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Acoustic telemetry is a popular way of monitoring underwater
environments and habitats, but an understanding     of the
detection range and efficiency of the receivers in variable
conditions can provide a significant     advantage     over the
detections alone. Receivers can be attached or integrated into
autonomous underwater vehicles (AUVs) allowing wide spatial
coverage for telemetry networks while collecting
environmental     data. The integration of calculated sound
speeds and received pings gives an estimation of variation in
detection      efficiency      due     to     changes      in     environmental
conditions, allowing underwater     network users to better
quantify the range of reliable detection.

Data from a Slocum glider deployed over an array of 16 moored
telemetry instruments on the inner shelf off Georgia in 2019
and 2020 indicate that detection efficiency and range vary
seasonally. Beam density analysis using ray tracing is proposed
as a novel approach that quantifies probability of detection as a
function of range, modeling sound speed variability and
propagation      using     co-located     temperature     and      salinity
measurements. This approach is validated through comparison
of modeled to observed distributions, which suggests that
beam density analysis is a promising method to remotely
estimate detection efficiency     in real time. This real time
capability can be leveraged through adaptive sampling in the
design and implementation     of robotic acoustic telemetry
networks.
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1 BACKGROUND

Acoustic telemetry has been used by both the scientific and
fisheries communities to better understand marine
populations [1,2]. Telemetry is reliant on effective and efficient
underwater     signal      transmission,     which     is     affected by
increasingly stratified warmer oceans [3]. Detection range of
these systems is typically given as a constant on the order of
200-1000m depending on the environment, but sound speed
(and      therefore     sound      propagation)      is     a     function      of
temperature, depth, and salinity, all of which are spatially and
temporally dynamic in the coastal ocean [1,2,4,5], even on tidal
time scales [6]. In a given time series of detections, it is
impossible to discern if a tagged animal has moved away or if
the sound channel no longer permits its detection by the
receiver, since telemetry only reports presence and not
absence. The range at which receivers reliably detect active
acoustic transmissions can be key to assessing fish movement
patterns     and     other     telemetry     applications,     such     as     in
underwater networks, but receivers do not record the distance
and bearing of detected transmissions.

Autonomous underwater vehicles (AUVs) such as Slocum
gliders are now being used as mobile receiver platforms to
track the physical water properties and detect transmissions
[7]. Integration of the sensors into the vehicle allows reporting
of detections in near-real time (each time the vehicle surfaces)
rather than having to retrieve moored instruments or use ship
time after an extended deployment. Environmental modeling of
the soundscape using co-located estimates of sound speed from
the vehicle’s     sampling     instrumentation     (measuring
conductivity,     temperature     and     depth,      CTD)     can     allow
incorporation of varying detection efficiency into telemetry
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assessments, making gliders even more attractive platforms for
gathering acoustic data.

This study proposes a novel method of modeling acoustic
transmission using real time data streams from in-situ
environmental measurements. Water column and telemetry
data from experiments conducted at Gray’s Reef National
Marine Sanctuary (GRNMS) in 2019-2020 are then used to
validate the model. These data are used in a predictive capacity to
understand the probability of detection as a function of range
in near-real time to be leveraged     by underwater telemetry
networks for adaptive sampling by mobile platforms. Previous
studies with      similar instrumentation under
comparable conditions [7,8] have shown higher detection rates
and larger     detection ranges     during mixed cooler winter
months, and fewer     detections     during stratified summer
months. Those efficiency estimates will be compared to the
findings of the model for a series of three glider deployments
spanning fall 2019 and spring 2020.

Figure 1: Locations of the 16 acoustic telemetry receivers
installed on the inner shelf at Gray’s Reef NMS. The 10, 20,
30, 40, and 50m isobaths are indicated in light gray.

2.2 AUV Strategies & Data Collection
A 150m Slocum glider was deployed for three 4-5-week
missions to collect physical data and acoustic transmissions.
Using a buoyancy pump to inflect up and down in the water
column, gliders move at 25-30 cm/s horizontally. The glider
communicates and fixes GPS positioning when it surfaces
(every 4 hours); the glider’s submerged position is later
interpolated between the two known surfacing positions. This
lack of precise location information while underwater adds
uncertainty to distance measurements but use of the glider
allows for detections to be transmitted back to shore near-real
time.

Water column data is sampled with a continuously pumped
CTD sensor (conductivity, temperature, and depth) measured
and stored at 0.5Hz. To minimize time at the surface only a
subset of the data (30s resolution of every 3rd or 4th profile) is
sent back to shore each surfacing. For the purposes of this
experiment the full datasets were used, though future studies
will include testing of these same techniques using different
configurations of real-time data subsets.

The glider was outfitted with upward-and downward-facing
VEMCO VR2c acoustic receivers that identify and decode active
unique transmissions in the form of a series of 8-10 pings over
3-5 seconds (Pulse Position Modulation, PPM). The successful
detections and known transmission rate (transmission every
~10 minutes) allow for the calculation of detection efficiency ,
e.g., the ratio of how many pings were heard to how many pings
occurred while the glider was estimated to be within a certain
distance of the mooring. In the calculations below, the range bin
size is chosen such that time in range is sufficiently large to
evaluate efficiency as a smooth, real-valued function over the
2019 and 2020 field experiments.
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2 METHODS

2.1 Acoustic Telemetry Array
Gray’s Reef National Marine Sanctuary (GRNMS) is a 22 square
mile near-shore marine protected area (MPA). As a hard-
bottom reef that is a habitat for hundreds of large invertebrates
and demersal fish species, Gray’s Reef is an ecologically
important feature of the continental shelf of the United States
where much of the bottom consists of flat sand [8]. As part of
recent soundscape and acoustic telemetry monitoring efforts,
16 VEMCO V16 acoustic telemetry receivers were installed
within Gray’s Reef (Fig. 1). While deployed each receiver emits a
reference acoustic signal once every 10 minutes containing
identifiers unique to the transmitter (staggered     to avoid
collision), with a frequency of 69 kHz and a reported effectiv e
range of 1km. This regular interval provides a reference for
known     acoustic     transmissions,     eliminating      a     significant
unknown present in other acoustic telemetry experiments, the
fact that silence could mean absence of anything transmitting or
a missed detection.

Figure 2: Model framework and information flow. AUV CTD
data is used to calculate sound speed profiles as input for
BELLHOP ray tracing.



2.3 Environmental Parameters h
Sound speed depends heavily on temperature, increases with
pressure and has a weak positive dependence on salinity [6].
GRNMS, much like other coastal ocean shelf habitats, is
characterized by warmer, less dense water layered over the
cooler saltier water at the bottom. This layering is revealed by
the presence of a thermocline (region of rapidly change in
temperature over depth). As sound travels the thermocline acts
as a barrier, refracting the soundwaves back towards the depth
of relative minimum sound speed [10]. Depending on the
thermocline’s strength and position in the water column, this
refraction can have substantial effects on sound propagation,
especially in shallow water.     Knowing the depth of the glider
relative to this stratification reveals a relationship between the
two instruments; the transmitter and receiver can either be on
the same side of the barrier or separated by it, an important
distinction for detection [1, 3, 4, 7, 8]. For the purposes of this
study, when the largest temperature difference is below a
threshold of 0.005 °C/m, the water column is considered well-
mixed and the thermocline is set at the surface. This threshold
(0.005 °C) is a small enough change in temperature that sound is
not refracted back. This distinction prevents large swings of the
perceived     thermocline     depth     when     in     well-mixed
environments (e.g., in November data) and allows the inclusion
of a value for the minimum gradient studied.

2.4 Acoustic Channel Modeling & Analysis ffffffffffffffffffffffff
Acoustic transmission is modeled using AUV-collected profiles
of temperature, salinity, and depth, allowing estimates of how
sound propagates through the environment using BELLHOP.
BELLHOP is a tool to trace acoustic ray paths given a sound
speed profile (SSP) [11, 12, 13]. SSPs are calculated along the
glider’s dives, linearly interpolating between points to give a
continuous profile. The robots inflect ~2.5m from the bottom,
and the last measured sound speed is extrapolated to the
bottom. The bottom boundary is considered an acoustoelastic
half-space, over which a relationship between the stress
applied and the resulting strain is used [13]. The acoustic
source depth in the model is set at 1 meter above the measured
bottom, similar to that of the GRNMS moored transmitters and
some reef dwelling species, and is given a -20° to 20° angle fan of
1000 rays propagating at 69 kHz. The output is a full ray
tracing of possible transmissions paths through the specified
water column to a maximum 2km range.

Three distinct profiles have been selected from three missions
for     modeling     analysis     to demonstrate     variation     among
deployments: March, early spring with a thermally stratified
water column; April, during the spring transition with a cooler,
fresher surface layer; and November, when waters were well-
mixed. These cases can be considered representative of
expected seasonal changes. Only the November 2019 and April-
May 2020 missions are included in detection & detection
efficiency data. The March deployment was interrupted with
storms that moved the glider out of the primary array, resulting
in very few detections; the CTD data is used to estimate SSPs as
input for BELLHOP modeling.

The full ray tracing allows for a novel approach: beam density
analysis, which tracks the percentage     of rays reaching a

distance downfield. Beam density analysis can be used as a
proxy for the probability that an AUV will hear a particular
transmission based on its distance from the source and will be
highlighted moving forward as a possible solution to the
changing detection range in variable conditions.

3 RESULTS h
3.1 Total Detections h
During     the     April and     November     missions,     the     glider’s
integrated receivers      detected      351      and      463      unique
transmissions from moorings. For this study, the focus is on
transmissions from known locations, so detections of tagged
fish and echoes in the data are disregarded. Three moored
transmitters were not detected after deployment and are
presumed to have malfunctioned, and thus are not included in
the analysis that follows.

Of a total of the 814 unique detections, 733 (90%) were
received while the receiver and transmitter were on the same
side of a thermal gradient. Table 1 separates detections by
range and position relative to the thermocline at the time of
detection. Most     detections were     received      within     the
manufacturer’s reported working distance of 1km and below
the thermal gradient (484, 59.5%). There is a clear distinction in
the detection distances between the two missions: there were
203 (43.8%) detections beyond 1km in November versus only 67
(19%) in April/May.

Table 1: Acoustic transmissions detected by glider and
position relative to the thermocline. Percent shown of total
detections.



3.2 Estimated Detection Efficiency
Average detection efficiency over both seasons is reported in
Figure 3 along with a histogram of time spent in each of the
100m range bins. The detection efficiency generally decreases
as a function of range; the <100 meter bin does not follow this
trend for April, but has a very small sample size due to limited
time spent by the glider in close proximity to the moorings. In
addition, the detection efficiencies are comparable with other
published results from AUVs (20% efficiency at 600m [7]) and
from a stationary array at Gray’s Reef (36.2% at 167m [8]).

Figure 4: Separate sound speed profiles from March (A),
April (B), and November (C), with estimates of propagation
and beam density analysis of the resulting ray traces.

Figure 3: Detection efficiency as a function of cumulative
time spent within range. Average reported for the Mid
Atlantic Bight inner shelf [7] and prior work in Gray’s Reef
[8] are indicated as a diamond and square, respectively.

As beams approach the reported 1km effective range, the
difference in propagation is the most prominent, especially
between April’s stratified and November’s mixed conditions:
1km, 16 to 49 rays; 1.5km, 9 to 31 rays; 2km, 6 to 22 rays. This
drop in modeled ray paths corresponds with periods of less
detections and a shorter effective range.

3.3 BELLHOP Modeling & Beam      Density Analysis
Resulting ray traces show the formation of shallow sound
channels, reflecting off the surface and refracting the sound
back towards the bottom. The effects of the thermocline are
evident in both the sound speed profile and resulting model
where 1 °C difference in temperature corresponds to a 4.0 m/s
increase in sound speed, significantly changing how sound
travels through the medium. A defined thermocline is present in
March and April, when the water column is stratified, but is
absent during well-mixed conditions in November (Fig. 4).
Sound speed profiles in April (4b) suggest that near-surface
salinity stratification from the spring freshwater may lead to
the development of two shallow channels. Sound could become
trapped on either side depending on the source depth; the
transmitters in this experiment are moored to the ocean
bottom and therefore more sound propagates in the lower
channel.

BELLHOP ray tracing shows a steep drop off and a plateau in
the first 100m, representing a water column that is saturated
with sound. To clearly show the range     of propagation,
percentage of rays within 100m is then set at 100%. The waves at
this distance reach the thermocline and surface at an angle
lower than the critical angle, ensuring penetration through this
barrier.

Figure 5: Modeled beam density analysis (lines) and observed
detection efficiency (symbols). Average efficiencies reported
for the Mid Atlantic Bight inner shelf [7] and prior work in
Gray’s Reef [8] are indicated as a diamond and square,
respectively.



4 DISCUSSION v
Detection     efficiency     is strongly     related     to distance,     in
agreement with past research [7,8,9]. This trend is reproduced in
the ray tracing models, with fewer rays propagating to
distances beyond 1km. During the well-mixed November
mission almost 45% of detections occurred past 1km, and the
beam density analysis predicts that significantly more rays
(~300%) should be propagating to that extended range given
the conditions. The modeled percentage of rays present is
comparable to the observed detection efficiency as a function of
range from the field experiments in 2019 and 2020 as, seen in
Figure 5: there is a steep drop off followed by a smooth
descent in both the experimental efficiencies and modeled rays.
This agreement (R2=0.78, April, and 0.87, November) gives
confidence in beam density analysis as a predictive tool for
estimating acoustic detection efficiency in a shallow coastal
ocean. Estimates of detection efficiency in 2019 and 2020 differ
significantly within the first 100m, where very little time was
spent. This lack of detections may be an indication of close
proximity     detection     interference     (CPDI,     14),     or     of the
“doughnut effect” attributed to the design of the integrated
receiver [7]. April and November’s missions have a nearly 35%
difference in detection efficiency (with low sample size). There is
a possibility that the seasonal stratification changes led tothe
difference     and the presence     of CPDI, but there is also
insufficient     time spent at that range to make adequate
assessments of these potential effects, and Kessel’s previous
work had trouble finding this interference in a noisier, turbid
environment that prevents clear echoes.

Future Considerations
Beam density analysis appears to be a viable, quantitative way
to estimate probability of detection as a function of range
using glider-based acoustic telemetry, providing valuable
context for the design of underwater networks and for
fisheries managers. Improved localization of the glider when
submerged would refine distance estimates, and simulated
environments can help narrow the gap between the two case
studies presented. Future AUV-based surveys can potentially
leverage this information in network design and operations in
real time, with less separation between vehicles when the
predicted detection range is small, and greater separation
when the predicted detection range is large.

Prior work in Gray’s Reef suggests that both range and
bearing relative to the cross-shore direction are important
predictors of detection efficiency due to cross-shore
temperature and salinity gradients on the inner shelf [4,6].
BELLHOP 3D may be used to account for these differences.
Future work will explore these factors within the moored
receiver array data, as well as incorporating along- and cross-
shore asymmetries into BELLHOP 3D sound speed profile
inputs. Accounting for variable bottom composition may also
allow for a better understanding of possible transmission
losses.
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