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a b s t r a c t

In this work we introduce a novel methodological treatment of the numerical path integration method,
used for computing the response probability density function of stochastic dynamical systems. The
method is greatly accelerated by transforming the corresponding Chapman-Kolmogorov equation to a
matrix multiplication. With a systematic formulation we split the numerical solution of the Chapman-
Kolmogorov equation into three separate parts: we interpolate the probability density function, we
approximate the transitional probability density function of the process and evaluate the integral in
the Chapman-Kolmogorov equation. We provide a thorough error and efficiency analysis through numer-
ical experiments on a one, two, three and four dimensional problem. By comparing the results obtained
through the Path Integration method with analytical solutions and with previous formulations of the
path integration method, we demonstrate the superior ability of this formulation to provide accurate
results. Potential bottlenecks are identified and a discussion is provided on how to address them.
! 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The probability density function (PDF) is an important charac-
teristic of the response statistics of dynamical systems to random
effects. Through the time evolution or the steady-state of the
response PDF of these dynamical systems we can investigate vari-
ous phenomena in a wide range of application areas, including
engineering, finance, physical and life sciences. By obtaining a
response PDF, one can predict important future characteristics of
the dynamic system, such as nth order moments and reliability,
and can improve decision making process, where appropriate.
The use of stochastic differential equations (SDEs), where the
described phenomenon is governed by established laws, is a con-
cise and efficient tool for the description and the quantitative mod-
elling of such systems.

In the case of utilising SDEs to analyse stochastic dynamics,
there are well established methods to obtain the PDF of the state
variables, such as using the Monte-Carlo (MC) method, or solving
the corresponding Fokker–Planck equation. During the MC method
we use path-wise approximations obtained through the numerical
integration of the SDE. As it is a stochastic approach, usually we

need a large number of approximated realisations to obtain a good
approximation for the PDF. The advantage of this method is its rel-
ative simplicity and that it can be generalised for a large set of
problem classes. However, due to the stochastic nature of the MC
method, we might need a large number of sample paths to prop-
erly characterise the statistics of the investigated system, and some
uncertainty may still remain in the results. Alternatively, in using
the Fokker–Planck equation we have to solve a partial differential
equation to obtain the response PDF. In general, there is no explicit
analytical solution for this equation, except for a small number of
special cases, thus requiring a numerical approximation, such as
finite element [4,22] or finite difference [27] methods. The main
advantage of this approach over the MC method is that the results
are deterministic, and as such, it is free from the perturbations that
stochastic simulations introduce. However, due to conditions on
continuity the Fokker–Planck equation does not generalise to cer-
tain non-smooth settings, such as time-varying impacts.

In this paper we develop a novel approach within the path inte-
gral (PI) formulation, to track the PDF time evolution of the solu-
tion of an SDE. It is based on the law of total probability
captured by the Chapman-Kolmogorov (CK) equation. An essential
component of the CK equation is the evaluation of an integral
involving the transitional PDF (TPDF), that describes the transition
from one state to another over a time interval. Since the exact TPDF
is not available in most cases, this has to be approximated. One
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possible approach to estimate the TPDF is a generalised cell map-
ping (GCM), where the region of interest is divided into cells, and
the probability of moving from one cell to another is computed
through MC simulations [15,30]. This method generalises well for
a wide range of systems, but it introduces stochastic perturbations.
Another approach, the Wiener Path Integral method, uses a varia-
tional formulation and the most probable path to approximate the
TPDF [14,13,23,26]. The difficulty of this method is that it requires
a Lagrangian functional that must be determined for each individ-
ual case, so that it has been applied to only a limited number of
specific systems. The difficulty of this method is that it requires
the solution of a boundary value problem corresponding to a
Lagrangian functional that must be determined for each type of
sytem that one wants to analyise. However, when the Lagrangian
functional is available, this method is efficient at approximating
the TPDF and thus can be used directly to determine the steady
state PDF. This has been shown for number of engineering mechan-
ics systems exhibiting diverse nonlinear, hysteretic behaviors [24],
even with fractional derivative terms [25]. An approach that bal-
ances generalisability and efficiency uses the PDF of an explicit
numerical time step to approximate the TPDF, thus removing the
need for discrete cells and the negative effects of the stochastic
perturbations in the GCM, while utilizing the straightforward
determination of the PDF for a large number of system classes,
including non-smooth dynamical systems. Hence this method is
used in numerous implementations of the PI method, as well as
in this work.

Most formulations of the numerical evaluation of PI solutions to
the Chapman-Kolmogorov equations lead to a computationally
expensive iterative method [2,5,6,19–21], where the integral in
the CK is evaluated directly while using an interpolation for the
spatial discretisation of the PDF. Recently there were two major
efforts in order to reduce the computation time of the iterations
within a PI formulation. One approach uses GPUs [2,8] to evaluate
an iteration, greatly increasing the performance of the method as it
is a highly parallelisable task without restrictions on the problem
investigated by this approach. The other approach reduced the
computational cost of the calculations by an order of magnitude
by reformulating the CK equation as a convolution and using FFT
to transform that convolution to a matrix multiplication [9,10,17]
in the Fourier space. However, there are a few restrictions with this
FFT-based approach: one can apply it to systems subjected to addi-
tive noise excitation only, and it also requires that the response
PDF is well described in the Fourier space. Furthermore, the previ-
ous formulations coupled the discretisation of the PDF and the
evaluation of the integral in the CK equation, resulting in inefficient
sampling of the TPDF and restrictive dependencies between the
spatial and temporal resolutions. Related limitations are observed
in the FFT-based method, which is compatible with resolutions
that are powers of two, namely N ¼ 2m;m 2 Nþ.

In this work we propose a new systematic formulation of the PI
approach, the Step Matrix Multiplication PI method (SMM-PI). We
transform the CK equation to a matrix multiplication, without the
restrictions of the FFT-based approach. This is especially useful in
the case of time-invariant systems, since then the matrix corre-
sponding to the CK equation is computed only once and then used
iteratively to advance the response PDF in time. An additional
advantage is that there are no restrictions on the types of SDE sys-
tems that can be investigated within this formulation, since it
maintains the general structure of the original PI method. Thus it
can be used for a wide range of problem classes, such as systems
with parametric noise or non-smooth systems. Several advantages
follow from our formulation of SMM-PI, where the numerical solu-
tion of the CK equation is separated into three main tasks: interpo-
lation of the PDF, approximation of the TPDF of the process and

evaluation of the integral of the CK equation. This structure allows
the efficient treatment of each of these computations as well as the
flexibility to incorporate different interpolation and approximation
methods for improved performance, depending on the problem.
The approach also lends itself to straightforward application of fur-
ther efficiencies, such as parallelisation. We conduct, for the first
time, a systematic error and computational cost analysis of the PI
method through numerical experiments on one, two, three and a
four dimensional problems by comparing the results obtained
through the PI method against analytical solutions. This provides
a clear understanding of the improvements that can increase the
performance and efficiency of the method. As previous studies of
the PI-based methods did not include a detailed discussion of the
error and performance of the method, providing limited evidence
for convergence, here we compare the new approach with the
direct and the FFT-based evaluations of the CK equation. This sys-
tematic evaluation leads to the clear understanding of the
improvements to be made to increase the efficiency of the SMM-
PI, and how to achieve them. Finally, we discuss the limitations
of this formulation of the PI method and how they can be
addressed.

The applications of the proposed SMM-PI include a variaty of
stochastic systems described by SDE’s. These include nonlinear
systems with time-dependent drift and diffusion coefficients,
moreover, the SMM-PI can be generalised to non-smooth systems
as well. The SMM-PI works well for systems with a wide range of
noise sources, including correlated noise. Also, we can have noise
directly affecting each coordinate (including correlated noise), or
only some, such as in the case of engineering models, where noise
tends to appear in the second order equations describing, e.g. a
motion. The SMM-PI is especially useful in the analysis of systems
that have a steady-state behaviour and have stationary or attract-
ing periodic response PDF’s. Based on the general nature of the
SMM-PI method, we can use it in biology, physics, engineering,
finance or other fields of science.

The paper is organised as follows: in Section 2.1 we introduce
and discretise the Chapman-Kolmogorov equation and construct
the step matrix. Next, in Section 3 we analyse the error conver-
gence, the performance and the efficiency of the proposed method
through numerical examples. Then in Section 4 we provide a dis-
cussion on the choice of resolutions for the path integration
method, finally, we draw conclusions in Section 5.

2. New Path Integration Formulation

2.1. Chapman-Kolmogorov equation

We consider the following stochastic differential equation

dxðtÞ ¼ fðxðtÞ; tÞdt þ gðxðtÞ; tÞdWðtÞ; ð1Þ

where x ¼ x1 . . . xd½ &> is the Rd-valued stochastic state variable,
WðtÞ is the Rm-valued Wiener process (Brownian motion),
f : Rd ' ½0; T&# Rd;g : Rd ' ½0; T&# Rd'm and t is the independent
(time) variable.

We arrange the state space x in such a way that the diffusion
term g has the following structure:

gi;jðxðtÞ; tÞ ( 0 for i < k 6 d and j ¼ 1;2; . . . ;m; ð2Þ

namely, we formulate the dymanics (1) so that the first 1; . . . ; k) 1
states are not subjected to direct noise excitation. Note that it is not
uncommon that one or more components of g vanish, e.g., when (1)
gives equations of motions representing a mechanical or electrical
system and the components of x represent acceleration and veloc-
ity. We characterise the behaviour of the stochastic dynamical sys-
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tem (1) by computing the time dependent PDF pðx; tÞ using the PI
method.

The central part of any formulation of the PI method is the
Chapman-Kolmogorov equation

pðx; tnþ1Þ ¼
Z

Rd
pðx; tnþ1jy; tnÞpðy; tnÞdy: ð3Þ

It describes the time evolution of the probability density function
pðx; tÞ between the discrete times tn and tnþ1 using transitional
probability density function, conditioned on the initial position at
tn. Since the solution of the Chapman-Kolmogorov equation is gen-
erally not available in a closed analytical form, we have to numeri-
cally evaluate (3) for each discrete time step tn. Our systematic
treatment of the Chapman-Kolmogorov equation has three key
elements:

* Approximation of the transitional probability density function
(TPDF) pðx; tnþ1jy; tnÞ,

* Spatial discretization of the PDF pðx; tnÞ,
* Quadrature computation of the integral.

This approach leads to a number of advantages in computing
the time evolution of the PDF pðx; tÞ. The formulation allows us
to separately investigate the effect of the discretisation of each
component and isolate the potential bottlenecks of the method.
A critical feature of our approach is the evaluation of the integral
in (3) in terms of multiplication by a step matrix. In the case when
the SDE in (1) describes a time-invariant (or time periodic) solu-
tion, it is necessary to compute the step matrix (or a finite
sequence of step matrices) only once. Furthermore, the systematic
treatment of the PI method allows us to analyse each component’s
influence on the error convergence and computational perfor-
mance, and opens the door to additional efficient implementations
in the future by highlighting the potential bottlenecks of the PI
method.

2.2. Approximation of the TPDF

We approximate the transitional probability density function
pðx; tnþ1jy; tnÞ by using the probability density function of the
Euler–Maruyama scheme with xðtnÞ ¼ y:

xðtnþ1Þ + y þ fðy; tnÞDtn þ gðy; tnÞDWn :

¼ gðy; tn; tnþ1Þ þ gðy; tnÞDWn; ð4Þ

where Dtn :¼ tnþ1 ) tn is the length of the time step, and
DWn ¼ Wðtnþ1Þ )WðtnÞ is the Wiener increment of the process
WðtÞ on the time interval ½tn; tnþ1&, with normal distribution
Nð0;

ffiffiffiffiffiffiffiffi
Dtn

p
Þ.

Since only the states from xk through xd are subjected to direct
noise excitation, the approximate evolution of the states x1
through xk)1 in (4) is deterministic, while the evolution of the
remaining states is stochastic. Thus it is useful to split the state
space x into xI and xII:

x ¼
xI

xII

" #
; where xI :¼

x1
..
.

xk)1

2

664

3

775; xII :¼

xk
..
.

xd

2

664

3

775: ð5Þ

The corresponding approximate dynamics is also separated as

gðx; tn; tnþ1Þ ¼
gIðxI; xII; tn; tnþ1Þ
gIIðxI;xII; tn; tnþ1Þ

" #
and gðx; tnÞ ¼

0
gIIðxI;xII; tnÞ

" #
:

ð6Þ

In the following we use the subscripts I and II to denote decompo-
sitions based on (5) and (6). The probability density function of the

deterministic variables xI is given in terms of a Dirac-delta function
dð:Þ, which is used to write the probability density function of (4) in
terms of the decomposition,

pðx; tnþ1jy; tnÞ ¼ dðxI ) gIðyI; yII; tn; tnþ1ÞÞ , pIIðxII; yI; yII; tn; tnþ1Þ:
ð7Þ

Since (4) is the Euler–Maruyama step for (1) with increment (4), the
function pII is the PDF pN of a multivariate normal distribution with
parameters l ¼ gII and r ¼ gII

ffiffiffiffiffiffiffiffi
Dtn

p
:

pIIðxII;yI;yII;tn;tnþ1Þ :¼ pN xII;gIIðyI;yII;tn;tnþ1Þ;gIIðyI;yII;tnÞ
ffiffiffiffiffiffiffiffi
Dtn

p$ %
;

ð8Þ

where

pNðxII;l;lÞ ¼
e)

1
2ðxII)lÞ

> ll>ð ÞðxII)lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd)kþ1 det ll>ð Þ

q : ð9Þ

Substituting (7) into (3), we evaluate the integral of the Dirac-delta
of a function dðcðxÞÞ [11] using
Z

Rn
bðxÞdðcðxÞÞdx ¼ bðnÞ

jdet JcðnÞj
; where cðnÞ ¼ 0 and Jc :¼

@c
@x

;

ð10Þ

which yields

pðx; tnþ1Þ ¼
Z

Rd)kþ1

pII xII;w; yII; tn; tnþ1ð Þ

det JcI ðw; yII; tn; tnþ1Þ
&&&

&&&
p w> y>

II

' (>
; tn

$ %
dyII:

ð11Þ

Here w denotes the solution of

cIðw; yII; tn; tnþ1Þ ¼ xI ) gIðw; yII; tn; tnþ1Þ ¼ 0; ð12Þ

namely, where the argument of the multivariate Dirac-delta func-
tion dðxÞ in (7) is zero. In general, the solution of (12) is not available
in a closed analytical form; thus, we obtain it using the Newton–
Raphson iteration. The Jacobian det JcI originates from the change
of variables in the integration of the Dirac-delta function dðgðxÞÞ
of a function gðxÞ, detailed in (10). It is defined as

JcI ðw; yII; tn; tnþ1Þ :¼
@

@yI
cIðyI; yII; tn; tnþ1Þ

&&&&
yI¼w

: ð13Þ

We note that instead of (4) we can use other methods to approxi-
mate the TPDF of the process (1), such as higher order numerical
schemes, e.g. using an explicit 4th order Rungke-Kutta (RK4) step
to approximate the drift g or using the Milstein method to approx-
imate the diffusion. Further demonstration and discussion is given
in Section 3.1.1.

2.3. Spatial discretisation of the PDF

We approximate the PDF pðx; tnÞ at discrete times tn using an
interpolation !pðx; tnÞ defined over the finite spatial region
I :¼

Qd
j¼1Ij - Rd, where Ij ¼ ½aj; bj& - R, given by

pðx; tnÞ +
!pðx; tnÞ x 2 I;

0 otherwise:

)
ð14Þ

In (14) we assume that the PDF pðx; tnÞ is nonzero on the finite
region I, which is reasonable for most stochastic processes for
which a steady-state solution pstðxÞ exists. Here, !p denotes an inter-
polation function defined by

!pðx; tnÞ :¼
XN1

i1¼1

. . .
XNd

id¼1

qi1 ;...;id ;n

Yd

j¼1

/j;ij ðxjÞ

 !

¼ /ðxÞ;qnh i: ð15Þ
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The interpolation (15) is constructed by a Cartesian product of
interpolations along each dimension labeled by j, where
j ¼ 1; . . . ;d, where we use Nj for the number of interpolation nodes
along the j-th dimension.

For concise notation of the interpolation we use :; :h i for a Eucli-
dean inner product [7] of two rank d tensors A;B 2 RN1'...'Nd , which
is given by

A;Bh i :¼
XN1

i1¼1

. . .
XNd

id¼1

Ai1 ;...;idBi1 ;...;id : ð16Þ

The elements of the rank d tensors /ðxÞ and qn in the product form
of the interpolation are given by

½/ðxÞ&i1 ;...;id ¼
Yd

j¼1

/j;ij ðxjÞ and ½qn&i1 ;...;id ¼ qi1 ;...;id ;n
: ð17Þ

This formulation allows us to decouple the interpolation functions
/j;ij from the values qi1 ;...;id , that are recorded at the nodes of the
interpolation grid. The actual form of the base functions for /j;ij ,
depends on the type of the interpolation and the number of nodes
Nj that we use along the j-th direction. In Appendix B.3 we provide
a simple demonstrative example on how the interpolation (15) is
constructed for d ¼ 2.

In this work we compare the linear, cubic, quintic, barycentric
(Lagrangian), and trigonometric interpolations. The base functions
/j;ij of these interpolations are listed in Appendix B. We refer to the
linear, cubic, and quintic interpolations as sparse interpolations, as
their base functions /j;ij ðxjÞ are all zero, except for two, four or six
of them, respectively. Similarly, we will refer to the barycentric and
trigonometric interpolations as dense, as all their base functions
/j;ij ðxjÞ have nonzero values. Also we implement the barycentric
interpolation as Chebyshev interpolation, emphasizing that we
record the data qi1 ;...;id at the Chebyshev points. This is to avoid
the Runge phenomenon, an oscillation typically appearing at the
edges of the interpolation interval for higher order interpolation
approximations based on equally spaced nodes.

A common property of each interpolation approach is that at
the nodes Xði1 ;...;idÞ :¼ xi1 . . . xid

' (> we have

pðXði1 ;...;idÞ; tnÞ ¼ !pðXði1 ;...;idÞ; tnÞ ¼ qi1 ;...;id ;n: ð18Þ

In order to compute the interpolated PDF pðx; tnþ1Þ at the next dis-
crete time tnþ1 we utilise property (18) to compute the data values
qi1 ;...;id ;nþ1 as

qi1 ;...;id ;nþ1 ¼
Z

I

p Xði1 ;...;idÞ; tjy; tn
* +

!p y; tnð Þdy: ð19Þ

For the remainder of this paper, as an abuse of notation, we use a
single ðiÞ to index quantities that correspond to quantities previ-
ously indexed with i1; . . . ; id, e.g.: qðiÞ;n :¼ qi1 ;...;id ;nþ1 and
XðiÞ :¼ Xði1 ;...;idÞ. Substituting the TPDF (8), (11) and the definition
(15) of !p into (19) yields

qðiÞ;nþ1 ¼
Z

Iðk;dÞ

pII XðiÞ;WðiÞ; yII; tn; tnþ1
* +

det JcI ðWðiÞ; yII; tn; tnþ1Þ
&&&

&&&
/ W>

ðiÞ y>
II

h i>, -
;qn

. /
dyII:

ð20Þ

Here qn behaves as a constant with respect to yII , thus we can inter-
change the integral and the Euclidean inner product leading to

qðiÞ;nþ1 ¼ UðiÞ;n;qn

0 1
; ð21Þ

with

UðiÞ;n ¼
Z

Iðk;dÞ

pII XðiÞ;WðiÞ; yII; tn; tnþ1
* +

det JcI ðWðiÞ; yII; tn; tnþ1Þ
&&&

&&&
/ W>

ðiÞ y>
II

h i>, -
dyII ð22Þ

where WðiÞ is defined as the solution of XðiÞ;I ) gIðWðiÞ; yII; tn; tÞ ¼ 0

(similarly to (12)) and Iðk;dÞ :¼
Qd

j¼kIj.
As (21) gives a single qðiÞ;nþ1, we repeat (19) for each node value

qðiÞ;nþ1 and organise each resulting UðiÞ;n into a step matrix Sn to
obtain the matrix multiplication

vec qnþ1

* +
¼ Snvec qnð Þ where Sn ¼

..

.

vecðUðiÞ;nÞ>

..

.

2

6664

3

7775: ð23Þ

This form is equivalent to the numerical evaluation of (3) and rep-
resents a time step in the approximation of the PDF pðx; tÞ. The
operator vecðAÞ reshapes the d-dimensional tensor A 2 RN1'...'Nd

as a one-dimensional column vector vecðAÞ 2 R
!d, where !d ¼

Qd
j¼1Nj.

The decoupling of the interpolation function /ðxÞ from the
recorded node values qn in (15) allows us to transform the evalu-
ation of the Chapman-Kolmogorov Eq. (3) to the matrix multiplica-
tion in (23). In the case that (1) is time-invariant (fðx; tÞ ( fðxÞ and
gðx; tÞ ( gðxÞ) and we want to investigate the evolution or the
steady-state solution of the PDF pðx; tÞ, we have to compute the
step matrix Sn ( S once, given that we use a constant time step
Dt for each n. Then advancing the PDF pðx; tÞ by a single time-
step is a very efficient operation, as it is achieved via a matrix–vec-
tor multiplication defined in (23). Similarly, in the case that (1) is a
Tp-periodic system (fðx; tÞ ¼ fðx; t þ TpÞ and gðx; tÞ ¼ gðx; t þ TpÞ),
then we have to compute the set of Sn; n ¼ 1; . . . ; p (where
p ¼ Tp=Dt is the discrete period), and then just successively evalu-
ate the matrix multiplication (23) to advance the PDF pðx; tÞ in
time.

The main computational cost for the SMM-PI is in finding Sn,
since the matrix multiplication is one of the best optimised numer-
ical task. Given that the step matrix Sn is already computed, the
matrix multiplication (23) is one of the fastest methods to approx-
imate (3). This is especially useful when investigating time invari-
ant or periodic systems, that require a large number of time steps
to reach their steady-state.

Note that we have to choose the limits of the interpolated
region I in such a way that it covers the entire region where the
PDF pðx; tÞ takes nonzero values during the investigated time frame
t 2 ½0; T&.

2.4. Approximation of the integral

The final component of the solution of the Chapman-
Kolmogorov equaiton (3) is to evaluate the integral (22). Depend-
ing on the time step Dtn and the state XðiÞ, there is only a small
!Iðk;d;iÞ - Iðk;dÞ region where the TPDF pII , and thus the kernel of
(22), is nonzero. To minimise the number of subnodes required
for an accurate numerical approximation of UðiÞ;n, we aim to evalu-
ate the kernel (22) where it is relevant, namely, over the region
!Iðk;d;iÞ. In order to determine !Iðk;d;iÞ, we first identify the n initial
state of the drift step fromwhere the system evolves to XðiÞ by solv-
ing the equation

XðiÞ ) gðn; tn; tnþ1Þ ¼ 0: ð24Þ
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Next, we take the covariance matrix
Rðn; tn; tnþ1Þ ¼ gðn; tnÞgðn; tnÞ>Dtn and use its spectral radius to com-
pute the largest standard deviation r, i.e.,

r2 ¼ qðRÞ; where q Rð Þ ¼ max
z

abs zð Þ; z 2: det R) zIð Þ ¼ 0f g:

ð25Þ

With the help of r we determine the new region
!Iðk;d;iÞ :¼ IðrÞ

ðk;d;iÞ \Iðk;dÞ over the integral in (22) is evaluated by

IðrÞ
ðk;d;iÞ ¼

Yd

j¼k

nj ) s , r; nj þ s , r
' (

: ð26Þ

Since we use a small time step Dtn, we assume that the distribution
in y is approximately Gaussian, thus we choose s ¼ 6 to ensure that
the whole region is covered where the TPDF pII is nonzero. Using the
region !Iðk;d;iÞ instead of Iðk;dÞ we restrict the integration to where
the TPDF is non-negligible.

In order to evaluate the integral (22) over !Iðk;d;iÞ with high accu-
racy and performance, we use the Gauss–Legendre (GL) quadrature
[1]. For integrating a function f : R # RN1'...'Nd (e.g., in case k ¼ d)
over ½)1;1& the GL quadrature is defined as
Z 1

)1
f ðzÞdz +

Xm

i¼1

wif ðziÞ: ð27Þ

Here, the nodes zi; i ¼ 1; . . . ;m, are defined by the roots of the m-th
Legendre polynomial, wherem is the number of sample points used,
and the weights wi are given by the formula

wi ¼
2

1) z2i
* +

Q2
mðziÞ

$ % ; where QmðziÞ ¼
@

@z
PmðzÞ

&&&&&&
z¼zi

; ð28Þ

and PmðzÞ is the m-th Lagrange polynomial. In the case of k ¼ d we
can apply (27) directly by rescaling the integration lattice values zi
and weights wi appropriately for the chosen interval. To apply the
GL quadrature to integrate over the interval !Iðk;d;iÞ; k– d, we need
to rescale the integration lattice values zi and weights wi in each
dimension j ¼ k; . . . ;d constructing !Iðk;d;iÞ and take their Cartesian
product in a manner similar to (15).

The formulations of the PI method in previous works [17,19,20]
relied on using uniformly distributed node values in a cubic inter-
polation to directly evaluate the integral. Utilising the GL quadra-
ture approximation combined with the integral over the region
!Iðk;d;iÞ greatly increases the accuracy and performance of the (ap-
proximate) evaluation of the integral (22) [29]. We discuss this fur-
ther in Section 4.

3. Numerical experiments

In this section we test the error convergence and the computa-
tional efficiency of the PI method through numerical experiments.
The first example we investigate is a simple nonlinear scalar sys-
tem with additive noise:

dxðtÞ ¼ xðtÞ ) x3ðtÞ
* +

dt þ
ffiffiffi
2

p
dWðtÞ xð0Þ . Nð0;1Þ; ð29Þ

where Nð0;1Þ refers to the standard normal distribution. The
steady-state PDF of (29) shown in Fig. 1a is given by

pA;1
st ðxÞ ¼ C)1ex

2)x4 ; C ¼ e1=8p
2

I)1
4

1
8

, -
þ I1

4

1
8

, -, -
; ð30Þ

where IaðzÞ is the modified Bessel function of the first kind.
The second system we discuss is a second order system (d ¼ 2),

namely an oscillator with cubic nonlinearity:

dxðtÞ ¼ vðtÞ dt;
dvðtÞ ¼ )2fvðtÞ þ xðtÞ ) kx3ðtÞ

* +
dt þ rdWðtÞ: ð31Þ

Here we use the states x and v, that represent the displacement and
velocity of the oscillator, respectively. Here the state vector is
defined as x ¼ xv½ &> and the initial distribution is a two-
dimensional standard normal distribution, i.e., xð0Þ . N 0; Ið Þ. The
stationary PDF pstðxÞ corresponding to (31) is

pA;2
st ðxÞ :¼ pA;2

st ðx;vÞ ¼ C1eC0
1
2 x2)v2ð Þ)1

4kx
4ð Þ; where C0 ¼ 4f

r2 ; ð32Þ

and C1 is the normalisation constant. For the tests we choose
f ¼ 0:15; k ¼ 0:25 and r2 ¼ 0:075, which results in a symmetric
steady-state PDF pstðxÞ with two well separated peaks as Fig. 1b
shows. Then the approximation of pPI

stðxÞ with dense interpolations
is challenging, as the contrast of large flat regions with the rapid
increase of the peaks make the interpolations prone to high fre-
quency components.

To benchmark the performance of the PI method for d ¼ 3 and
d ¼ 4, we apply the method to a linear oscillator subjected to first
order filtered noise and to a coupled oscillator. The governing
equation of the linear oscillator for d ¼ 3 is

dxðtÞ ¼ vðtÞ dt;
dvðtÞ ¼ ð)2fvðtÞ ) xðtÞ þ rZðtÞÞ dt;
dZðtÞ ¼ )l1ZðtÞdt þ

ffiffiffiffiffiffiffiffiffi
2l1

p
dWðtÞ:

ð33Þ

Here the states x and v represent the displacement and velocity,
respectively, while the state Z is the first order filtered noise. For
the numerical tests use f ¼ 0:05;r ¼ 0:5, and ZðtÞ as the standard
Gaussian noise excitation (ZðtÞ . Nð0;1Þ) with l1 ¼ 2. The govern-
ing equations of the coupled oscillator for d ¼ 4 are

dxðtÞ ¼ vxðtÞdt;
dyðtÞ ¼ vyðtÞdt;
dvxðtÞ ¼ )0:4vxðtÞ ) 0:2vyðtÞ ) 2xðtÞ þ yðtÞ

* +
dt;

dvyðtÞ ¼ 0:2 vxðtÞ ) vyðtÞ
* +

) ðxðtÞ ) yðtÞÞ
* +

dt þ dWðtÞ:

ð34Þ

Here the states x and y represent the displacements, and the vx and
vy the corresponding velocities.

In the following sections we test the accuracy and performance
in the case of the scalar system (d ¼ 1) and the nonlinear oscillator
(d ¼ 2), while for the d ¼ 3 and d ¼ 4 dimensional systems we
approximate the CPU time required to compute the step matrix
Sn and the matrix multiplication (equivalent to taking a time step).
Furthermore, as all the systems described by Eqs. (29)–(34) are
time invariant, we omit the notation of the time step n, where it
is unnecessary, i.e. Sn ( S and UðiÞ;n ( UðiÞ.

3.1. Error of the path integration method

First, we test the error convergence of the PI method for differ-
ent temporal and spatial resolutions for the systems described by
(29) (d ¼ 1) and (31) (d ¼ 2). Throughout this section the error e1
of the PI solution is defined as

e1 :¼
Z

Iðk;dÞ

pA;d
st ðxÞ ) pPI;d

st ðxÞ
&&&

&&&dx; ð35Þ

where pA;d
st and pPI;d

st denote the analytical and the numerically deter-
mined steady-state PDFs (pstðxÞ :¼ limt!1pðx; tÞ), respectively. We
ensure, that pðx; tnÞ has converged to the steady-state solution
pstðxÞ according to the criterion
Z

Iðk;dÞ

pPI;dðx; tnÞ ) pPI;dðx; tnþ1Þ
&& &&dx < jDt; ð36Þ
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for an appropriate choice of j, i.e. j < e1. Since the error we
achieved in our tests cases is e1 > 10)6, we choose j ¼ 10)8. For
the scalar system (29) we satisfy (36) with j ¼ 10)8 by computing
to a final unitless time t ¼ T ¼ 6:8 at which we reach the steady-
state PDFs (30), for each investigated spatial and temporal resolu-
tion. Likewise at T ¼ 38:4 the second order system (31) reaches
(32) at each resolution. Thus we conservatively choose
pPI
stðxÞ ¼ pPIðx;10Þ for the benchmarks for d ¼ 1 and

pPI
stðxÞ ¼ pPIðx;40Þ for d ¼ 2. For the evaluation of the integral in

the CK Eq. (3) discussed in Section 2.4, we use 31 Gauss–Legendre
quadrature nodes.

3.1.1. Error due to the temporal discretisation
First we consider the effect of the temporal resolution Dt on the

error e1 of the steady-state PDF approximated with the PI method.
Fig. 2 shows the error e1 of the PI method as a function of the time
step Dt for different time stepping methods: the Euler–Maruyama
scheme described in (4) (labeled Euler in the figure) and the 4th
order Runge–Kutta-Maruyama method (labeled RK4 in the figure).
In the Runge–Kutta-Maruyama method the drift is approximated
with the 4th order Runge–Kutta scheme (detailed in Appendix
A), while the diffusion is approximated with the Maruyama
scheme.

Utilising the RK4 method adds additional complexity to the
computation required to solve (12) and determine JI . For d > 1 this
might translate to better approximations for the interaction
between the state variables, however, it does not increase the error
convergence rate as Dtn ! 0 as it is limited by the weak order of
the diffusion step, which is OðDtÞ (or e1 / Dt) for the Maruyama
approximation of the diffusion. The argument against the use of
the Milstein method for the approximation of the diffusion is sim-
ilar. The computation of the distribution of the Milstein step is very
complex in the general case, with k– d and non-diagonal diffusion,
while not providing better convergence properties: both the Mil-
stein and the Maruyama approaches yield a weak OðDtÞ approxi-
mation for the diffusion [12].

For the scalar system (31) (d ¼ 1), Fig. 2a shows that we achieve
almost the same accuracy, regardless of the time stepping methods

used. In contrast, as Fig. 2b shows, for the second order system (31)
(d ¼ 2) the use of the RK4 method provides higher accuracy,
because it better approximates the dynamics of the state variables
described by the drift. However, the two time stepping methods
have the same error convergence rate, which is limited by the
approximation of the noise term. This is illustrated by the auxiliary
line that corresponds to a first order error convergence (e1 / Dt1).

3.1.2. Error due to spatial discretisation
Next, we consider the effect of the spatial resolution N and the

choice of the interpolation method on the error e1 of the steady-
state PDF approximated with the PI method. For the scalar system
(29) we choose the interpolated region as x 2 ½)3;3&, while for the
second order system (31) we choose x;v 2 ½)3:5;3:5& and use the
same spatial resolution N for the interpolation along both dimen-
sions x and v. Fig. 3 shows the errors of the different interpolation
methods as functions of the number of nodes N used for the inter-
polation, and compares different time steps Dt.

Based on the results obtained by numerical experiments, we see
that the linear interpolation is the least reliable spatial discretisa-
tion method. Even though the solution corresponding to the linear
interpolation converges with OðN)2Þ, it does so after a plateau. For
both the scalar d ¼ 1 and second order d ¼ 2 systems, this plateau
persists for larger node numbers N as we increase Dt, even for the
entire range of N investigated. The cubic and quintic interpolations
display a faster convergence rate of OðN)3Þ and OðN)5Þ, respec-
tively, and are less susceptible to resolution errors generated by
the decrease of the time step Dt. The Chebyshev and trigonometric
interpolations show an exponential convergence for all time reso-
lutions Dt, so that for smaller values of N, the maximum achievable
accuracy is attained, as dictated by the time stepping method, This
is particularly clear for the scalar system (d ¼ 1): in Fig. 3a the Che-
byshev interpolation achieves this minimum error e1 at N ¼ 25 for
Dt ¼ 10)3 and N ¼ 37 for Dt ¼ 10)5, while for the cubic interpola-
tions it is achieved for N > 100 (Dt ¼ 10)3), or not at all in the
investigated region (Dt ¼ 10)5). The accuracy obtained with the

Fig. 1. Steady-state response PDF’s of the systems described by (a) Eq. (29) and (b) Eq. (31) with parameters f ¼ 0:15; k ¼ 0:25 and r2 ¼ 0:075.

Fig. 2. Error e1 of the PI approximation of the PDFs (a) pA;1
st ðxÞ in (30) and (b) pA;2

st ðx; vÞ in (32) as a function of the time step Dt. The black crosses denote the minimum
achievable errors e1 corresponding to the temporal step size Dt in Fig. 3.
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quintic interpolation lies between the cubic and the dense
interpolations.

In contrast, for the second order system d ¼ 2 (Fig. 3b) the use
of sparse interpolations can produce results with e1 error similar
to that obtained by the dense interpolations for larger time steps
(Dt ¼ 10)1). The quintic interpolation performs especially well,
with its convergence rate appearing exponential for the largest
time step Dt ¼ 10)1, similar to the dense interpolations. However,
as we decrease the time step Dt, the dense interpolations unequiv-
ocally produce more accurate results for larger spatial resolutions
N, until the accuracy is limited by the time discretisation.

In Fig. 3 we observe another phenomenon, i.e., as we decrease
the time step Dt, the error can increase if we do not increase the
number of nodes N for the interpolations. Fig. 4 illustrates how
the interactions of the resolutions for d ¼ 1 can influence the solu-
tions obtained through the SMM-PI method for
Dt ¼ 10)2; 10)3; 10)5 and N ¼ 15; 25; 51 compared to the analyti-
cal solution pA

stðxÞ in (30). We see, that increasing the number N of
the interpolation nodes indeed increases the approximation accu-
racy, up to a point where the approximated solutions are almost
perfectly aligned with the analytical solution. However, decreasing
the time step Dt can lead to less accurate results or to false solu-
tions, if the number N is not adjusted accordingly. For the scalar
system (29) the sparse interpolations (linear, cubic or quintic)
are more susceptible to this phenomenon than the dense interpo-
lations (Chebyshev and trigonometric). The figure shows both the
failure of the linear interpolation to capture small variations in
the PDF for smaller Dt, and the instability for higher order interpo-
lations with limited N.

3.2. Performance benchmarks

In this section we benchmark the performance of the PI method
in terms of CPU time and memory requirements. These results are
complementary to those from Section 3.1, which characterise the

numerical performance of the interpolation and thus the mathe-
matical algorithm but may not translate directly to the time
needed to compute accurate results. The measures we provide in
this section reflect that the different interpolation methods result
in different densities of the step matrices S, which in turn can influ-
ence the time it takes to compute a single time step. Our approach
of the PI method is implemented in Julia (version 1.7 with
libLLVM-12.0.1) and the tests were completed on a thin and light
laptop with an Intel" CoreTM i7 8565U CPU, with 24 GB of RAM
and a Linux kernel 5.14. During the performance tests the step
matrix S is represented as a dense matrix for the dense interpola-
tions for d ¼ 1 and d ¼ 2, and as a compressed sparse row (CSR)
sparse matrix in case of both the sparse and dense interpolations
for d ¼ 3 and d ¼ 4. For comparison we included the benchmark
results of two FORTRAN implementations [16] of the PI method:
the direct integration [18] of the CK Eq. (3) and the approach where
the CK equation is evaluated using the FFT [17]. We refer to these
methods as the direct and FFT-based methods, respectively. Both
utilise cubic B-spline interpolations for the spatial discretisation.

3.2.1. Computational time and spatial discretisation
In Fig. 5 we summarise the CPU time requirements to compute

the matrix S and to take a single time step as a function of the spa-
tial resolution N. During the tests we used Dt ¼ 10)5 for
d ¼ 1; Dt ¼ 10)3 for d ¼ 2; Dt ¼ 10)2 for d ¼ 3 and Dt ¼ 10)1 for
d ¼ 4. The dashed lines represent approximated computation
times. The computation time of S was approximated based on
the average time needed to compute a single row vecðUðiÞ;nÞ of
the step matrix S: specifically, we individually measured and aver-
aged the computation time of 1000 randomly selected rows and
then multiplied this average by the number of rows Nd. For the
approximation of the time required to evaluate a time step (a
matrix multiplication) we use the previously computed rows and
individually measured the computation time of multiplying each
row with a dense column vector representing the node value vec-

Fig. 3. Comparison of the error e1 as a function of the number N of the interpolation nodes, for the different interpolation methods used in the PI approximation of the PDFs
(a) pA;1

st ðxÞ in (30) and (b) pA;2
st ðx; vÞ in (32).
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tor qn. We averaged these measurements over the rows, and mul-
tiplied this average by the number of rows Nd to obtain the esti-
mate of the CPU time of a single time step.

In Fig. 5 the left column presents the CPU time necessary to
compute the step matrix S, the right column presents the CPU time
necessary to compute a single time step, while the rows corre-
spond to the different d-dimensions of the systems used for the
examples.

For the scalar problem (d ¼ 1) defined by (29), we see that the
use of a sparse matrix for representing the step matrix S is benefi-
cial only for larger spatial discretisations N. When we consider the
exact computation time needed (continuous lines), we see that for
small spatial resolutions N the computation of the step matrix is
almost constant and the computation time gradually increases as
we increase N. This is due to the significant overhead time to pre-
pare the computations of the step matrix S, i.e., we need to preal-
locate the memory space for S and prepare the Newton–Raphson
iteration to get WðiÞ, all of which has comparable computational
cost to the computations of the rows UðiÞ. As we increase the spatial
resolution N, the effect of this constant overhead becomes negligi-
ble compared to the time required to compute S, as the approxi-
mated time converges to the exact time requirement. Recall that
for the approximation we consider only the computations of the
rows UðiÞ.

We also see a significant difference in the time it takes to com-
pute the matrix S for the sparse interpolations (almost perfectly
overlapping each other), the Chebyshev interpolation and for the
trigonometric interpolation. This is due to the difference of the
complexity of the two interpolation classes: during the sparse
interpolation we need to compute two (linear interpolation), four
(cubic interpolation) or six (quintic interpolation) weights, while
for the Chebyshev and trigonometric interpolations require
weights at all N points. Moreover, the computation of the weight
matrix / for the trigonometric interpolation takes longer than for
that of the Chebyshev interpolation, given that the trigonometric
functions are more computationally expensive than the polynomi-
als used in the Chebyshev case.

For d ¼ 2 there is again a small overhead computation time in
the computation of the step matrix S, related to preallocations
for small spatial resolutions N. When comparing the exact time
measurements (continuous lines) with the approximation (dashed
lines), we see that this overhead becomes negligible compared to
the computation of the rows, as the two sets of lines converge to
each other. For the dense interpolations, the computation of S is
more costly (approximately by a factor of 2), but the time complex-
ity of the computation of S is the same OðN4Þ for both sets of inter-
polation methods. Again, the computations times are grouped
together for the sparse and dense interpolations.

For d ¼ 3 and d ¼ 4 we give an approximation of the CPU time
for computing S. We do not include the curve corresponding to
exact measurements given the length of time to compute them
for larger N, e.g. approximately 277 h for d ¼ 3 and N ¼ 201, or
more than 28000 h (or 3:2 years) for d ¼ 4 and N ¼ 81. The approx-
imations give a time complexity of OðN6Þ and OðN8Þ for d ¼ 3 and
d ¼ 4, respectively. The black pluses (‘‘+”) indicate exactly mea-
sured CPU times for d ¼ 3 (N ¼ 24) and d ¼ 4 (N ¼ 32) with cubic
interpolation.

Considering the CPU time cost of a single time step for d ¼ 1,
Fig. 5 shows a performance gain from a sparse representation only
for matrix S sizes larger than approximately 101'101. As in Fig. 3,
for d ¼ 1 the dense interpolations reach the maximum accuracy at
N ¼ 37 even for Dt ¼ 10)5, thus larger matrix sizes are not neces-
sary to accurately compute the PDF using dense interpolations.
The figure confirms, that the computation of an accurate steady-
state PDF pst with dense interpolations is orders of magnitudes fas-
ter than the computation with sparse interpolations for d ¼ 1.

For d ¼ 2 representing S as a sparse matrix is beneficial for the
CPU cost of a time step, particularly for larger spatial discretisation
values of N. There the time step computation is 3 orders of magni-
tude faster for the sparse representation than for the dense meth-
ods. For d ¼ 3 and d ¼ 4 the approximated CPU time cost of a time
step is again orders of magnitude faster for the sparse interpola-
tions than it is for the dense interpolations. Here we see again that

Fig. 4. The PDF pstðxÞ of (29) approximated by the PI method, compared to the reference solution defined by (30). The curves not visible are in agreement with and covered by
the analytical solution.
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both the sparse and dense interpolations are separated into two
groups in terms of the computation time of S.

Next, in Fig. 5 we compare the requirements of computing a
time step with the SMM-PI with the time required to compute a
time step with the direct and the FFT-based approaches for
d > 1. In the case where the step matrix S has already been com-
puted based on sparse interpolations, computing a single time step
by multiplying the node value vector vecðqnÞ with the step matrix
S is order of magnitudes faster than the direct approach and signif-
icantly faster than the FFT based approach. For the dense interpo-
lation, the matrix multiplication can be slower even than the direct
approach, since the number of operations in matrix multiplication
(even for a sparsely represented step matrix obtained with dense
interpolation) negatively impacts the performance of a time step.
Also, analogous to the computation time of the step matrix S, the
computation results are split into two groups based on the interpo-
lation class (sparse or dense).

To summarise, we observe in Fig. 5 that for d ¼ 2;3 and 4 the
time complexity of computing the step matrix is approximately
OðN2dÞ; while the time complexity of computing a time step with
dense interpolations is approximately OðN2d)1Þ and OðNdÞ for the
dense and sparse interpolations, respectively. Thus we assume,

that this holds for higher d > 4 dimensions as well. As the compu-
tational time necessary to compute S scales with d exponentially,
the accurate computation of the PDF for larger systems is challeng-
ing using the SMM-PI method without using other efficiencies, e.g.
parallelisation. We note that the systematic framework we present
provides a solid foundation for implementing such efficiencies.

3.2.2. Numerical efficiency
In this section we investigate the efficiency of the PI method,

defined as the computational time necessary to obtain a result
with error e1. Fig. 6 combines the results in Figs. 3 and 5, thus pro-
viding the computational cost of achieving a desired error e1 utilis-
ing different interpolation methods for d ¼ 1 and d ¼ 2. Similarly
to Section 3.1.2 we use pPI

stðxÞ ¼ pPIðx;10Þ for the benchmarks for
d ¼ 1 and pPI

stðxÞ ¼ pPIðx;40Þ for d ¼ 2. Furthermore, in the case of
the dense interpolations we do not investigate resolutions
N > 51 (d ¼ 1) and N > 101 ðd ¼ 2Þ since those methods minimise
the errors for smaller N values, as the plateau in Fig. 3 shows.

In Fig. 6a we see that in the case of d ¼ 1 the dense interpolation
methods are capable of producing accurate results orders of mag-
nitude faster than the sparse interpolation methods, especially
compared to the direct and FFT-based evaluation approaches. As

Fig. 5. The CPU time required to compute the step matrix S and a single time step for d ¼ 1;2;3 and 4. The dashed lines represent approximated computational times, while
the black crosses (‘‘+”) for d ¼ 3 and 4 are validating measurements at N ¼ 24 and 32 with cubic interpolation. Note that some lines are overlapping due to nearly identical
results.

Henrik T Sykora, R. Kuske and D. Yurchenko Computers and Structures 273 (2022) 106896

9



already seen in Fig. 4, the linear interpolation is unable to capture
the structure of the PDF pstðxÞ for small time steps Dt, and thus its
poor performance can not be improved with increased CPU time.
The large differences between the time necessary to obtain the
dense and sparse interpolated approximation of the steady-state
PDF pst are due to the representation of the step matrix S. We reach
the maximum accuracy with the dense interpolations at N ¼ 37
and Dt ¼ 10)5, while the performance of the matrix multiplication
with a sparse matrix is only better for N > 101, as shown in Fig. 5.
We also see the efficiency benefits in this case from transforming
the CK Eq. (3) to a matrix multiplication. This new approach com-
putes an accurate approximation of the PDF of the system (29) that
is at least an order of magnitude faster than the FFT-based compu-
tation and almost three orders of magnitude faster than the direct
approach.

In the case of d ¼ 2 shown in Fig. 6b, the efficiency advantage is
not as obvious as in d ¼ 1. For the largest time step size Dt ¼ 10)1

shown, the computational cost of setting up S combined with the
small number of time steps (400 steps to reach T ¼ 40) results in
similar efficiency for each interpolation method, except the linear
interpolation. As we decrease the time step to increase accuracy,
the number of steps needed for convergence to steady-state
increases. The SMM-PI approach is again more efficient than the
FFT-based evaluation of the CK equation. The sparse quintic inter-
polation outperforms every other method, with a greater advan-
tages observed for the smallest investigated time step Dt ¼ 10)3.
Even though the dense interpolations use a smaller number of
interpolation nodes to reach the desired accuracy, it is more expen-
sive to compute the time evolution and the steady-state PDF of a
dynamical system. This is due to the complexity difference of the
sparse and dense interpolations, and the larger number of non-
zero elements in the corresponding sparse step matrices S for the
dense methods, that leads to slower matrix multiplications as well.
This observation implies that for problems with large step matrices

S (e.g. problems with d > 2) the accuracy benefit of the dense inter-
polation is outweighed by the slower performance of the matrix
multiplication corresponding to the time stepping.

3.2.3. Memory requirements
Another important aspect of the PI method is the memory

required to store the step matrix S, as its size increases exponen-
tially with d. For example, in this section the step matrix is

S 2 RNd'Nd
, meaning that S has mS;full ¼ N2d elements. To reduce

the memory needed to store the step matrix we use compressed
sparse row (CSR) sparse matrices. The density qS 6 1 of the step
matrix S is defined by the ratio of the nonzero elements and the
total number of elements in the matrix S. Due to their nature of
using all the grid values participating in the interpolation, the
dense interpolations always produce a full step matrix S (qS ¼ 1),
thus we consider the elements that satisfy the condition

jSijj < max
i;j

ðjSijjÞ ' 10)8 ð37Þ

as zero elements. Here Sij denotes a single element of S, while
maxi;jðjSijjÞ denotes the element with the maximum absolute value.

The number of elements in a CSR matrix with a density qS is the
sum of the qSN

2d number of nonzero elements, the qSN
2d number

of the corresponding row indices, and the Nd þ 1 column pointers,
that assign the row indices to columns. Then the required number
of stored numbers is

mS;sparse ¼ 2qSN
2d þ Nd þ 1: ð38Þ

This means that if mS;sparse < mS;full ¼ N2d, then it is beneficial to store
S as a sparse matrix, as far as memory requirements are concerned.
This limit density qlim

S ðNÞ where mS;sparse ¼ mS;full is given by

qlim
S ðNÞ ¼ N2d ) Nd ) 1

2N2d and qlim
S;1 ¼ lim

N!1
qlim

S ðNÞ ¼ 1
2
: ð39Þ

Fig. 6. Error e1 of the PI approximation of the PDF pstðxÞ in (30) as the function of the CPU time required to approximate the steady-state solution pstðxÞ wit.h the PI method.
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Fig. 7 presents the density, the number of elements
mS ¼ maxðmS;full; mS;sparseÞ and the net memory requirements of stor-
ing the step matrix S. When approximating the memory require-
ment of the step matrix S we assume, that each element or index
is represented by a 64 bit double precision floating point number
or a 64 bit integer. For d ¼ 1 and d ¼ 2 we measured the memory
requirement directly, while for d ¼ 3 and d ¼ 4 we approximated
them using the average density based of the 1000 rows previously
used to find the computational time approximations (hence we
plot as dashed lines). For d ¼ 3 and d ¼ 4 the black crosses (‘‘+”)
denote exact measurements of the density and the number of ele-
ments/memory requirement for two specific cases with quintic
interpolation.

We see that for d ¼ 1;2, the dense interpolations produce step
matrices S with density over or at the limit qlim

S ðNÞ throughout
the range of N investigated, indicating that the use of a dense
matrix representation is reasonable. For d ¼ 3 and 4, the sparse
interpolations produce sparse step matrices for most d and N com-
binations shown, thus we use sparse matrices to store S.

Even there is a steady decline in the density of the step matrices
S, the number of its nonzero elements grows, along with the mem-
ory needed to store the matrix. The density and thus the memory
requirement of the dense and sparse interpolations are separated
into two clearly distinguishable groups. This separation is due to

the different approaches employed by the two types of interpola-
tion: in dense interpolation we assign a weight for each Nd interpo-
lation grid value, while in sparse interpolations we assign a weight
for a fixed number of node values (two for the linear, four for the
cubic and six for the quintic interpolation). Even though condition
(37) is used for the dense interpolations to exclude certain ele-
ments of the matrix S, the number of nonzero elements in the
resulting step matrix S is multiple orders of magnitude larger than
the number of elements in the step matrix obtained using the
sparse interpolations.

3.3. Comparison with FFT approach for higher dimensional systems

In the previous sections we compared the efficiency for d ¼ 1
and d ¼ 2. In this section we provide a comparison of the SMM-
PI and the FFT-based approaches for the higher order systems
(33) (d ¼ 3) and (34) (d ¼ 4). We focus the comparison on the error
e1, errors for the marginal densities, and total CPU time.

As neither (33) nor (34) is subjected to parametric noise, their
response PDFs can be well approximated in the Fourier space
(the response PDFs have decaying tails in each direction). Thus
the FFT-based approach [17] is a potential candidate to consider
along with the SMM-PI approach presented in this paper. Through
this comparison, we consider whether the computation of the step

Fig. 7. The matrix density, the number of nonzero elements and the memory requirement of the step matrix S for different interpolation methods. The continuous lines
denote exact measurements and the dashed lines correspond to approximations. The black dash-dotted line corresponds to qlim

S ðNÞ. The black crosses (‘‘+”) for d ¼ 3 and 4 are
validating measurements at N ¼ 24 and 32 with cubic interpolation.
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matrix S is indeed worth the computational overhead, as it may be
computationally expensive.

We recall that the FFT-based method is compatible only with
resolutions that are powers of two, namely N ¼ 2m;m 2 Nþ, and
that the TPDF pðx; tnþ1jy; tnÞ is sampled at the interpolation nodes
when the integration is implemented. This can cause issues when
using a small time step Dt, resulting in a small discretised diffusion
term gkðx; tÞ

ffiffiffiffiffiffiffiffi
Dtn

p
for which the TPDF pðx; tnþ1jy; tnÞ is narrow, with

no or limited overlap with the interpolation nodes. To properly
sample the interaction between the PDF and the TPDF, a high
and computationally expensive spatial resolution N ¼ 2m is neces-
sary, even though a lower resolution Nwould be enough to charac-
terise the PDF. In contrast, for the SSM-PI method we narrow the
integration region to !Iðk;d;iÞ, namely we omit the regions from the
integration where we approximate that the TPDF is zero, as
described in Section 2.4. In Tables 1 and 2 we present the error
e1 and total computation time of the steady-state PDF of (33)
(d ¼ 3) and (34) (d ¼ 4) for different resolutions N for the SMM-
PI and FFT-based approaches. For the PI computations we use the
Runga-Kutta-Maruyama method with a time step Dt ¼ 10)2 for
d ¼ 3 and Dt ¼ 10)1 for d ¼ 4, quintic interpolation for the SMM-
PI, and cubic B-spline interpolation for the FFT-based approach.
The error e1 was computed by comparing the results obtained by
the PI method to the Gaussian PDF characterised by (D.2) in Appen-
dix D.

For d ¼ 3 we see that the FFT-based approach yields numeri-
cally unstable solutions, which exhibit large oscillations for
increasing N. This instability stems from the fact that the FFT-
based approach cannot capture the interaction between the TPDF
and PDF for this example, even at higher spatial resolutions
N ¼ 128. The large error e1 for the FFT-based method are due to
large oscillations in the solutions. In contrast, the SMM-PI
approach was able to produce reasonably accurate results even
for N ¼ 21, with e decreasing with N. Fig. 8 compares the steady-
state marginal PDFs obtained with the SMM-PI and the FFT-
based PI method with the analytical results. Once again the FFT-
based method shows oscillations in the solution at N ¼ 128, while
the SMM-PI captures the steady-state marginal PDFs of (33)
already at N ¼ 21. Fig. 8c shows that the FFT-based method is able
to capture the interaction between the TPDF pðx; tnþ1jy; tnÞ and PDF
pðx; tnÞ for a larger time step Dt ¼ 10)1, thus eliminating the oscil-
lations in the solution. However, in this case the large time step
causes a different numerical instability; thus we get almost uni-
form marginal distributions shown for pv ;stðvÞ and pZ;stðZÞ.

When considering the error e1 for d ¼ 4 in Table 2 we see that it
gradually decreases with increasing N for the SMM-PI approach. In
contrast, for the FFT-based apporach e1 is not consistently decreas-
ing as N increases, and is substantially larger than the error of the
solution obtained through the SMM-PI approach. Fig. 9a presents
the steady-state marginal PDFs of (34) compared to the analytical
solution based on Appendix D. We see that with N ¼ 17 the SMM-
PI approach yields a false solution, while the steady-state marginal
PDFs are well approximated with N ¼ 21. In Fig. 9b we see, that
with the FFT-based approach we get a solution with seemingly
improving accuracy for the marginal PDFs as we increase N, even
though the error measure e1 does not decrease significantly.

To better understand the apparent discrepancy between e1 and
the behavior of the marginal PDFs in Fig. 9b we inspect the error
distribution of the method by calculating the marginal errors
e1;xðxÞ; e1;yðyÞ; e1;Vx ðVxÞ; e1;Vy ðVyÞ in Fig. 10, defined analogously to
the marginal PDF:

e1;xðxÞ :¼
R
R3 pA;4

st ð½x; y;Vx;Vy&>Þ ) pPI;4
st ð½x; y;Vx;Vy&>Þ

&&&
&&&dydVx dVy;

e1;yðyÞ :¼
R
R3 pA;4

st ð½x; y;Vx;Vy&>Þ ) pPI;4
st ð½x; y;Vx;Vy&>Þ

&&&
&&&dxdVx dVy;

e1;Vx ðVxÞ :¼
R
R3 pA;4

st ð½x; y;Vx;Vy&>Þ ) pPI;4
st ð½x; y;Vx;Vy&>Þ

&&&
&&&dxdydVy;

e1;Vy ðVyÞ :¼
R
R3 pA;4

st ð½x; y;Vx;Vy&>Þ ) pPI;4
st ð½x; y;Vx;Vy&>Þ

&&&
&&&dydxdVx:

ð40Þ

These quantities give us an insight on the cumulative errors in each
direction for the two approaches with different resolutions. We see,
that even though the marginal PDFs in Fig. 9a and b appear very
similar, the error e1 along with the marginal errors
e1;xðxÞ; e1;yðyÞ; e1;Vx ðVxÞ; e1;Vy ðVyÞ are significantly larger in the case
of the FFT method. This means, that the response PDF pPI;4ðxÞ
obtained through the FFT method differs significantly from the ana-
lytical solution pA;4ðxÞ, even though they have similar marginal
PDFs. Thus we see the importance of having a systematic PI
approach that can reliably address computational error. An inspec-
tion of the shape of the marginal PDFs alone may lead us to incor-
rectly conclude that the full solution is correct, thus leading to false
conclusions when this steady-state PDF is used in a practical prob-
lem. Even though the FFT-based method is able to produce results
quickly one has to verify the results before accepting them, while
the SMM-PI method does not have this issue.

Additionally, the FFT-based approach cannot address systems
described by Eq. (1) in full generality, e.g., in case the system is
subjected to parametric noise excitation or it is an impacting sys-
tem with non-symmetric response PDFs. Thus in general, we
should use the SMM-PI approach, unless the step matrix S cannot
fit into the memory of the computation. For d ¼ 4 this is a legiti-
mate concern, as in the example above, even for N ¼ 31 we need
6.9 GB memory for the step matrix obtained with quintic interpo-
lation. If that resolution is not sufficient, and we need a resolution
of N ¼ 41 or 51, the step matrix S uses 31.6 GB or 277 GB of mem-
ory, respectively. If this large amount of memory is not available
and if the FFT-based method is not efficiently applicable, we should
utilise the direct approach. However, we should consider the direct
approach as a last resort, as according to the benchmarks it is the
least efficient method to evaluate the CK Eq. (3).

4. Discussion of choosing appropriate spatial and temporal
resolutions

The transformation of the CK Eq. (3) to a matrix multiplication
has great potential for increasing the efficiency of the PI method. At
the same time, given the results in the previous sections, one has to
consider a few things when using the method to obtain the time
evolution or the steady state of the PDF of a stochastic dynamical
system.

Table 1
Error e1 and total computation times of the approximation of the steady-state response PDF pstðxÞ + pðx;110Þ of the system (33) (d ¼ 3) with time step Dt ¼ 10)2. For the SMM-PI
approach the quintic interpolation and for the FFT approach cubic B-spline interpolation was used. We emphasize that the results obtained using FFT are numerically unstable
with the abbreviation NU.

SMM-PI FFT
N 21 25 31 32 64 128

Error e1 0:0145 0:0113 0:0102 3:3' 1010 (NU) 3:7' 1012 (NU) 6:8 (NU)
Total CPU time 24.10 s 44.29 s 105.82 s 187.17 s 1531.2 s 2.97 h
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First of all, it is necessary to choose the interpolation region I.
In general, if there is no analytical solution or approximation that
provide the relevant moments or the PDF evolution, preliminary
Monte-Carlo simulations are required for an initial estimation for
I. Based on the simulated realisations, we can choose a proper
interpolation region based on the empirical response histogram
of the system, or the steady-state central second moment of the
state variables, e.g. by taking a 6 standard deviation region of the
process. For the examples (29)–(34) we had the analytical solution
for the steady state PDF: for d ¼ 1 and d ¼ 2 the solutions are pre-
sented in (30) and (32) while for d ¼ 3 and 4 the steady state PDF is
provided in Appendix D.

After we have the interpolation region I, we choose proper
temporal discretisation methods and resolutions. First, we need
to choose the time stepping method and size Dtn for which the dis-
cretised SDE (4) captures the dynamics of the continuous SDE (1)
accurately and without introducing numerical instability over the
region I. A small Dt allows a more accurate approximation of both
the drift and diffusion, however, a very small Dt can lead to numer-
ical issues, as the TPDF pðx; tnþ1jy; tnÞ with a small time step is

highly concentrated near y for that step, so that integration of
the TPDF can magnify the interpolation errors without sufficient
spatial resolution N.

While there are various considerations to take into account, e.g.
balancing N and Dt, as were considerations in previous approaches,
this new approach provides a systematic way of implementing the
PI method and addressing potential sources of computational
error, in contrast to previous methods that did not. In Fig. 4 we
demonstrated the effect of different temporal and spatial discreti-
sation, namely, that even though the spatial discretisation was suf-
ficient for a given Dtn, decreasing the time step may increase the
error for the same N, as mentioned above. In the case of linear
interpolation the method is not able to accurately resolve small
fluctuations in the density for a small time step Dt, and instead
tends to smooth spatial variation of pðx; tÞ. At the same time, the
higher order (cubic, quintic and dense) interpolations can intro-
duce well-known oscillatory instabilities if the resolution is too
low. In this paper we do not provide a strict analysis of this effect;
however, we note that this oscillatory instability is related to the
case where the largest eigenvalues of the step matrix S take multi-

Table 2
Error e1 and total computation times of the approximation of the steady-state response PDF pstðxÞ + pðx;40Þ of the system (34) (d ¼ 4) with time step Dt ¼ 10)1. For the SMM-PI
approach the quintic interpolation and for the the FFT-based approac cubic B-spline interpolation was used.

SMM-PI FFT
N 15 17 19 21 25 31 16 32 64

Error e1 0:8607 0:4402 0:2164 0:1195 0:06105 0:0367 1:112 1:066 1:064
Total CPU time 278 s 802 s 0.584 h 1.18 h 4.70 h 29.42 h 13.626 s 312.8 s 1.687 h

Fig. 8. Comparison of the marginal steady-state response PDFs of the system (33) (d ¼ 3) with the approximated solutions obtained by (a) the matrix mulitplication approach
with quintic interpolation, (b)-(c) the FFT-based approach with cubic B-splin.e interpolation.
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ple, usually complex, values. This spectral structure leads to false
solutions, as the steady state limn!1vec qnð Þ in (23) converges to
the corresponding eigenvector.

In essence, the SMM-PI formulation requires an adjustment of
the resolution of the spatial and temporal discretisation to assure
sufficient accuracy both for the approximation of the PDF pðx; tnÞ
and its interaction with the TPDF pðx; tnþ1jy; tnÞ in the evaluation
of the CK. The new SMM-PI formulation, based on separate treat-
ment of the three parts of interpolation of the PDF, approximation
of the TPDF of the process and evaluation of the CK integral, pro-
vides insight on how choose these resolutions. For example, for a
d-dimensional system with a single noise excitation (k ¼ d) it is a
good strategy to initially set the time step Dtn and spatial resolu-
tion N in a way that the ratio of bk)ak

N and gkðx; tÞ
ffiffiffiffiffiffiffiffi
Dtn

p
is close to

one or smaller, and test the resulting PDF against a histogram
obtained through coarse MC simulations. Then we can make

adjustments to the resolutions based on comparing the PDF
obtained through the SMM-PI with e.g. the one obtained through
the MC simulations: we can increase accuracy by decreasing Dt
or increasing N, or decide to decrease computational cost by
decreasing N. Note that the above recommendations on the initial
ratio of Dt and N are based on empirical results, as we did not con-
duct the analysis on the complex interaction between the multiple
sources of error (time evolution, spatial discretisation and numer-
ical integration) to obtain the exact error convergence rates and
numerical stability criteria.

For small dimensional stochastic systems (e.g. d ¼ 1 or 2)
increasing N can be done at a low computational cost: if the spatial
resolution N is not sufficient for the chosen time step Dtn, then we
can increase the resolution N at a small performance penalty. As
the size of the investigated system increases (e.g., d > 3) one has
to carefully choose a balance between Dt and N giving the corre-

Fig. 9. Comparison of the marginal steady-state response PDFs of the system (34) (d ¼ 4) with the approximated solutions obtained (a) by the SMM-PI approach with quintic
interpolation and (b) by the FFT-based approach with cubic B-spline interpolation. The time step is Dt ¼ 10)1.
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sponding spatial resolution, since the computation of the step
matrix S becomes very expensive in terms of both computational
time and memory.

To summarise, the SMM-PI method is especially useful when
analysing the models of low-dimensional nonlinear systems
(d 6 3) and investigate the effect of parameters on the time evolu-
tion of the PDF.

5. Conclusions

In this paper we provided a novel systematic formulation of the
PI method as an approximate method to solve the Chapman-
Kolmogorov (CK) Eq. (3). The CK equation models the evolution
of the PDF for a stochastic process in general, and we apply it to
systems described by SDE’s. There are three key elements of the
new PI construction: the approximation of the TPDF
pðx; tnþ1jy; tnÞ, the discretisation of the PDF pðx; tnÞ, and the quadra-
ture evaluation of the integral. Since the TPDF is the fundamental
component that advances the PDF in time we approximate it using
the PDF of a numerical time stepping scheme applied to the SDE
(1). For the discretisation of the PDF pðx; tnÞ we use different inter-
polation methods, and to evaluate the integral in (3) that combines
components, we use the Gauss–Legendre quadrature. Partitioning
the PI method in this manner allows us to separately investigate
the performance of the approximation for each component and
to isolate the potential bottlenecks within the method. Further-
more, through this formulation we transform the Chapman-
Kolmogorov equation to multiplication by step matrix that cap-
tures the full PDF evolution, thus boosting the performance of
the PI method.

To test the accuracy, computational requirements and the effi-
ciency of the PI method with the different temporal and spatial
approximation methods and resolutions, we conducted numerical
experiments on a set of nonlinear and linear examples. We note
that this study appears to be the first systematic performance eval-
uation of any PI method. The results presented in Fig. 6 show, that

in the case of the scalar system (d ¼ 1) the most efficient approxi-
mations for the PDF use dense interpolation approaches, for which
the method yields accurate results even with relatively small size
step matrices Sn. For dimension d ¼ 2, the efficiency of the quintic
interpolation method surpasses that of the dense interpolations,
and our tests indicate that this conclusion holds for higher d-
dimensional systems as well. The numerical tests also confirm, that
for d ¼ 1;2;3, transforming the CK Eq. (3) to a matrix multiplica-
tion significantly increases the efficiency of the PI method, com-
pared to previous approaches, even before considering any
parallelisation.

The computationally most expensive part of the SMM-PI
approach is the generation of the step matrix Sn. Nevertheless,
since the new formulation provides the advantage that the row
vectors vecðUðiÞ;nÞ> of Sn defined in (22) are independent of each
other, we can greatly reduce the computation time necessary to
obtain Sn by the parallel computation of the individual rows, fur-
ther increasing the efficiency of the SMM-PI method. However,
there is a single caveat to this approach based on Fig. 7: a large
amount of memory is necessary to store Sn, as shown for d P 4,
even when a sparse interpolation is applied. This is a major barrier
to be overcome in order to generalise this approach to higher
d-dimensional systems. Nonetheless, the method presented in this
paper is proved to be remarkably efficient and is a potential candi-
date for the high-performance computational solution of nonlinear
(time-dependent) stochastic systems (subjected to various noise
sources) that are used for modelling in biology, physics, engineer-
ing, finance or other fields of science, even on thin and light laptops
with moderate computational capabilities.
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Fig. 10. Comparison of the marginal errors e1;: of the system (34) (d ¼ 4) with the approximated solutions obtained by SMM-PI with quintic interpolations and FFT-based
(FFT) approaches with cubic B-spline interpolation. The time step is Dt ¼ 10)1.
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Appendix A. Runge–Kutta-Maruyama methods

To increase the accuracy of the approximation of the TPDF
pðx; tnþ1jy; tnÞ we can use a Runge–Kutta step for the drift term.
In this case (4) changes to

xðtnþ1Þ + xðtnÞ þ f̂ðxðtnÞ; tnÞDtn þ gðxðtnÞ; tnÞDWn: ðA:1Þ

We use the explicit 4th order Runge–Kutta approximation [28]
f̂ðxðtnÞ; tnÞ of the drift term, that is

f̂ðxðtnÞ; tnÞ ¼
1
6

k1 þ k2 þ k3 þ k4ð Þ; ðA:2Þ

where

k1 ¼ f xðtnÞ; tnð Þ;
k2 ¼ f xðtnÞ þ 1

2k1Dtn; tn þ 1
2Dtn

* +
;

k3 ¼ f xðtnÞ þ 1
2k2Dtn; tn þ 1

2Dtn
* +

;

k4 ¼ f xðtnÞ þ k3Dtn; tn þ Dtnð Þ:

ðA:3Þ

Note that with the help of Butcher tableaus we can construct the
approximation f̂ðxðtnÞ; tnÞ using different explicit Runge–Kutta
methods.

Appendix B. Interpolation functions

Here we collect the weight functions /j;l of the interpolation
methods used to construct the interpolations !pðx; tnÞ in (15). We
differentiate two groups of interpolations: sparse and dense inter-
polations. In case of the sparse interpolations we assign a non-zero
weight only to a fixed number of node values qðiÞ;n independent of
the number of nodes Nj along the j) th dimension, while in case of
dense interpolations we assign weights for each Nj node value qðiÞ;n.
Also, as the interpolation functions are described only along the
single j-th dimension, as abuse of notation we omit j from the sub-
scripts, and refer to the resolution as N, to the limits of the interpo-
lation region as a and b, to the grid locations as xl, to the node
values as ql and to the weight functions as /iðxÞ.

For each interpolations we interpolate the function p : R # R

with an interpolation function !pðxÞ in the form

pðxÞ + !pðxÞ ¼
XN

i¼1

qi/iðxÞ if x 2 I ¼ ½a; b&;

0 otherwise:

8
><

>:
ðB:1Þ

Here qi denotes the values taken by the function pðxÞ in the interpo-
lation nodes, namely qi ¼ pðxiÞ.

B.1. Sparse interpolations

Throughout this section we use the equidistant grid over
the j-th dimension with nodes

xl ¼ aþ ðl) 1Þ b) a
N ) 1

; ðB:2Þ

and the local variable hl defined as

hlðxÞ :¼
x)xl
h if xl < x < xlþ1;

0 otherwise;

)
ðB:3Þ

where h ¼ xlþ1 ) xl ¼ b)a
N)1.

B.1.1. Linear interpolation
Even though the linear interpolation is well-known, we demon-

strate the thought-process of how we derive the sparse interpola-
tions used in this paper. During the linear interpolation we
approximate the function pðxÞ on xl < x < xlþ1 with the interpola-
tion functions

!pðxÞ ¼ al;1hlðxÞ þ al;0; ðB:4Þ

with conditions

!pðxlÞ ¼ al;0 ¼ ql;

!pðxlþ1Þ ¼ al;1 þ al;0 ¼ qlþ1;
ðB:5Þ

namely, the interpolation function in the nodes xi return the node
values qi. We solve (B.5) for al;1 and al;0, and substitute them back
to (B.4) we get

!pðxÞ ¼ ðqlþ1 ) qlÞhlðxÞ þ ql: ðB:6Þ

Collecting the coefficients of qi, where i ¼ 1; . . . ;N, we obtain the
weight functions /iðxÞ as

/lðxÞ ¼ 1) hlðxÞ;
/lþ1ðxÞ ¼ hlðxÞ;
/iðxÞ ¼ 0 for all i – l; i– lþ 1:

ðB:7Þ

Note that in case of the linear interpolation function !p is C0 on I.

B.1.2. Cubic interpolation
In case of the cubic interpolation we approximate the pðxÞ on

xl < x < xlþ1 with the cubic polynomial

!pðxÞ ¼ al;3h
3
l ðxÞ þ al;2h

2
l ðxÞ þ al;1hlðxÞ þ al;0; ðB:8Þ

with boundary conditions conditions for the values

!pðxlÞ ¼ al;0 ¼ ql;

!pðxlþ1Þ ¼ al;3 þ al;2 þ al;1 þ al;0 ¼ qlþ1;
ðB:9Þ

and for the first derivatives

!p 0ðxlÞ ¼ al;1=h ¼ Dð3Þ
h;1fpgðlÞ;

!p 0ðxlþ1Þ ¼ ð3al;3 þ 2al;2 þ al;1Þ=h ¼ Dð3Þ
h;1fpgðlþ 1Þ;

ðB:10Þ

where Dð3Þ
h;1fpgðlÞ denotes the 3-point finite difference approxima-

tion of the first derivative p0ðxlÞ, namely,

Dð3Þ
h;1fpgðlÞ ¼

)q3þ4q2)3q1
2h if l ¼ 1;

)qNþ4qN)1)3qN)2
2h if l ¼ N ) 1;

qlþ1)ql)1
2h otherwise:

8
>><

>>:
ðB:11Þ

To obtain /i we solve the linear equation system (B.9) and (B.10) for
al;m;m ¼ 0;1;2;3, substitute the solution back to (B.8) and collect
the coefficients of qi.

In case of a general l the non-zero weight functions /i are

/l)1ðxÞ ¼ 1
2 h

3
l ðxÞ þ h2l ðxÞ ) 1

2 hlðxÞ;
/lðxÞ ¼ 1

2 h
3
l ðxÞ ) 5

2 h
2
l ðxÞ þ 1;

/lþ1ðxÞ ¼ ) 3
2 h

3
l ðxÞ þ 2h2l ðxÞ þ 1

2 hlðxÞ;
/lþ2ðxÞ ¼ 1

2 h
3
l ðxÞ ) 1

2 h
2
l ðxÞ:

ðB:12Þ

In case of l ¼ 1 (x1 < x < x2) the non-zero weight functions /i are

/1ðxÞ ¼ 1
2 h

2
1ðxÞ ) 3

2 h1ðxÞ þ 1;

/2ðxÞ ¼ )h21ðxÞ þ 2h1ðxÞ;
/3ðxÞ ¼ 1

2 h
2
1ðxÞ ) 1

2 h1ðxÞ;
ðB:13Þ

and in case of l ¼ N ) 1 (xN)1 < x < xN) the non-zero weight func-
tions are written as
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/N)2ðxÞ ¼ 1
2 h

2
N)1ðxÞ ) 1

2 hN)1ðxÞ;
/N)1ðxÞ ¼ )h2N)1ðxÞ þ 1;

/NðxÞ ¼ 1
2 h

2
N)1ðxÞ þ 1

2 hN)1ðxÞ:
ðB:14Þ

Note that in case of the cubic interpolation function !p is C1 on I.

B.1.3. Quintic interpolation
In case of the quintic interpolation we use the quintic

polynomial

!pðxÞ ¼ al;5h
5
l ðxÞ þ al;4h

4
l ðxÞ þ al;3h

3
l ðxÞ þ al;2h

2
l ðxÞ þ al;1hlðxÞ þ al;0

ðB:15Þ

With the boundary conditions for the values

!pðxlÞ ¼ al;0 ¼ ql;

!pðxlþ1Þ ¼ al;5 þ al;4 þ al;3 þ al;2 þ al;1 þ al;0 ¼ qlþ1;
ðB:16Þ

for the first derivatives

!p 0ðxlÞ ¼ al;1=h ¼ Dð5Þ
h;1fpgðlÞ;

!p 0ðxlþ1Þ ¼ ð5al;5 þ 4al;4 þ 3al;3 þ 2al;2 þ al;1Þ=h ¼ Dð5Þ
h;1fpgðlþ 1Þ;

ðB:17Þ

and the second derivatives

!p 00ðxlÞ ¼ 2al;2=h
2 ¼ Dð5Þ

h;2fpgðlÞ;

!p 00ðxlþ1Þ ¼ ð20al;5 þ 12al;4 þ 6al;3 þ 2al;2Þ=h
2 ¼ Dð5Þ

h;2fpgðlþ 1Þ:
ðB:18Þ

Here Dð5Þ
h;1fpgðlÞ denotes the 5-point finite difference approximation

of the first derivative p0ðxlÞ, namely,

Dð5Þ
h;1fpgðlÞ ¼

)25q1þ48q2)36q3þ16q4)3q5
12h if l ¼ 1;

)3q1)10q2þ18q3)6q4þq5
12h if l ¼ 2;

)qN)4þ6qN)3)18qN)2þ10qN)1þ3qN
12h if l ¼ N ) 1;

3qN)4)16qN)3þ36qN)2)48qN)1þ25qN
12h if l ¼ N;

ql)2)8ql)1þ8qlþ1)qlþ2
12h otherwise;

8
>>>>>>>>>><

>>>>>>>>>>:

ðB:19Þ

while Dð5Þ
h;2fpgðlÞ denotes the 5-point finite difference approximation

of the second derivative p00ðxlÞ, namely,

Dð5Þ
h;2fpgðlÞ ¼

35q1)104q2þ114q3)56q4þ11q5
12h2

if l ¼ 1;

11q1)20q2þ6q3þ4q4)q5
12h2

if l ¼ 2;

)qN)4þ4qN)3þ6qN)2)20qN)1)11qN
12h2

if l ¼ N ) 1;

11qN)4)56qN)3þ114qN)2)104qN)1þ35qN
12h2

if l ¼ N;

)ql)2þ16ql)1)30qlþ16qlþ1)qlþ2

12h2
otherwise:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ðB:20Þ

In case of a general l the non-zero weight functions /i are

/l)2ðxÞ ¼ ) 5
24 h

5
l ðxÞ þ 13

24 h
4
l ðxÞ ) 3

8 h
3
l ðxÞ ) 1

24 h
2
l ðxÞ þ 1

12 hlðxÞ;

/l)1ðxÞ ¼ 25
24 h

5
l ðxÞ ) 8

3 h
4
l ðxÞ þ 13

8 h3l ðxÞ þ 2
3 h

2
l ðxÞ ) 2

3 hlðxÞ;

/lðxÞ ¼ ) 25
12 h

5
l ðxÞ þ 21

4 h4l ðxÞ ) 35
12 h

3
l ðxÞ ) 5

4 h
2
l ðxÞ þ 1;

/lþ1ðxÞ ¼ 25
12 h

5
l ðxÞ ) 31

6 h4l ðxÞ þ 11
4 h3l ðxÞ þ 2

3 h
2
l ðxÞ þ 2

3 hlðxÞ;

/lþ2ðxÞ ¼ ) 25
24 h

5
l ðxÞ þ 61

24 h
4
l ðxÞ ) 11

8 h3l ðxÞ ) 1
24 h

2
l ðxÞ ) 1

12 hlðxÞ;

/lþ3ðxÞ ¼ 5
24 h

5
l ðxÞ ) 1

2 h
4
l ðxÞ þ 7

24 h
3
l ðxÞ:

ðB:21Þ

In case of l ¼ 1 (x1 < x < x2) the non-zero weight functions /i are

/1ðxÞ ¼ 1
24 h

4
1ðxÞ ) 5

12 h
3
1ðxÞ þ 35

24 h
2
1ðxÞ ) 25

12 h1ðxÞ þ 1;

/2ðxÞ ¼ ) 1
6 h

4
1ðxÞ þ 3

2 h
3
1ðxÞ ) 13

3 h21ðxÞ þ 4h1ðxÞ;
/3ðxÞ ¼ 1

4 h
4
1ðxÞ ) 2h31ðxÞ þ 19

4 h21ðxÞ ) 3h1ðxÞ;
/4ðxÞ ¼ ) 1

6 h
4
1ðxÞ þ 7

6 h
3
1ðxÞ ) 7

3 h
2
1ðxÞ þ 4

3 h1ðxÞ;
/5ðxÞ ¼ 1

24 h
4
1ðxÞ ) 1

4 h
3
1ðxÞ þ 11

24 h
2
1ðxÞ ) 1

4 h1ðxÞ:

ðB:22Þ

In case of l ¼ 2 (x2 < x < x3) the non-zero weight functions /i are

/1ðxÞ ¼ 1
24 h

4
2ðxÞ ) 1

4 h
3
2ðxÞ þ 11

24 h
2
2ðxÞ ) 1

4 h2ðxÞ;
/2ðxÞ ¼ ) 1

6 h
4
2ðxÞ þ 5

6 h
3
2ðxÞ ) 5

6 h
2
2ðxÞ ) 5

6 h2ðxÞ þ 1;

/3ðxÞ ¼ 1
4 h

4
2ðxÞ ) h32ðxÞ þ 1

4 h
2
2ðxÞ þ 3

2 h2ðxÞ;
/4ðxÞ ¼ ) 1

6 h
4
2ðxÞ þ 1

2 h
3
2ðxÞ þ 1

6 h
2
2ðxÞ ) 1

2 h2ðxÞ;
/5ðxÞ ¼ 1

24 h
4
2ðxÞ ) 1

12 h
3
2ðxÞ ) 1

24 h
2
2ðxÞ þ 1

12 h2ðxÞ:

ðB:23Þ

In case of l ¼ N ) 2 (xN)2 < x < xN)1) the non-zero weight functions
are

/N)4ðxÞ ¼ 1
24 h

4
N)2ðxÞ ) 1

12 h
3
N)2ðxÞ ) 1

24 h
2
N)2ðxÞ þ 1

12 hN)2ðxÞ;
/N)3ðxÞ ¼ ) 1

6 h
4
N)2ðxÞ þ 1

6 h
3
N)2ðxÞ þ 2

3 h
2
N)2ðxÞ ) 2

3 hN)2ðxÞ;
/N)2ðxÞ ¼ 1

4 h
4
N)2ðxÞ ) 5

4 h
2
N)2ðxÞ þ 1;

/N)1ðxÞ ¼ ) 1
6 h

4
N)2ðxÞ ) 1

6 h
3
N)2ðxÞ þ 2

3 h
2
N)2ðxÞ þ 2

3 hN)2ðxÞ;
/NðxÞ ¼ 1

24 h
4
N)2ðxÞ þ 1

12 h
3
N)2ðxÞ ) 1

24 h
2
N)2ðxÞ ) 1

12 hN)2ðxÞ:

ðB:24Þ

In case of l ¼ N ) 1 (xN)1 < x < xN) the non-zero weight functions
are

/N)4ðxÞ ¼ 1
24h

4
N)1ðxÞ þ 1

12h
3
N)1ðxÞ) 1

24h
2
N)1ðxÞ ) 1

12hN)1ðxÞ;
/N)3ðxÞ ¼ ) 1

6h
4
N)1ðxÞ) 1

2h
3
N)1ðxÞ þ 1

6h
2
N)1ðxÞþ 1

2hN)1ðxÞ;
/N)2ðxÞ ¼ 1

4h
4
N)1ðxÞ þ h3N)1ðxÞ þ 1

4h
2
N)1ðxÞ ) 3

2hN)1ðxÞ;
/N)1ðxÞ ¼ ) 1

6h
4
N)1ðxÞ) 5

6h
3
N)1ðxÞ ) 5

6h
2
N)1ðxÞþ 5

6hN)1ðxÞ þ1;

/NðxÞ ¼ 1
24h

4
N)1ðxÞ þ 1

4h
3
N)1ðxÞþ 1

124h
2
N)1ðxÞ þ 1

4hN)1ðxÞ:

ðB:25Þ

Note that in case of the cubic interpolation function !p is C2 on I.

B.2. Dense interpolations

B.2.1. Barycentric interpolation on a Chebyshev grid
If we use the barycentric interpolation on a Chebyshev grid with

N number of nodes xi; i ¼ 1;2; . . . ;N, then /i is written as

/iðxÞ ¼

1 if x ¼ xi;
0 if x ¼ xl; l – i;

ð)1Þi)1ci)1
x)xi

=
XN)1

l¼0

ð)1Þlcl
x)xlþ1

; otherwise;

8
>>>><

>>>>:

ðB:26Þ

ci ¼
1=2 if i ¼ 0 or i ¼ N ) 1;
1 otherwise;

)
ðB:27Þ

with nodes

xi ¼
aþ b
2

þ b) a
2

cos
i) 1
N ) 1

p
, -

: ðB:28Þ

B.2.2. Trigonometric interpolation
If we use trigonometric interpolation along the j-th dimension

with Nj number of equidistant nodes xl; l ¼ 0;1; . . . ;Nj ) 1, then
/j;i is. In case N is odd:

/iðxÞ ¼

1 if x ¼ xi;
0 if x ¼ xl; l – i;
sin p

b)aNðx)xiÞð Þ
N sin p

b)aðx)xiÞð Þ ; otherwise:

8
>><

>>:
ðB:29Þ
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In case N is even:

/iðxÞ ¼

1 if x ¼ xi
0 if x ¼ xl; l– i
sin p

b)aNjðx)xiÞð Þ
Nj tan p

b)aðx)xiÞð Þ ; otherwise;

8
>><

>>:
ðB:30Þ

During the trigonometric interpolation we the uniform grid

xi ¼ aþ ði) 1Þ ðb) aÞ
N

; l ¼ 0; . . . ;Nj ) 1: ðB:31Þ

B.3. Two-dimensional linear interpolation

In this section we demonstrate the construction of the linear
interpolation of the function pðxÞ;x 2 R2; p : R2 # R on x 2 I. As
p is a 2-dimensional function, we use a two-variable notation,
i.e., pðx; yÞ :¼ p ½x; y&>

* +
, where we use x :¼ x1 2 ½a1; b1& and

y :¼ x2 2 ½a2; b2&. We construct the linear interpolation along the
two dimensions and show that it indeed results in the form pro-
vided in (15).

The function pðx; yÞ is available in the points ðxi1 ; yi2 Þ of the
equidistant grid in (B.2) defined along both dimensions, namely,

qi1 ;i2 ¼ pðxi1 ; yi2 Þ where i1 ¼ 1; . . . ;N1; and i2 ¼ 1; . . . ;N2:

ðB:32Þ
During the interpolation process we approximate pðx; yÞ between
the gridpoints, namely, x 2 ½xl1 ; xl2 & and y 2 ½yl2 ; yl2 &. First, we interpo-
late along x using the weight functions defined in (B.7)

pðx; yl2 Þ ¼ /1;l1 ðxÞql1 ;l2 þ /1;l1þ1ðxÞql1þ1;l2 ;

pðx; yl2þ1Þ ¼ /1;l1 ðxÞql1 ;l2þ1 þ /1;l1þ1ðxÞql1þ1;l2þ1:
ðB:33Þ

Then we interpolate along y

pðx; yÞ ¼ /2;l2 ðyÞpðx; yl2 Þ þ /2;l2þ1ðyÞpðx; yl2þ1Þ
¼ /2;l2 ðyÞ/1;l1 ðxÞql1 ;l2

þ/2;l2 ðyÞ/1;l1þ1ðxÞql1þ1;l2

þ/2;l2þ1ðyÞ/1;l1 ðxÞql1 ;l2þ1

þ/2;l2þ1ðyÞ/1;l1þ1ðxÞql1þ1;l2þ1

¼ /ðx; yÞ;qh i:

ðB:34Þ

The matrices corresponding to the product weight functions
/1;i1 ðxÞ/2;i2 ðyÞ and the node values qi1 ;i2 are

/ðx; yÞ ¼

0 , , , 0 0 , , , 0
..
.

dots ..
. ..

.
dots 0

0 , , , /1;l1 ðxÞ/2;l2 ðyÞ /1;l1þ1ðxÞ/2;l2 ðyÞ , , , 0
0 , , , /1;l1 ðxÞ/2;l2þ1ðyÞ /1;l1þ1ðxÞ/2;l2þ1ðyÞ , , , 0

..

.
dots ..

. ..
.

dots 0
0 , , , 0 0 , , , 0

0

BBBBBBBBBB@

1

CCCCCCCCCCA

2 RN1'N2

ðB:35Þ

and

q ¼

0 , , , 0 0 , , , 0
..
.

dots ..
. ..

.
dots 0

0 , , , ql1 ;l2 ql1 ;l2þ1 , , , 0
0 , , , ql1þ1;l2 ql1þ1;l2þ1 , , , 0

..

.
dots ..

. ..
.

dots 0
0 , , , 0 0 , , , 0

0

BBBBBBBBBB@

1

CCCCCCCCCCA

2 RN1'N2 ; ðB:36Þ

respectively.
Substituting the weight functions from (B.7) to (15) leads to the

same result as (B.34).

Appendix C. Equation of motion of the coupled oscillator

The equation describing the motion of two linear oscillator cou-
pled is given by

dx ¼ vxdt;
dy ¼ vydt;
dvx ¼ )2x1 n1 þ n12ð Þvx ) 2n12x1vy ) x2

1 þx2
12

* +
xþx2

12y
* +

dt;
dvy ¼ )2x2n2 vy ) vx

* +
)x2

2 y) xð Þ
* +

dt þ rdWðtÞ:
ðC:1Þ

We substitute the parameters x1 ¼ x2 ¼ x12 ¼ r ¼ 1 and
n1 ¼ n2 ¼ n12 ¼ 0:1 to obtain (34) for the numerical experiments.

Appendix D. Steady-state PDF of linear time-invariant
stochastic systems

The theorem (8.2.12) in [3] states that the steady-state solution
of the equation

dxðtÞ ¼ AxðtÞdt þ bdWðtÞ; ðD:1Þ

where A 2 Rd'd and b 2 Rd, is a stationary Gaussian process on the
condition that the eigenvalues of A have negative real values, i.e.
limt!1xðtÞ . Nð0;KÞ, where

K ¼ lim
t!1

Z t

0
eA

>ðt)sÞbb>eA
>ðt)sÞds: ðD:2Þ

In the case of (33) the coefficients of (D.1) are

x ¼
x
v
Z

0

B@

1

CA; A ¼
0 0 1
)1 )2f r
0 0 )l

0

B@

1

CA; b ¼
0
0ffiffiffiffiffiffiffi
2l

p

0

B@

1

CA; ðD:3Þ

while in the case of (C.1) the coefficients of (D.1) are

x ¼

x
y
vx

vy

0

BBB@

1

CCCA;

A ¼

0 0 1 0
0 0 0 1

) x2
1 þx2

12

* +
x2

12 )2x1ðn1 þ n12Þ )2n12x1

x2
2 )x2

2 2x2n2 )2x2n2

0

BBB@

1

CCCA;

b ¼

0
0
0
r

0

BBB@

1

CCCA: ðD:4Þ
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