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A B S T R A C T

We consider a model of a vibro-impact nonlinear energy sink (VI-NES), where a ball moves
within a cavity of an externally forced mass, impacting either end of the cavity. These impacts
result in energy transfer from the mass to the ball, thus limiting the oscillations of the larger
system. We develop a semi-analytical map-based approach, recently used for an inclined impact
pair model, in the setting where there is energy transfer between the mass and the ball. With
this approach we analytically derive exact expressions for the full dynamics of the VI-NES
system without restricting the range of parameters, in contrast to other recent work in which
an approximate reduced model is valid only for small mass of the ball, small amplitude, and a
limited frequency range. We develop the bifurcation analysis for the full VI-NES system, based
on exact maps between the states at successive impacts. This analysis yields parameter ranges for
complex periodic responses and stability analyses for 𝑂(1) mass of the ball, forcing frequencies
that are not the same as the natural frequency, and large amplitude forcing. The approach
affords the flexibility to analytically study the dynamics of different periodic solutions and their
stability, including a variety of impact sequences in the full two degree-of-freedom model of
VI-NES. Comparisons of quantities that characterize the energy transfer point to the significance
of different types of periodic behavior, which may occur for different parameter combinations.
Our semi-analytical results also provide the impact phase, which plays an important role in the
efficiency of the energy transfer.

1. Introduction

Recent years have seen increased exploration into new mechanisms of Targeted Energy Transfer (TET), a fundamental phe-
omenon in the areas of passive vibration control and in energy harvesting. In a general sense TET is an extension of a classical
inear tuned mass damper, where a second mass–spring system is added to a primary oscillator to limit its high amplitude vibrations.
n the successful implementation of TET, the vibration energy in the primary structure is transferred one-way to the second system,
here it can be absorbed by damping or converted to electrical energy, but not fed back to the primary structure. There are many
tudies of TET in the setting where the coupled system consists of a forced linear oscillator coupled to a Nonlinear Energy Sink
NES), traditionally with a (cubic) nonlinear stiffness and a linear viscous damper. The nonlinearity then provides the opportunity
or passive energy transfer while targeting a broad band of frequencies generated from the primary structure; thus it may outperform
lassical linear dampers through this broadband feature. In fact, the first example where TET was observed was a nonlinear oscillator
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(with no linear component) attached to a linear system [1]. It was shown that when a linear system was exposed to free vibrations
(due to initial velocity) the nonlinear system was able to effectively absorb energy from the linear system under some conditions.
However, that study has excluded a linear term in the nonlinear oscillator, so that such a combination was not considered, until
recently in [2]. In that work the authors showed that a NES with a combination of linear and nonlinear elements can also be efficient
under proper selection of the spring coefficients.

Many of the NES (or TET) studies have been focused on ‘‘classical’’ smooth nonlinear dynamic dampers and absorbers to
fficiently mitigate vibrations, see [3–5] and references therein. Within such a classical framework, it is necessary to tune the system
n order to take advantage of the frequency range in which the particular nonlinear transfer is effective. Without exact analytical
olutions for the classical nonlinear two DOF system, there is not an ‘‘obvious’’ optimal choice for transferring energy from a forced
inear oscillator to a nonlinear energy sink via nonlinear coupling. Analyses are generally based on weakly nonlinear approximations
r reductions to a two-state system. Parametric studies are limited within these approximations, so that explorations of the full
onlinear behavior rely on simulations, especially if higher degree-of-freedom systems are considered. The recent study [6] provides
n extensive reference list on other NES mechanisms, using piecewise nonlinearities, non-linear damping, bistability, inerters, and
ibro-impacts.
Recently, there have been several new lines of investigation into the use of vibro-impact (VI) systems in TET, where the impacts

rovide a source of energy transfer and thus damping, when the restitution coefficient is less than unity. The use of VI suggests
range of TET mechanisms, given the instantaneous TET efficiency achieved on a relatively short time scale [6]. The different
echanisms explored include impacts between two linear damped oscillators [7] and comparisons of impact dampers with tuned

mass dampers in [8]. The early concept of an impact damper, where a mass moves between two walls of a container, appeared in [9],
with variations on this idea including particle dampers and liquid sloshing dampers [10,11]. A series of papers including [5,6,12,13]
and references therein, and [14] provide analytical and experimental explorations of a nonlinear energy sink mechanism termed
VI-NES, based on a vibro-impact pair as an impact damper. In this model a ball moves freely within a cavity in a larger forced mass,
impacting either end of the cavity. This mechanism is also the focus of this study.

Within VI-NES, the desired TET can be realized on a faster time scale than other NES’s, obviously an important feature in
efficiently achieving instantaneous vibration control [15]. Results in [16] demonstrate the broad bandwidth of the VI-NES energy
transfer, in contrast to the limited bandwidth of classical NES, and apply this advantage to control chatter in a turning application.
Current studies reveal that the key point of VI-NES design for vibration damping resides in the relationship between the clearance
dimension (size of the cavity) and the vibration level [17], which can be a disadvantage as compared with a NES system with an
unrestricted response. Given the (dis)advantages of and differences between VI-TET and classical TET, the choice to use one or the
other often depends on the particular application. For example, recognizing the efficiency of the VI-NES design, [18] studies it as
the basis for an electromagnetic energy harvesting system.

While promising as a mechanism, the analyses of VI systems have challenges, given the non-smooth dynamics, for which many
standard techniques developed for smooth systems do not apply. Analytical work on VI-NES has primarily used the method of
multiple scales, adapted from modulation analyses for NES as in [19,20], the validity of which requires the mass of the ball to be
much less (e.g. <1% as in [21]), than that of the primary mass. In that limit, [13] observes that the optimal TET response occurs
for two impacts per forcing period, where the ball impacts each end of the cavity once per period of the external forcing. Then a
reduced system describes the slow modulation of this simple periodic behavior, also studied in [12]. A series of papers by Seguy and
Berlioz, et al. uses the asymptotic approach to contrast with the modulation of NES [20] and to explore different response regimes
within the slow modulation setting, e.g. in [21,22], including comparison with experiments. Results in [13,17] compare experiments
with predictions for the optimal cavity length based on the reduced multiple scale system. There the optimal tuning is based on the
resonant frequency. Analysis in [23] identifies Lyapunov exponents for chaotic behavior in the model, demonstrating consistency
with those obtained from experiments. Extensions of the multiple scale analysis have been applied to two VINES in parallel [17,24],
complemented with experimental comparisons. Recently [25–27] use the asymptotic reduction withing models combining classical
NES and impacts, which we discuss further in the Conclusions.

An extensive discussion of the slow modulation approach is given in [14], applying the multiple scale analysis to get explicit
expressions for the magnitude of the modulation. They provide backbone curves in the limits of small mass of the ball and excitation
frequency near that of the natural frequency of the primary oscillator. Reduced systems based on these limits are studied for an
electromagnetic energy harvester [18] and for the TET mechanism using maps in [6]. This latter formulation aims for an improved
description of the VI-NES dynamics in the limiting case, and an understanding of the potential use of VI-NES both for energy
harvesting and TET. These analyses provide value for understanding energy absorption via a light mass, for simple periodic behavior
under forcings with small amplitude and frequencies near the natural frequency, A larger range of parameters is of interest in
studying realistic systems, which may have unanticipated influence on TET as we illustrate for some typical energy measures. Thus,
the analysis based on an exact solution provides the opportunity to explore behavior outside of small forcing and in the context
of other forcing frequencies. It affords one the luxury to consider any combination of parameter values, since we have the exact
expression for the impact dynamics.

Analytical studies of VI-NES-type models point to other gaps in the study of impacting systems, as discussed in detail in a recent
study of bifurcations of the impact pair-type energy harvester [28]. While there have been extensive studies of bifurcations in single
degree of freedom (SDOF) VI systems, such as a forced mass and motionless rigid barrier(s) or a bouncing ball on an oscillating
surface [29], there are far fewer analyses of impacts in two or higher degree of freedom systems. These include, e.g., a pair of
moving impacting masses, either of which can be forced. Results based on the canonical impact pair [10,30–32] are based on the
2

assumption that the mass of the ball is negligible relative to that of the larger mass of the capsule, and therefore do not capture
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Fig. 1. A linear oscillator with a small mass inside the cavity.

the energy transfer aspects of the VI-NES system. Nevertheless, recent success in exploring stability and bifurcations of complex
behavior in impact-pair-type energy harvesting indicates new approaches for studying VI-NES.

Recent works [30,32] utilize maps between impacts in the context of the horizontal impact pair, and for the inclined case for a
VI energy harvester (VI-EH) based on an inclined impact pair, yielding analytical results for the relative motion between ball and
capsule. Inspired by these previous results that capture bifurcations and stability semi-analytically, here we develop the bifurcation
analysis for the full VI-NES system, deriving maps between the states at successive impacts. While the approach has some similarities
to the use of Poincaré maps, it differs in that the maps are based on states at different stages, i.e. multiple impacts, within a forcing
period [30]. This approach allows us to find arbitrarily complex periodic responses and to perform stability analyses analytically.

By adapting the map-based approach to the full VI-NES system, we provide the flexibility to consider different types of periodic
olutions that include any possible combination of impact sequences in the full two DoF model of VI-NES. Conceptually this mirrors
he treatment in [32] for the relative dynamics, but in the VI-NES context this approach must handle the maps in terms of the
bsolute dynamics of both small and large masses, given the feedback between the masses at impact. The method does not depend
n limitations on the parameter ranges, and thus can be used to explore behavior for 𝑂(1) mass of the ball, forcing frequencies
hat are not the same as the natural frequency, and large amplitude forcing. Comparisons of energy transfer measures point to the
ignificance of different types of periodic behavior, which may occur for different parameter combinations. Here, we also see the
mportance of impact phase on the energy transfer, with this impact phase provided in the semi-analytical results for the full VI-NES
ystem.
The structure of the paper is as the follows: In Section 2, we present the VI-NES model and governing equations of motion. In

ection 3 we derive our analytical map-based treatment, applying it to the VI-NES system in Section 4 to obtain the bifurcation and
tability results for different periodic solutions. In Section 5 the analytical result and numerical results are compared. In Section 6 we
ompare different types of periodic and complex behavior by considering the corresponding energy transfer, based on two different
easures.

. The model

The model of interest, as discussed in [14] is composed of a linear oscillator (LO) with mass 𝑀 and a vibro-impact nonlinear
nergy sink (VI-NES) via a ball of mass 𝑚 that can slide without friction inside a cavity of length 2𝑏 inside the LO. The primary
ass of the LO is subject to a harmonic base excitation 𝑒(𝜏) = 𝐸 sin(𝜔𝜏) with a period 2𝜋∕𝜔, illustrated in Fig. 1 by a spring with
inear stiffness 𝑘 and damping coefficient 𝑐. Taking 𝑞1 and 𝑞2 as the absolute positions of the center of the cavity in the LO and of
he ball, respectively, the motion between impacts (|𝑞1 − 𝑞2| < 𝑏) of the LO and the ball is smooth and is governed by equations

𝑀𝑞′′1 + 𝑐𝑞′1 + 𝑘𝑞1 = 𝑘𝐸 sin(𝜔𝜏 + 𝜑) + 𝑐𝜔𝐸 cos(𝜔𝜏 + 𝜑) (1)

𝑞′′2 = 0 . (2)

ere 𝜑 indicates a phase shift of the forcing, relative to an initial time 𝑡 = 0. In general we do not consider the initial value problem
or this system, as we are interested in long time behavior and the corresponding attracting behavior for inelastic impacts. However,
hen considering periodic solutions, the phase shift 𝜑 relative to the impact times is of interest as discussed in the following sections.
Impacts between the LO and the ball occur when |𝑞1 − 𝑞2| = 𝑏, and their dynamics is governed by the instantaneous Newtonian

mpact law and conservation of momentum

(𝑞
′+
1 − 𝑞

′+
2 ) = −𝑟(𝑞

′−
1 − 𝑞

′−
2 ) (3)

𝑀𝑞
′+ + 𝑚𝑞

′+ = 𝑀𝑞
′−
1 + 𝑚𝑞

′−
2 , (4)
3
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Table 1
Model parameters and their values, as in [14].
Parameter description Value

Mass of LO 𝑀 = 3.807 kg
Damping coefficient 𝑐 = 2.53 Ns/m
Linear stiffness coefficient 𝑘 = 11680 N∕m
Natural frequency 𝜔0 = 55.39
Half cavity length 𝑏 = .015 m
Non-dimensionalized damping coefficient 𝜆 = 0.01199
Restitution coefficient 𝑟 = 0.65

where 𝑟 is the coefficient of restitution and the superscripts (⋅)−, (⋅)+ denote the variable immediately before and after the impact,
respectively. In (1)–(4), (⋅)′ indicates 𝑑

𝑑𝜏 .
We rewrite (1)–(4) in terms of non-dimensionalized variables to facilitate the analysis. The non-dimensionalized displacements

re 𝑥1, and 𝑥2, which are obtained by scaling the variables 𝑞1, 𝑞2 by the half-length of the cavity,

𝑥1 =
𝑞1
𝑏
, 𝑥2 =

𝑞2
𝑏
. (5)

Likewise, the following changes of variables yield non-dimensionalized parameters for the ratio of the masses, strength of the forcing,
natural frequency, ratio of frequencies, and damping, respectively.

𝜇 = 𝑚
𝑀

, 𝐴 = 𝐸
𝑏
, 𝜔0 =

√

𝑘
𝑀

, 𝛺 = 𝜔
𝜔0

, 𝜆 = 𝑐
𝑀𝜔0

. (6)

Here we define 𝜆 analogously to that in [14,22], with 𝑀 rather than 𝑚 in the denominator so that no factor of 𝜇 appears in the
non-dimensional damping coefficient. Moreover, we use the dimensionless time 𝑡, obtained by scaling with the natural frequency
of the LO,

𝑡 = 𝜔0𝜏 . (7)

Substituting (6)–(7) into Eqs. (1)–(4) gives the non-dimensionalized equations of motion and corresponding impact conditions,

|𝑥1 − 𝑥2| < 1 ∶ 𝑥̈1 + 𝜆𝑥̇1 + 𝑥1 = 𝐴 sin(𝛺𝑡 + 𝜑) + 𝜆𝛺𝐴 cos(𝛺𝑡 + 𝜑)

𝑥̈2 = 0 (8)
|𝑥1 − 𝑥2| = 1 ∶ 𝑥̇+1 − 𝑥̇+2 = −𝑟(𝑥̇−1 − 𝑥̇−2 )

𝑥̇+1 + 𝜇𝑥̇+2 = 𝑥̇−1 + 𝜇𝑥̇−2 , (9)

with ̇ indicating 𝑑
𝑑𝑡 . The damping coefficient 𝜆 is assumed to satisfy 𝜆

2−4 < 0, so that the characteristic equation for the homogeneous
equation for 𝑥1 in (8) has two conjugate complex roots, yielding oscillatory dynamics.

The time series and phase planes shown in Fig. 2 illustrate several types of periodic behaviors for the system (1). There we show
oth the absolute displacement of the ball and cavity, as well as the relative displacement 𝑤 and relative velocity 𝑤̇,

𝑤 = 𝑥1 − 𝑥2, 𝑤̇ = 𝑥̇1 − 𝑥̇2 . (10)

he left column illustrates the motion of the ball within the cavity. The middle column shows the relative displacement 𝑤 and
elative velocity 𝑤̇ corresponding to the time series in the left column. The right column shows the dynamics of the trajectory in the
− 𝑤̇ phase plane, from which it is clear that behaviors are periodic. In the phase plane the vertical lines indicate the application of
he impact condition when the ball reaches the end of the cavity. Following [32], we find it useful to introduce the notation n:m/𝑝𝑇
o refer to periodic solutions with 𝑛 impacts on the left and 𝑚 impacts on the right of the cavity in a time interval 𝑝𝑇 , for 𝑇 the
eriod of the external forcing. In the following, for 𝑝 = 1, we drop the 𝑇 ; e.g., 1:1 refers to a solution with alternating impacts on
he left and right ends of the cavity, with two impacts per forcing period 𝑇 . Then Fig. 2 shows a symmetric 1:1 solution in (a)–(c),
asymmetric 1:1 solution in (d)–(f), 1:1/2T solution in (g)–(i) and 2:1 solution in (j)–(l).

The analyses of [6] and [14] focus on the symmetric 1:1 solution for 𝜇 = 𝑚∕𝑀 ≪ 1 near 𝛺 ∼ 1. In our analysis, we provide
an approach that captures different periodic solutions and their stability for a range of parameters beyond small 𝜇 and 𝛺 ∼ 1. As
indicated in Table 1, throughout the paper we use the same parameter values for 𝑀 , 𝑐, 𝑘, and 𝑏 as in [14]. In contrast to their
analysis, below we consider larger ranges of 𝐸, 𝑚, and 𝜔, together with small and 𝑂(1) values of 𝐴, the non-dimensionalized forcing
amplitude (6).

The solutions plotted in Figs. 2(a)–(l) are obtained by solving system (8) using a fourth-order Runge–Kutta algorithm for the
mooth evolution of the system. A sufficiently small time step ℎ is used to ensure the accuracy of the solution. When an impact
s detected, as indicated by the ball exiting the cavity, |𝑥1 − 𝑥2| > 1, the previous step is rejected and ℎ is reduced by a factor of
wo. We use this bisection procedure to find the time of the impact within an error of 𝜖 < 10−9. Below we obtain semi-analytical
esults for periodic solutions, comparing to the numerical solutions for a range of 𝑚, 𝜔, and 𝐸, thus illustrating the flexibility of the
4
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Fig. 2. Representative time series and phase planes of stable periodic solutions. Left column: time series for the displacement of left and right cavity ends (dotted
blue lines) and ball (red solid line). Middle Column: Corresponding relative displacement 𝑤 (blue) and relative velocity 𝑤̇ (red); Right column: Corresponding
phase plane of 𝑤 vs. 𝑤̇. (a)–(c) 𝐴 = 0.015; (d)–(f) 𝐴 = 0.020; (g)–(i) 𝐴 = 0.021; (j)–(l) 𝐴 = 0.023. For all plots, 𝛺 = 1(𝜔 = 𝜔0), 𝜇 = .0084 (𝑚 = .032 kg), with the
remaining parameters provided in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

.1. Energy transfer measures

The energy transfer that takes place via a TET mechanism can be characterized by a variety of measures, as can be found
hroughout the literature, e.g. as in [7,18], and [13]. The focus in [14] is on the response of a 1:1 symmetric periodic solution near
esonance, considering backbone curves for the system amplitude. Likewise, we consider the amplitude of the system response given
y max |𝑥1|. To provide a complementary perspective on the efficiency of TET, we include an additional quantity: the ratio of the
verage kinetic energy for both masses, that is,

𝐾2∕𝐾1, where 𝐾1 = ⟨𝑀𝑥̇21⟩, 𝐾2 = ⟨𝑚𝑥̇22⟩ . (11)

his ratio increases if more energy is transferred from the LO to the ball. Here the average is taken over a sufficiently large time
nterval, depending on whether the behavior is chaotic or periodic.
5
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Fig. 3. Examples of 𝐾2∕𝐾1 (diamonds) and max |𝑥1| (×’s) vs. 𝜇 and vs. 𝛺, showing behavior of the system away from 𝜇 ≪ 1 and 𝛺 = 1. Left: 𝛺 = 1 and 𝐴 = .03
(red markers), 𝐴 = 0.1 (green), and 𝐴 = 0.3 (blue); Zoomed in figures for 𝐴 = .03 show more detail in Fig. 8. Right: 𝜇 = .05, 𝐴 = .1 (red markers) and 𝜇 = .2,
𝐴 = .15 (blue). Other parameters are as in Table 1, unless otherwise indicated in the figures. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3 shows the variability of 𝐾2∕𝐾1 (diamonds) and max |𝑥1| (×) for 𝜇 = 𝑂(1) and 𝛺 ≠ 0. These illustrate parameter ranges
where different behaviors of interest – e.g. 𝐾2∕𝐾1 larger and max |𝑥1| small – occur away from 𝜇 ≪ 1 and 𝛺 = 1, thus motivating
the need for analysis of the dynamic behavior away from these limits. Further discussion of the energy transfer measures, in the
context of the analytical results and for different values of 𝑟, is in Section 6.

As an aside, we note that not all TET energy transfer measures are appropriate for the VI-NES system. For example, the measure
onsidered in [7] for two impacting discrete linear oscillators is based on the sum of differences in kinetic energy for the second
scillator, after and before impact. In the context of the VI-NES system, such a sum telescopes to a trivial result, and thus does not
apture the behavior over a relevant time interval.

. Analysis via maps

A natural approach for efficiently tracking the state of the system is to express the dynamics in terms of the state at impact.
e denote 𝑥−𝑗,𝑘, 𝑥

+
𝑗,𝑘 (𝑥̇−𝑗,𝑘, 𝑥̇

+
𝑗,𝑘) as the displacement (velocity) of mass 𝑗 = 1, 2 immediately before and after the 𝑘th impact,

espectively. The time of the 𝑘th impact is given by 𝑡𝑘. Together with continuity of displacement at impact, the linear system
f impact conditions (9) is rewritten with 𝑥̇+𝑗,𝑘 expressed in terms of 𝑥̇

−
𝑗,𝑘,

𝑥−𝑗,𝑘 = 𝑥+𝑗,𝑘 𝑗 = 1, 2 , 𝑥1,𝑘 − 𝑥2,𝑘 = 1(−1) on 𝐿 (𝑅)

𝑥̇+1,𝑘 =
1 − 𝑟𝜇
1 + 𝜇

𝑥̇−1,𝑘 +
𝑟𝜇 + 𝜇
1 + 𝜇

𝑥̇−2,𝑘 , 𝑥̇+2,𝑘 = 1 + 𝑟
1 + 𝜇

𝑥̇−1,𝑘 +
𝜇 − 𝑟
1 + 𝜇

𝑥̇−2,𝑘 . (12)

where 𝐿 (𝑅) indicates the left(right) cavity end. Our goal is to track the system in terms of the state vector

𝐬𝑘 = (𝑥1,𝑘, 𝑥̇1,𝑘, 𝑥2,𝑘, 𝑥̇2,𝑘, 𝑡𝑘) , 𝑥𝑗,𝑘 ≡ 𝑥−𝑗,𝑘 , 𝑥̇𝑗,𝑘 ≡ 𝑥̇−𝑗,𝑘 , (13)

a tuple of the five variables that completely describes the state of system immediately before the 𝑘th impact. Here we drop the
superscript ‘‘−’’ in the definition of 𝐬𝑘 and throughout the rest of the paper, since we can use the expressions above to write the
system in terms of 𝑥−2,𝑘, 𝑥̇

−
2,𝑘 only. Specifically, we solve the linear ODEs (8) for the dynamics in-between impacts to obtain explicit

formula for 𝑥+𝑗,𝑘−1, 𝑥̇
+
𝑗,𝑘−1 in terms of 𝑥

−
𝑗,𝑘, 𝑥̇

−
𝑗,𝑘, for 𝑗 = 1, 2. For example, integrating (8) (twice) yields

𝑥̇−2,𝑘 = 𝑥̇+2,𝑘−1 𝑥−2,𝑘 = 𝑥+2,𝑘−1 + 𝑥̇+2,𝑘−1(𝑡𝑘 − 𝑡𝑘−1) (14)

Then, from (12) and (14), we obtain 𝑥̇−2,𝑘 and 𝑥−2,𝑘 in terms of 𝑥
−
𝑗,𝑘−1, 𝑥̇

−
𝑗,𝑘−1 only, which we use in the remainder of the calculations.

The same procedure is used for 𝑗 = 1, likewise eliminating 𝑥+1,𝑘, 𝑥̇
+
1,𝑘. Using (13), we have the basis for four different maps 𝑃𝑗 for the

transition 𝐬𝑘−1 → 𝐬𝑘, capturing the motion of the ball between two consecutive impacts,

𝑃1 ∶ 𝐬𝑘−1 → 𝐬𝑘 for 𝐿 ↦ 𝑅, 𝑃2 ∶ 𝐬𝑘−1 → 𝐬𝑘 for 𝑅 ↦ 𝐿 (15)

𝑃3 ∶ 𝐬𝑘−1 → 𝐬𝑘 for 𝐿 ↦ 𝐿, 𝑃4 ∶ 𝐬𝑘−1 → 𝐬𝑘 for 𝑅 ↦ 𝑅 , (16)

where 𝐿 and 𝑅 indicate the left and right ends of the cavity.
Integrating (8) and combining with (9) and the expressions for 𝑥+𝑗,𝑘, 𝑥̇

+
𝑗,𝑘 discussed above, yields the same form for all of the maps

𝑗 ,

𝑥1,𝑘 = 𝑎1,𝑘−1𝑒
−𝜆𝑡𝑘
2 sin(𝛾𝑡𝑘) + 𝑎2,𝑘−1𝑒

−𝜆𝑡𝑘
2 cos(𝛾𝑡𝑘) + 𝑏1 sin(𝛺𝑡𝑘 + 𝜑) + 𝑏2 cos(𝛺𝑡𝑘 + 𝜑)

≡ (𝑡𝑘−1, 𝑡𝑘, 𝑥1, 𝑥̇1,𝑘−1, 𝑥̇2,𝑘−1, 𝜑) (17)

𝑥̇ = 𝑎 𝑒
−𝜆𝑡𝑘
2

(

−𝜆 sin(𝛾𝑡 ) + 𝛾 cos(𝛾𝑡 )
)

+ 𝑎 𝑒
−𝜆𝑡𝑘
2

(

−𝜆 cos(𝛾𝑡 ) − 𝛾 sin(𝛾𝑡 )
)

6

1,𝑘 1,𝑘−1 2 𝑘 𝑘 2,𝑘−1 2 𝑘 𝑘
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+ 𝑏1𝛺 cos(𝛺𝑡𝑘 + 𝜑) − 𝑏2𝛺 sin(𝛺𝑡𝑘 + 𝜑) ≡ (𝑡𝑘−1, 𝑡𝑘, 𝑥1, 𝑥̇1,𝑘−1, 𝑥̇2,𝑘−1, 𝜑) (18)

𝑥2,𝑘 = 𝑥2,𝑘−1 +
(

1 + 𝑟
1 + 𝜇

𝑥̇1,𝑘−1 +
𝜇 − 𝑟
1 + 𝜇

𝑥̇2,𝑘−1

)

⋅ (𝑡𝑘 − 𝑡𝑘−1) (19)

𝑥̇2,𝑘 = 1 + 𝑟
1 + 𝜇

𝑥̇1,𝑘−1 +
𝜇 − 𝑟
1 + 𝜇

𝑥̇2,𝑘−1 , (20)

here

𝛾 =

√

1 −
(𝜆
2

)2
, 𝑏1 =

|

|

|

|

|

𝐴 −𝜆𝛺
𝐴𝜆𝛺 1 −𝛺2

|

|

|

|

|

|

|

|

|

|

1 −𝛺2 −𝜆𝛺
𝜆𝛺 1 −𝛺2

|

|

|

|

|

, 𝑏2 =

|

|

|

|

|

1 −𝛺2 𝐴
𝜆𝛺 𝐴𝜆𝛺

|

|

|

|

|

|

|

|

|

|

1 −𝛺2 −𝜆𝛺
𝜆𝛺 1 −𝛺2

|

|

|

|

|

.

he functions  and  are introduced for convenience, with their arguments highlighting the dependence of the coefficients 𝑎1,𝑘−1,
2,𝑘−1 on 𝑥1,𝑘−1, 𝑥̇1,𝑘−1, 𝑥̇2,𝑘−1, 𝑡𝑘−1. They appear in the system of equations for 𝑥1,𝑘−1, 𝑥̇1,𝑘−1 when solving the equations for the LO
dynamics in (8) and applying the impact condition (9), specifically,

𝑒−
𝜆𝑡𝑘−1

2

[

sin(𝛾𝑡𝑘−1) cos(𝛾𝑡𝑘−1)
−𝜆
2
sin(𝛾𝑡𝑘−1) + 𝛾 cos(𝛾𝑡𝑘−1) −𝜆

2
cos(𝛾𝑡𝑘−1) − 𝛾 sin(𝛾𝑡𝑘−1)

]

[

𝑎1,𝑘−1
𝑎2,𝑘−1

]

(21)

=

[

𝑥1,𝑘−1
1−𝑟𝜇
1+𝜇 𝑥̇1,𝑘−1 +

𝑟𝜇+𝜇
1+𝜇 𝑥̇2,𝑘−1

]

−
[

𝑏1 sin(𝛺𝑡𝑘−1 + 𝜑) + 𝑏2 cos(𝛺𝑡𝑘−1 + 𝜑)
𝑏1𝛺 cos(𝛺𝑡𝑘−1 + 𝜑) − 𝑏2𝛺 sin(𝛺𝑡𝑘−1 + 𝜑)

]

.

In order to complete the evaluation of 𝐬𝑘 from 𝐬𝑘−1 = (𝑥1,𝑘−1, 𝑥̇1,𝑘−1, 𝑥2,𝑘−1, 𝑥̇2,𝑘−1, 𝑡𝑘−1) using (17)–(20), the value of 𝑡𝑘 is needed,
s well as conditions specific to each of the maps 𝑃𝑗 . We use the known information at impact, namely,

𝑥1,𝓁 − 𝑥2,𝓁 = ±1, for all 𝓁 . (22)

ote that the choice of ±1 for 𝓁 = 𝑘 and 𝓁 = 𝑘 − 1 provides the distinction among the maps 𝑃𝑗 for 𝑗 = 1, 2, 3, 4: for 𝑃2 and 𝑃3,
1,𝑘 − 𝑥2,𝑘 = 1 and 𝑥1,𝑘−1 − 𝑥2,𝑘−1 = 1(−1) for 𝑃2 (𝑃3). Likewise, for 𝑃1, 𝑃4, 𝑥1,𝑘 − 𝑥2,𝑘 = −1 and 𝑥1,𝑘−1 − 𝑥2,𝑘−1 = 1(−1) for 𝑃1 (𝑃4). With
he appropriate values for 𝑥1,𝓁 − 𝑥2,𝓁 from (22) for 𝓁 = 𝑘, 𝑘 − 1, together with the initial values in 𝐬𝑘−1, the system (17)–(20) yields
system of four equations from which we determine the remaining four unknowns (𝑥1,𝑘, 𝑥̇1,𝑘, 𝑥̇2,𝑘, 𝑡𝑘) specific to 𝑃𝑗 .
We note that with these maps as building blocks, we can study a range of different periodic behaviors via compositions of

he various 𝑃𝑗 . Then this analysis can consider behaviors beyond the simple 1:1 behavior, on which the approximations used
n [12,19,21] and [6,18] are based.

. Analytical results

We provide analysis for periodic solutions with the same period 𝑇 as that of the forcing function in (8). These solutions represent
ehavior that is attracting for periodic forcing and for 𝑟 < 1. In that case there is sufficient dissipation in the system so that for
arge ranges of the parameter values, the dynamics tend toward periodic behavior. Our analysis provides analytical results for the
arameter values corresponding to these periodic solutions, also determining their linear stability.

.1. Periodic solutions: 1:1

We first focus on the 1:1 periodic solution, with periodicity conditions

𝑡𝑘−1 + 𝑇 = 𝑡𝑘+1, 𝑥𝑗,𝑘−1 = 𝑥𝑗,𝑘+1, 𝑥̇𝑗,𝑘−1 = 𝑥̇𝑗,𝑘+1, 𝑗 = 1, 2 . (23)

Then these 1:1 periodic solutions are characterized by impacts on alternating ends of the cavity where 𝐬𝑘−1 = 𝐬𝑘+1, with the
nderstanding that 𝑡𝑘−1 and 𝑡𝑘+1 are equal in the mod 𝑇 sense, as in (23). Written in terms of the maps, periodicity of the 1:1
olution is 𝑃2(𝑃1(𝐬𝑘−1)) = 𝐬𝑘+1. Using the intermediate state variable 𝐬𝑘, the equations for the periodic 1:1 solution are

𝐬𝑘−1 = 𝑃2(𝐬𝑘) = 𝐬𝑘+1 , where 𝑃1(𝐬𝑘−1) = 𝐬𝑘, 𝑡𝑘+1 − 𝑡𝑘−1 = 𝑇 . (24)

Then, as described above, using (17)–(20) together with (22) for 𝑃1 and 𝑃2 we have systems of equations for the remaining
nknowns (𝑥1,𝓁 , 𝑥̇1,𝓁 , 𝑥̇2,𝓁 , 𝑡𝓁) for 𝓁 = 𝑘, 𝑘 + 1 in terms of 𝐬𝑘−1. Since we are interested in periodic solutions where 𝐬𝑘−1 = 𝐬𝑘+1, and
𝑘+1 = 𝑡𝑘−1 + 𝑇 , then we rewrite the system (17)–(20) for 𝑃𝑗 in terms of the state variables 𝐬𝑘, 𝐬𝑘−1. Including (9) and (23) as impact
nd periodic conditions, the system for the 1:1 periodic solution is

𝑥1,𝑘 = (𝑡𝑘−1, 𝑡𝑘, 𝑥1,𝑘−1, 𝑥̇1,𝑘−1, 𝑥̇2,𝑘−1, 𝜑) (25)

𝑥̇1,𝑘 = (𝑡𝑘−1, 𝑡𝑘, 𝑥1,𝑘−1, 𝑥̇1,𝑘−1, 𝑥̇2,𝑘−1, 𝜑) (26)

𝑥2,𝑘 = 𝑥2,𝑘−1 +
(

1 + 𝑟
1 + 𝜇

𝑥̇1,𝑘−1 +
𝜇 − 𝑟
1 + 𝜇

𝑥̇2,𝑘−1

)

⋅ (𝑡𝑘 − 𝑡𝑘−1) (27)

𝑥̇2,𝑘 = 1 + 𝑟 𝑥̇1,𝑘−1 +
𝜇 − 𝑟

𝑥̇2,𝑘−1 (28)
7

1 + 𝜇 1 + 𝜇
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Fig. 4. (a),(d): Bifurcation diagrams of the relative impact velocity 𝑤̇ vs. 𝐴. Red and blue dots show 𝑤̇ on 𝐿 and 𝑅, respectively, from the numerical simulation
f (1)–(4). The red and blue (magenta and cyan) lines in (a) show the analytically obtained symmetric (asymmetric) 1:1 solutions, with 𝐵1 indicating the
saddle node bifurcation. In (d) red and blue lines show the analytically obtained asymmetric 1:1 solution, with 𝐵2 indicating the period doubling bifurcation.
Numerical results also shown for 1:1/2𝑇 solutions. Solid(dotted) lines in (a),(d) show the stable (unstable) solutions. Panels (b),(e): Phase planes showing relative
displacements and velocities for solutions on either side of the bifurcations: in (b), symmetric 1:1 solution for 𝐴 = .017 (blue) and asymmetric 1:1 for 𝐴 = .019
(magenta), and in (e), asymmetric 1:1 solution for 𝐴 = .0204 (blue) and 1:1/2𝑇 for 𝐴 = 0.207 (magenta). Panels (c),(f): Modulus of the four eigenvalues of 𝐽𝑃2

𝐽𝑃1

s. 𝐴. In (c): the eigenvalues for the 1:1 symmetric solution shown in (a); In (f): eigenvalues for the asymmetric 1:1 solution shown in (d). The horizontal blue
ine is |𝜆| = 1 for reference. For 𝐵1 one 𝜆𝑖 > 1, and for 𝐵2 one 𝜆𝑖 < −1. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

𝑥1,𝑘 − 𝑥2,𝑘 = −1 𝑥1,𝑘−1 − 𝑥2,𝑘−1 = 1 (29)

𝑥1,𝑘−1 = (𝑡𝑘, 𝑡𝑘+1, 𝑥1,𝑘, 𝑥̇1,𝑘, 𝑥̇2,𝑘, 𝜑) (30)
𝑥̇1,𝑘−1 = (𝑡𝑘, 𝑡𝑘+1, 𝑥1,𝑘, 𝑥̇1,𝑘, 𝑥̇2,𝑘, 𝜑)

𝑥2,𝑘−1 = 𝑥2,𝑘 +
(

1 + 𝑟
1 + 𝜇

𝑥̇1,𝑘 +
𝜇 − 𝑟
1 + 𝜇

𝑥̇2,𝑘

)

⋅ (𝑡𝑘+1 − 𝑡𝑘)

𝑥̇2,𝑘−1 =
1 + 𝑟
1 + 𝜇

𝑥̇1,𝑘 +
𝜇 − 𝑟
1 + 𝜇

𝑥̇2,𝑘 (31)

𝑡𝑘+1 = 𝑡𝑘−1 + 𝑇 . (32)

Without loss of generality, in seeking a 𝑇 -periodic solution we take 𝑡𝑘−1 = 0. Then we solve for the initial values 𝐬𝑘−1 on the left
avity end that define the 1:1 periodic solution, with the values 𝐬𝑘 determined from (25)–(29) and the periodic condition (32). Note
hat we also obtain the phase shift 𝜑 written in terms of the impact phase for the 1:1 periodic solution, with 𝜑𝑘−1 = mod (𝜑, 2𝜋) for
𝑘−1 = 0. Symmetric (asymmetric) 1:1 solutions are characterized by 𝛥𝑡𝑘−1 = 𝛥𝑡𝑘 (𝛥𝑡𝑘−1 ≠ 𝛥𝑡𝑘), where 𝛥𝑡𝑖 is the time between the 𝑖th
mpact and the 𝑖 + 1st impact. Fig. 4 shows the analytical results for 1:1, indicating both symmetric and asymmetric 1:1 solutions.
Fig. 4 compares the analytical and numerical results for the relative impact velocity 𝑤̇𝑘 = 𝑥̇1,𝑘−𝑥̇2,𝑘 of the 1:1 solution by plotting

he bifurcation diagram for 𝑤̇𝑘 in terms of the parameter 𝐴. The numerically obtained bifurcation branches for 𝑤̇𝑘, indicated by red
nd blue dots, are obtained from a continuation-type method. That is, given a value 𝐴, the system (1)–(4) is run for a sufficiently long
ime to reach an attracting solution. This solution is then used as an initial condition for the solution at the next value of 𝐴, typically
hosen near the previous one. Then the numerical results in Fig. 4 indicate the relative impact velocity 𝑤̇𝑘 for the attracting or stable
ehavior. Fig. 4(a),(d) shows excellent agreement between the numerics and the stable 1:1 solutions determined analytically from
25)–(32). Note that the analytical results for the 1:1 solutions include both stable and unstable solutions, indicated by solid and
otted lines, respectively. Panels (b),(e) show sample stable periodic solutions in the phase plane for parameter combinations on
ither side of the bifurcations. Consistent with the bifurcations shown in Panels (a), (d), Panels (c),(f) show the eigenvalues for 1:1
olutions, providing conditions for the loss of stability of the 1:1 solution and shown in Section 4.2.

.2. Linear stability analysis

While the analyses above provide systems of equations for 1:1 solutions, we are not guaranteed that these solutions are stable.
uch information is desirable for predictability and sustained energy transfer. We provide a linear stability analysis for the periodic
8
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solutions, which indicates whether small deviations from the periodic behavior decay over time. We give the linear stability analysis
for the 1:1 solution, by considering a fixed point given by the vector 𝐒∗1∶1 = (𝐬∗1 , 𝐬

∗
2) of the map 𝑃2◦𝑃1, where 𝐬∗1 (𝐬

∗
2) gives the state

at impact on 𝐿 (𝑅). Then, we consider consecutive states at impact, such that

𝐬∗1 = 𝐬𝑘−1 = 𝑃2(𝑃1(𝐬𝑘−1)) = 𝐬𝑘+1, 𝑃1(𝐬∗1) = 𝐬∗2 = 𝐬𝑘, with 𝑡𝑘−1 = mod(𝑡𝑘+1, 𝑇 ), (33)

together with a small perturbation 𝛿𝐬𝑘−1 to 𝐬𝑘−1. Linearizing about 𝛿𝐬𝑗 = 0, for 𝑗 = 𝑘 − 1, 𝑘, 𝑘 + 1, and using the properties of 𝐬𝑘−1
and 𝐬𝑘 in (33), the equation for 𝛿𝐬𝑘+1, is

𝐬𝑘+1 + 𝛿𝐬𝑘+1 = 𝑃2(𝑃1(𝐬𝑘−1 + 𝛿𝐬𝑘−1)) ≈ 𝑃2(𝑃1(𝐬∗1) + 𝐽𝑃1 (𝐬
∗
1)𝛿𝐬𝑘−1)

≈ 𝑃2(𝑃1(𝐬∗1)) + 𝐽𝑃2 (𝐬𝑘)𝐽𝑃1 (𝐬
∗
1)𝛿𝐬𝑘−1 = 𝑃2(𝐬∗2) + 𝐽𝑃2 (𝐬

∗
2)𝐽𝑃1 (𝐬

∗
1)𝛿𝐬𝑘−1

⟹ 𝛿𝐬𝑘+1 ≈ 𝐽𝑃2 (𝐬
∗
2)𝐽𝑃1 (𝐬

∗
1)𝛿𝐬𝑘−1 (34)

where 𝐽𝑃1 , 𝐽𝑃2 are the Jacobian matrices of 𝑃1 and 𝑃2, respectively. Specifically, the 𝐽𝑃𝑗 are 4 × 4 matrices, whose entries are in
erms of four of the variables from 𝐬𝑘−𝑚+𝑗 for 𝑚 = 1, 2. This form follows from the definition of impact, that is, 𝑥1,𝑘 − 𝑥2,𝑘 = ±1, so
that 𝑥1,𝑘 is written in terms of 𝑥2,𝑘 to simplify some of the expressions. Then each 𝐽𝑃𝑗 takes the form

𝐽𝑃𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑥̇1,𝑘−1+𝑗
𝜕𝑥̇1,𝑘−2+𝑗

𝜕𝑥̇1,𝑘−1+𝑗
𝜕𝑥̇2,𝑘−2+𝑗

𝜕𝑥̇1,𝑘−1+𝑗
𝜕𝑥2,𝑘−2+𝑗

𝜕𝑥̇1,𝑘−1+𝑗
𝜕𝑡𝑘−2+𝑗

𝜕𝑥̇2,𝑘−1+𝑗
𝜕𝑥̇1,𝑘−2+𝑗

𝜕𝑥̇2,𝑘−1+𝑗
𝜕𝑥̇2,𝑘−2+𝑗

𝜕𝑥̇2,𝑘−1+𝑗
𝜕𝑥2,𝑘−2+𝑗

𝜕𝑥̇2,𝑘−1+𝑗
𝜕𝑡𝑘−2+𝑗

𝜕𝑥2,𝑘−1+𝑗
𝜕𝑥̇1,𝑘−2+𝑗

𝜕𝑥2,𝑘−1+𝑗
𝜕𝑥̇2,𝑘−2+𝑗

𝜕𝑥2,𝑘−1+𝑗
𝜕𝑥2,𝑘−2+𝑗

𝜕𝑥2,𝑘−1+𝑗
𝜕𝑡𝑘−2+𝑗

𝜕𝑡𝑘−1+𝑗
𝜕𝑥̇1,𝑘−2+𝑗

𝜕𝑡𝑘−1+𝑗
𝜕𝑥̇2,𝑘−2+𝑗

𝜕𝑡𝑘−1+𝑗
𝜕𝑥2,𝑘−2+𝑗

𝜕𝑡𝑘−1+𝑗
𝜕𝑡𝑘−2+𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (35)

he entries of the matrices can be computed via implicit differentiation of (17)–(20), and their expressions are given in Appendix.
or simplicity of computation here, we approximate the partial derivatives in (35) numerically, using a central difference
pproximation and small (≈1𝑒−4) change in the variable of differentiation.
Fig. 4(c) shows the magnitude of the eigenvalues of 𝐽𝑃2𝐽𝑃1 for the 1:1 symmetric solution. The four complex eigenvalues form 2

onjugate pairs for 𝐴 < 0.0172. At 𝐴 ≈ 0.0172, one of the conjugate pairs becomes real, and the magnitude of one of the eigenvalues
rows in magnitude with increasing 𝐴. Then |𝜆| > 1 for 𝐴 > 0.018. This corresponds to the saddle node bifurcation point 𝐵1,
ndicating the symmetry-breaking bifurcation as the symmetric 1:1 loses stability to the asymmetric 1:1 solution, consistent with
anels (a,b). Fig. 4(f) shows the magnitude of the eigenvalues of 𝐽𝑃2𝐽𝑃1 for the 1:1 asymmetric solution for 0.020 < 𝐴 < 0.0215. The
agnitude of the largest eigenvalue exceeds 1 (corresponding to 𝜆 < −1) at 𝐴 ≈ 0.0205, indicating a period doubling bifurcation
abeled 𝐵2, where the 1:1 solution loses stability to the 1:1/2𝑇 solution, consistent with Panels (d,e).

.3. Other periodic solutions

The composition of maps to describe different periodic systems is not limited to 1:1 behavior. As above, we can derive a system
f equations for other 𝑛: 𝑚 periodic solutions, by combining the maps 𝑃𝑗 from Section 3. We illustrate for a 2:1 periodic solution,
ollowing a similar procedure as above. We note that transitions from 1:1 to 2:1 solutions are typically associated with grazing
ifurcations, in which an additional zero relative velocity impact is included in the 1:1 trajectory [28]. We do not demonstrate
razing here, as a full analysis would consider non-smooth bifurcations such as grazing, and their interplay with smooth bifurcations
uch as fold or period doubling. However, the construction of exact solutions and their stability analysis given here provides the
oundation for future studies of both non-smooth and traditional (smooth) bifurcations in VI-NES-type frameworks.
The 2:1 behavior is captured by the composition 𝑃3◦𝑃2◦𝑃1, indicating the sequence 𝐿 → 𝑅 → 𝐿 → 𝐿 over one forcing period 𝑇 .

hen we determine the state variables 𝐬𝑗 for 𝑗 = 𝑘 − 1, 𝑘, 𝑘 + 1, and 𝑘 + 2, with the periodic conditions

𝑃3(𝑃2(𝑃1(𝐬𝑘−1))) = 𝐬𝑘+2 = 𝐬𝑘−1 𝑡𝑘+2 − 𝑡𝑘−1 = 𝑇

𝑃1(𝐬𝑘−1) = 𝐬𝑘, 𝑃2(𝐬𝑘) = 𝐬𝑘+1 , (36)

here, as above, equality for the 𝑡𝑘+2 and 𝑡𝑘−1 in 𝐬𝑘+2 = 𝐬𝑘−1 is in the mod 𝑇 sense, as indicated in (36). Then the system of equations
o be solved follows the same structure as above. The state variables 𝐬𝑘 and 𝐬𝑘+1 on 𝑅 and 𝐿 are obtained using (25)–(29) to get 𝐬𝑘,
hen calculating 𝐬𝑘+1 using 𝐬𝑘 on the right hand side of (30)–(31), with 𝑥𝑗,𝑘+1 and 𝑥̇𝑗,𝑘+1 replacing 𝑥𝑗,𝑘−1 and 𝑥̇𝑗,𝑘−1 in (29)–(31) for
= 1, 2. Then for the last pair of impacts on 𝐿 corresponding to 𝑃3, we have

𝑥1,𝑘−1 = (𝑡𝑘+1, 𝑡𝑘+2, 𝑥1,𝑘+1, 𝑥̇1,𝑘+1, 𝑥̇2,𝑘+1, 𝜑) (37)
𝑥̇1,𝑘−1 = (𝑡𝑘+1, 𝑡𝑘+2, 𝑥1,𝑘+1, 𝑥̇1,𝑘+1, 𝑥̇2,𝑘+1, 𝜑)

𝑥2,𝑘−1 = 𝑥2,𝑘+1 +
(

1 + 𝑟
1 + 𝜇

𝑥̇1,𝑘+1 +
𝜇 − 𝑟
1 + 𝜇

𝑥̇2,𝑘+1

)

⋅ (𝑡𝑘+1 − 𝑡𝑘)

𝑥̇2,𝑘−1 =
1 + 𝑟 𝑥̇1,𝑘+1 +

𝜇 − 𝑟
𝑥̇2,𝑘+1 (38)
9
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Fig. 5. Bifurcation diagram of 𝑤̇𝑘 vs. 𝐴 with 𝜇 = 0.01, 𝛺 = 1, and 𝑟 = 0.65, over a large range of 𝐴. Other parameters as in Table 1. Red and blue markers show
he relative impact velocity on 𝐿 and 𝑅, as obtained from numerical simulation. The individual markers are plotted with a low opacity, so that solid markers
ndicate regular repetition of those values, as in a stable periodic orbits, while light or blurry markers indicate irregular values, as in the chaotic behavior.
he blue and red solid (dotted) lines show the stable (unstable) 1:1 symmetric solution obtained analytically. The magenta and cyan solid (dotted) lines show
he stable (unstable) 1:1 asymmetric solution obtained analytically. The orange and green solid (dotted) lines show the stable (unstable) 2:1 solution obtained
nalytically. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Panels (a), (b): Bifurcation diagram of 𝑤̇𝑘 vs. 𝜇 with 𝐴 = 0.5, 𝛺 = 1; Panel (c): Bifurcation of 𝑤̇ vs. 𝛺 with 𝐴 = 0.8, 𝜇 = 0.2. In (a)–(c), red and blue
ots show the relative impact velocity on 𝐿 and 𝑅, respectively, as obtained from numerical simulation. In (b)–(c), red and blue (magenta and cyan) lines
how symmetric (asymmetric) 1:1 solutions. In (a), orange and green lines show analytical 2:1 solutions. Solid (dotted) lines show stable (unstable) analytical
olutions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

𝑥1,𝑘−1 − 𝑥2,𝑘−1 = −1 𝑡𝑘+2 = 𝑡𝑘−1 + 𝑇 . (39)

gain, without loss of generality, we take 𝑡𝑘−1 = 0 for a 𝑇 periodic solution. Instead of (32) we determine three intervals between
mpacts 𝛥𝑡𝑗 , 𝑗 = 𝑘 − 1, 𝑘, 𝑘 + 1, such that 𝛴𝑘+1

𝑗=𝑘−1𝛥𝑡𝑗 = 𝑇 .
Using the same approach to study the linear stability of the 2:1 periodic solution, we consider a fixed point 𝐒∗ = (𝐬∗1 , 𝐬

∗
2 , 𝐬

∗
3) for

the corresponding composition 𝑃3◦𝑃2◦𝑃1. Again we consider a corresponding periodic sequence (𝐬𝑘−1, 𝐬𝑘, 𝐬𝑘+1, 𝐬𝑘+2) = (𝐬∗1 , 𝐬
∗
2 , 𝐬

∗
3 , 𝐬

∗
1)

and derive an equation for the perturbations to this sequence,

𝐬𝑘+2 + 𝛿𝐬𝑘+2 = 𝑃3(𝑃2(𝑃1(𝐬𝑘−1 + 𝛿𝐬𝑘−1))) = 𝑃3(𝑃2(𝑃1(𝐬∗1 + 𝛿𝐬𝑘−1)))
≈ 𝑃3(𝑃2(𝑃1(𝐬∗1))) + 𝐽𝑃3 (𝐬𝑘+1)𝐽𝑃2 (𝐬𝑘)𝐽𝑃1 (𝐬

∗
1)𝛿𝐬𝑘−1

⟹ 𝛿𝐬𝑘+2 ≈ 𝐽𝑃3 (𝐬
∗
3)𝐽𝑃2 (𝐬

∗
2)𝐽𝑃1 (𝐬

∗
1)𝛿𝐬𝑘−1 . (40)

Analogous to the linear stability analysis above, the eigenvalues of the matrix 𝐽𝑃3𝐽𝑃2𝐽𝑃1 yield conditions for the linear stability of
he 2:1 periodic solutions, with 𝐽𝑃𝑗 taking the same form as in (35).

. Comparison to numerical simulations

Above we have demonstrated how the analytical solution can be obtained for different periodic behaviors in the VI-NES model
8)–(9). Since the analysis is based on an exact solution via semi-analytical calculations, it can be applied over a range of parameters
ithout any asymptotic limitations. The results also have implications for energy transfer, which we explore with a number of
ifferent measures.

.1. Bifurcation scenarios for 𝜇 = 𝑂(1) and |𝛺 − 1| = 𝑂(1)

In this section we compare the analytical and numerical results for 1:1 and 2:1 solutions over a range of parameters. Through this
10

omparison we demonstrate a number of important results for this approach. First, we observe that this approach accurately provides
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Fig. 7. Relative impact velocity on 𝐿 (red) and 𝑅 (blue) in (a)–(d) for (a) 𝜇 = 0.05, 𝐴 = 0.1; (b) 𝜇 = 0.2, 𝐴 = 0.2; (c) 𝜇 = 0.1, 𝐴 = 0.1; and (d) 𝜇 = 0.2, 𝐴 = 0.4. (e)
ax |𝑥1| for cases shown in (a) (orange dots) and (c) (green dots); (f) max |𝑥1| for cases shown in (b) (orange dots) and (d) (green dots);. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

he behavior over a large range of 𝜇, 𝐴 and 𝜔, demonstrating that the analysis is not limited to asymptotic regimes considered
reviously, such as 𝜇 ≪ 1 or 𝛺 ∼ 1. The good agreement indicates the advantage of our analysis for exploring different behaviors
ver a larger range of possible parameter values. Second, we see good agreement for different types of periodic solutions, and not
nly for 1:1 solutions. We also show agreement with stability results, from which we obtain information about transitions between
ifferent types of behavior. The advantage is that this analysis allows the study of a larger range of possible mechanisms for energy
ransfer.
In Fig. 5 we provide a ‘‘big picture’’ view of the bifurcation sequence for the relative impact velocity 𝑤̇𝑘 as a function of external

forcing 𝐴, in the case of 𝜇 ≪ 1 and 𝛺 = 1. There we compare the analytical results for 1:1 and 2:1 periodic solutions with the
numerically obtained attracting behavior for smaller values of 𝐴. This comparison shows excellent agreement with the stable 1:1
and 2:1 behavior, and the analysis correctly predicts the loss of stability for these different behaviors, as is demonstrated by the
change in line types. Additional sequences are shown for period doubling to apparently chaotic behavior and other periodic n:m
solutions. We do not construct them here, but rather focus below on larger 𝜇 and variation in 𝛺.

Likewise, for these parameter combinations, a grazing bifurcation from a period doubled 1:1 period solution to a 2:1 periodic
solution underlies the transition (for 𝐴 just above 0.02), illustrated in Fig. 5. These types of transitions have been studied in detail
for a vibro-impact energy harvester (VI-EH) in [28]. We do not pursue them here, given the complex sequences of smooth and
non-smooth bifurcations that must all be considered for such transitions. For example, the grazing bifurcation in Fig. 5 occurs on a
branch of unstable 1:1/𝑝𝑇 solutions, and must be determined by following the unstable branch to the point where 𝑤̇𝑘 = 0, which
is the definition of grazing. Based on the results of [28], the observed transition between 1:1/2𝑇 and 2:1 periodic solutions likely
occurs via a fold bifurcation that connects stable and unstable 2:1 solutions.

Fig. 6 provides a comparison of the analytical and stability results for 1:1 and 2:1 periodic solutions in cases where the small
mass 𝑚 is a larger percentage of 𝑀 , ranging over 40%–80%. Clearly this is not in the range of light absorption, but nevertheless
demonstrates the flexibility of the approach to consider a wide variety of scenarios for energy transfer. We also consider scenarios
where 𝛺 > 1, with larger external forcing (larger 𝐴) in all cases. Once again we see good agreement between the attracting 1:1 and
11
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Fig. 8. Panels (a)–(c): 𝐾2∕𝐾1 (diamonds) and max |𝑥1| (×) vs. 𝜇 for three different values of 𝐴: 𝐴 = .03 (red), 𝐴 = .1 (green), 𝐴 = .3 (blue), and three different
values of 𝑟 as indicated. Panel (d) provides a zoom-in view for 𝐴 = .03 as in (a)–(c) for 𝑟 = 0.3 (red), 𝑟 = 0.65 (black), and for 𝑟 = 0.9 (blue). For all plots 𝛺 = 1.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2:1 solutions, as well as the stability analysis capturing symmetry breaking bifurcations and period doubling bifurcations. These
results indicate that the 1:1 or other regular periodic solutions are not limited to regions near 𝛺 = 1, but rather are observed
for other values of 𝛺, where the ratio of the forcing frequency to natural frequency is away from unity. In these scenarios it is
necessary to analyze a range of forcing frequencies away from the natural frequency, for identifying the best options for increased
energy transfer.

Fig. 7 shows 𝑤̇𝑘 vs. a range of 𝛺, for different combinations of 𝜇 and 𝐴. These figures illustrate different regions where periodic
and chaotic behaviors occur; for example, for larger 𝐴, the 1:1 periodic behavior is shifted to larger values of 𝛺 > 1, as shown in
Panel (d). Likewise for smaller values of 𝐴 there are 1:1 solutions that extend for 𝛺 < 1, as in Panels (a)–(b). There also appear to
be more complex, yet periodic behaviors that occur near 𝛺 = 1; while we do not analyze them here, they are potential candidates
for the map-based analysis used above. The graphs of max |𝑥1| in Panels (e)–(f) illustrate that the 1:1 behavior tends to reduce
his particular energy measure. Comparing these graphs with the corresponding bifurcation plots above them, we observe that, for
ertain parameter combinations, other types of behavior can yield similar results for max |𝑥1| as that observed for 1:1 behavior.

. Energy measures

In Figs. 8 and 9 we show results for the energy measures max |𝑥1| and the ratio of the kinetic energies of the small to the
large mass, 𝐾2∕𝐾1 (11). These measures are shown for different values of 𝜇 = 𝑚∕𝑀 , 𝐴 and 𝛺. While we leave for future study
comprehensive study of the energy transfer for different types of periodic behavior, these examples illustrate both the influence
f different types of periodic solutions on energy transfer and the large parameter ranges over which those differences can be
bserved. Thus, the analytical results for the appearance and stability of these different behaviors can provide a more complete
icture of options for efficient energy transfer.
The graphs illustrate parameter ranges with desirable behavior in energy transfer, that is, larger 𝐾2∕𝐾1 and small max |𝑥1|, in

ontrast to other regions where 𝐾2∕𝐾1 is small and/or max |𝑥1| is larger. These regions are of course dependent on the forcing
mplitude 𝐴, and the relative size of 𝜇, as well as on 𝛺. The response also depends on 𝑟, with the variation increasing with 𝑟, as
bserved from the ranges on the vertical axes.
Fig. 8 illustrates how these measures change with 𝜇 for fixed 𝐴 and 𝛺. While increasing 𝜇 tends to limit max |𝑥1|, 𝐾2∕𝐾1, does

ot increase monotonically with 𝜇, instead showing pronounced peaks at certain values. This is due to the change in underlying
12

ehavior that may or may not promote large 𝐾2∕𝐾1. The location of the peak depends on the relative size of 𝐴 and 𝜇, which can
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f

Fig. 9. 𝐾2∕𝐾1 (diamonds) and max |𝑥1| (×) for different parameter combinations, with 𝑟 = 0.3, 𝑟 = 0.65, 𝑟 = 0.9 and 𝛺 = 1. Left column: Energy measures vs. 𝐴
or different values of 𝜇: 𝜇 = .03 (red), 𝜇 = .2 (blue). Right column: Energy measures vs. 𝛺 for two different combinations of 𝜇 and 𝐴: 𝜇 = .05, 𝐴 = .1 (red),
𝜇 = .2, 𝐴 = .15 (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

be observed, for example, for 𝑟 = 0.65 in Fig. 8(b); i.e., peaks in 𝐾2∕𝐾1 corresponding to smaller 𝐴 values, appear at smaller 𝜇
values (see also Fig. 8(d) for zoom-ins on smaller 𝜇.). Both Figs. 8 and 9 (left column) confirm that small values of 𝜇 do not provide
effective TET at relatively large excitation amplitudes 𝐴; rather for larger 𝐴, a larger 𝜇 is needed. Changing 𝑟 influences the height
of the peaks without shifting their locations.

Fig. 9 (right column) demonstrates that the optimal TET does not necessarily occur near 𝛺 = 1, depending on the values of 𝐴
and 𝜇. This follows from the fact that the optimal periodic 1:1 behavior may occur for other values of 𝛺, as observed in Fig. 7,
and discussed further in the context of that figure. For smaller values of 𝑟, max |𝑥1| has a peak for the values 𝜇 = 0.05, 𝐴 = 0.1
(red crosses), with limited 𝐾2∕𝐾1, whereas for larger values of 𝜇 and 𝐴 the energy transfer is more efficient (larger 𝐾2∕𝐾1, smaller
max |𝑥1|). At the same time, on an absolute scale, for the larger 𝑟 values the energy dissipation due to impact (shown by red crosses)
has been reduced while the peak of 𝐾 ∕𝐾 increases.
13
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Fig. 10. Phase planes (left column) for relative displacement 𝑤 and velocity 𝑤̇ and corresponding time series (right column) for 𝑥1 ± 𝑏 (blue) and 𝑥2 (red)
illustrating behavior for different energy levels as shown in Fig. 8(b) for 𝑟 = 0.65. Results shown for 𝐴 = 0.3 and 𝛺 = 1, with the 1:1 behavior at the peak of
𝐾2∕𝐾1 shown in (a) 𝜇 = 0.4, and other 1:1 behavior for (b) 𝜇 = 0.45, with smaller 𝐾2∕𝐾1. Behavior for even smaller 𝐾2∕𝐾1 include 2:1 solutions at (c) 𝜇 = 0.24,
and (d) complex dynamics at 𝜇 = 0.6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10 shows the time series and phase planes for different values of 𝜇 with 𝐴 = 0.3, 𝑟 = 0.65, and 𝛺 = 1, illustrating the different
olutions corresponding to the different energy transfer measures shown in Fig. 8(b). The four rows show four different behaviors,
ncluding at and nearby the value of 𝜇 yielding the 𝐾2∕𝐾1 peak in Fig. 8(b) for 𝐴 = 0.3. Fig. 10(a) shows the periodic 1:1 solution
t which there is a maximum in 𝐾2∕𝐾1 and the corresponding minimum of max |𝑥1|, as achieved at 𝜇 ≈ 0.4. In that case the impact
hase is optimal, with impacts near the peaks of the oscillation of the LO, as the ball is moving in the opposite direction, yielding
arger relative impact velocities. Panel (b) shows another 1:1 solution for slightly larger 𝜇, for which the impact occurs at the peak
f oscillation of the LO, yielding an impact phase with reduced efficiency. There the LO has slowed down, thus yielding a smaller
elative impact velocity when impacting the ball. We contrast this behavior with the 2:1 behavior shown in Panel (c) for smaller
, where, for each cycle, the first impact on the left of the cavity occurs when the ball and LO are moving in the same direction,
ollowed by a second impact on the left with low relative impact velocity. For the 2:1 behavior, both types of energy measures are
imited, which may be beneficial when trying to control |𝑥1|. Panel (d) shows another complex behavior for larger 𝜇, which has
similar energy measure levels as the 2:1 behavior. Thus these example illustrate that not only the type of periodic solution but also
its impact phase are important features contributing to efficient energy transfer.

For Fig. 11, the top and bottom rows correspond to the same parameter values, but different energy transfer as shown in Fig. 9(d)
for 𝛺 ≈ 1.17, 𝐴 = 0.1, 𝜇 = 0.05. Following the branch of red diamonds (𝐾2∕𝐾1) for 𝛺 increasing up to 𝛺 ≈ 1.17, we trace a branch
of 1:1 solutions with larger 𝐾2∕𝐾1, whose dynamics are illustrated in the top row of Fig. 11. In contrast, following the solutions
corresponding to 𝛺 decreasing down to 𝛺 ≈ 1.17, we trace chaotic solutions as shown in the bottom row of Fig. 11, with a lower
𝐾2∕𝐾1 (larger max |𝑥1|) in Fig. 9(d) as compared to that of the 1:1 solution. Then these two simulations illustrate bi-stability for these
two types of solutions, each dependent on specific initial conditions. The examples shown in Figs. 10–11 illustrate that different types
of periodic solutions yield a range of options for energy transfer, motivating future investigation that relies on analytical results.
For example, optimizing impact phase and operating near parameter regions with bi-stability requires a careful understanding of
14

the dynamical behavior, in order to achieve efficient energy transfer.
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Fig. 11. Phase planes (left column) for relative displacement 𝑤 and velocity 𝑤̇ and corresponding time series (right column) for 𝑥1 ± 𝑏 (blue) and 𝑥2 (red)
illustrating behavior for different energy levels as shown in Fig. 9(b) for 𝑟 = 0.65, 𝐴 = .1, 𝜇 = .05, and 𝛺 ≈ 1.17. The top row shows 1:1 behavior, with initial
condition at a stable 1:1 behavior for 𝛺 < 1.17 (larger 𝐾2∕𝐾1); in contrast, the bottom row shows complex behavior, with initial condition at chaotic behavior
for 𝛺 > 1.17 (lower 𝐾2∕𝐾1). These two results illustrate bi-stability of two different behaviors, with different energy transfer properties. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

7. Conclusion and future directions

We consider a model of a vibro-impact nonlinear energy sink (VI-NES), where energy transfer from an externally forced main
mass to a small mass is achieved via impacts. A ball, the smaller mass, moves within a cavity of the larger mass, with the impacts
on either end of the cavity potentially limiting the oscillations of the larger system. While a simple periodic behavior, with two
alternating impacts on either end of the cavity occurring during one forcing period, has been observed as an efficient behavior
for this energy transfer, a systematic treatment of the full range of parameters is required in order to understand and predict the
beneficial states across all possible scenarios. Starting with a map-based approach, recently used for an inclined impact pair model
without energy transfer from the main mass to ball, we develop a new approach for the setting where there is such energy transfer.
This approach allows us to capture the exact dynamics of the VI-NES system without restricting the range of parameters, in contrast
to other recent work in which an approximate reduced model is valid only for small mass of the ball, small amplitude, and a limited
forcing frequency range. The map-based approach yields analytical results for different types of periodic solutions for all ratios of
the two masses, forcing amplitudes, and ratios of forcing frequencies to the natural frequency of the main mass. Since the maps are
applicable for any combination of impact sequences, the construction allows a flexible consideration of different types of periodic
solutions with any possible impact sequences in the full two DoF model of VI-NES. The analytical results provide the physically
important characteristics of these solutions, including the impact phase and the relatively impact velocities.

The map-based construction is the basis for the bifurcation analysis for the full VI-NES system, providing both exact solutions and
linear stability analyses for the various possible periodic dynamics. For example, here we provide results for 1:1 and 2:1 periodic
solutions, indicating parametric conditions that lead to grazing bifurcations with zero relative impact velocity. The results then
motivate future studies that explore the interplay of non-smooth (such as grazing) and classical (such as period doubling and fold)
bifurcations, together with their observability and implications. The analytical treatment above mirrors that in [32] for the relative
dynamics of a vibro-impact energy harvester (VI-EH). Furthermore, the recent study [28] of the complex interplay of bifurcations for
the general impact pair provides a road-map for understanding sequences of different bifurcations within VI-NES. As shown in this
paper, in the VI-NES context the analysis must be generalized to handle the maps in terms of the absolute dynamics of both the small
and large masses. Treating this larger system is necessary for capturing the feedback between the masses at impact. The method does
not depend on limitations on the parameter ranges, as demonstrated by the excellent agreement between the analytical results for
15
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different periodic solutions and numerical simulations over parameter ranges with 𝑂(1) mass of the ball, forcing frequencies that are
not the same as the natural frequency, and large amplitude forcing. Preliminary calculations also point to routes to (near)-sticking
behavior for combinations of larger forcing amplitude and larger mass. The analysis presented here can predict the sequences of
bifurcations to n:1 behavior, where the impact phase and frequency ratio 𝛺 ≠ 1 play important roles in the energy transfer.

While not the main focus of this study, a variety of examples are provided that show how different periodic behavior influences
two energy measures, the maximum amplitude of the main mass oscillations, and the ratio of average kinetic energies of the two
masses. These examples highlight the significance of different types of periodic behavior in energy transfer, which depend on key
features such as the impact phase, sequence and number of impacts per forcing period, and stability and bi-stability of competing
behaviors. The examples also illustrate scenarios where the desirability of different combinations of parameters may vary with the
primary goal of energy transfer, e.g. limiting the oscillations of the main mass, increasing the transfer between the masses, or other
priorities that may be captured by other energy measures.

Regardless of the primary goal, the necessary features are directly obtained from analytical results, which then can be used to
identify optimal parameter settings. The analytical approach is a foundation for a future systematic study of the energy transfer
efficiency of a variety of behaviors in the VI-NES system. The results here provide the opportunity to compare experiments with
analytical predictions for optimal design over parameter ranges outside of those studied in the asymptotic regime focused on 𝜇 ≪ 1,
𝛺 ≈ 1 and small forcing amplitude, as in e.g. [17,22] and other previous work. An experimental rig is being developed at ISVR,
University of Southampton, to conduct the experiments and their results will be reported in our next publication.

Other future directions include integration of the exact approach of this paper to study systems with combined VI-NES and
classical NES, motivated by recent studies that seek to combine the advantages of both. For example, this is particularly attractive in
considering different configurations, such as using VI-NES and classical NES in parallel, for which the numerical simulations in [25]
show substantial reduction in displacement of the LO as compared with classical NES or VI-NES alone. In contrast, [26,27] both
choose a different design, a classical cubic NES within bilateral barriers. The impacts yield opportunities for additional broadband
TET efficiency, given an appropriate range of barrier gap size. As with previous multiple scale approaches, the analyses based on slow
modulations in [25,26], and [27] are limited in parameter range and types of phenomena. Furthermore [27] shows that 2:1-type
solutions can also occur for the cubic NES with barrier impacts, also noting that previous slow modulation asymptotic approaches
cannot capture this behavior. In addition, we expect that the development of a novel global stability analysis, on-going work in the
general impact pair and VI-EH settings, will be valuable for future study of VI-NES in stochastic settings.
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Appendix. The Jacobian matrix

Complementary to the semi-analytical approximation to the Jacobian matrices in Section 4.2, they can be obtained analytically
using implicit differentiation. Considering (25)–(28), we demonstrate the steps in this process for the entries 𝜕𝑦̇𝑗,𝑘

𝜕𝑧𝑘−1
, for 𝑦, 𝑧 =

𝑥̇1, 𝑥2, 𝑥̇2, 𝑡.
From (28), we obtain immediately

𝜕𝑥̇2,𝑘
𝜕𝑥̇2,𝑘−1

=
𝜇 − 𝑟
1 + 𝜇

𝜕𝑥̇2,𝑘
𝜕𝑥̇1,𝑘−1

= 1 + 𝑟
1 + 𝜇

𝜕𝑥̇2,𝑘
𝜕𝑥2,𝑘−1

=
𝜕𝑥̇2,𝑘
𝜕𝑡𝑘−1

= 0 . (A.1)

From (25) and (27) we obtain coupled equations for the derivatives of 𝑡𝑘 and 𝑥2,𝑘−1 in (35). First, from (27)

𝜕𝑥2,𝑘
𝜕𝑡𝑘−1

= (𝑥̇1,𝑘−1, 𝑥̇2,𝑘−1)
( 𝜕𝑡𝑘
𝜕𝑡𝑘−1

− 1
)

, (A.2)

𝜕𝑥2,𝑘
𝜕𝑥̇1,𝑘−1

= 1 + 𝑟
1 + 𝜇

(𝑡𝑘 − 𝑡𝑘−1) +
𝜕𝑡𝑘

𝜕𝑥̇1,𝑘−1
(𝑥̇1,𝑘−1, 𝑥̇2,𝑘−1)

𝜕𝑥2,𝑘
𝜕𝑥̇2,𝑘−1

=
𝜇 − 𝑟
1 + 𝜇

(𝑡𝑘 − 𝑡𝑘−1) +
𝜕𝑡𝑘

𝜕𝑥̇2,𝑘−1
(𝑥̇1,𝑘−1, 𝑥̇2,𝑘−1)

𝜕𝑥2,𝑘 = 1 +
𝜕𝑡𝑘 (𝑥̇1,𝑘−1, 𝑥̇2,𝑘−1), (𝑥̇1,𝑘−1, 𝑥̇2,𝑘−1) =

( 1 + 𝑟 𝑥̇1,𝑘−1 +
𝜇 − 𝑟

𝑥̇2,𝑘−1
)

.
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Then from (25), using 𝑥1,𝑘 = 𝑥2,𝑘 ± 1 we have
𝜕𝑥2,𝑘
𝜕𝑧𝑘−1

=
𝜕𝑡𝑘

𝜕𝑧𝑘−1
ℎ(𝑡𝑘) + 𝑒−𝜆𝑡𝑘∕2 sin(𝛾𝑡𝑘)

𝜕𝑎1
𝜕𝑧𝑘−1

+ 𝑒−𝜆𝑡𝑘∕2 cos(𝛾𝑡𝑘)
𝜕𝑎2
𝜕𝑧𝑘−1

, (A.3)

for 𝑧𝑘−1 replaced by 𝑡𝑘−1, 𝑥2,𝑘−1, 𝑥̇2,𝑘−1, 𝑥̇1,𝑘−1 and

ℎ(𝑡𝑘) = 𝑒−𝜆𝑡𝑘∕2
2𝛾𝑎1 − 𝜆𝑎2

2
cos(𝛾𝑡𝑘)

− 𝑒−𝜆𝑡𝑘∕2
𝜆𝑎1 + 2𝛾𝑎2

2
sin(𝛾𝑡𝑘) + 𝑏1𝛺 cos(𝛺𝑡𝑘 + 𝜑) − 𝑏2𝛺 sin(𝛺𝑡𝑘 + 𝜑). (A.4)

From (25) and (26) we obtain coupled equations for the derivatives of 𝑡𝑘 and 𝑥̇1,𝑘 in (35). From (26) we have
𝜕𝑥̇1,𝑘
𝜕𝑡𝑘−1

=
𝜕𝑡𝑘
𝜕𝑡𝑘−1

𝑗3(𝑡𝑘) +
𝜕𝑎1
𝜕𝑡𝑘−1

𝑗1(𝑡𝑘) +
𝜕𝑎2
𝜕𝑡𝑘−1

𝑗2(𝑡𝑘)

𝜕𝑥̇1,𝑘
𝜕𝑥2,𝑘−1

=
𝜕𝑡𝑘

𝜕𝑥2,𝑘−1
𝑗3(𝑡𝑘) +

𝜕𝑎1
𝜕𝑥2,𝑘−1

𝑗1(𝑡𝑘) +
𝜕𝑎2

𝜕𝑥2,𝑘−1
𝑗2(𝑡𝑘)

𝜕𝑥̇1,𝑘
𝜕𝑥̇2,𝑘−1

=
𝜕𝑡𝑘

𝜕𝑥̇2,𝑘−1
𝑗3(𝑡𝑘) +

𝜕𝑎1
𝜕𝑥̇2,𝑘−1

𝑗1(𝑡𝑘) +
𝜕𝑎2

𝜕𝑥̇2,𝑘−1
𝑗2(𝑡𝑘)

𝜕𝑥̇1,𝑘
𝜕𝑥̇1,𝑘−1

=
𝜕𝑡𝑘

𝜕𝑥̇1,𝑘−1
𝑗3(𝑡𝑘) +

𝜕𝑎1
𝜕𝑥̇1,𝑘−1

𝑗1(𝑡𝑘) +
𝜕𝑎2

𝜕𝑥̇1,𝑘−1
𝑗2(𝑡𝑘) , (A.5)

and

𝑗1(𝑡𝑘) = −𝜆
2

𝑒−𝜆𝑡𝑘∕2 sin(𝛾𝑡𝑘) + 𝛾𝑒−𝜆𝑡𝑘∕2 cos(𝛾𝑡𝑘)

𝑗2(𝑡𝑘) = −𝜆
2

𝑒−𝜆𝑡𝑘∕2 cos(𝛾𝑡𝑘) − 𝛾𝑒−𝜆𝑡𝑘∕2 sin(𝛾𝑡𝑘)

𝑗3(𝑡𝑘) =
𝑎1𝜆2 − 4𝑎1𝛾2 + 4𝑎2𝜆𝛾

4
𝑒−𝜆𝑡𝑘∕2 sin(𝛾𝑡𝑘) +

2𝑎1𝛾𝜆 − 2𝑎1𝜆𝛾 + 𝑎2𝜆2 − 4𝑎2𝛾2

4
𝑒−𝜆𝑡𝑘∕2 cos(𝛾𝑡𝑘)

− 𝑏1𝛺
2 sin(𝛺𝑡𝑘 + 𝜑) − 𝑏2𝛺

2 cos(𝛺𝑡𝑘 + 𝜑). (A.6)

From (21) we give simplified expressions for 𝑎1,𝑘−1 and 𝑎2,𝑘−1, and drop the subscript 𝑘−1 for the remainder of these calculations

𝑎1 =
𝑒𝜆𝑡𝑘−1
−𝛾

(

[−𝜆
2

cos(𝛾𝑡𝑘−1) − 𝛾 sin(𝛾𝑡𝑘−1)][𝑥1,𝑘−1 − 𝑏1 sin(𝛺𝑡𝑘−1 + 𝜑) + 𝑏2 cos(𝛺𝑡𝑘−1 + 𝜑)] −

cos(𝛾𝑡𝑘−1)[
1 − 𝑟𝜇
1 + 𝜇

𝑥̇1,𝑘−1 +
𝑟𝜇 + 𝜇
1 + 𝜇

𝑥̇2,𝑘−1 − 𝑏1𝛺 cos(𝛺𝑡𝑘−1 + 𝜑) − 𝑏2𝛺 sin(𝛺𝑡𝑘−1 + 𝜑)]
)

(A.7)

𝑎2 =
𝑒𝜆𝑡𝑘−1
−𝛾

(

[𝜆
2
sin(𝛾𝑡𝑘−1) − 𝛾 cos(𝛾𝑡𝑘−1)][𝑥1,𝑘−1 − 𝑏1 sin(𝛺𝑡𝑘−1 + 𝜑) + 𝑏2 cos(𝛺𝑡𝑘−1 + 𝜑)] +

sin(𝛾𝑡𝑘−1)[
1 − 𝑟𝜇
1 + 𝜇

𝑥̇1,𝑘−1 +
𝑟𝜇 + 𝜇
1 + 𝜇

𝑥̇2,𝑘−1 − 𝑏1𝛺 cos(𝛺𝑡𝑘−1 + 𝜑) − 𝑏2𝛺 sin(𝛺𝑡𝑘−1 + 𝜑)]
)

. (A.8)

We differentiate 𝑎1,𝑘−1 and 𝑎2,𝑘−1 with respect to 𝑥̇1,𝑘−1 𝑥̇2,𝑘−1, 𝑥2,𝑘−1
𝜕𝑎1

𝜕𝑥̇1,𝑘−1
= 𝑒𝜆𝑡𝑘−1

𝛾
⋅
1 − 𝑟𝜇
1 + 𝜇

(cos(𝛾𝑡𝑘−1))
𝜕𝑎2

𝜕𝑥̇1,𝑘−1
= 𝑒𝜆𝑡𝑘−1

−𝛾
⋅
1 − 𝑟𝜇
1 + 𝜇

(sin(𝛾𝑡𝑘−1)) (A.9)

𝜕𝑎1
𝜕𝑥̇2,𝑘−1

= 𝑒𝜆𝑡𝑘−1
𝛾

⋅
𝑟𝜇 + 𝜇
1 + 𝜇

(cos(𝛾𝑡𝑘−1))
𝜕𝑎2

𝜕𝑥̇2,𝑘−1
= 𝑒𝜆𝑡𝑘−1

−𝛾
⋅
𝑟𝜇 + 𝜇
1 + 𝜇

(sin(𝛾𝑡𝑘−1))

𝜕𝑎1
𝜕𝑥2,𝑘−1

= 𝑒𝜆𝑡𝑘−1 [sin(𝛾𝑡𝑘−1) +
𝜆
2𝛾

cos(𝛾𝑡𝑘−1)]
𝜕𝑎2

𝜕𝑥2,𝑘−1
= 𝑒𝜆𝑡𝑘−1 [cos(𝛾𝑡𝑘−1) −

𝜆
2𝛾

cos(𝛾𝑡𝑘−1)] ,

and also with respect to 𝑡𝑘−1,
𝜕𝑎1
𝜕𝑡𝑘−1

= 𝜆𝑎1 +
𝑒𝜆𝑡𝑘−1
−𝛾

(

[−𝜆
2

cos(𝛾𝑡𝑘−1) − 𝛾 sin(𝛾𝑡𝑘−1)] ⋅

[
𝜕𝑥1,𝑘−1
𝜕𝑡𝑘−1

− 𝑏1𝛺 cos(𝛺𝑡𝑘−1 + 𝜑) − 𝑏2𝛺 sin(𝛺𝑡𝑘−1 + 𝜑)]

+ [
𝜆𝛾
2

sin(𝛾𝑡𝑘−1) − 𝛾2 cos(𝛾𝑡𝑘−1)][𝑥1,𝑘−1 − 𝑏1 sin(𝛺𝑡𝑘−1 + 𝜑) + 𝑏2 cos(𝛺𝑡𝑘−1 + 𝜑)]

+ 𝛾 sin(𝛾𝑡𝑘−1)[
1 − 𝑟𝜇
1 + 𝜇

𝑥̇1,𝑘−1 +
𝑟𝜇 + 𝜇
1 + 𝜇

𝑥̇2,𝑘−1 − 𝑏1𝛺 cos(𝛺𝑡𝑘−1 + 𝜑) − 𝑏2𝛺 sin(𝛺𝑡𝑘−1 + 𝜑)]

− cos(𝛾𝑡𝑘−1)[𝑏1𝛺2 sin(𝛺𝑡𝑘−1 + 𝜑) − 𝑏2𝛺
2 cos(𝛺𝑡𝑘−1 + 𝜑)]

)

𝜕𝑎2
𝜕𝑡𝑘−1

= 𝜆𝑎2 +
𝑒𝜆𝑡𝑘−1
−𝛾

(

[−𝜆
2

cos(𝛾𝑡𝑘−1) − 𝛾 sin(𝛾𝑡𝑘−1)] ⋅

[
𝜕𝑥1,𝑘−1 − 𝑏1𝛺 cos(𝛺𝑡𝑘−1 + 𝜑) − 𝑏2𝛺 sin(𝛺𝑡𝑘−1 + 𝜑)]
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𝜕𝑡𝑘−1



Mechanical Systems and Signal Processing 191 (2023) 110158R. Liu et al.

R

+ [
𝜆𝛾
2

sin(𝛾𝑡𝑘−1) − 𝛾2 cos(𝛾𝑡𝑘−1)][𝑥1,𝑘−1 − 𝑏1 sin(𝛺𝑡𝑘−1 + 𝜑) + 𝑏2 cos(𝛺𝑡𝑘−1 + 𝜑)]

+ 𝛾 sin(𝛾𝑡𝑘−1)[
1 − 𝑟𝜇
1 + 𝜇

𝑥̇1,𝑘−1 +
𝑟𝜇 + 𝜇
1 + 𝜇

𝑥̇2,𝑘−1 − 𝑏1𝛺 cos(𝛺𝑡𝑘−1 + 𝜑) − 𝑏2𝛺 sin(𝛺𝑡𝑘−1 + 𝜑)]

− cos(𝛾𝑡𝑘−1)[𝑏1𝛺2 sin(𝛺𝑡𝑘−1 + 𝜑) − 𝑏2𝛺
2 cos(𝛺𝑡𝑘−1 + 𝜑)]

)

. (A.10)
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