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ORTHOGONAL RATIONAL FUNCTIONS WITH REAL POLES,
ROOT ASYMPTOTICS, AND GMP MATRICES
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ABSTRACT. There is a vast theory of the asymptotic behavior of orthogonal
polynomials with respect to a measure on R and its applications to Jacobi
matrices. That theory has an obvious affine invariance and a very special role
for co. We extend aspects of this theory in the setting of rational functions with
poles on R = RU{ oo}, obtaining a formulation which allows multiple poles and
proving an invariance with respect to R-preserving Mobius transformations.
We obtain a characterization of Stahl-Totik regularity of a GMP matrix in
terms of its matrix elements; as an application, we give a proof of a conjecture
of Simon — a Cesaro—Nevai property of regular Jacobi matrices on finite gap
sets.

1. INTRODUCTION

There is a vast theory of orthogonal polynomials with respect to measures on
C and their root asymptotics, exemplified by the Ullman—Stahl-Totik theory of
regularity. Let p be a compactly supported probability measure and {p,}°, the
corresponding orthonormal polynomials, obtained by the Gram—Schmidt process
from {2"}2° , in L?(du). Then

(1.1) lim inf|p, (2)[/" > Ce(:0)
n—oo

for z outside the convex hull of supp p, where E is the essential support of  and Gg
denotes the potential theoretic Green function for the domain C \ E; if that domain
is not Greenian, one takes Gg = 400 instead. For measures compactly supported
in R, this theory can be interpreted in terms of self-adjoint operators. In particular,
for any bounded half-line Jacobi matrix

bl al
al b2 an
J =
az
with ag > 0, by € R,
n 1/n
(1.2) lim sup Hag < Cap 0ess(J),
n—oo
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where Cap denotes logarithmic capacity. For both of these universal inequalities,
the case of equality (and existence of limit) is called Stahl-Totik regularity [27]; the
theory originated with the case E = [—2, 2], first studied by Ullman [30].

We extend aspects of this theory to the setting of rational functions with poles in
R = RU{oc}. One motivation for this is the search for a more conformally invariant
theory. Statements such as (L1), (L.2) rescale in obvious ways with respect to
affine transformations (automorphisms of C) which preserve R, so it is obvious
that an affine pushforward of a Stahl-Totik regular measure is Stahl-Totik regular.
However, the point co has a very special role throughout the theory: for a Mobius
transformation f which does not preserve co, p, o f are rational functions with
a pole at f~1(c0), and f(J) as defined by the functional calculus is not a finite
band matrix. Thus, it is a nontrivial question whether a M&bius pushforward of a
Stahl-Totik regular measure is Stahl-Totik regular.

The set of Mdbius transformations which preserve R is the semidirect group
product PSL(2,R) x {id, z = —z}, whose normal subgroup PSL(2,R) corresponds
to the orientation preserving case. Denote by f.u the pushforward of u, defined
by (fip)(A) = u(f~1(A)) for Borel sets A. As an example of our techniques, we
obtain the following:

Theorem 1.1. Let f € PSL(2,R) x {id,z — —z}. If u is a Stahl-Totik regular
measure on R and oo ¢ supp(f.p), then the pushforward measure f.p is also Stahl-
Totik regular.

However, we will mostly work in the more general setting when multiple poles
on R are allowed, which arises naturally in the spectral theory of self-adjoint op-
erators. Denote by T} 4, the multiplication operator by f in L?(du). The matrix
representation for T, 4,(,) in the basis of orthogonal polynomials is a Jacobi ma-
trix, and through this classical connection, the theory of orthogonal polynomials is
inextricably linked to the spectral theory of Jacobi matrices. In this matrix rep-
resentation, resolvents T{c_,)-1 qu(s) are not finite-diagonal matrices. However, in
a basis of orthogonal rational functions with poles at ¢y, ..., cg4, 00, the multiplica-
tion operators T(c, —o)-1,du(z)s - -+ s L(ey—a)~1,du(z)s Lr,du(z) all have precisely 2g +1
nontrivial diagonals. The corresponding matrix representations are called GMP
matrices; they were introduced by Yuditskii [32].

Self-adjoint operators and their matrix representations are an important part of
this work, so we choose to present the theory in a more self-contained way, using
self-adjoint operators from the ground up; this has similarities with [22]. Some
proofs could be shortened by using orthogonal polynomials with respect to varying
weights [27) Chapter 3], but some facts rely on the precise structure obtained by
the periodically repeating sequence of poles.

We should also compare this to the case of CMV matrices: for a measure sup-
ported on the unit circle, Stahl-Totik regularity is still defined in terms of orthogo-
nal polynomials, but the CMV basis [4,22] is given in terms of positive and negative
powers of z, i.e., orthonormal rational functions with poles at co and 0. The sym-
metries in that setting lead to explicit formulas for the CMV basis in terms of the
orthogonal polynomials; it is then a matter of calculation to relate the exponen-
tial growth rate of the CMV basis to that of the orthogonal polynomials, and to
interpret regularity in terms of the CMV basis. In our setting, there is no such sym-
metry and no formula for orthonormal rational functions in terms of orthonormal
polynomials.
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In order to state our results in a conformally invariant way, we will use the
following notations and conventions throughout the paper. The measure y will be
a probability measure on R. We denote by supp u its support in R, and we consider
its essential support (the support with isolated points removed), denoted

E = esssupp p.

We will always assume that p is nontrivial; equivalently, E # ().

Fix a finite sequence with no repetitions, C = (cy, ..., c,41) with ¢, € R\supp p
for all k. Consider the sequence {r, }°°, where 1o = 1 and for n = j(g + 1) + k,
1<k<g+1,

1
(1.3) ro(z) = {ﬁ ¢k €R,

ZjJrl Cp = OQ.

Applying the Gram-Schmidt process to this sequence in L?(du) gives the sequence
of orthonormal rational functions {7, }52, whose behavior we will study. We note
that the special case suppu C R, g = 0, C = (00) corresponds to the standard
construction of orthonormal polynomials associated to the measure p (note that,
since we denote by supp p the support in R, the statement supp p C R implies that
u is compactly supported in R), and our first results are an extension of the same
techniques.

The first result is a universal lower bound on the growth of {7,,}5%, in terms of a
potential theoretic quantity. If E is not a polar set, we use the (potential theoretic)
Green function for the domain C \ E, denoted Gg, and we define

g% Ziii Ge(z,c) E is not polar,

400 E is polar.

(1.4) QE(z,C) = {

Theorem 1.2. For all z € C\ R,

lim inf|7‘n(z)\1/" > 9e(2.C)
n—oo

This is a good place to point out that our current setup is not related to the
recent paper [13], in which the behavior was compared to a Martin function at a
boundary point of the domain. Here, the behavior is compared to a combination
of Green functions (L.4), all the poles are in the interior of the domain C \ E, and
the difficulty comes instead from the multiple poles.

Another universal inequality for orthonormal polynomials comes from comparing
their leading coefficients to the capacity of E. In our setting, the analog of the
leading coefficient must be considered in a pole-dependent way. Denote

L, =span{ry | 0 < £ < n}.
By the nature of the Gram—Schmidt process, there is a k, > 0 such that
Ty — KnTn € Ln_1.
The Gram—Schmidt process can be reformulated as the L?(du)-extremal problem
(1.5) tin =max {Rek : f =rry, +h,h € Lo, || fllr2u < 1}.

By strict convexity of the L?-norm, these L2-extremal problems have unique ex-
tremizers given by f = 7,, and Kk, is explicitly characterized as a kind of leading
coefficient for 7,, with respect to the pole at ¢ where n = j(g+1)+k, 1 < k < g+1.
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Below, we will also relate the constants x,, to off-diagonal coefficients of certain ma-
trix representations.

The growth of the leading coefficients x,, will be studied along sequences n =
j(g+1)+k for a fixed k, and bounded by quantities related to the pole ci. If E is
not a polar set, it is a basic property of the Green function that the limits

Sk lim; ¢, (Ge(2, k) + log |z — ckl), cx # oo,
E lim, e, (Ge(z, ci) — log |2|), Cp = 00

exist. Note that if ¢, = oo, 7& is precisely the Robin constant for the set E. We
further define constants A\, by

’YE + 21§€§g+1 GE(Ck, C() E is not polar,
(1.6) log A\, = (#k
400 E is polar.

Theorem 1.3. For all1 <k < g+ 1, for the subsequence n(j) = j(g +1) + k,

i f L/ () 1/(g+1)
(1.7) liminf k570 > Ay .

int s,
Theorem 1.4. The following are equivalent:
(i) For some 1 <k < g+ 1, for the subsequence n(j) = j(g+1) + k,
1nG) _ \L/(a+D),

lim ()

Jj—o0

(ii) For all1 <k < g+ 1, for the subsequence n(j) = j(g+ 1) + k,
; 1/n(3) _ \1/(g+1),
Ay = A

g+1 1/n g+1 1/(g+1)
i, (H +> - (H M) ;
/=1 k=1

(iv) For g.e. z € E, we have limsup,,_, . |7 (2)|"/" < 1;
(v) For some z € C, limsup,,_,__ |7,(2)|"/™ < 9(=:©);
(vi) For all z € C, limsup,, .. |7.(2)|"/™ < %(=C);
(vii) Uniformly on compact subsets of C\ R, lim,, oo |70 (2)|}/" = €9e(*:C),

(iii)

Definition 1.5. The measure y is C-regular if it obeys one (and therefore all) of
the assumptions of Theorem [1.4]

In this terminology, Stahl-Totik regularity is precisely (oo)-regularity, i.e., C-
regularity for the special case supppu C R, g = 0, C = (00). Theorems [1.2] [L.3]
[L.4] are closely motivated by foundational results for Stahl-Totik regularity. A new
phenomenon appears through the periodicity with which poles are taken in (L.3)) and
the resulting subsequences n(j) = j(g+1)+k: since k,, is a normalization constant
for 7,, it is notable that control of k,, along a single subsequence n(j) = j(g+1)+k in
Theorem [L4Y{i) provides control over the entire sequence. This phenomenon doesn’t
have an exact analog for orthogonal polynomials, where ¢ = 0. We will also see
below that this is essential in order to characterize the regularity of a GMP matrix
using only the entries of the matrix itself and not its resolvents.

Moreover, we show that the regular behavior described by Theorem [1.4] is inde-
pendent of the set of poles C:
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Theorem 1.6. Let C1, C; be two finite sequences of elements from R\ supp u, not
necessarily of the same length. Then u is Cq-reqular if and only if it is Co-regular.

Corollary 1.7. Let supppu C R. Let C be a finite sequence of elements from
R\ supp . Then p is C-regular if and only if it is Stahl-Totik regular.

Thus, Theorem [L.4] should not be seen as describing equivalent conditions for a
new class of measures, but rather a new set of regular behaviors for the familiar
class of Stahl-Totik regular measures.

We consistently work with poles on R since our main interest is tied to self-
adjoint problems. Some of our results are in a sense complementary to the setting
of [27, Section 6.1], where poles are allowed in the complement of the convex hull of
supp i, and the behavior of orthogonal rational functions is considered with respect
to a Stahl-Totik regular measure. Due to this, it is natural to expect that these
results hold more generally, for measures on C and general collections of poles and
Mobius transformations. Moreover, in our setup the poles are repeated exactly
periodically, but we expect this can be generalized to a sequence of poles which has
a limiting average distribution. Related questions for orthogonal rational functions
were also studied by [3L[10].

As noted in [27] Section 6.1], poles in the gaps of supp u can cause interpolation
defects in the problem of interpolation by rational functions. In our work, these
interpolation defects show up as possible reductions in the order of the poles. For
example, consider C = (c0,0). Then, by construction, 7,11 is allowed a pole at
0 of order at most j. However, if p is symmetric with respect to z — —z, the
functions 7, will have an even/odd symmetry. Since 72,41 contains a nontrivial
multiple of 2771 it follows that 79;41(2) = (—1)7T179;11(—2). By this symmetry,
the actual order of the pole at 0 is j + 1 — k for some even k, so it cannot be equal
to j (it will follow from our results that in this case, the order of the pole is j —1).
The same effect can be seen for the pole at oo for C = (0,00). In the polynomial
case, this does not occur: p, always has a pole at co of order exactly n.

We will consider at once the distribution of zeros of 7, and the possible reductions
in the order of the poles. We will prove that all zeros of 7,, are real and simple, and
that n — g < deg7,, < n. We define the normalized zero counting measure

Un :% Z Ow-

w:Ty, (w)=0
Although we normalize by n, v, may not be a probability measure: however 1 —
g/n < v, (R) < 1. Therefore, normalizing by deg 7,, instead of by n would not affect
the limits as n — oco.
We will now describe the weak limit behavior of the measures v,, as n — oo. To
avoid pathological cases, we assume that E is not polar; in that case, denoting by
we(dz, w) the harmonic measure for the domain C \ E at the point w, we define the

probability measure on E,

1
PEC = —— ZWE(dxvC]’)'
g+1 =

The results below describe weak limits of measures in the topology dual to C(R).

Theorem 1.8. Let i be a probability measure on R. Assume that E is not a polar
set.
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(a) If p is C regular, then w-lim, o vn = pe.C.
(b) If w-limy, 0o ¥n, = pE,c, then p is C reqular or there exists a polar set
X C E such that u(R\ X) = 0.

We now turn to matrix representations of self-adjoint operators. Fix a sequence
C = (c1,...,€g41) such that ¢, = oo for some 1 < ko < g+ 1. A half-line GMP
matrix [32] is the matrix representation for multiplication by x in the basis {7,}22
for this sequence C; its matrix elements are

Apn = /Tm(x):mn(x) dp(x).

The condition that ¢ = oo for some ko, guarantees that A,,, = 0 for |m — n| >
g+ 1, so these matrix elements generate a bounded operator A on £?(Np) such that
Apn = (em, Aey,), where (e,,)%°, denotes the standard basis of £2(Ny). We say that
A e A(C).

GMP matrices have the property that some of their resolvents are also GMP
matrices; namely, for any k # koo, (cx — A)~! € A(f(C)) where f is the Mobius
transform f: z — (cp — 2) "' and f(C) = (f(c1), ..., flcgs1))-

Note that the special case g = 0, C = (c0) gives precisely a Jacobi matrix. A
Jacobi matrix is said to be regular if it is obtained by this construction from a
regular measure; analogously, we will call a GMP matrix regular if it is obtained
from a regular measure. Just as regularity of a Jacobi matrix can be characterized
in terms of its off-diagonal entries, we will show that regularity of a GMP matrix
can be characterized in terms of its entries in the outermost nontrivial diagonal.
We will also obtain a GMP matrix analog of the inequality (1.2).

The GMP matrix has an additional block matrix structure; in particular, for a
GMP matrix with ¢, = oo, on the outermost nonzero diagonal m = n—g—1, the
only nonzero terms appear for n = j(g + 1) + koo, and those are strictly positive.
Thus, we denote

(1.8) Bj = (€j(g4+1) koo s ACG+1)(g+1) koo )-

Theorem 1.9. Fiz a probability measure p with supp p C R and a sequence C =
(c1,...,€q41) with ¢, = 0o. Then

i 1/j
(1.9) lim sup (H ﬂg> <AL

Moreover, the measure u is Stahl-Totik regular if and only if

j 1/5
(1.10) lim ( m) =\
Jj—o0 1 b

The proof will use a relation between the sequence {3; }joil and the constants
{Kj(g+1)+ ko }521- In particular, the characterization of regularity in Theorem [1.9]
is made possible by the characterization of regularity in terms of the subsequence
{Kj(g+1)+x}52, for any single k. Theorem [L.9also corroborates the perspective that
regularity of the measure is the fundamental notion which manifests itself equally
well in many different matrix representations.

Since the resolvents (cx — A)~! are also GMP matrices and their measures are
pushforwards of the original measure, they are also regular GMP matrices; in this
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sense, Theorem [1.9] provides g + 1 criteria for regularity, one corresponding to each
subsequence n(j) =j(g+1)+k, 1 <k<g-+1.

As an application of this theory, we show that it provides a proof of a theorem
for Jacobi matrices originally conjectured by Simon [23]. Let E C R be a compact
finite gap set,

g
(1.11) E = [bo,ag] \ U ay, by,

and denote by ,7.E+ the set of almost periodic half-line Jacobi matrices with gegss(J) =
oac(J) = E [5l[14]. Through algebro-geometric techniques and the reflectionless
property, this class of Jacobi matrices has been widely studied for their spectral
properties and quasiperiodicity (see also [26,[31] for more general spectral sets).
They also provide natural reference points for perturbations, which is our current
interest. On bounded half-line Jacobi matrices J, we consider the metric

(o]
(1.12) d(J,J) =" e (Jax — a| + [br — bxl)-

k=1
On norm-bounded sets of Jacobi matrices, convergence in this metric corresponds
to strong operator convergence. However, instead of distance to a fixed Jacobi
matrix J we will consider the distance to ’7'E ,

d(J,Tg") = inf d(J,J) = min d(J,J).
JeTct JeTet

Denote by S, the right shift operator on £2(Ny), Sie, = e,r1. The condition
d((S1)™J ST, Te") — 0 as m — oo is called the Nevai condition. For E = [—2,2],
this corresponds simply to the commonly considered condition a,, — 1, b, — 0
as n — oo [18]. In general, as a consequence of [21], the Nevai condition implies
regularity. The converse is false; however:

Theorem 1.10. If E C R is a compact finite gap set and J is a reqular Jacobi
matriz with oess(J) = E, then

*\m m +
(1.13) J\}gnoo—z:ld ((SE)™JS™ Teh) =

The condition (LI3]) is described as the Cesaro—Nevai condition; it was first
studied by Golinskii-Khrushchev [15] in the OPUC setting with essential spectrum
equal to OD. Theorem [L.I0lwas conjectured by Simon [23] and proved in the special
case when E is the spectrum of a periodic Jacobi matrix with all gaps open by using
the periodic discriminant and techniques from Damanik—Killip—Simon [7] to reduce
to a block Jacobi setting. It was then proved by Kriiger [17] by very different
methods under the additional assumption inf, a,, > 0. While this is a common
assumption in the ergodic literature, regular Jacobi matrices do not always satisfy
it: [22] Example 1.4] can easily be modified to give a regular Jacobi matrix with
spectrum [—2,2] and infa, = 0. We prove Theorem [[.10] in full generality by
applying Simon’s strategy and, instead of the periodic discriminant and techniques
from [7], using the Ahlfors function, GMP matrices, and techniques of Yuditskii
[32].

For the compact finite gap set E C R, among all analytic functions C\ E — D
which vanish at oo, the Ahlfors function ¥ takes the largest value of Re(2¥(2))] .= oo-
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The Ahlfors function has precisely one zero in each gap, denoted ci € (ag, by) for
1 <k < g, azero at cg41 = 00, and no other zeros; see also [25, Chapter 8. In
particular, for the finite gap set E, this generates a particularly natural sequence of
poles Cg = (cq,...,Cq4,00).

The Ahlfors function was used by Yuditskii [32] to define a discriminant for finite
gap sets,

(1.14) Ag(z) =¥(2) + o

This function is not equal to the periodic discriminant, but it has some similar prop-
erties and it is available more generally (even when E is not a periodic spectrum).
Namely, Ag extends to a meromorphic function on C and (Ag)~!([-2,2]) = E.
It was introduced by Yuditskii to solve the Killip-Simon problem for finite gap
essential spectra. In fact, the discriminant is a rational function of the form

(1.15) Ae(z) = Agpaz+d+

for some d € R; in particular, we will explain that the constants A\; > 0 in (L15)
match the general definition (L6]).

As a first glimpse of our proof of Theorem [[.10, we note that it uses the fol-
lowing chain of implications. Starting with a regular Jacobi matrix with essential
spectrum E, by a change of one Jacobi coefficient, which does not affect regularity,
we can assume that ci ¢ supp p (Lemma [I.T]). Under this assumption, regularity
of the Jacobi matrix implies regularity of the corresponding GMP matrix A and
the resolvents (cy — A)~%, k = 1,...,g, which can be characterized in terms of
their coefficients by Theorem [[.9I By properties of the Yuditskii discriminant, this
further implies regularity of the block Jacobi matrix Ag(A). Let us briefly recall
that a block Jacobi matrix is of the form

g bg
06 vy by
v} g by

(1.16) J=
03

where v; and tv; are d x d matrices, w; = w7, and det v; # 0 for each j. Type 3
block Jacobi matrices have each v; lower triangular and positive on the diagonal.
An extension of regularity to block Jacobi matrices was developed by Damanik—

Pushnitski-Simon [8]; in particular, J is regular for the set [—2, 2] if 0ess(J) = [—2, 2]
and
1/n
(1.17) lim_ 1_[1|det v =1.
j=

This chain of arguments will result in Lemma [L.1T}

Lemma 1.11. Let J be a regular Jacobi matriz, E = oess(J) a finite gap set, and
Ck the corresponding sequence of zeros of the Ahlfors function. Assuming cy, ¢ o(J)
for1 <k <g, denote by A the GMP matriz corresponding to J with respect to the
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sequence Cg. Then Ag(A) is a regular type 3 block Jacobi matriz with essential
spectrum [—2,2].

With Lemmal[l.11] it will follow that J = Ag(A) obeys a Cesaro—Nevai condition.
That Cesaro—Nevai condition will imply (.13 by a modification of arguments of
[32]. The strategy is clear: just as [32] uses a certain square-summability in terms
of v;,10; to prove finiteness of ¢2-norm of {d((S%)™JST, Tg")}5_y, we will use
Cesaro decay in terms of v, 10, to conclude the Cesaro decay (L.13). This can be
expected due to a certain locality in the dependence between the terms of the series
considered; this idea first appeared in [23] in the setting of periodic spectra with
all gaps open. However, some care is needed, since the locality is only approximate
in some steps; this is already visible in (L.12]). Also, substantial modifications are
needed throughout the proof due to the possibility of liminf|jv;|| = 0 (this cannot
happen in the Killip—Simon class), which locally breaks some of the estimates. The
fix is that this can only happen along a sparse subsequence, but the combination of
a bad sparse subsequence and approximate locality means that we cannot simply
ignore a bad subsequence once from the start; we must maintain it throughout
the proof. A related issue arises with the Cesaro version of a Killip—Simon type
functional. We will describe the necessary modifications to the detailed analysis in
[32].

The rest of the paper will not exactly follow the order given in this section.
In Section 2l we describe the behavior of our problem with respect to Mdobius
transformations, and we describe the distribution of zeros of the rational function
Tn. In Section Bl we recall the structure of GMP matrices and relate their matrix
coefficients to the quantities k,, and use this to provide a first statement about
exponential growth of orthonormal rational functions on C \ R. In Section M we
combine this with potential theoretic techniques to characterize limits of %log|7'n|
as n — oo and prove the universal lower bounds. In Section [5] we prove the results
for C-regularity and Stahl-Totik regularity. In Section [6l we describe a proof of
Theorem [L.10}

2. ORTHONORMAL RATIONAL FUNCTIONS AND MOBIUS TRANSFORMATIONS

In Section [Il starting from the measure p and sequence of poles C, we defined
a sequence {r,}>2, and the orthonormal rational functions {7,}72 . In the next
statement, we will denote these by r,(z; C) and 7,(z; u, C), in order to state pre-
cisely the invariance of the setup with respect to Mobius transformations.

Lemma 2.1. If f is a Mébius transformation which preserves R, then
(2.1) n(2; 1, C) = p" 10 (f(2); fums, f(C)),
where f(C) = (f(c1),..., f(cgt1)) and

_[+1 fePSL,R),
PZY1-1 fe(PSL(2,R) x {id, z — —2}) \ PSL(2, R).
Proof. Note that the sequence {ry,}52, does not have this property: r,(z; C) is not
equal to p"r,(f(2); f(C)). However, if we denote

L,(C) =span{re(;C) | 0 < £ < n},
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then it suffices to have
(2.2) T (f(2); F(C)) — enp”rn(2;C) € Ly—1(C)

for some constants ¢, > 0. If ([2.2]) holds, then applying the Gram—Schmidt process
to the sequences {r,(f(z); f(C))}>2, and {r,(z; C)}52, will give the same sequence
of orthonormal functions, up to the sign change p™, which is precisely (2.1).

Note that if ([2.1) holds for fi, f2, it holds for their composition, so it suffices
to verify (2.2)) for a set of generators of PSL(2,R) x {id, z — —z}. In particular,
([2.2) is checked by straightforward calculations for affine transformations and for
the inversion f(z) = —1/z, which implies the general statement since affine maps
and inversion generate PSL(2,R) x {id, z — —z}. O

Let us emphasize what Lemma[2.1]does and what it doesn’t do. Since the Mobius
transformation acts on both the measure and the sequence of poles, Lemma[2.1]does
not by itself prove Theorem [[LT] Lemma 2.1] can only say that if p is Stahl-Totik
regular, then f.p is (f(o0))-regular, which is not sufficient unless f is affine. The
proof of Theorem [1.1] will be more involved.

However, Lemma [2.1] provides a very useful conformal invariance for many of
our proofs. This can be compared to choosing a convenient reference frame. Since
potential theoretic notions such as Green functions are conformally invariant, our
results will be invariant with respect to Mdobius transformations. We will often use
this invariance in the proofs to fix a convenient point at oo.

Note that this will be possible even though some objects are not conformally
invariant. Some of our results compare the sequences x,, with the A\, and although
those objects are not preserved under conformal transformations, both sequences
are affected in a compatible way so that the inequalities and equalities are preserved.
Explicitly, fix k and n = j(g + 1) + k and a Mdbius transformation f € PSL(2,R)
(a reflection can be considered separately). Let us denote a local dilation factor

f/(ck) =lim, e, % Then, we use Lemma 2.1] to compute
Tz, C) L Ta(f(2), fun, £(C)) Fn(j)
Fn(@) = 18, rn(z,C) a—ron rn(z,C) f(c)itt’

where &, (;) is the leading coefficient 7,,(z, fupt, f(C))=Fnrn(2, f(ck)) € Ln_1(f(C)).
If E is nonpolar, the Green function is conformally invariant so we find by another
computation

log e := lim  (Gy)(w, f(cx)) — loglri(w, £(C))]) + Z Gy (f(ck), f(ce)

w— f(ck) 1<0<k

ok
> + Z Ge(ck, cr)

1<e<k
I#£k

ri(z

= lim (GE(Z,Ck)_10g|Tk(Z’ C>|+log‘w,fc()0))

Z—Cp

= log A, + log(f'(ck)),

where we have used that f € PSL(2,R) = f’ > 0 on R. Thus, Az = f(cx) . If
E is polar, then f(E) is as well. From these calculations, it becomes elementary to
verify that statements such as those in Theorems[L.3] [I.4] are conformally invariant.

Note that technical ingredients of the proof, such as polynomial factorizations,
give a preferred role to oo so they break symmetry. For instance, we will often use
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the observation that the subspace £, can be represented as

P
2.3 Ln =4 —
(23) (%

for some suitable polynomial R,, with factors which account for finite poles ¢ # oc.
We will use the representation (2.3]) after placing a convenient point at co. This
idea is already seen in the next proof.

|Pe7?n}

Lemma 2.2. All zeros of the rational function 1, are simple and lie in R. More-
over, n — g < deg 7, <n.

Letn=3j(g+1)+k, 1 <k <g+1, and denote by I the connected component
of ¢ in R\ supp . Then 7, has no zeros in I and at most one zero in any other
connected component of R\ supp p.

Proof. Fix 1 < k < g + 1 and without loss of generality, assume c, = oo. Then,
in the representations (2.3)), we can notice that R,,—1 = R,. In particular, then
Tn € Ly \ L1 implies the representation 7,,(;) = g—z for some polynomial P, of
degree n.

Recall that 7,,, n = k+ (j — 1)(g + 1) is the unique minimizer for the extremal
problem (L3]). By complex conjugation symmetry, the minimizer is real. To proceed
further, we study zeros of P,, by using Markov correction terms.

We say that a rational function M is an admissible Markov correction term if
M >0 a.e. on E and M(2)P,(z) € P,—_1. In this case, using (M7, 7,) > 0, we see
that the function g(e) = ||, — eM,||* obeys

g (0) = —=2(M,,7,) <0.
Thus, for small enough e > 0, the function
Tn = Tn — eMT,
obeys ||7nllz2(an) < |Tnllz2(ap)- Since 7, is of the form 7, = kp2/** + h(z) for
some h(z) € L,_1 and in particular has the same leading coefficient as 7,, the
function 7, /||7nl|L2(du) € Ln contradicts extremality of 7,. In other words, for the
extremizer 7,, there cannot be any admissible Markov correction terms.

Assume that P, has a nonreal zero w € C\R. Then, since 7, is real, P,(w) = 0,
so the Markov correction term M (z;w) = m would be admissible, leading
to contradiction. B

Assume that P, has two zeros x1,x2 in the same connected component of R\
supp u; then, the Markov correction term

1
=G 2)
would be admissible, leading to contradiction.
There are no zeros of P, in I. Otherwise, if € I was a zero, the Markov term

1 .
M(z,x):{z?c’ ximeE’
x > sup

r—z"

M(Z;l’l,@) =

would be admissible.
Finally, all zeros of P, are simple: otherwise, if £y € R was a double zero, the
Markov term

MEm0) = a2
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would be admissible.
The properties of zeros of 7, follow from those of P,. There may be cancellations

in the representation 7, = 11;)", but since P,, has at most a simple zero at ¢y, the
only possible cancellations are simple factors (z—cy), £ # k. Thus, n—g < deg 7, <
n. [l

The use of Markov correction factors is standard in the Chebyshev polynomial
literature and is applied here with a modification for the L?-extremal problem (in
the L*°-setting, singularities in M are treated with a separate argument near the
singularity, which would not work here).

Corollary 2.3. The measures v, are a precompact family with respect to weak
convergence on C(R). Any accumulation point v = limy_,o0 vy, s a probability
measure and suppv C E.

Proof. By Lemmal2.2] v, (R) < 1, so precompactness follows by the Banach-Alaoglu
theorem. If v = limy_, vy, then since 1 — % <, (R) <1, vR)=1.

Let (a,b) be a connected component of R \ E. Let us prove that v((a, b)) = 0.
By Mébius invariance, it suffices to assume that (a,b) is a bounded subset of R.

Fix r € N. As supp it \ E is a discrete set, we have
#{xesuppp:at+l/r<z<b-1/r}=M < oo.

So, by Lemmal2.2] v, ((a+1/r,b—1/r)) < ”g—jl and by the Portmanteau theorem
and sending r — oo, v((a,b)) =0 and suppv C E. O

3. GMP MATRICES AND EXPONENTIAL GROWTH OF ORTHONORMAL RATIONAL
FUNCTIONS

In this section, we consider orthonormal rational functions through the frame-
work of GMP matrices. We begin by recalling the structure of GMP matrices [32].
The GMP matrix has a tridiagonal block matrix structure, with the beginnings of
new blocks corresponding to occurrences of c;_ = co. Explicitly,

BO AO
Ay B, A
AT By A,

A= ,

where By is a ke X ks matrix, Ay is a koo X (g + 1) matrix. For j > 0, Aj, B,
are (g + 1) x (g + 1) matrices; while for j > 1 these appear in A unmodified in the
above, Ay and By are projections of Ay and By respectively. More precisely, let
X~ denote the upper triangular part of a matrix X (excluding the diagonal) and
X the lower triangular part (including the diagonal). Then, indexing the entries
of A;, Bj, j > 0 from 0 to g, we see they are of the form

(3.1) Aj =760, Bj=CH+(@p))t + @a]),

where pj, ; €RIT | with (p})o >0 and C = diag{0,cx_41,. .-, Cgt+1,C1,- .-, Cho—17)
(with the obvious modification if ko, = 1 or koo = g+1) and &y denotes the standard
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first basis vector of R9T1. A, and By are projections of Ay and By,
Ay =TAy By =IIBylI*

with IT the block matrix IT := [Op__ x (g+1—k.) Tk x ko |- We will refer to {p], @jtjsa
as the GMP coefficients of A. While the precise structure will not be essential
throughout the paper, we point out two things. First on the outermost diagonal
of A in each block there is only one nonvanishing entry, given by (p;)o, which is
positive and which is at a different position depending on the position of co in the
sequence C. And secondly, in general as a self-adjoint matrix B; could depend on
(9+1)(g+2)/2 parameters, but we see that in fact they only depend on 2(g+1). This
is not that surprising due to their close relation to three-diagonal Jacobi matrices.
A similar phenomenon also appears for their unitary analogs [6].

Remark 1. For later reference, we provide an alternative point of view on the block
structure of A. The structure provided above is chosen so that cj_, is at the first
diagonal position of the B-blocks. Recall also that to these blocks we attached
a column p' (with positive first entry (p)o > 0) to the right and a row p at the
bottom. If, instead of viewing this as a block matrix structure with blocks of size
(9+1) x (g+1), we view this structure as overlapping blocks of size (g+2) x (g+2)
which overlap at the positions of ¢j_, then those would contain all nonvanishing
entries of the GMP matrix (i.e., it would also include the vector pj). Moreover,
the positive entries are exactly at the upper right and the lower left corner of the
bigger block. Now placing the window of size (¢ + 1) x (g + 1) on the top of the
bigger block corresponds to the structure presented above. We will encounter in
Section [6] that in other settings it may be more natural to place the block at the
lower corner, and in this case the B blocks will have structure similar to (3.1]).

Now the various notations for the off-diagonal blocks A;, the vectors p; which
determine them, and the coefficients 3; defined in (L8] are related as

Bj = (€j(g+1)+hus A4 1) (g+ 1) +ko) = (Aj)00 = (F))o-

The coefficients j3; are a special case of the coefficients A,, defined for n = j(g+1)+k,
1<k<g+1as

(3.2) A = L (e = A) T legu k) # koo,
(€j(g+1) 4k AC(j41)(g+1)+k) k= koo

Namely 8; = Aj(g41)+k., and the coefficients Aj 1 1)4¢ for k # koo instead occur
as outermost diagonal coefficients for the GMP matrix (¢, — A)~!. In our later
applications to the discriminant of A, both the coefficients of A and of its resolvents
will appear, so we will work with A,, throughout.

Next, we connect the coefficients (B.2]) to the solutions of the L2-extremal prob-

lem ([L3).

Lemma 3.1. For all n,
(3.3) AL
Rn+g+1

Proof. Let n = j(g+ 1) + k. By self-adjointness,

Ap = <en>rk(A)en+g+1> = <ranaTn+g+1> = <"$n7'n+g+1 + h>Tn+g+1>
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for some h € L, 4. By orthogonality, (Tig+1,h) = 0, 80 (Tnigt1,Tntgt1) =

1 . .
e implies that

Kn

An = <7—n+g+1; RnTn4g+1 + h) = ]

Fntg+1
We now adapt to GMP matrices ideas from the theory of regularity for Jacobi
matrices [22].

Lemma 3.2. Let A € A(C). For all j > 1, ||p;] < ||A]l.
Proof. Fix j > 1 and denote n = j(g+ 1) + k. For any £ =0,...,g,

(9j)e = (en_g 110, Acn) = / T g142(@)a (@) du(x).

Since the vectors 7,,—y—14¢ are orthonormal, by the Bessel inequality,

15512 < / (@) Pdu(z) < |A] / 7 ()2 dpa(z) = | AJ12
since HAH = Sumesuppu|x|' D
Lemma 3.3. For z € C\R,
o1
(3.4) hnrgloléf - log |7, (2)| > 0.

Proof. We adapt the proof of [22) Proposition 2.2]. It suffices to prove (3.4]) along
the subsequences n(j) = j(g +1) + k, j — oo, for 1 <k < g+ 1. Moreover, due to
R-preserving conformal invariance, it suffices to fix £ and prove

1
3.5 liminf —— log |7, (2)| > 0
under the assumption that c; = oco. This allows us to use the associated GMP
matrix A € A(C).

Note that for any m, since {7,}$2, is an orthonormal basis of L?(dp),

S Aere(2) = 3 mm(2), 7e(2))7e(2) = 27 (2).
¢ ¢

This equality holds in L?(du), but since all functions are rational, it also holds

pointwise. Thus, if we fix z € C\ R, the sequence ¢ = {1(2)}72, is a formal

eigensolution for A at energy z, i.e. (A — z)@ = 0 componentwise. Since A is

represented as a block tridiagonal matrix, let us also write ¢ in a matching block

form, as g7 = [4] @ @, ...] where
iy = [10(2) ... me-1(2)], ﬁ;r = [Tng-1)-1(2) .. T-1(2)], F>1
We also consider the projection of ¢ onto the first j 4+ 1 blocks,
@ =ldg ... @ 0 ..],

and compute (A — z)@;. By the block tridiagonal structure of A, for m < n(j —1)
we have (e, (A — 2)@;) = 0. For 0 < ¢ < g, we have

(en(j—1)+0, (A = 2)@) = (en(j—1)+e; (A — 2)F;) = (pj)eTn(s) (2)
so that (e, (j_1)+¢, (A — 2)F;) = —(pj)eTn()(2). Moreover,

(en(s), (A= 2)Fj) = (en(j), AGj) = (§)) " u;(2).
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For m > n(j), we again have (e, (A — 2)@;) = 0. In conclusion, (A — z)@; has
only two nontrivial blocks,

(A=2)3)" =0 ... 0 =@mapn()T (@) u)T 0 ...
In particular, we can compute
(3.6) (8), (A= 2)@;) = =T (2)05-

Since A is self-adjoint and @; € £2(Np), by a standard consequence of the spectral
theorem [29, Lemma 2.7.],

T 2|31 < (@, (A = 2)@)).
Using (B8.6) and the Cauchy—Schwarz inequality gives

J
2] D | < Jrny (1551151

m=0

By Lemma [3.2] with C' = |Im z|/||A]|,

J
(3.7) C Y Nl < Iy ()15
m=0
Applying the AM-GM inequality to the right-hand side of (8.7)) gives

() (A5 (2] < % (Cll;(2)I* + O™ gy (2)I?)

which together with (3.7)) implies

J
(3.8) Ty ()P = C2 D i
m=0

Since |7,,(j)(2)|* < ||@;41]|%, this implies that

j+1

J
> i ® = (1+C2) Y imll*.
m=0

m=0
Since ||dg|| > |70(2)| = 1, this implies by induction that
J .
O liml? > (14 %)
m=0

Combining this with (B.8) gives a lower bound on |7,,(;)(2)| which implies [3.5). O

The estimates in the previous proof also lead to the following:

Corollary 3.4. For any z € C\ R, the quantities

1
lim inf —————1log |7;(g41)+x(2)], lim sup -

1
imeo jlg+1) +k o g+ )k ITitot1)+4(2)]

are independent of k € {1,...,9+1}.
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Proof. Assume j > 1. For k — g —1 < {¢ <k — 1, the estimate (3.8) gives

Ti g+ 1)k (2) > = C?|li;11% > C?|75(g41)1e(2)?

which implies

1 1
3.9) li f—— 1 > i f———1 ;
(3.9) 1jn_1>£ g+ +k og|T (q+1)+k( z)| m_l}gg ilg+1)+¢ 0g|7'g(g+1)+e(z)|
and
(3.10)
1
li —1 > li —1 ; .
mSup S T 0g [Tj(g+1)+k(2)] msup S T 0g |Tj(g+1)+¢(2)]

Clearly, the right-hand sides don’t change if ¢ is shifted by g + 1, so (8.9), (B.10)
hold for all k,¢ € {1,...,g+ 1} with k # £. By symmetry, since the roles of k, £
can be switched, we conclude that equality holds in (8.9), (B.10). O

4. GROWTH RATES OF ORTHONORMAL RATIONAL FUNCTIONS

In this section, we will combine the positivity ([8.4) with potential theory tech-
niques in order to study exponential growth rates of orthonormal rational functions.
Our main conclusions will be conformally invariant, but our proofs will use potential
theory arguments and objects such as the logarithmic potential of a finite measure

v,

D,(2) = /10g|z — z|dv(z),
which is well defined when supp v does not contain oc.

Theorem 4.1. Fiz 1 < k < g+ 1 and denote by I the connected component of
R\ supp v containing cy. Suppose there is a subsequence ng = jo(g + 1) + k such
that w-limy_,oo vy, = v and = lognne — a € RU{—00,400} as { — co. Then

uniformly on compact subsets of (C\R)U (I \ {ck}), we have

h(z) :== lim 1 log |75, (2)].

£—r00 Ny

The function h is determined by v and «; in particular, if ¢y = oo,

g+l
(4.1) h(z) =a+®,(z ——Zlog|cm—
mzk
Moreover,
(a) o= —o0 is impossible;

(b) If @ = +o0, the limit is h = +o00;
(c) If a € R, the limit h estends to a positive harmonic function on C\ (EU
{c1,...,¢cq41}) such that

(4.2) h(z) = —

) log|c,, — 2|+ O(1), z— ¢y # o0,

1 log|z] + O(1), 2z — ¢y = 0.
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Proof. By using R-preserving conformal invariance, we can assume without loss of
generality that ¢, = co. We will use the representation (2.3) of the subspace L,,.
For n = j(g + 1) + k, counting degrees of the poles leads to

P k—1 g+1
Ty = —=, R,(2) = Cop — 2 Cm — 2)7,
m#k

with deg P, = n. This may not be the minimal representation of 7,,, but by the
proof of Lemma [2.2] the only possible cancellations are simple factors (c,, — z) for
each m # k, so we get the minimal representation 7,,(z) = P(2)/Q(z) with

g+1

P()=rn ] G-w), Q&) =]](m—2"",
w:Ty (w)=0 777711;:61]%

where [0, ;] < 1 for each j. All that matters is that d,,,/j — 0 as j — oc.

It will be useful to turn this rational function representation into a kind of Riesz

representation,

(4.4) log|tn(2)| = log Ky + n/10g|a: — zldvy (z) — Z (J + ;) logle,, — z|.
1<m<g+1
m#k
Since cj = 0o, note that K = R\ I is a compact subset of R. Denote Q = C\ K.
For any 2 € €, the map z ~ log [z — 2| is continuous on K, so @, (2) = ®,(2) as
¢ — 0. In fact, convergence is uniform on compact subsets of Q: since supp(vy,) C
K and v,,(K) <1 for all ¢, the estimate

(21— 22| ) o 5= 2
dist(z2, K) ) — dist(z9, K)’

-1

x
log 21,22 € €,

Xr — 29

<log <1+

implies uniform equicontinuity of the potentials ®,, on compact subsets of €2, and
the Arzela—Ascoli theorem implies uniform convergence on compacts.

Note that () follows from (@.I). By Corollary 23] suppr C E and ®,(z)
is harmonic on C \ E, so the right hand side extends to a harmonic function on
C\ (EU{c1,...,cg+1}) and we denote this extension also by h. By Lemma3.3] A
is positive on C; UC_, so a # —o0o; moreover, by the mean value property, h is
positive on C\ (EU {c1,...,Ccg41}).

The remaining asymptotic properties follow from (4.1). Under the assumption
¢, = 00, suppV is a compact subset of R, and ®,(z) = log|z| + O(1), z — oc.
It then follows that h(z) = ﬁlog|z| + O(1) as z — oo. Of course, h(z) =

—glﬁ log |z — ¢, | + O(1) near each ¢, # cy. O

Theorem [4.1] motivates interest in positive harmonic functions on
C\(EU{ci,...,cy41}). If Eis polar, by Myrberg’s theorem [2, Theorem 5.3.8], any
such function is constant. If E is not polar, knowing the asymptotic behavior of h
at the poles, positivity of h improves to the following lower bound on h. Lemma[4.2]
reflects a standard minimality property of the Green function [11}, Section VII.10].

Lemma 4.2. Assume that E is a nonpolar closed subset of R. Let h be a positive

superharmonic function on C\ (EU{c1,...,coq1}). Suppose h(z)+ # log |z — ¢y
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has an existent limit at cy, for each finite ci, and h(z) — gﬁ log|z| has an existent
limit at oo if one of the ¢, = co. Then

(45) h(z) > Ge (% C)
for z€ C\E. For 1 <k <g-+1, define

{hmzﬁck(h(z) + gl? log|z — ckl), ¢ # oo,
ap =

lim, o0 (h(2) — # log|z|), cr = 00.
Then
log Ak
4.6 > .
(4.6) Ak = g+1

Proof. We will use a stronger, q.e. version of the maximum principle [20, Thm
3.6.9]. Define

iL(Z) = gE(Za C) - h(z)7
Whiﬁh is bounded at ¢ for 1 < k£ < g+ 1 and so extends to a subharmonic function
on C\ E. Since G vanishes q.e. on E, we have for q.e. t € E,

lim sup h(z) = — lim i?f h(z) <0.
zZ—r

z—t

Now we show h is bounded above on C\E. Let U be a union of small neighborhoods
containing the points cj in C\ E. By the definition of the Green function, Gg(z, C)
defines a harmonic and bounded function on C\ (EU). That is, there exists M
such that for all z € C\ (U UE) we have

Ge(z,C) < M.
Since h > 0, it follows on C\ (4 UE) that
h(z) = Ge(z,C) — h(z) < Ge(z,C) < M.
On the other hand, by properties of the Green functions we have

log A {ummk@E(z,C) + Aploglz —ckl), e # oo,

g+1  |lim, 00 (Ge(2, C) — = log|z|), cp = 00.

g+1

Then, by assumption, for 1 <k < g+ 1, h(z) = lc;%:i’“ —ag +o(1) as z — ¢ and,

in particular, the difference is bounded in a small neighborhood of ¢g. Thus, h is
bounded above on C\ E. )
So, by the maximum principle h < 0 == Gg(z,C) < h(z) on C\ E. Since

0> lim, ., h(z) = I_C;g% — ag, we have (4.6). O

Lemma 4.3. Under the same assumptions as Lemma [4.2], the following are equiv-
alent:
(i) Equality in [A6) for all k with 1 <k <g+1
(ii) Equality in {G) for a single k with 1 <k <g+1
(iil) Equality holds in (4.5])
Proof. ) = () is trivial. Suppose then (ii); with the notation of Lemma [4.2]
by assumption, h(c;) = 0 and h achieves a global maximum. By the maximum

principle for subharmonic functions [20, Theorem 2.3.1], h=0on C \ E. Finally, if
(D) holds, then evaluating h(cy) for each 1 < k < g+ 1 yields (). O
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We will now prove Theorems [[.2] and [L.3]

Proof of Theorem [L2. Using conformal invariance, we take ¢, = co. Fix z € C\R
and select a sequence (ng)°, such that
1 1

liminf —lo = lim —1lo .

iminf — log 7, ()| = Jim —log]r, ()
By precompactness of the (v,), we may pass to a further subsequence, which we
denote again by (ng)72,, so that w-lim;_,o v,,, = v and n% log Ky, — «a for some v
and a. Then for h as in Theorem [4.1],

lim —log 7, (2)] = h(2),

£—r00 Ny

on C\ R. If & = 400, then there is nothing to show. Suppose a < oo. If E is not
polar we apply @) of Theorem [4.1]to find o € R, and we may use () of the same
theorem and Lemma [4.2] to conclude.

If instead E is polar, by Myrberg’s theorem, h is constant on C\(EU{c1,...,cg41}).
Computing the limit at ¢, we see h = 4+00. In particular, liminf,, . % log |m.(2)| =
+oo for z € C\ R. O

Proof of Theorem [1L3l Fix1 < k < g+1 and assume again by conformal invariance
that ¢, = co. Using precompactness of the measures (v,), we find a subsequence
ne = jo(g+ 1) + k with

1 1
lim — log ki, = liminf —— log kn(j) =
ei}r{.lo e Oog K y 1]m1n n(]) Og K. ( ) (0%

and w-limy_,o v, = v. If @ = 400, we are done. Suppose then a < oo, then

we have by Theorem H.Il@), o € R. Furthermore, if E is nonpolar, by () and

Lemma[d.2] h(z) > Ge(z,C) on C\ E. In particular, by the representation (£1]) we

see that a = lim, o (h(2) — q+1 log |z|), and so (.6)) yields the desired inequality.
If instead E is polar, by Theorem [I.2] for each z € C\ R,

1
h(z) = Zgr&n_ZIOg|Tne‘ 2 hmlnfglog"rn( z)| = +oo,

and so by Theorem ILI|[B), o = +oc. O

5. REGULARITY
We will begin by proving a version of Theorem [L.4] for a fixed k.

Lemma 5.1. Fizx k € {1,...,g+ 1}. Along the subsequence n(j) = j(g+ 1) + k,
the following are equivalent:

N T n(@) _ y1/(g+1) .
(i) limje0 nn(?)] AT

(ii) For g.e. z € E, we have limsup,_, ., |Tn(j)(z)|1/"(j) <1;
z,C) .
(iv) For all z € C, imsup;_, ., |75 (2)[//"0) < %e(=:C);

)

(iii) For some z € Cy, limsup;_, |Tn(j)(z)|1/”(j) < 9l
)

(v) Uniformly on compact subsets of C\ R, im;_,oc |7,(j)(2)[}/"0) = e9e(=:€).

Proof. Using conformal invariance, we will assume throughout the proof that ¢, =
oo. First, suppose that E is polar. In this case (i) is vacuous, and since Gg = +o0,
(D) and () are trivially true. Since Ay = +oo, (i) follows from Theorem [1.3
As in the proof of Theorem 4.1l weak convergence of measures implies uniform
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on compacts convergence of their potentials. Thus, since v, are a precompact
family, so are ®,,,. Thus, the convergence lim;_, ﬁ log fip(5) = +00 implies that
ﬁ log|7,,(j)(2)| = 400 uniformly on compact subsets of C\R, so (@) holds.

For the remainder of the proof, we will assume E is not polar. Moreover, we
will repeatedly use the fact that if any subsequence of a sequence in a topological
space has a further subsequence which converges to a limit, then the sequence itself
converges to this limit. In particular, when concluding (@), we apply this fact in
the Fréchet space of harmonic functions on C \ R with the topology of uniform
convergence on compact sets.

(i) = [@@): Given a subsequence of n(j) = j(g + 1) + k, using precompact-
ness of the measures v,, we pass to a further subsequence ny, = jo(g + 1) + k
with w-limy_o0 v, = v and limy_, n% log k,, =! o, with o real or infinite. By
Theorem [4.1] uniformly on compact subsets of C \ R,

limj*)oo

1
h(z) = lim —1 n
(2) = lim ” 0g |7, (2)]
with h given by ([4.1). Using the assumption, for some zo € C, we have

h(z0) < limsup L log |7,y (20)| < o0.
So, by Theorem[4.1] o € R and h has a harmonic extension to C\(EU{c1, ..., cg41}).
Furthermore, by Lemmal4.2] h > Gg. By assumption, we have the opposite inequal-
ity at z9 € C,, and so, by the maximum principle for harmonic functions, h = Gg
on C\ (EU{ci,...,c441}), and in particular on C\ R. Thus, we have (©@).

@ = ([): For z € {c1,...,¢cq41}, Ge(z,C) = 400 and there is nothing
to show. Fix z € C\ {c1,...,cy41} and let ny, = je(g + 1) + k be a subsequence
with limy_, n% log |7, (2)| = limsup; _, %]) log |7,(;)(2)|. By passing to a further
subsequence, we may assume w-limy_,, v, = v, and limy_, n% log Ky, =: o where
« is real or infinite. By the assumption, we have h = limy_, nle log |7n,| = Ge on

C\R. So, by () and (B), @ € R and h extends to a harmonic function on C\ (EU
{c1,...,¢441}). By the representation (d.I), we may extend h subharmonically to
C\ {c1,...,¢4+1}. On this set, G is also subharmonic, so, by the weak identity
principle [20, Theorem 2.7.5], h = Gg on C\ {c1,...,¢y41}. Thus, by the principle
of descent |27, A.III], we have

(5.1) lim 1 log |7, (2)] < h(z) = Ge(z,C)

£—00 Ny

and (iv) follows.

@ = ([@: Given a subsequence of n(j) = j(g+1)+k, we use precompactness of
the v, to pass to a further subsequence ny = jo(g+1)+k with lim,_, - n% log kp, =:
a € RU{—o00,+00} and w-limy_,o v/, = v. Then in the notation of Theorem [4.1]
and by assumption, for a z € C\ R

Jim log |7, (2)] = h(2) = Ge(2,C).

So by Lemma 43| o = logg%. Thus, )\i/(gﬂ) is the only accumulation point of

“:L/(;l)(j) in RU {—o00, 400} and we have (i).
i) = [@®@): As before, we fix a subsequence of n(j) = j(g+1)+k and use precom-

pactness to pass to a further subsequence ny = je(g+1)+k with w-limy_, o v, = v.
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Then, by Theorem [4.1l and in the notation introduced there, uniformly on compact
subsets of C \ R,
1
lim — log |7, (2)| = h(2),

£—r00 Ny

where h is given by (d.1) with a = lﬁ’f%. Thus, by Lemma [4.3|{), h(z) = Ge(z,C)
on C\ R. Since the initial subsequence was arbitrary, we have ().

(iv) = (): Recalling that the Green function vanishes q.e. on E, the claim
follows.

i) = (@): Fixing a subsequence of n(j), we again use precompactness to
select a further subsequence ny = je(g + 1) + k such that w-limy_,o v, = v and
limy_s oo n% log ki, =: a, & € RU{—00, +00}. By the upper envelope theorem, there
is a polar set X; C C such that on C\ X1, limsup,_,,, @, = ®,. Now, we let
X, = {t € E : limsup,,_,, +log|7,(t)| > 0}, which is polar by assumption, and
X3 :={z€ C: ®y(z) = —o0}, which is polar by [20, Theorem 3.5.1]. Then, for a
tekE \ (Xl U Xo UXg), we have

1 g+1
<l 1 t)— @ — 1 —t < o0.
@ < msup 1 log 1 ()] = 0u(0) + =g 3 1oglen —1 < o0
m;Zk
So a € R by Theorem [4.I)@). Thus, by (@) of the same theorem, uniformly on
compact subsets of C\ R
1
h(z) = lim —1 .
(2) = Jim - log|ri, (2)
and h extends to a positive harmonic function on C\ (E U {cy,...,cy41}) with
logarithmic poles at each of the ¢,,. So, h — Gg extends to a harmonic function on
C\E, and h — Gg > 0 there by Lemma[4.2l We now show that in fact h = Gg using
the stronger, q.e. maximum principle.

We use the equality in (A1) to extend h to a subharmonic function on C\
{c1,...,¢cg41}. By the upper envelope theorem and the assumption again, for
teE\ (X1UXy)

1
h(t) = limsup — log |, (t)| < 0.
l—oo T
Then, for these ¢, since Gg is positive, we have
hmsup( (2) = Ge(z,C)) < limsup h(z) < h(t) <0
—t

z—t
zE(C\E z€C\E

by upper semicontinuity. So, lim sup ZE)\tE (h(z) — Ge(2,C)) <0 for q.e. t € E.
zE

Since h is upper semicontinuous on the compact set E, there is an M so that
sup,cg h(t) < M. As in the above, now for any ¢ € E, we have

limsup (h(z) — Ge(z,C)) < limsup h(z) < h(t) < M.

QN ER\E
So, there is a neighborhood U of E with sup, ,n@\g)(h — Ge) < M + 1. Since the
difference is harmonic on C \ U, we conclude that sup, .o\ (h(2) — Ge(2, C)) <

Thus, by the maximum principle and the reverse inequality, h = Ge on C\ E. Since
the first sequence was arbitrary, we have ().
Since the implication (iv) = (iil) is clear, we may conclude. O
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We now put the subsequences together and use Corollary [3.4]to show that regular
behavior occurs for one k if and only if it happens for all.

Proof of Theorem [1L4l Applying Lemma [5.1] for all k& implies equivalence of condi-
tions (ii), (iv), (v), (vi), (vii) from Theorem[L.4] By CorollaryB.4] for some z € C.,
the condition

li L

imsup —

j—>oop](g+ 1) +Fk
holds for one value of k if and only if it holds for all. Due to Lemma [5.1] this
immediately implies equivalence of conditions (i) and (iii) from Theorem [L.4 Tt
remains to prove equivalence of (ii), (iii).

) = @i): Forn e Nand 1 < k < g+ 1, denote by N(n,k) the integer
such that n+1 < N(n,k) <n+g+ 1 and N(n,k) — k is divisible by g 4+ 1. Then
N(n,k)/n — 1 as n — oo so (i) implies lim,, H}V/&’k) = Ai/(g+1). Taking the
product over k =1,...,g+ 1 gives (ii).

(i) = (): Similarly to the above, Theorem [L.3]shows that for all k,

(5.2) liminf 2" . > A,lc/(ngl).

n—oo  N(nk) =

log|7j(g+1)4+%(2)] < Ge(2, C)

Thus, if (i) was false, this would mean that for some k = m, limsup,,_, ., /@}V/& my >

A @D Taking products over &, we would have

g+1 1/n 1/”
. . 1/n o
>
lim sup (I I I{N(n,k)> > hgsotip KN (n,m) hnrr_1>101<1>f< | | nN(n,k)>

oo \k=1 1<k<g+1
g1 N VD)
k=1

k#m
(the last step again uses (5.2) for all & # m). This would contradict (i), so the
proof is complete. |

We now prove a seemingly special case of Corollary [L.71
Proposition 5.2. Assume that the sequence C contains co. Then p is Stahl-Totik
reqular if and only if it is C-regular.

Proof. Let us assume that p is C-regular and let p,, denote the orthonormal poly-
nomial with respect to p. Fix z € C. Since oo is in C, p, € Ly(y41), so the
orthonormal polynomials can be expressed on the basis of orthonormal rational
functions as

n(g+1) n(g+1)
pn(2) = Z CmTm (2), Z lem)? = 1.
m=0 m=0

Thus, in particular, |¢] < 1 and we get

(5.3) () < (T+n(g+1))  sup  [7n(2)].
0<m<n(g+1)

By Theorem [L.4] for q.e. z € E,

(5.4) lim sup % log|m(2)| < 0.

{— 00
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Thus, for q.e. z € E, (5.3) implies

(5.5) hmsup log Ipn(2)] < 0.

n—00

Thus, p is Stahl-Totik regular.
Conversely, assume that p is StahlfTotik regular. For n = j(g+ 1)+ k, the

polynomial R,, is a divisor of RZ*}, so we can write 7, = RJ+1 where deg P,, < n+g.

<7-|—17
For any € > 0 there exists a polynomial @), such that 1 —e¢ < QcRgy1 <1+eonE.
Thus,

(5.6) 70 (2)] < (1= )77 Pu(2)QI T (2)]

and ||P,QI 1| < (1 + €)/*! since 7, is normalized. Since P,QJ*! is a polynomial

of degree at most n + g + (j + 1) deg Q., similarly to the above, representing it in

the basis of polynomials shows

6.7 _

Pa(:)Q (2)] < (147 (nt g+ 1+ (j+1) deg Q.) sup pa(2)]
0<m<n+g+(j+1) deg Qe

Since n + g + (j + 1)degQ. = O(n) as n — oo, the supremum in (B.7) grows

subexponentially whenever (0.5) holds. By (6.6)), this implies

1 1 1+e
li log|m,(2)| < ——1 .
m sup og|mn(2)] < ] og(1_6>
Since € > 0 is arbitrary, we conclude that (5.5]) implies (5.4), so (5.4) holds q.e. on
E. O

From this seemingly special case, Theorem [L.6l and Corollary [L.7] follow easily:

Proof of Theorem [LLGl By applying a conformal transformation, the special case
shows that p is Cy-regular if and only if it is (cg)-regular for any single cj in Cj.
By applying this twice, we conclude that if C;, Co have a common element, then
u is Cy-regular if and only if it is Cs-regular.

By applying that conclusion twice, we will finish the proof. Namely, for arbitrary
C;, C,, choose a sequence C3 which has common elements with both C; and Cs.
Then p is C;-regular if and only if it is Cs-regular if and only if it is Ca-regular. [

Proof of Corollary [Tl The result follows by taking Co = (00) in Theorem[1.6] O

Proof of Theorem [L1l By Lemmal[2.1] f,u is Stahl-Totik regular if and only if u is
(f~1(c0))-regular, and by Corollary [I.7] this is equivalent to Stahl-Totik regularity
of u. |

Proof of Theorem [L8 (a) We note that by Corollary [l we may use Theorem [1.4]
Fix 1 < k < g+ 1, and use conformal invariance to assume c; = oo. Given a
subsequence of n(j) = j(g + 1) + k, we use precompactness to pass to a further
subsequence ny = je(g + 1) + k with w-limg—, oo v, = v. We write

g+1
(58)  Ge(2.C) = Bpeg(2) + ?1 0g A — —— Z log|2 — el
m;ﬁk

which We will use to show ®, = ®,. .. By (i), we may apply Theorem K.1] with

a = log A\g. Then, (vi) yields & = Gg off the real line, and thus the equality

q+1
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between the representations (1) and (5.8) gives ®,(z) = ®,. 5(2) on C\ R. By
the weak identity principle, this equality extends to C. Applying the distributional
Laplacian to both sides gives v = pg ¢. Thus, w-lim,, . v, = pE,c-

(b) The main ingredient is a variant of Schnol’s theorem; for any n, [|7,|* du = 1,
SO

2271_2/|Tn|2 dp < oo.
n=1

By Tonelli’s theorem, it follows that Y 2, n™2|7,|* < co p-a.e., so there exists a
Borel set B C C with u(C\ B) = 0 such that

1
(5.9) lim sup — log|,(2)] <0, Vz € B.
n

n—00

Suppose p is not regular. Then, by Theorem [L4Y{), there is a 1 < k < g+ 1 with

li ! 1 > ! log A
imsup —— log k() > —— log Ap.
joo 1(J) 8 Fint) g+1 &

Using conformal invariance, we may assume cj = 0o, and we can pass to a subse-
quence ny = jy(g + 1) + k such that « = limy_, n% log kp, > ﬁ log A\, where
a € RU{+oo} by Theorem [.I}@). Since w-lim,,_,o v, = pE.c, by comparing (4.1)
and (5.8), we have for z € C\ R,

1
(5.10) lim — log|m,, (2)] = Ge(z, C) + d,
£—00 Ty
where d = o — 1‘;’3_’\1’“ > 0. By the upper envelope theorem applied to the sequence

{Vn, }een, there exists a polar set X such that (5.10) also holds for all z € C\ X.
Moreover, since Gg(z,C) > 0 for all z € C, we conclude that

1 1
limsup — log|7,(2)| > lim — log|m,,(2)| > d, Vz e C\ X.
L—00 Ty

n—oo T

Comparing with (£.9) shows that B C X, so p is supported on the polar set X. O

Proof of Theorem [L9l Defining n(j) = j(g + 1) + ks and using Lemma B.1] to
compute a telescoping product,

j 1/5 j 1/3j
Fa) \  _ i -1/
511 (Hﬂ‘> - (H 7) = () Fu( 1)
/=1

-1 Kn(e+1)

1/3

The first term on the right-hand side is independent of j, so K1)

For the second factor, using Theorem [1.3] we compute

— 1 as j — oo.

1)
hjrg})rolf /@n(;_H) > A\

oo

and we have the upper bound (L.9) for the limsup of (G.1I)). Similarly, using the
criterion Theorem [L4I[), it follows from (5.11) that p is C-regular if and only if

(LI0) holds. O
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6. GMP MATRICES 2

The proof of Theorem [L.I0] will rely heavily on the results of [32]. In this section
we will recall some properties of GMP matrices from [32] which we will use in the
proof of Theorem [L.L10] However, in order to justify the use of those constructions,
we need to add some explanation of the structure of GMP matrices. This technical
explanation is necessary in order to understand the action on Jacobi matrices caused
by a single coeflicient stripping step on GMP matrices; since such a step changes the
location of co in the sequence of poles, it links our GMP matrices which naturally
arise from ORF expansions, and those in [32], which naturally arise from functional
models of reflectionless operators. This link will allow us to use parts of the analysis
of [32].

As noted in the beginning of Section Bl GMP matrices split up into blocks due
to the appearance of some ¢, = co. However, there is a choice whether to place
the “window” of block size (g + 1) x (g + 1) so that ¢ is the last element of
the previous block, or the first element of the next block. In this paper, the latter
choice has been more natural (i.e., to split before 0o), because it corresponds to the
choice 79 = 1 in the rational function construction. From now on, we will call this
the RF structure. On the other hand, in [32] the first choice was more natural (i.e.,
to split after co) for the functional model construction, and we will call this the FM
structure. Alternatively, recall that we discussed in Remark [1l that one could view
the GMP structure also as overlapping (g + 2) x (g + 2) blocks. The RF-structure
then corresponds to placing the (g + 1) x (¢ + 1) B block at the upper left corner
of the bigger block, whereas the FM structure corresponds to placing the B blocks
at the lower right corner. This is shown in the figure below, where the blue lines
indicate a B block corresponding to the RF structure and the red lines a B block
corresponding to the FM structure. Moreover, py denotes the positive entry on the
outermost diagonal:

SANN\\\po
e
\\\N
R
\\\\\\\ 53

The two structures can be translated into each other, by means of the formulas
(6.1). Moreover, we will show below that they are also linked by a coefficient
stripping formula.

For the reader’s convenience, we recall the FM structure of GMP matrices as
introduced in [32]. Although the RF and FM structures are just a different inter-
pretation of the same object, namely a GMP matrix, it will be convenient to have
a separate notation. For a GMP matrix written in the FM structure we will use
A, respectively for its blocks Ay, By, and we will use A, A, By, for GMP matrices
written in the RF structure. Note that this is a change from the notation used in
previous sections.
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Fix a finite sequence C = (cy,...,¢y) and recall that X~ denotes the upper
triangular part of a matrix X (excluding the diagonal), and X* the lower trian-
gular part (including the diagonal). Then we say that A acting on ¢%(Z) is GMP
structured, and denote it by A € A, if it is a (g + 1)-block Jacobi matrix

A*, B_, A
Ay By A

such that
Aj=6,57, B =(Gp)” + a5t +C, p,q € RIT,

and
c . )
1 ' p(()J) q(()J)
C= - = G= | e >0
c4 . )
0 pgj) (Zé])

We then say an operator A € A is a two-sidled GMP matrix if the resolvents
(cp — A)71 exist for all 1 < £ < g and S~%(c, — A)71S* € A. In this case we
write A € GMP(C). Again we call the generating coefficients {p}, §;};cz the GMP
coefficients of A.

We encounter several differences compared to the RF structure presented in
Section Bl First of all the 0 in C is now in the last, rather than in the first,
position. Moreover, in the definition of A;, the vector p; is now a row vector in
the last row, rather than a column vector in the first column. This is exactly due
to shifting the position of co as described above. Extending the structure of GMP
matrices to two-sided operators on ¢2(Z), it is not hard to see that the RF and the
FM structures can be translated into each other, simply by shifting the window of
size (g + 1) x (g + 1) by one. In this process the role of p; and ¢; changes, that is,
for 1 < k < g we have

()
(6.1) 7 =)y, i) ="l
ng)

More importantly for us is that the positive entries are the same, i.e.,

(J) p

Following [32], we explain how to associate to a given GMP matrix a Jacobi matrix.
Let e; denote the standard basis vectors in ¢%(Z); recall that {e_1,e0} forms a
spectral basis for two-sided Jacobi matrices in the sense that {J"e; | n € Ng,j =
—1,0} is dense in ¢?(Z). Define the matrix resolvent function by

o (T =2)"tecr,ecq) ((J—2)"teo,e—1)
RIG) = |7 -2 teine) (- 2) ten,eo)

Let (2 = (?(Np) and ¢ = (*(Z)© (2 and I1; denote the projection onto ¢3 . Define
J4+ =1L JII+ and define the half-line resolvent functions by

m](2) = {(J4 — ) eoren), m?(2) = ((J- —2) ey e ).
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Then, essentially due to the structure

J= {JO_ JOJ +ao({-,e-1)eo0 + (-, e0)e—1),

one can see that

(62) R = | 0l

cf. [9) pg 758].
For GMP matrices, we need to modify the spectral basis. Define

- 1
(6.3) €= —ll Ae_y, ag = [y Ae_yf,
0
with the natural embedding into £2(Z). Note that
apel = { 0 | péo) pgo) péo) 0

Then {e_1,ép} form a spectral basis for A and similarly as for Jacobi matrices we
have

A= ft)_ /?+:|+a0(<',€_1>60+<"éo>6_l)'

This allows us to define

(A=2)"tecr,e1) ((A=2)""é,e 1)
(A=2)"te1,e0)  ((A—2)""éo,e0)

RA(z) =

and
(64)  mA(z) = (A —2)e_n e, mA(z) = (Ay — 2) 0, )

and find similar to the Jacobi case that
1

- ag mi(z) 7!

For a given GMP matrix A, the associated Jacobi matrix is simply defined by
setting the resolvent functions to be equal, i.e.,

(6.5) R7(2) = RA(2).
Note that this defines J uniquely. Due to the common vector e_1, it follows that

(6.6) b1 =(Je_1,e_1) = (Ae_1,e_1) :péﬁl)qéfl),

ap = [[ILy Je_y|| = [[T Ae || = [P,

which explains in hindsight the definition of ay in (6.3)).
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6.1. Shifts on GMP matrices. For a vector x € ¢?(Z), let | denote the splitting
of £2 and Ei, i.e., we write 2T = [ oo x_qlze .. ] . We chose the vector of poles in
the following way [... oole; ... ¢4 oo ¢; ...|]. Thatis for Ay =TI, AIL,
the first pole is ¢; € R. However, if we consider A, = II.SAS I, where
Ser, = ex41 denotes the right shift, then the first pole of /Lr is oo.

[ ]

Ci

A_;'_ -
A |

The resolvent functions of A, and A, are related by a coefficient stripping
formula:

Lemma 6.1. Let A € GMP(C), A} =11 Ally, €y, ao,b—1 as in (6.3), (6.0) and
define A, =11, SAS™ L. Then the resolvent functions

m(2) = (A = 2) e, e0), m(2) = (A — 2) " eo, e0)

are related by the coefficient stripping formula

1

(6.7) M (z) = boy—z—aimy(z)

Proof. Recall that S denotes the right shift on f%r and define

- 1
fo=Sié = " [O p PO o
Then we have
- b1 O
Ay = + ao((:, €0) fo + (-, fo)eo).
0 A
Then as for Jacobi matrices this implies (6.7)); cf. [24] Theorem 3.2.4]. O

Lemma [6.1] has a very natural interpretation. As we discussed above, GMP
matrices split into blocks where ¢, = oo and then there is some choice if we place
oo as the last or the first element of a block. However, this discussion is irrelevant
for Jacobi matrices, where all ¢, = co. Thus, if we associate to A a Jacobi matrix
J by (6.5) and define J, = IT, JII, and J, = II,SJS™'II, and the associated
m4, My, then (6.7) becomes the standard coefficient stripping for Jacobi matrices.

There is another natural shift on GMP matrices. Namely, since the shift A1) =
S—(9+1) ASW+D) preserves the GMP structure, one can describe how the resolvent
functions of A and AW are related. This will be done by so-called elementary
Blaschke-Potapov factors of the third kind with poles at cq,..., ¢4, 00; cf. [1L[19].
In the following it will be convenient to use the notation

p=(p,q), P=(F4a.
Definition 6.2. For p,q,c € R

(6.8)
cizm [p Q]j—exp<—ciz{§] [p q}i>, j—[(l) _01],

Cl(Z,C;p) =1I-
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represents the so-called Blaschke-Potapov factor of the third kind with a real pole
c. If ¢ = o0 it is of the form

(6.9) M%mZM%wmﬁ=E %;}

Define the matrix function

. A A .
(6.10) A(z,p) = {Q[; 91;;] (z,B) = a(z,c15p0) - .- a(z,¢q; Pg—1)a(2; Py)-

The important role of the function 2(z, p) will become clear by Theorem [6.3]
Theorem 6.3 ([32, Theorem 2.13 and Theorem 2.15]). Let A € GMP(C), A1) =
S=lat) ASWHY) gnd A, and A(+1) the projections onto (%. Let m% and mf(l) be
the resolvent functions defined by ([6.4). Let a2 = ||pol|?, (OL(()l))2 = ||15'(§1)||2. Then
_ Mz Bo)(ap)?m ™ (2)) + ia(z, Bo)

o (2, Bo) (a5 2m ™ (2)) + Aaa (2, Bo)
6.2. Periodic GMP matrices. We call a two-sided GMP matrix 1-periodic or
simply periodic if S9t1AS~(+1) = A, In this case m_‘ﬁ(l) = m4 and (611) is a

quadratic equation for mﬁ. This allows to describe the spectrum of A in terms of
the function A(z).

Theorem 6.4 ([12, Theorem 1.8]). Let A = A(p) € GMP(C) be a periodic GMP
matriz and A(z,p) be as in (610) and define the discriminant by

A(z) = trd(z, P).

Then the spectrum of A is a finite union of intervals, it is purely absolutely contin-
wous and of multiplicity 2 and it is given by

o(A) = AY([-2,2])) = {z € C| A(2) € [-2,2]}.

(6.11) a%mf_(z)

The inverse problem can also be answered explicitly. Namely, given a finite
union of intervals E, are there periodic GMP matrices with the given spectrum and
if so can one describe the set of all such matrices? Crucially, the answer to both
questions is positive for the special choice C = Cg, where Cg denotes the zeros of
the Ahlfors function associated to E. We define the isospectral torus of periodic
two-sided GMP matrices by

Te(Ce) = {A € GMP(Cg), A is periodic and o(A) = E}.

Henceforth, we will use A for elements from Te(Cg). We point out that for arbitrary
finite gap sets, the isospectral torus of Jacobi matrices usually consists of almost
periodic operators, whereas for GMP matrices we can always work with periodic
operators. This also makes it possible to characterize the isospectral torus by
a magic formula for GMP matrices. Moreover, this then can be used to describe
Te(Ckg) also as an algebraic manifold. Recall that A,, denotes the outermost positive
entry of the resolvents (c,—A)~!. That is if A € GMP(C) is a periodic GMP matrix
let

Ae(A) = (er, (coy1 — A) eprgr1) for0<l<g—1,
Ag(A) = (eg, Aeagi).

The resolvent entries can again be given explicitly in terms of A(z).
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Lemma 6.5 ([32] Theorem 2.17]). Let A € GMP(C) be a periodic GMP matrix.
Then for0<£<g-—1

(6.12)

Ay(A)=—(Rese,,, A)_l

—1 g—1 —1
——<tl“< Ha(cz+170k+1;pk){2ﬂ [pe qe]j H a(Cz+1,0k+1;pk)a(cz+1vpg)>) :
k=0 k=(+1

This allows to describe Tg(Cg) as an algebraic manifold. Let us fix a finite union
of g + 1 intervals and let Ag denote the associated discriminant defined in terms
of the Ahlfors function (LI5). Then for coefficients p let A(p) € GMP(Cg) be a
periodic GMP matrix and define

Jo(B) = Ag1 (0. Q) + d,
fe(B) = A1 (AP)Ae —1, for1<l<g+1,
and Fg : U ¢ R2(9+1) 5 RIF2 by
(6.13) FeB) = (fo(B), .- for1(P))-
We then define the isospectral manifold by
ISt = {p € R¥ : Fe(p)
The name is justified by Theorem [6.6
Theorem 6.6 (|12, Theorem 1.6 and Theorem 1.10]). Let A € GMP(Cg), then
(6.14) A€ Te(Ce) <= Ag(A) = 891 4 §=(gFD),
Moreover, for p such that A(p) € GMP(Cg) we have that
A(P) € Te(Ce) < Fe(p) =0.

0}.

6.3. Resolvents in the general case and the Jacobi flow. Similar to (6.12)
one can also find explicit expressions for A, for general (not necessarily periodic)
GMP matrices. Let A € GMP(C) and forn=j(g+1)+{LforjeZand 0<¢<yg
set

An(A) = (en, (Cox1 — A) tentgr1), (#y,
" <€m Aen+g+1>~

Lemma 6.7 ([32, Lemma 3.2]). Let A € GMP(C). Then forn=j(g+1)+{ and
¢ # g we have

(6.15)
An(A)
-1 Pty 91 -1
. L . .
:_<tr( [Jatcrsr,crnip ™) |:q€j+1):| [Py) qy)}J I1 “(Cf+17ck+1;PEJ))“(CHI»PEJ)))) :
k=0 ¢ k=t+1

The explicit representation will be crucial in the following. Moreover, let us
mention that due to the finite band block structure of GMP matrices, building
(formal) resolvents is a purely local computation (compare e.g. [32] eq (3.8)]). This
can be seen by the formula above, where only the entries of A from the blocks j
and j + 1 are needed to compute A,,.
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Recall that we discussed already in the beginning of this section that to any
GMP matrix A we can associate a Jacobi matrix J, namely by setting the resolvent
functions equal to (G.5). Let us denote this map by F. It is a deep result from
[32, Proposition 5.5.] that this map is (up to a certain identification) invertible.
An important question is if we can express the Jacobi parameters of J = FA in
terms of the coefficients of A. Let {p;} denote the GMP coefficients and {a;,b;}
the Jacobi coefficients. Then we have already seen that

o = ||ﬁ0”7 b*l = qé_l)pé—l).

Let
SJ=8"1J8,
and note that
ag(8J) =a1(J), b_1(SJ) =bo(J),

where by ay(.J), br(J) we mean the Jacobi parameters of the Jacobi matrix J. Thus,
if one understands the transform on GMP matrices which is induced by the shift
action on Jacobi matrices, one can inductively obtain the Jacobi parameters by the
formulas above. This leads to the definition of the Jacobi flow on GMP matrices,
which is defined by the following commutative diagram:

eMp L GMP
(6.16) 7l 7l

Jacobi i Jacobi

Let us mention that this is one of the reasons why it is convenient to work with
two-sided operators. If in this construction we considered the shift action on Ei,
which is not unitary, then it is possible that for some m, c; € o((S7%)™JS7"), and
thus the corresponding half-line GMP matrix would not be well defined.

The Jacobi flow is defined and discussed in [32, Section 4]. We provide the
motivating ideas of the Jacobi flow and its precise definition below. First, note that
in [32], we have the ordering of the poles

Ca=[... ©]c1 ¢ ... ¢ o0icy ...|

and recall that we anchored the blocks between oo (at position —1) and c; (at
position 0). Note that for Jacobi matrices, all poles are equal to oo, and SJ
corresponds to shifting an oco-pole from position 0 to position —1. Now applying
the spacial shift to GMP matrices would be of a different flavor, as it shifts ¢; from
0 to —1. Thus, one first has to shift oo, which is now at position g+ 1, to the front,
and then one may apply the spacial shift. This is done in g-steps. The O transform
defined below corresponds changing the order from Cy4 to

CA:[ Cg’C1 Coy ... Cjg—1 X cgicl...}.

Letting
o(¢) = [sinqﬁ cos ¢ ] ’

cos¢p —sing
we make Definition [6.8]



32 B. EICHINGER, M. LUKIC, AND G. YOUNG

Definition 6.8. We define the map:
O : GMP(cy,ca,...,¢c4) = GMP(cg,c1,...,€4-1)
in the following way. Let O = O 4 be the block-diagonal matrix

O_1
O ’

where Oy, are the (g + 1) x (g + 1) orthogonal matrices
{ (k) (k)}

I, 0 . Pg—1 P
(6.17) O = [ 902 O(d)k)} ., [singr cos¢y] = (Z) L NS
VP2 + )2
Then
(6.18) OA:=SOA0,S™ .

As explained above, the Jacobi flow then is defined by applying O g-times, in
order to shift oo through the full block. This leads to Definition [6.9%

Definition 6.9. We define the Jacobi flow transform
J : GMP(C4) — GMP(C,)
by
JA = S~ 0°9 Ag9+1,

It is shown in [32, Equation (4.8) and Lemma 4.4] that there exists a block-
diagonal unitary mapping Uy, such that

(6.19) JA = STULAULS.
Let us also note that
(6.20) SN O(A)SHY = O(§~ 9D 4509+,
which has the consequences
(6.21) O(J°™A) = T°™(OA)
and

S—(g-s-l)(jomA)S(gH) _ jOM(S—(gH)As(g-&-l)).
7. PROOF OF THEOREM [1.10]

Lemma [7.1] allows us to extend J; to a two-sided Jacobi matrix J acting on
(?(7Z) in a way such that c; belong to the resolvent domain of .J.

Lemma 7.1. Let p be a compactly supported probability measure such that E =
esssupp p is a union of g+ 1 intervals. Let

mae) = [ duta)

o T — 2

and J4 the associated Jacobi matriz and let ¢, € R\ E for 1 <k < g. Then there
exists a two-sided Jacobi matrixz J with the following properties:

(i) J+ =T JI0Ly;
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(ii) there exists J € T(E) so that J_:=T1_SJS I_ obeys J_=T1_SJS I_;
(iii) ¢y belong to the resolvent domain of J;
(iv) cx belong to the resolvent domain of Jy =11, SJS™ L.

Proof. Let J denote the extended two-sided matrix. Note that J is defined by J,
ag,a-1,b_1 and J_. We fix J; and agp,a_1 and choose J_ and b_; appropriately.

By (6.7) we have
_ 1
by —z—agmy(z)

m(2)

Thus, ¢ is a pole of . (2) if and only if it is a zero of b_; — 2 — adm(z). Choose
b_1 so that
b1 —cp —a2my (ci) #0.
This already defines J.
Let us write (6.2]) at position —1 rather than at position 0 and let m_ be the
resolvent function of J_ and m the resolvent function of J,. Then we see that

1 1 + a2 (2) 1 1 +a2m_(2)

— = — agmy(2), — = — agm_(2).
Ros(z)  m(z) O Ry a(z) my(z) 7

If my(ck) € {0,00}, we choose m_ so that m_(ck) ¢ {0,00} and if m,(ci) ¢

{0,000} we set m_(ci) = 0. In both cases R_s _o(ci) # 00 and R_1 _1(cx) # o0

and we obtain (L1). O

We will apply Lemma [Z.1]in the following way. First we choose cy,...c,4 as the
zeros of the Ahlfors function of C\ E. Let u be a given Stahl-Totik regular measure
and E = esssupp u. To this measure we construct J as above. Let further i be
the spectral measure of j+. Clearly E = esssupp i and from the characterization
of regularity by existence of the limit and equality in ([L.2) it follows that also ji is
regular. Due to ({iil) we can form orthogonal rational functions with respect to the
periodic sequence C = (cq,...,¢4,00,€1,Co,...). On the other hand (iv) allows us
to associate to J a two-sided GMP matrix in the sense of [32]. In particular, J,
satisfies the assumptions of Lemma [1.11]

It was noted in [32] Section 2.2] that

g+1
(7.1) —log|¥(2)| = Y Ge(z cx)
k=1

and that the Yuditskii discriminant has the form (I.15]) for some Ay > 0 and d € R.
Note that the constants A\ can be found by computing the residue of Ag at the
poles ¢i. By using (L14) and (Z.1]), we find the residues to be the same constants
A defined in a more general setting in (L6]).

Proof of Lemma [LL11l Denote by u the canonical spectral measure for J. Note that
Tess(A) = esssupp u = E = A ([-2,2)).

Since Ag maps R\{c1, ..., ¢y} to R and is piecewise strictly monotone, by a spectral
mapping theorem, this implies that for J = Ag(A), 0ess(J) = [-2, 2]

As noted in Section [I regularity of the Jacobi matrix J implies Cg-regularity by
Corollary [L7 and this can be characterized in terms of GMP matrix coefficients
by Theorem [L.9I The GMP matrix structure together with (I.15) implies that
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J = Ag(4) is a type 3 block Jacobi matrix (L16); the diagonal entries of the off-
diagonal blocks v; are given by A\gAjg41)4x for & =0,..., g, with the convention
Ao = Ag41. Thus,

det v; = H )\kAj(g+1)+k
k=0

By applying the criterion for regularity in Theorem [L.9to the GMP matrix A and
to its resolvents (c; — A)~1, we conclude that J obeys (L.17). It follows that J is
regular with oess(J) = [-2, 2]. O

If /Lr is such that Uess(fhr) = E and the corresponding measure is regular on
E, then Ag(A,) is a block Jacobi matrix which due to Lemma [L.11] is regular for
[—2,2]. Therefore, if {v;,10,} denote the block Jacobi coefficients of Ag(A,), by
[23, Theorem 3.1] we have

(7.2) Jim —lew 1| + [|roc]| = 0.

We note that since C' = sup,(||os(A) — I]| + ||tog]) < oo, it follows from Cauchy-
Schwarz and the AM-GM inequality that

N 2 N N
(NZ||UZ—I||+|W|> <—Z||U/z—f|| +([woe|? <2C ﬁ [[oe —I|+|[roe|
=1 =1 =1
and thus
N
(7.3) hrn —Z||me||2+||0z I?=0 < hrn —ZH‘W”—FHU@ I||=o0.
=1 =1

We will use this equivalence freely in the following.

In the setting of periodic Jacobi matrices and polynomial discriminants (i.e., A
is a polynomial and {bv,, to,} are the coefficients of the block Jacobi matrix A(Jy))
it is shown in [7] that

(14) S Il flor — I < 00 = 3 d(ST)"TST, T < oo
=1 m=1

It was then stated in [23] that since all the arguments in [7] are local, in this setting
([L.3) yields (L13). Let us emphasize that finite gap sets whose isospectral torus
consists of periodic Jacobi matrices are very special and the arguments in [23] only
apply to this setting. Yuditskii [32] has extended the work of [7] and one has the
same localness, but since the construction is quite involved, we will provide the
main ideas of proof. In this case, the condition on the right-hand side of (Z.4)
is still the same, i.e., a condition for a Jacobi matrix Jy, but on the left-hand
side {v,,10,} are the coefficients of the block Jacobi matrix Ag(A), where A is an
associated GMP matrix and Ag is the rational function as defined in (L13]).

We will start with the main ingredients of the proof that the left-hand side in
([Z.4) implies the right-hand side and mention certain modifications to our setting.
After this preparatory work will show how this can be applied to our setting.

We concluded from regularity that J = Ag(A ) satisfies (Z.2). As may be seen in
[7], and [32], it is convenient to rewrite this condition into a “multiplicative form”.
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This leads to the notion of the Killip-Simon functional that we will define below.
For a GMP matrix A € GMP(Cg), we define the functional as in [32] Section 6] by

(7.5) Hy(A) = h(vs,00,0041),
=0

where
1 * *
h(bg,100,0041) = 3 tr(ojv, + 7 + vey10),,) — (g4 1) — logdet by, .

For a square matrix X its modulus is defined by |X| := v X*X. Moreover, define
G(|X|) = |X|?> = I —log|X|?. Then we have

2h(vg, v0¢,0041) = tr (w7 + G(loe]) + G(lo7,4])) -

In particular, it follows from |vg|, |0g41] > 0 that h(vg, tog,be11) > 0. In fact even
more is true. There exists C' > 1 so that if |jo, — I|| < % then by [7, Proposition
11.12]

1 ~
G lloe = Il < [lfoe] = I} < Clloe — I]I

Thus, if Clo, — I]| < 1 we conclude that |||og| — I|| < 3 and thus the eigenvalues
of [v,| are greater than 1. Under this assumption (for £ and ¢ + 1) it is shown in
[7, Theorem 11.13] that there exists a constant C' so that

1
(7:6)  Gh(oe 10, 0041) < ([lor = II* + [Iwel|* + orea = I%) < Ch(og, we, 0e41),
A key observation is that the functional H, (A) is related to the shift action of S97*
on the GMP matrix A. But finally we want to conclude something about

SJ=5%JS,

i.e., the shift action on J. This is another motivation of the Jacobi flow as defined
above.

The following key lemma, which follows essentially from (6.19), allows for the
computation of the “derivative” in the Jacobi flow direction, and is essential in
order to extract from the finiteness of H, (A) properties of the associated Jacobi
matrix J.

Lemma 7.2 ([32) Lemma 6.1]). Let U](-Q,’wj(-? denote the matriz entries of vy, wy
and

0;H(A) = = (Ae(JA)e_1, Ag(TA)e_q1) — 1 — log(jv)éfgl)(Jv)é?;.

N | =

Then
(7.7) Hi(A) = Hy(JTA)+0,Hi (A).

Proof. Using (6.19) the proof is based on the realization that due to the diagonal
structure of Uya, conjugating A by Uy does not affect H,. Thus, §;H, (A) corrects
for the term which is omitted in H;(JA) due to the shift. O

For later reference let us mention that due to (6.18) we can also relate H(A)
and H,(OA). Moreover, it is easy to see that we can also relate H,(A) and
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H (8=t ASW+D) explicitly. Moreover, Lemma [7.2] allows to obtain 2 condi-
tions for the coefficients of J°"(A) from finiteness of H; (A). We sketch the idea
in the following. Let us define

H,(A)=> 6;Hy(A(m)), where A(m)=J°"(A).
m=0

Since all terms are positive, iterating (Z.7) yields
Hy(A) < Hy(A).

In particular, H (A) < oo implies H, (A) < co. The vector Ag(A(m))e_; has only
2¢g+ 3 nonvanishing entries which are entries of the last columns of v_;(m),w_1(m)
and vg(m). Let us denote this 2g + 3-dimensional vector by z(m) and note that

the first and the last components are the positive entries z(m) = (v(m))_((];;) and

Toga(m) = (v(m))g?;. With this notation we have

2g+1

1

18 8 (Am) = g (Glealm) + Glazgsa(m) + Y- ay(m) ).
j=1

Thus, H, (A) < oo implies already £2-conditions for the vector z(m). This is used

to conclude from H,(A) < oo that A(m) is f?>-close to be periodic and that the

periodic operator is ¢?-close to ZSg. That is, if {7;(m),d;(m)}men, denote the

GMP parameters of A(m), then [32, Theorem 1.20]

{1_50 (m) - ﬁ—l(m)}meNo € 0 (NO, }RQ(!]Jrl))7
{Fe(Bo(m))}men, € £2(No, RI?).

To show how one obtains from (Z.9) convergence of (S7)™JST to T¢" in the sense
of (Z4), we need one more ingredient: it is well known that there are continu-
ous functions, A, B, on RY/Z9, which can be expressed explicitly in terms of the
Riemann theta function associated to [28, Theorem 9.4.], and a fixed element
x € R9/Z9, such that

(7.9)

(7.10) Te={J(a): «a€RI/Z}
and J(a) is the Jacobi matrix built from the coefficients
(7.11) am (@) = Al = myx), bp(a) = Bla—my).

Recall that by the definition of the Jacobi flow, if J is the Jacobi matrix associated
to A, then S™™.JS™ is the Jacobi matrix associated to A(m). Since every point of
7Sk = F£'(0) is regular for Fg, by [7, Lemma 11.3] there exists a constant C' > 0,
such that

(7.12) dist(p,ZSg) < C||Fe(P)|,

where p are chosen from a fixed compact neighborhood of ZSg, see also [32] page
755]. Taking an element A,, € Te(Cg) so that

dist(B(n), ZSe) = dist(A(B(n)), Am),

ITo be precise it is the Riemann theta function of the Riemann surface of the function
\/Hizo(z —ay)(z — bg), where ag, by, denote the gap edges of E, cf. (L11).
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one can conclude from (7.9) and (Z.12) that
(7.13) > dist(A(B(n)), Am)? < oo

n>0

o

Letting J(auy,) € Te be the Jacobi matrix with F(A,,) = J(a.m,), then (6.6) implies
that

a(m)® — Alam) € 2, b(m) — B(a,,) € £1.
Using in addition the smoothness of the Jacobi flow, one can show that

n
ay, = Zs% —my, &% € *(Ng,RY).
j=1

This is even stronger than (Z.4)); cf. [32] Lemma 7.2].
Before we start with our construction, we have to mention a certain technical
issue. If {f,,} is a sequence, then clearly {f,, — 1} € £2 implies

liminf f,, > 0.
m—0o0
If | f., — 1] is only Cesdro summable, then this is not necessarily the case. However,

for any & > 0 the set with f,, < § will be sparse in the following sense. Let us
introduce the notation {f,,} € CS for sequences { f,,} satisfying

1 N
lim — " | fm| =0,
m=1

N—oco N

and we call a set T' C N sparse if
. Tn{L,2,...,N}|
N, N

An elementary observation, which will be used repeatedly, is that for f € CS, the
set {m € N | |fm| > 0} is sparse for any 6 > 0. This follows immediately from
Markov’s inequality.

We have already concluded from regularity that one and hence both of the con-
ditions in (7.3) hold. Due to the phenomena described above and the log in the
definition of h(bg, s, vp41) it is not immediately clear that (Z.3) also implies

=0.

N
(7.14) ]\}i_r)nooﬁz_%h(bg,mg,bg+1) =0.

1
¢
However, using in addition once again regularity, we can show (Z.14)).

Lemma 7.3. Let a Jacobi matriz satisfy the conditions of Lemma[L11l and {vg, to,}
denote the coefficients of the associated block Jacobi matriz J = Ag(A). Then (T.14)
holds.

Proof. Recall that
]' *
h(vg, 100, 0041) = S tr ((Je]* = I) + (Joj 4 |* — I) +w7) — log det byo, 1.

Regularity allows us to consider the terms in h(by, 1wy, be11) separately. It follows
directly from (Z.3) that

XN
. 2
A}lm — ZE,O trwy = 0.
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Moreover, ([L.IT7) implies that

lim — Zlogdet vy =0.

N—oo N —
Thus it remains to show that
1
2 . * |2
(7.15) lgnoo—z;tr log|> = I) =0, A}gnooﬁzz_;trﬂnﬂ _

For a matrix A € Mat(n,R), let 0;(A) denote its singular values and note that
tr|A| = > 0;(A). For A, B € Mat(n,R) we will need the following inequalities

[tr A < tr|A],

n

(7.16) > 0i(AB) <) 0i(A)oi(B),
i=1 i=1

which can be found for instance in [16] eq. (3.3.35) and Theorem 3.3.14]. Thus we
have

N N
1 2 1 2
v 2 nlod” = D) < 5 3o - 1) = Nzu (Joel = T)(Joc] + D).

Using (.16) and a uniform bound on o;(|vg| + I) we get

tr(|(Joe] — I)(Jve] + 1)) Zaj (loel = D(Joel + 1)) < C Y oj(loe = 1),
j=0

where C does not depend on . The last sum is the trace norm for |v,| — I and thus
by the equivalence of norms on Mat(n,R) we find C5 so that

1 1o
v E tr(|og|? — 1) §C2N E lloe] = I
=0 £=0

Define the set
~ 1
Iy = {E CHU(—IH > 5}0[1,]\[]

and note that (7.2)) implies

. In|
717 1 — =0.
( ) im i

N—o00
It follows as in [7}, Proposition 11.12] that for ¢ ¢ I, there exists a constant C5 so
that
[loe] = I < Cslloe = 1]].
For ¢ € In we can estimate |||vg| — I|| uniformly and using (.17) and (7.3) we
obtain (7.15). The proof for v} works the same by using [24, Lemma 4.6.5.] instead
of [7, Proposition 11.12]. This finishes the proof. |

We are now ready to adapt Yuditskii’s construction [32] to our setting. Let
u be a regular measure with esssuppu = E and let J, be the associated Jacobi
matrix. As already described after Lemma [Z1] we find J and J, such that all
¢, € Cg belong to the resolvent set of j+ and J and jJr is also regular. Let [Lr
and A denote the GMP matrix associated to J, and .J respectively and {vg,10.}
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denote the block Jacobi coefficients of Ag(A). Let us further truncate A after
N positive blocks before oo (i.e. before the position —1 + N(g + 1)) and extend
it by some element A € Tg(Cg) so that ¢, ¢ o(Ay). To be precise, we first
truncate A and consider its resolvent function agr_, then we can extend it as in
Lemma [T.1] by some reflectionless r1 so that all ¢, € Cg belong to the resolvent
set of the associated Jacobi matrix and then we consider the associated GMP
matrix by [32] Proposition 5.5]. Since elements from the isospectral torus satisfy
the magic formula and computing resolvents is a purely local process, we would like
to conclude from the compactness of 7g(Cg) that

N
Hy(Ay) = h(vs_1,104,0,) + O(1),

=1
where Apn denotes the truncation described above. However, due to the log-term in
the definition of h(vy_1, o, vy) one must be careful. At the place where we modify
A by extending it by /01, by formula (6.15]), when computing A, in a certain range
of n given precisely below, one mixes coefficients from A and A. Thus we need to
argue that

—log A,
does not grow too fast so that we can still conclude that
) 1

However, looking at the formula (6.15]) and the definition of the Blaschke-Potapov
factors, if all the coefficients can be bounded uniformly, we see that if p_gj ) 5 we
find a constant C' only depending on the bounds of the coefficients and of § so that

(7.19) Ap(Ay) > C.

Note now that

A1 (v—1)(g+1) (An) = pV

which is still a coefficient of A. But

)

A—1+1\r(g+1)(AN) =: Py

is already a coefficient from A. The mixing of coefficients of A and Ain computing
A, (An) happens for =14+ (N —1)(g+1) <n < -1+ N(g+1). But in this case the
only value that can make A, (Ay) small is p,, and for elements of the isospectral
torus we know that

by = Aot
and thus we can conclude (Z.19) and therefore (Z.18).
Together with H, (Ay) < Hi(An), we conclude that

N

Realizing that all the arguments in [32] Theorem 1.20] are local, using 2N blocks
of A, we can obtain a local version of this theorem.
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Proposition 7.4. Let J be constructed as above and A be the associated GMP
matriz. Then, there exists an N independent constant C' and a sparse set In such
that

N

Z IBo(m) — B_1(m)||> < C(Hy(Azn) + |In]),
(7.21) m=t

N
S [Fe(Bo(m) 2 < O (Asw) + |Tn]).
m=1

We will need a more quantitative version of [32, Lemma 6.6]:

Lemma 7.5. Let 1, Jjn, Tn and T, be given sequences and assume that there exists
n > 0 such that

~ 1 1
(722) cos Py =1, costh, 2 n, 0 <7, < 57 0<7, < E
Define
o 0] |sint, cosy, sin 1;” cos @n 1 0
2 n ‘= . — ~ ~ - |-

(7.23) “ {0 1] [COS Y —sin wn} [cos , —siny,| |0 T
Then, there exists C depending only on n so that

[[{cos b, — cos 1/~1n}||fz2(N,(c) < Cl{antlem,cyzx2,

I{sin ¢n — sin ez gvc) < Cl{anHle2gvcyzxe-
Proof. If |[{an}llervc)2x2 = oo the claim is trivial. If it is finite, set S :=

[{an}2(vc)2x2- The constant C' > 0 may increase throughout the proof. Di-
rectly from (7.23) we have

[{cos by —coshn}le> < S and  ||{7, cost, — Tn cos iyt < S.
Since
Tp COS Wy, — Tp COS 1[)” — Tn(cost, — cos 1/;”) = (Tn — Tn) COS Uy,
using 7, < % and cos Y, > n we find C' > 0 so that
{0 = T}l < CS.

Now, we have another two conditions

{7 sineh,, —sinep, }lp2 < S and || {sinth, — 7 siney, }|2 < S.
Using

Sin, — T Sin, = sint, — 7,7 Sin ¥y, — Tn(sin U — Ty Sin n)
and ||{7, sinv,, — sin QZJH}H <Sand T, < % we conclude that

[{sin ¢ (1 = 7 7p) }lez < CS.

Now we have
1 =72 =177+ Tu(Fr — T0)

and since |sin,| <1 and |7,| < %, we conclude

I{(r2 = 1) sin }[| < CS.
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Again by, |7, < we also get a bound for {(7,, — 1) sin, }. Finally, since

sin wn — sin 1/)" = T sin,, — sin wn — (1, — 1) sin 4y,

we obtain the also the estimate for {sin, — sin, }. O

Proof of Proposition [L4l In the proof we will find constants C' > 0 and sparse sets
Iy. These quantities will change throughout the proof. Note that the union of
sparse sets is clearly sparse. First we mention an important locality property of
the Jacobi flow. In the following we will derive estimates for entries of Aoy (m) in
the blocks 0 and —1. Due to the locality property of the Jacobi flow, for 0 < m <
2N — 1, the coefficients of Asy(m) and A(m) coincide; this is nicely visualized in
the diagram [32, eq. (4.12)]. Similarly, we have already mentioned that computing
entries of the resolvents, due to the band structure, can also be done locally. Thus,
our estimates will be derived for the coefficients of Asn(m), but by restricting it
to 0 < m < N they agree with the coefficients associated to A. For this reason we
will also notationally not distinguish between the coefficients of A and the ones of
Aon.
By the explanation following Lemma [7.2] and ([.20]), we conclude that

1 N 2g+1
i 3 (Glao(on)) + Gloagalim) + Y a5(m?) =o.

m=1 7j=1
Notice that G obeys
oz —1)? <G@) <c(z—1)% Vo (eel).

Thus, we find a sparse set Iy and C' > 0 so that

3 ((wo(m)—1)2+(:ﬂ29+2 )—1)2 +2§1x] )

m=1

< C( g: (G( o(m)) + G(w2g42(m Ej: ) + |IN|)>

m=1

(7.24)

Thus, for 1 <j <2g+1,
Iy ()il < € (H(An) + 1)
and

[{wo(m) = 130l < € (Ha(Ax) + |In] )

agra(m) = 10l < C (He(An) + |1])
We note that

Tag+2(m) = NoA_1(m) = Aop{?) (m),
and thus

N
2 _
(7.25) ~ mz:: Aop{? (m) —1)% = 0.

This is one component of F.
Let us now show the first inequality in (Z.21). Denote A = OA, where OA is
the transform defined in (6.18). We use the hat for all entries related to A and
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Ag(A), respectively. The entries of A(m) are denoted by {pfj)(m), q,(j)(m)}. Recall
that m corresponds to application of the Jacobi flow, j denotes the block and k the
component of the vector 7 (m). We use similar notation for A, Ag(A) and Ag(A).
Due to the definition (6.18]), we find

(7.26)
(0) ~(0)
Vg—1,9-1(m) 0 ©) (1)) — o(6(—D () [20Pg (M) 0
O m) dopfPmy | OO ) = 010 ))l ) (m) @éi%(m)}'

Note that U;?;fl(m) = Zag1(m). Tt was mentioned after Lemma [Z.2] that H (A)
can be expressed in terms of H, (A). Therefore, we conclude by (6.20)) that (Z.25)

also holds for ]ﬁgo) (m). Note that zg4o(m) = w(() ql)(m). Since shifting by a full
block in the very beginning only adds a fixed constant, and J commutes with this
shift by (6.21)), we can apply Lemma [7.5] to (Z.26) and obtain by (7.24) that

I{sin 60 (m) — sin 60 (m)}_ e < O (An) + ).
Thus, by (6.17)
(7.27) =y =Py dmallee < CUHL(An) + | In ).
Since by [32 eq (4.2)] one can pass from j to j — 1 by using A, we obtain (T27)
for 0 < j < g. Similarly, by [32] eq (4.2)], one obtains the estimates for the

gj-coefficients. This finishes the proof of the first inequality in (7.21)).
It remains to prove (Z.21) for the other components of Fg. The proof of Lemma

[L.5] yields an estimate for ||{( Vg 1g 1(n) — 1)sin¢§_1)(n)}||2 or, equivalently, it
shows

I{(A—2(m)Ay = Dp{ZY (M)} < C(H(AN) + |-

Since péill)(m) may approach zero, it does not imply yet give an estimate for
{(A—2(m)Ay — 1)}. If we can also estimate

(A2 (m)Ag = D)gi=7 (m)IN_l,
then inf,, ((q!(]:ll)( ))? + (p((] 11)( ))? ) > 0 yields
{(A—2(m)Ag = D}_i ]l < C(H(An) + [In]).
To this end, we note that

cos gy (m)
cos gy > (m)
Indeed, by definition of the Jacobi flow

(-2)

(7.28) As(m+1) = A_s(m).

ey
. * Vo0 .
U(p_2(m)) (m+1) =v_1(m)U(p_1(m)),
ES ES
ES ES ES ( 1)

Yg—1,9-1

the second from below entry in the last column in this matrix identity means exactly
(7.28). Since by the above, we can estimate ||{cos ¢§71)(m) — Cos ¢§72)(m) N e
we obtain

{A—2(m +1) = Ao (m)} i llee < C(HL(AN) + |In])-
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Now by [32, (4.10)] we have
Pyt (m) =~ Y (m + 1) f(m),

where f(m) is an explicit function that can be small only on a sparse set. Combining
this with

(A=a(m)Ay = pg~) (m) = —(A—a(m)Ag = 1)gy~y (m + 1) (m),
we also get an estimate for |[{(A_2(m)A\, — 1)q§ 11)( VIN_1|lez, which shows
{(A—2(m)Ag = D} < C(Hy(An) + [In]).

The same arguments with respect to OFA, k=1,...,g — 1, in a combination with
(6.20), yield the estimates for all other components of Fg. O

Lemma 7.6. There exist {€%} € CS(N,RY/Z9) and {e%} € CS(N,R),{e’} €
CS(N,R) so that

—A<Za€§‘ —mx) +er,
j=1
bm :B(ZE? —mx) +eb,

Jj=1
where A, B are given in (T11).

Proof. Let A(Po(m)) be the periodic GMP matrix with coefficients po(m) and
A(ay) € Te(Cg), so that

dist(Bo(m), ZSe) = dist(Bo(m), B(cum))-
Thus, using (Z.12)) we obtain

> dist(Bo(m), B(am))? < C(H(An) + |In])

and by (6.6) we get

> (ap, — Alam))? < C(H (An) + [In]),
N

Y (b = Blam))® < C(H(AN) + [Tn]),

m=1

where again {am, by fmen, denote the coefficients of J. Thus, dividing by N and
sending N — oo, we obtain by (Z.17) and (Z.20) that

(7'29) {a?n - A(am)}mENoa {bm - B(am)}mENo € CS.

The smoothness of the Jacobi flow transform, provided that pgo),pg > ¢, allows

for the definition of a sparse set Iy so that
dist (Bo (m + 1), B(awm — X)) = dist(J (Bo(m), Br(m)), T (B(cwm))
< O(E, J,6){dist(Bo(m), Blevm))
+ dist(Bo(m), B1(m)) + [In|}-



44 B. EICHINGER, M. LUKIC, AND G. YOUNG

Thus,
dist(B(an+1), Blam — X)) < C(E, J,6)(dist(p (m»ﬁ(am))
+ diSt(ﬁo
+ diSt(ﬁo
Moreover, we have
oo = Bll < C1(E) dist(p(a), B(B))-
Thus, defining €,(m) = qm41 — (m — Xx), we conclude from (Z.21)) that

{€a} € CS(N,R?/Z9).

Lemma 7.7. For fited L € N and 6§ > 0, the set

BL’(; = {m

has a sparse complement, i.e.,

m-+£

2.

Séforallsz,...,L—l}
j=m+1

—lBL“m{A}"”’N}l —1as N = oo.

Proof. Since shifts and linear combinations of CS sequences are in CS,

{ Z;ntﬁﬂ ;“ o € CSfor any £. Thus, for any ¢, the set {m: Z;ntﬁﬂ €| > 6}
is sparse; the complement of By, 5 is a union of finitely many sparse sets, so it is
sparse. O

Proof of Theorem [1L10. It remains to prove that, for every ¢ > 0,

(7.30) lim sup — Z dist(7¢", (ST)"J+ST) <€

N—o00

Fix L so that > ;2 e~¥||J;| < ¢/16. Choose § > 0 so that

€ €
(7.31) [ABY) = AB2)l = g7, 1B(B) = B(B2) < o
whenever |8; — 82| < 4.

Since dist(7g", (S7)™J1ST) is uniformly bounded in m and the complement of
By, s is sparse,

hmsup — Z dist(7g", (S3)"J+ST) =0
N—ooo SV <N
miBL,g
Set o, = Z] 1 J For m € By, s, estimating the distance to T+ by the distance
to J(am —my) gives

dist(TeH, (57)7 87
< 6_2(‘am+f — Alam — (m +0)x)| + [bmte — Blam — (m + £)x)]).
£=0
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Using (Z.31)) for £ < L and using our choice of L to bound the tail of the series, we
obtain

dist(T+, (SH)™ I ST
€
54‘§:€ (Jam+e — Alemte — (M +O)X)| + brte — B(amie — (m+ £)x)]).-

Thus, to prove (Z.30)), it remains to prove

€
(7.32) hmsup— Z Z e gmar < 3

N—oo 1<m<N =0
meBrL s

where g, = |ap, — A(a, —pX)|+|bp — B(a, —px)|. Note g € CS by (7.29). Enlarging
the range of summation, we obtain

N+L L-1
hmsup— Z Ze Imte < 11msup— Z Ze 9p-
Nooo N 2 D p=1 (=0

meBL s

Now the sum in £ can be separated as an explicit constant, so this limsup is zero
since g € CS. Then (7.32) follows, and the proof of (Z.30) is complete. O
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