, Proposition 11.12] that for # /∈ IN , there exists a constant C3 so
that

‖|v!| − I‖ ≤ C3‖v! − I‖.
For # ∈ IN we can estimate ‖|v!| − I‖ uniformly and using (7.17) and (7.3) we
obtain (7.15). The proof for v∗! works the same by using [24, Lemma 4.6.5.] instead
of [7, Proposition 11.12]. This finishes the proof. !

We are now ready to adapt Yuditskii’s construction [32] to our setting. Let
µ be a regular measure with ess supp µ = E and let J+ be the associated Jacobi
matrix. As already described after Lemma 7.1, we find J and J̃+ such that all
ck ∈ CE belong to the resolvent set of J̃+ and J and J̃+ is also regular. Let Ã+

and A denote the GMP matrix associated to J̃+ and J respectively and {v!, w!}
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denote the block Jacobi coefficients of ∆E(A). Let us further truncate A after
N positive blocks before ∞ (i.e. before the position −1 + N(g + 1)) and extend
it by some element Å ∈ TE(CE) so that ck /∈ σ(AN ). To be precise, we first
truncate A and consider its resolvent function a2

0r−, then we can extend it as in
Lemma 7.1 by some reflectionless r+ so that all ck ∈ CE belong to the resolvent
set of the associated Jacobi matrix and then we consider the associated GMP
matrix by [32, Proposition 5.5]. Since elements from the isospectral torus satisfy
the magic formula and computing resolvents is a purely local process, we would like
to conclude from the compactness of TE(CE) that

H+(AN ) =
N∑

!=1

h(v!−1, w!, v!) + O(1),

where AN denotes the truncation described above. However, due to the log-term in
the definition of h(v!−1, w!, v!) one must be careful. At the place where we modify
A by extending it by Å, by formula (6.15), when computing Λn, in a certain range
of n given precisely below, one mixes coefficients from A and Å. Thus we need to
argue that

− logΛn

does not grow too fast so that we can still conclude that

lim
N→∞

1

N
H+(AN ) = 0.(7.18)

However, looking at the formula (6.15) and the definition of the Blaschke-Potapov

factors, if all the coefficients can be bounded uniformly, we see that if p(j)
g > δ we

find a constant C only depending on the bounds of the coefficients and of δ so that

Λn(AN ) ≥ C.(7.19)

Note now that

Λ−1+(N−1)(g+1)(AN ) = p(N−1)
g ,

which is still a coefficient of A. But

Λ−1+N(g+1)(AN ) =: p̊g

is already a coefficient from Å. The mixing of coefficients of A and Å in computing
Λn(AN ) happens for −1+(N −1)(g +1) < n < −1+N(g +1). But in this case the
only value that can make Λn(AN ) small is p̊g, and for elements of the isospectral
torus we know that

p̊g =
1

λg+1

and thus we can conclude (7.19) and therefore (7.18).
Together with H̃+(AN ) ≤ H+(AN ), we conclude that

lim
N→∞

1

N
H̃+(AN ) = 0.(7.20)

Realizing that all the arguments in [32, Theorem 1.20] are local, using 2N blocks
of A, we can obtain a local version of this theorem.
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Proposition 7.4. Let J be constructed as above and A be the associated GMP
matrix. Then, there exists an N independent constant C and a sparse set IN such
that

(7.21)

N∑

m=1

‖.p0(m) − .p−1(m)‖2 ≤ C(H̃+(A2N ) + |IN |),

N∑

m=1

‖FE(.p0(m))‖2 ≤ C(H̃+(A2N ) + |IN |).

We will need a more quantitative version of [32, Lemma 6.6]:

Lemma 7.5. Let ψn, ψ̃n, τn and τ̃n be given sequences and assume that there exists
η > 0 such that

(7.22) cosψn ≥ η, cos ψ̃n ≥ η, 0 ≤ τn ≤ 1

η
, 0 ≤ τ̃n ≤ 1

η
.

Define

(7.23) αn :=

[
τn 0
0 1

] [
sinψn cosψn

cosψn − sinψn

]
−
[
sin ψ̃n cos ψ̃n

cos ψ̃n − sin ψ̃n

] [
1 0
0 τ̃n

]
.

Then, there exists C depending only on η so that

‖{cosψn − cos ψ̃n}‖!2(N,C) ≤ C‖{αn}‖!2(N,C)2×2 ,

‖{sinψn − sin ψ̃n}‖!2(N,C) ≤ C‖{αn}‖!2(N,C)2×2 .

Proof. If ‖{αn}‖!2(N,C)2×2 = ∞ the claim is trivial. If it is finite, set S :=
‖{αn}‖!2(N,C)2×2 . The constant C > 0 may increase throughout the proof. Di-
rectly from (7.23) we have

‖{cosψn − cos ψ̃n}‖!2 ≤ S and ‖{τn cosψn − τ̃n cos ψ̃n}‖!2 ≤ S.

Since

τn cosψn − τ̃n cos ψ̃n − τ̃n(cosψn − cos ψ̃n) = (τn − τ̃n) cosψn,

using τ̃n ≤ 1
η and cosψn ≥ η we find C > 0 so that

‖{τn − τ̃n}‖!2 ≤ CS.

Now, we have another two conditions

‖{τn sinψn − sin ψ̃n}‖!2 ≤ S and ‖{sinψn − τ̃n sin ψ̃n}‖!2 ≤ S.

Using

sinψn − τ̃n sin ψ̃n = sinψn − τnτ̃n sinψn − τ̃n(sin ψ̃n − τn sinψn)

and ‖{τn sinψn − sin ψ̃n}‖ ≤ S and τ̃n ≤ 1
η we conclude that

‖{sinψn(1 − τnτ̃n)}‖!2 ≤ CS.

Now we have

1 − τ2
n = 1 − τnτ̃n + τn(τ̃n − τn)

and since | sinψn| ≤ 1 and |τn| ≤ 1
η , we conclude

‖{(τ2
n − 1) sinψn}‖ ≤ CS.
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Again by, |τn| ≤ 1
η we also get a bound for {(τn − 1) sinψn}. Finally, since

sinψn − sin ψ̃n = τn sinψn − sin ψ̃n − (τn − 1) sinψn,

we obtain the also the estimate for {sinψn − sin ψ̃n}. !
Proof of Proposition 7.4. In the proof we will find constants C > 0 and sparse sets
IN . These quantities will change throughout the proof. Note that the union of
sparse sets is clearly sparse. First we mention an important locality property of
the Jacobi flow. In the following we will derive estimates for entries of A2N (m) in
the blocks 0 and −1. Due to the locality property of the Jacobi flow, for 0 < m ≤
2N − 1, the coefficients of A2N (m) and A(m) coincide; this is nicely visualized in
the diagram [32, eq. (4.12)]. Similarly, we have already mentioned that computing
entries of the resolvents, due to the band structure, can also be done locally. Thus,
our estimates will be derived for the coefficients of A2N (m), but by restricting it
to 0 < m ≤ N they agree with the coefficients associated to A. For this reason we
will also notationally not distinguish between the coefficients of A and the ones of
A2N .

By the explanation following Lemma 7.2 and (7.20), we conclude that

lim
N→∞

1

N

N∑

m=1

(
G(x0(m)) + G(x2g+2(m)) +

2g+1∑

j=1

xj(m)2
)

= 0.

Notice that G obeys

c−1
ε (x − 1)2 ≤ G(x) ≤ cε(x − 1)2, ∀x ∈ (ε, ε−1).

Thus, we find a sparse set IN and C > 0 so that

N∑

m=1

(
(x0(m) − 1)2 + (x2g+2(m) − 1)2 +

2g+1∑

j=1

xj(m)2
)

≤ C

( N∑

m=1

(
G(x0(m)) + G(x2g+2(m)) +

2g+1∑

j=1

xj(m)2)

)
+ |IN |)

)
.

(7.24)

Thus, for 1 ≤ j ≤ 2g + 1,

‖{xj(m)}N
m=1‖2 ≤ C

(
H̃+(AN ) + |IN |

)

and

‖{x0(m) − 1}N
m=1‖2 ≤ C

(
H̃+(AN ) + |IN |

)
,

‖{x2g+2(m) − 1}N
m=1‖2 ≤ C

(
H̃+(AN ) + |IN |

)
.

We note that
x2g+2(m) = λ0Λ−1(m) = λ0p

(0)
g (m),

and thus

1

N

N∑

m=1

(λ0p
(0)
g (m) − 1)2 = 0.(7.25)

This is one component of FE.
Let us now show the first inequality in (7.21). Denote Â = OA, where OA is

the transform defined in (6.18). We use the hat for all entries related to Â and
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∆E(Â), respectively. The entries of A(m) are denoted by {p(j)
k (m), q(j)

k (m)}. Recall
that m corresponds to application of the Jacobi flow, j denotes the block and k the
component of the vector .pj(m). We use similar notation for Â, ∆E(A) and ∆E(Â).
Due to the definition (6.18), we find
(7.26)[

v(0)
g−1,g−1(m) 0

v(0)
g,g−1(m) λ0p

(0)
g (m)

]
o(φ(0)

g (m)) = o(φ(−1)
g (m))

[
λ0p̂

(0)
g (m) 0

ŵ(0)
0,g(m) v̂(1)

0,0(m)

]
.

Note that v(0)
g,g−1(m) = x2g+1(m). It was mentioned after Lemma 7.2 that H+(Â)

can be expressed in terms of H+(A). Therefore, we conclude by (6.20) that (7.25)

also holds for p̂(0)
g (m). Note that xg+2(m) = ŵ(−1)

0,g (m). Since shifting by a full
block in the very beginning only adds a fixed constant, and J commutes with this
shift by (6.21), we can apply Lemma 7.5 to (7.26) and obtain by (7.24) that

‖{sinφ(−1)
g (m) − sinφ(0)

g (m)}N
m=1‖!2 ≤ C(H̃+(AN ) + |IN |).

Thus, by (6.17)

‖{p(−1)
g−1 − p(0)

g−1}N
m=1‖!2 ≤ C(H̃+(AN ) + |IN |).(7.27)

Since by [32, eq (4.2)] one can pass from j to j − 1 by using Â, we obtain (7.27)
for 0 ≤ j ≤ g. Similarly, by [32, eq (4.2)], one obtains the estimates for the
qj-coefficients. This finishes the proof of the first inequality in (7.21).

It remains to prove (7.21) for the other components of FE. The proof of Lemma

7.5 yields an estimate for ‖{(v(−1)
g−1,g−1(n) − 1) sinφ(−1)

g (n)}‖2 or, equivalently, it
shows

‖{(Λ−2(m)λg − 1)p(−1)
g−1 (m)}‖ ≤ C(H̃+(AN ) + |IN |).

Since p(−1)
g−1 (m) may approach zero, it does not imply yet give an estimate for

{(Λ−2(m)λg − 1)}. If we can also estimate

‖{(Λ−2(m)λg − 1)q(−1)
g−1 (m)}N

m=1‖,

then infm

(
(q(−1)

g−1 (m))2 + (p(−1)
g−1 (m))2

)
> 0 yields

‖{(Λ−2(m)λg − 1)}N
m=1‖ ≤ C(H̃+(AN ) + |IN |).

To this end, we note that

(7.28) Λ−2(m + 1) =
cosφ(−1)

g (m)

cosφ(−2)
g (m)

Λ−2(m).

Indeed, by definition of the Jacobi flow

U(.p−2(m))





v(−2)
g,g

∗ v(−1)
0,0

∗ ∗
. . .

∗ ∗ ∗ v(−1)
g−1,g−1




(m + 1) = v−1(m)U(.p−1(m)),

the second from below entry in the last column in this matrix identity means exactly

(7.28). Since by the above, we can estimate ‖{cosφ(−1)
g (m)− cosφ(−2)

g (m)}N
m=1‖!2

we obtain

‖{Λ−2(m + 1) − Λ−2(m)}N
m=1‖!2 ≤ C(H̃+(AN ) + |IN |).
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Now by [32, (4.10)] we have

p(−1)
g−1 (m) = −q(−1)

g−1 (m + 1)f(m),

where f(m) is an explicit function that can be small only on a sparse set. Combining
this with

(Λ−2(m)λg − 1)p(−1)
g−1 (m) = −(Λ−2(m)λg − 1)q(−1)

g−1 (m + 1)f(m),

we also get an estimate for ‖{(Λ−2(m)λg − 1)q(−1)
g−1 (m)}N

m=1‖!2 , which shows

‖{(Λ−2(m)λg − 1)}‖ ≤ C(H̃+(AN ) + |IN |).

The same arguments with respect to OkA, k = 1, . . . , g − 1, in a combination with
(6.20), yield the estimates for all other components of FE. !
Lemma 7.6. There exist {εαm} ∈ CS(N, Rg/Zg) and {εam} ∈ CS(N, R), {εbn} ∈
CS(N, R) so that

a2
m = A

( m∑

j=1

εαj − mχ

)
+ εa

m,

bm = B
( m∑

j=1

εαj − mχ

)
+ εb

m,

where A, B are given in (7.11).

Proof. Let A(.p0(m)) be the periodic GMP matrix with coefficients .p0(m) and
A(αm) ∈ TE(CE), so that

dist(.p0(m), ISE) = dist(.p0(m), .̊p(αm)).

Thus, using (7.12) we obtain

N∑

m=1

dist(.p0(m), .̊p(αm))2 ≤ C(H̃+(AN ) + |IN |)

and by (6.6) we get

N∑

m=1

(a2
m − A(αm))2 ≤ C(H̃+(AN ) + |IN |),

N∑

m=1

(bm − B(αm))2 ≤ C(H̃+(AN ) + |IN |),

where again {am, bm}m∈N0 denote the coefficients of J+. Thus, dividing by N and
sending N → ∞, we obtain by (7.17) and (7.20) that

(7.29) {a2
m − A(αm)}m∈N0 , {bm − B(αm)}m∈N0 ∈ CS .

The smoothness of the Jacobi flow transform, provided that p(0)
g , p(1)

g > δ, allows
for the definition of a sparse set IN so that

dist(.p0(m + 1), .̊p(αm − χ)) = dist(J (.p0(m), .p1(m)), J (.p(αm))

≤ C(E, J, δ){dist(.p0(m), .̊p(αm))

+ dist(.p0(m), .p1(m)) + |IN |}.
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Thus,

dist(.̊p(αm+1), .̊p(αm − χ)) ≤ C(E, J, δ)(dist(.p0(m), .̊p(αm))

+ dist(.p0(m), .p1(m)) + |IN |)

+ dist(.p0(m + 1), .̊p(αm+1)).

Moreover, we have

‖α− β‖ ≤ C1(E) dist(.̊p(α), .̊p(β)).

Thus, defining εα(m) = αm+1 − (αm − χ), we conclude from (7.21) that

{εα} ∈ CS(N, Rg/Zg).

!

Lemma 7.7. For fixed L ∈ N and δ > 0, the set

BL,δ =

{
m :

∥∥∥∥
m+!∑

j=m+1

εαj

∥∥∥∥ ≤ δ for all # = 0, . . . , L − 1

}

has a sparse complement, i.e., |BL,δ∩{1,...,N}|
N → 1 as N → ∞.

Proof. Since shifts and linear combinations of CS sequences are in CS,
{∑m+!

j=m+1 ε
α
j

}∞
m=0

∈ CS for any #. Thus, for any #, the set
{
m :

∥∥∥∥
∑m+!

j=m+1 ε
α
j

∥∥∥∥ > δ
}

is sparse; the complement of BL,δ is a union of finitely many sparse sets, so it is
sparse. !

Proof of Theorem 1.10. It remains to prove that, for every ε > 0,

(7.30) lim sup
N→∞

1

N

N∑

m=1

dist(T +
E , (S∗

+)mJ+Sm
+ ) ≤ ε.

Fix L so that
∑∞

!=L e−!‖J+‖ ≤ ε/16. Choose δ > 0 so that

(7.31) |A(β1) − A(β2)| ≤
ε

8L
, |B(β1) − B(β2)| ≤

ε

8L

whenever |β1 − β2| ≤ δ.
Since dist(T +

E , (S∗
+)mJ+Sm

+ ) is uniformly bounded in m and the complement of
BL,δ is sparse,

lim sup
N→∞

1

N

∑

1≤m≤N
m/∈BL,δ

dist(T +
E , (S∗

+)mJ+Sm
+ ) = 0.

Set αm =
∑m

j=1 ε
α
j . For m ∈ BL,δ, estimating the distance to T +

E by the distance
to J(αm − mχ) gives

dist(T +
E , (S∗

+)mJ+Sm
+ )

≤
∞∑

!=0

e−!(|am+! − A(αm − (m + #)χ)| + |bm+! − B(αm − (m + #)χ)|).
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Using (7.31) for # < L and using our choice of L to bound the tail of the series, we
obtain

dist(T +
E , (S∗

+)mJ+Sm
+ )

≤ ε

2
+

L−1∑

!=0

e−!(|am+! − A(αm+! − (m + #)χ)| + |bm+! − B(αm+! − (m + #)χ)|).

Thus, to prove (7.30), it remains to prove

(7.32) lim sup
N→∞

1

N

∑

1≤m≤N
m∈BL,δ

L−1∑

!=0

e−!gm+! ≤
ε

2
,

where gp = |ap−A(αp−pχ)|+ |bp−B(αp−pχ)|. Note g ∈ CS by (7.29). Enlarging
the range of summation, we obtain

lim sup
N→∞

1

N

∑

1≤m≤N
m∈BL,δ

L−1∑

!=0

e−!gm+! ≤ lim sup
N→∞

1

N

N+L∑

p=1

L−1∑

!=0

e−!gp.

Now the sum in # can be separated as an explicit constant, so this lim sup is zero
since g ∈ CS. Then (7.32) follows, and the proof of (7.30) is complete. !
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[3] Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Nj̊astad, Orthogonal
rational functions, Cambridge Monographs on Applied and Computational Mathematics,
vol. 5, Cambridge University Press, Cambridge, 1999, DOI 10.1017/CBO9780511530050.
MR1676258

[4] M. J. Cantero, L. Moral, and L. Velázquez, Five-diagonal matrices and zeros of orthogonal
polynomials on the unit circle, Linear Algebra Appl. 362 (2003), 29–56, DOI 10.1016/S0024-
3795(02)00457-3. MR1955452

[5] Jacob S. Christiansen, Barry Simon, and Maxim Zinchenko, Finite gap Jacobi matrices: a
review, Spectral analysis, differential equations and mathematical physics: a festschrift in
honor of Fritz Gesztesy’s 60th birthday, Proc. Sympos. Pure Math., vol. 87, Amer. Math.
Soc., Providence, RI, 2013, pp. 87–103, DOI 10.1090/pspum/087/01429. MR3087900

[6] Jacob S. Christiansen, Benjamin Eichinger, and Tom VandenBoom, Finite-gap CMV ma-
trices: periodic coordinates and a magic formula, Int. Math. Res. Not. IMRN 18 (2021),
14016–14085, DOI 10.1093/imrn/rnz213. MR4320803

[7] David Damanik, Rowan Killip, and Barry Simon, Perturbations of orthogonal polynomials
with periodic recursion coefficients, Ann. of Math. (2) 171 (2010), no. 3, 1931–2010, DOI
10.4007/annals.2010.171.1931. MR2680401

[8] David Damanik, Alexander Pushnitski, and Barry Simon, The analytic theory of matrix
orthogonal polynomials, Surv. Approx. Theory 4 (2008), 1–85. MR2379691

[9] David Damanik and Peter Yuditskii, Counterexamples to the Kotani-Last conjecture for con-
tinuum Schrödinger operators via character-automorphic Hardy spaces, Adv. Math. 293
(2016), 738–781, DOI 10.1016/j.aim.2016.02.023. MR3474334

[10] Karl Deckers and Doron S. Lubinsky, Christoffel functions and universality limits for
orthogonal rational functions, Anal. Appl. (Singap.) 10 (2012), no. 3, 271–294, DOI
10.1142/S0219530512500133. MR2948895

https://www.ams.org/mathscinet-getitem?mr=2474532
https://www.ams.org/mathscinet-getitem?mr=1801253
https://www.ams.org/mathscinet-getitem?mr=1676258
https://www.ams.org/mathscinet-getitem?mr=1955452
https://www.ams.org/mathscinet-getitem?mr=3087900
https://www.ams.org/mathscinet-getitem?mr=4320803
https://www.ams.org/mathscinet-getitem?mr=2680401
https://www.ams.org/mathscinet-getitem?mr=2379691
https://www.ams.org/mathscinet-getitem?mr=3474334
https://www.ams.org/mathscinet-getitem?mr=2948895


46 B. EICHINGER, M. LUKIĆ, AND G. YOUNG
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