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Abstract. New neutrino interactions beyond the Standard Model (BSM) have been of much
interest in not only particle physics but also cosmology and astroparticle physics. We nu-
merically investigate the time delay distribution of astrophysical neutrinos that interact with
the cosmic neutrino background. Using the Monte Carlo method, we develop a framework
that enables us to simulate the time-dependent energy spectra of high-energy neutrinos that
experience even multiple scatterings en route and to handle the sharp increase in the cross
section at the resonance energy. As an example, we focus on the case of secret neutrino in-
teractions with a scalar mediator. While we find the excellent agreement between analytical
and simulation results for small optical depths, our simulations enable us to study optically
thick cases that are not described by the simplest analytic estimates. Our simulations are
used to understand effects of cosmological redshifts, neutrino spectra and flavors. The devel-
opments will be useful for probing BSM neutrino interactions with not only current neutrino
detectors such as IceCube and Super-Kamiokande but also future neutrino detectors such as
IceCube-Gen2 and Hyper-Kamiokande.
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1 Introduction

In the Standard Model (SM), astrophysical neutrinos hardly interact as they propagate in
intergalactic space from the source to Earth. In SM extensions, νSI may arise in particle
physics models to generate neutrino masses through symmetry breaking [1–7], which predict
new neutrino-neutrino scatterings with the cosmic neutrino background (CνB), modifying
the neutrino energy spectrum in transit. Such secret neutrino interactions, or neutrino self-
interactions (νSIs), are a topic of recent interest in cosmology, due to their effects on the free-
streaming behavior of neutrinos and big bang nucleosynthesis [8–23], which could alleviate the
Hubble tension [6, 7, 16, 24–27]. These new interactions can modify astrophysical neutrino
spectra during propagation [6, 28–37], as well as supernova neutrino spectra [38–43]. On
the other hand, νSIs have been constrained by terrestrial experiments, such as Z and τ
decays [7, 44], neutrinoless double beta decays [7, 45], and meson decays [6, 46].

Besides modifications to the neutrino spectrum, scatterings with the CνB delay the
neutrino’s arrival to Earth caused by the increased path length. While the scattering angle
of high-energy neutrinos is small due to the kinematics of high-energy particle scattering, the
large distance between the source and observer can cause a measurable difference in arrival
times compared to the photon counterpart [33]. Time delays in the neutrino arrival can
be used to constrain BSM models and may explore the parameter space that has not been
covered by terrestrial experiments. We have entered the multimessenger astrophysics era,
with coincidences such as the high-energy neutrino event IceCube-170922A and the blazar
TXS 0506+056 [47, 48], IceCube-191001A with the tidal disruption event AT2019dsg [49],
and IceCube-200530A and AT2019fdr [50]. By searching for delayed neutrino emission with
not only current IceCube and Super-Kamiokande but also future neutrino detectors such as
IceCube-Gen2 and Hyper-Kamiokande, we will be able to constrain some models of nonstan-
dard neutrino interactions by means of statistical analyses.

Here, we study the neutrino time delay distribution in the context of an interaction term
of the form gν̄νφ, between two neutrinos and a scalar boson φ. In particular, we perform
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dedicated Monte Carlo (MC) simulations of neutrino propagation in three dimensions, taking
account of the sudden increase in the optical depth when the neutrino energy approaches the
resonance region. The “time-dependent” energy spectrum is also calculated, showing the
flux suppression near the resonance and the neutrino pileup at energies below the resonance
energy.

In section 2, we explain the simulation setup and discuss relevant neutrino mean free
paths for our trials. In section 3, we analyze four cases: scattering in the small optical
depth limit, scattering in the large optical depth limit for both zero and finite inelasticities,
and scattering over cosmological distances where the redshift is important. In section 4, we
simulate neutrino emission from a source at redshift z = 1 with an ε−2

ν spectrum and discuss
flavor dependence in the resulting time delay distribution and neutrino spectrum.

2 Method

In this work, we assume that the ν − ν scattering is mediated by a scalar boson φ, of mass
mφ. High-energy neutrinos will scatter off the CνB via νν → νν [6, 28, 29]. Assuming
that neutrinos are Majorana fermions, we consider the effective Lagrangian for one neutrino
generation, L ⊃ −1

2gν
c
LνLφ+c.c., where g is the coupling constant. This model is used for its

simplicity, as there is only one neutrino mass and allows us to separate neutrino mixing effects
from intrinsic features of the BSM scattering. The three-generation case is discussed later.
While the high energy neutrinos are ultrarelativistic and left-handed, the CνB kinetic energy
is assumed to be lower than the neutrino mass, so these neutrinos are taken as unpolarized
and at rest [51].

For a target neutrino mass mν and incident energy εν , the scattered neutrino energy ε′ν
is given by

ε′ν = εν
1 + εν

mν
(1− cos θ) , (2.1)

where θ is the scattering angle. Focusing on s-channel scattering, we have the angular
distribution in the cosmic rest frame

1
σν

dσν
d cos θ = εν

mν

(
1 + εν

mν
(1− cos θ)

)−2
, (2.2)

and the invariant cross section [6]

σν(εν) = g4

32π
s

(s−m2
φ)2 +m2

φΓ2
φ

, (2.3)

where s = 2mνεν is the total energy in the center of mass frame and Γφ = g2mφ/16π is the
mediator decay width.1 Resonance occurs at εres = m2

φ/2mν , where the cross section becomes
σν = 8π/m2

φ. In general, the neutrino-neutrino cross section also has t-channel contributions
and an additional u-channel term for Majorana neutrinos. However, our applications lie in
the regime g < 0.2, where these terms are subdominant compared to the s-channel term [6].
The energy distribution for s-channel scattering dσν/dε′ν is flat in the cosmic rest frame at z,
because the angular distribution in the center-of-momentum frame is isotropic in the scalar
mediator case. Given the angular distribution and our interest in neutrinos above 10TeV, we

1Note that the coefficient becomes g4/16π if one uses nν = 56 cm−3 instead of nν = 112 cm−3, which is
also consistent with the cross section for Dirac neutrinos [28, 30].
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Figure 1. Geometrical setup for our MC simulations. The source is located at the origin, while the
observer is at (0, 0, D). An outgoing neutrino in the +x3 direction is emitted. Upon scattering, the
neutrino is deflected and an additional neutrino is upscattered. Neutrinos stop propagating when they
reach the sphere of radius D. The angles α and β used to compute the time delay are also marked.
For illustrative purposes, in this figure the initial neutrino scatters only once.

expect the scattering angles to be of order O(10−7) and below, as is seen from equation (2.2)
and (1− cos θ)εν/mν ∼ 1.

If neutrinos interact via a vector mediator, the total cross section would only increase
by a constant factor. On the other hand, the angular distribution in the center-of-momentum
frame is no longer isotropic: the left-handed neutrino is more likely to scatter in the forward
direction. For the same g and D, more (less) scatterings would take place in the vector
(scalar) mediator case, resulting in typically longer delays.

In the astrophysical context, time delay due to small-angle scattering was studied e.g.,
for X-ray scattering [52, 53], and some techniques are applicable to the current problem of
neutrino scattering by using the appropriate differential cross section. The geometrical setup
that is used in our simulations will follow that of ref. [52]. In Cartesian coordinates, the source
is located at the origin, while the observer is at (0, 0, D), as shown in figure 1. Neutrinos are
emitted individually from the source and are tracked until they reach the observer. For a
given neutrino path between source and observer, we can make appropriate rotations so that
the initial neutrino is always emitted in the +x3 direction, while the final location is some
point on the surface of a sphere of radius D with the source as its center.

Let p̂ be the three-dimensional momentum unit vector of the neutrino and α be the
angle that its projection on the x1x3 plane makes with the x3-axis. Likewise, we define β
as the angle between the x3-axis and the projection of p̂ on the x2x3 plane. Under the
assumption of small-angle scattering, α, β � 1, which applies to our case, we neglect terms
of third order and higher in α and β, such that the time delay t of a scattered neutrino
compared to an unscattered one is [52]

t = 1
2

∫ D

0
(α2(x3) + β2(x3))dx3 −

1
2D

(∫ D

0
α(x3)dx3

)2

+
(∫ D

0
β(x3)dx3

)2
 . (2.4)

The x3 dependence in α and β represents the changes in these angles whenever a scattering
takes place, thus being applicable for an arbitrary number of scatterings. Equation (2.4)
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is evaluated in the MC simulation by splitting into a discrete sum, where the steps dx3
correspond to the distance traveled between scatterings. When a scattering takes place, a
scattering angle θ is chosen based on equation (2.2), which changes the neutrino’s momentum
p̂ and hence the values α and β. Neutrino propagation stops upon reaching the sphere of
radius D.

To determine distances, we choose the cosmological density parameter ΩΛ = 0.7, the
matter density parameter ΩM = 0.3 and the Hubble constant H0 = 67 km s−1 Mpc−1. With
these values, a source at redshift z corresponds to a particle-travel distance

D =
∫ z

0

dz′

H0(1 + z′)
√

ΩM (1 + z′)3 + ΩΛ
. (2.5)

We also use this integral to establish a one-to-one correspondence between redshift and
neutrino location.

Let εν be the neutrino energy at some redshift. A neutrino initially at position r may
experience a scattering at r′ = r + p̂dD for some traveled distance dD and r = (x1, x2, x3).
To identify dD, we also define the optical depth

τν =
∫ x3

x3−dD
nν(x′′3)σν(εν(x′′3))dx′′3, (2.6)

where nν(x3) = 112 cm−3 (1+z(x3))3 is the ν+ ν̄ number density of the CνB and εν becomes
position dependent as a result of expansion losses. Notice that equation (2.6) is a line-of-sight
integral and can be used instead of a three-dimensional approach because motion in the other
axes is negligible in the small scattering approximation and has little effect in redshift losses.

The probability of an interaction occurring after propagating a distance corresponding
to an optical depth τν is 1 − exp(−τν). We can thus calculate dD in the MC simulation by
drawing τν from an exponential distribution and solving equation (2.6) for dD.

The main issue when solving for dD is that the cross section can increase by several
orders of magnitude as the neutrino energy approaches εres. The optical depth of a neutrino
with energy εν > εres will then spike as expansion losses cause the neutrino to reach resonance
energy. For small g, the resonance region is so narrow that a poor choice in dx′′3 when carrying
out the numerical integration of equation (2.6) will cause us to miss the resonance entirely.

To tackle this problem, we tabulate the cross section over as a function of the node
energy in the range [ε0, εN ], for some number of bins N , which contains εres and choose a
node k such that εk = εres. We consider k = N/2 or the integer closest to N/2. We find the
nearest resonance at εk, and the cross section decreases as we move away from εk. With ε0
and εN fixed, given that εk is determined, we then find the value of εi that satisfies

σν(εi) =
(
σν(ε0)
σν(εk)

)i/k
σν(ε0), i ≤ k, (2.7)

and

σν(εi) =
(
σν(εk)
σν(εi)

)(N−i)/(N−k)
σν(εN ), k < i ≤ N. (2.8)

With this method, we get a larger bin density near resonance as we increase N . In this work,
we choose ε0 = 1GeV and εN = 109 GeV

We now proceed to outline the method to determine dD. We draw a random number
by setting τν = − ln u for a random number u uniformly distributed in (0, 1]. Let r be
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Figure 2. Neutrino mean free path λν , at redshift z = 0, as a function of neutrino energy. We set
the parameters mν = 0.1 eV, mφ = 10MeV, and choose a variety of coupling parameters g. As a
reference, we use the light travel distances corresponding to 100Mpc, 1Gpc and z = 1.

the position of our neutrino with energy εν . As the particle propagates in steps dx′′3, it
accumulates contributions to the optical depth integral τν , following equation (2.6) and
computed via the trapezium rule. Thus, dD becomes the sum of steps dx′′3 required to make
τν = τν . As for the choice of the spacing dx′′3 used for each contribution to τν , we use
the energy nodes εi to account for redshift energy losses. For the first dx′′3 we first identify
the node εi closest to εν with εν ≥ εi. dx′′3 is the distance required so that εν decreases
to εi as a result of redshift energy losses alone. The next step dx′′3 is then chosen so that
redshift reduces neutrino energy from εi to εi−1. Each step calculated via this method keeps
increasing the value of τν and this process is repeated until either reach the sampled τν or
exceed it. If τν ≥ τν , we interpolate to τν and find its associated step dx′′3. It is possible that
τν ≤ τν throughout the remaining propagation length, in which case the particle is tracked
up to the sphere of radius D without further scatterings.

With dD determined, the particle is moved from r to r′, the contributions of α and β to
the integrals

∫
α2dx3,

∫
β2dx3,

∫
αdx3 and

∫
βdx3 in equation (2.4) are computed, and the

neutrino energy is redshifted to ε′ν to account for the new position. To perform a scattering,
we pick the scattered neutrino energy from a uniform distribution in the interval [0, ε′ν ],
since the scattered energy distribution is flat in the cosmic rest frame. From the scattered
energy, we can determine the momentum four-vector for both the scattered and upscattered
neutrinos, and the upscattered neutrino is injected at r′.

To find time delay distributions in our examples, we inject neutrinos until the observer
collects 107 neutrinos. The energy threshold, below which we do not collect particles, is
specified in each example as Eth.

Henceforth, we choose the values of mφ = 10MeV and mν = 0.1 eV, which sets the
neutrino resonance energy to εres = 500TeV in the cosmic rest frame. In figure 2, we show
the neutrino mean free path, λν = 1/nνσν(εν), using the CνB density at z = 0, as a function
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of the neutrino energy εν . We include the particle-travel distances corresponding to 100Mpc,
1Gpc and z = 1, which will be used in our examples. To describe the regimes of interest,
we also introduce the inelasticity parameter y, where y = 0 means that the incident neutrino
loses no energy after the scattering. We will also make a distinction between the energy εν
at redshift z, which changes due to cosmological redshift, and the observed neutrino energy
Eν = εν(z = 0) at z = 0. In the first cases, where propagation distances are less than 1Gpc,
adiabatic energy losses do not play a significant role and we have εν ≈ Eν . The distinction
will be necessary in our examples with sources at z = 1.

3 Results

3.1 Scattering in the optically thin limit

As the first example, we consider the propagation of neutrinos with an optical depth of
τν � 1, corresponding to the optically thin limit. In this regime, neutrinos are unlikely
to scatter more than once and only a fraction τν of all neutrino events will experience a
scattering.

Analytically, the time delay t follows, to a good approximation, the distribution,

P (t, ϕ;D) = 1
2t/D + ϕ2

1
σν

dσν
dθ

∣∣∣∣
θ=ϕ+2t/(Dϕ)

(3.1)

where ϕ is the arrival angle on Earth, with respect to the direction of the source. See ref. [54]
for the derivation. Integrating over ϕ will yield the delay distribution P (t). The characteristic
time delay in the optically thin regime is [33]

∆t ≈ 1
2
〈θ2〉

4 D ' 77 s C 2
(

D

3Gpc

)(
mν

0.1 eV

)(100TeV
Eν

)
, (3.2)

where 〈θ2〉 is the mean squared angular deflection from a single scattering. The constant C ∼
1 comes from the angular distribution of the interaction and thus depends on the mediator
used. In the case of s-channel scattering, we have 〈θ2〉 = 2C 2mν/Eν , with C = 0.62 for
leading scattered neutrinos [33, 54].

To demonstrate our simulation results, we inject neutrinos with εν = 170TeV and
assume g = 0.1, which leads to λν = 1Gpc. We choose Eth = 0 and construct the time delay
distribution P (t), which are shown in figure 3 as histograms for different source distances
D = τνλν = τν Gpc. As expected, as D increases, the probability density decreases for
shorter t. Second, for long time delays we get P (t) ∝ t−2. This is also verified by integrating
equation (3.1) over ϕ, which is shown as solid curves, and we see the excellent agreement
between analytical and numerical results in this optically thin limit. The characteristic time
delays in equation (3.2) are also presented as dashed lines. With this example, we also see
that our simulation results are consistent with the analytical estimate with leading particles.

We note that for τν & 0.1 one can see a visible difference between the numerical and
analytical results. At this point, the Poisson probability of two scatterings taking place is
τ2
ν e
−τν/2, such that roughly 5% of the scattered events will scatter twice, causing them to

experience longer delays. At τν = 1, the effect of multiple scatterings becomes apparent as
we leave the optically thin regime. We note that τν = 1 corresponds to 1Gpc, where the
redshift effect may take place. In this example we ignore redshift energy losses, which will
be addressed later.
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Figure 3. Time delay probability distribution, for different optical depths with D = τν Gpc. The
histograms are the results from the MC simulations. The solid curves are obtained by integrating
equation (3.1) over ϕ, while the dashed lines are the characteristic time delays given by equation (3.2).

3.2 Scattering in the optically thick limit with zero inelasticity

Let us consider the case where neutrinos do not lose energy, in such a way that the angular
distribution in equation (2.2) holds but there are no upscattered neutrinos. Assuming that
multiple scatterings take place, the characteristic neutrino time delay in the large τν limit
can be estimated as [33]

∆t ' 500 s C 2
(
τν
10

)(
D

3Gpc

)(
mν

0.1 eV

)(0.1PeV
Eν

)
, (3.3)

implying ∆t ∝ τ2
ν for a given λν .

The time delay distribution can be expressed as [52, 53]

P (t;D) = 4π2

3〈ϕ2〉D

∞∑
n=1

(−1)n+1n2 exp
(
− 2n2π2t

3〈ϕ2〉D

)
, (3.4)

where 〈ϕ2〉 = τν〈θ2〉/3. When nνσνt � τ2
ν 〈θ2〉, which corresponds to long time delays, only

the first term of the series is relevant and the probability distribution decreases exponentially.
In ref. [52], this distribution is satisfied for the Brownian motion, where (1/σν)dσν/dθ follows
a Gaussian distribution with mean 0 and variance 〈θ2〉. On the other hand, ref. [53] derives
equation (3.4) under the assumption that the width of the angular distribution of the particles
in transit is large when compared to the width of the angular distribution of a single scattering
(see ref. [53] for details on the assumptions). Our simulations show good agreement with
equation (3.4) when the angular distribution is assumed to follow a Gaussian distribution
for τν = 20–1000.
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Figure 4. Time delay probability density function for the scattering of 300TeV neutrinos in the y = 0
regime, with the CνB at the optical depth τν = 310. The blue curve is the analytical expression of
equation (3.4), while the blue dashed line is the typical delay in equation (3.3). We also include the
results from our MC simulations which do include the finite inelasticity.

In figure 4 we show the time delay distribution for 300TeV neutrinos and g = 0.5,
which gives λν = 1024 cm. We choose D = 100Mpc to achieve τν = 310 and the angular
distribution used in our simulation follows equation (2.2). We also compare our result with
equation (3.4) by setting 〈θ2〉 = 0.77mν/Eν , where we assumed C = 0.62, and include the
typical delay from equation (3.3). We find that the time delay distribution is significantly
different from equation (3.4): while the analytic expression predicts an exponential decay for
large time delays, our simulation suggests that P (t) ∝ t−2.1.

We note that in the y = 0 limit, equation (3.3) underestimates the characteristic time
delay in the sense that the expression relies on 〈θ2〉 to be proportional to the mean number of
scatteringsM = τν , which is true in the case of the Gaussian angular distribution. When we
use equation (2.2), the tail for large θ is responsible for causing 〈θ2〉 to follow an approximate
power law dependence ταν with α ≈ 1.2, increasing the typical time delay.

As a comparison, we also include the results from the MC simulations with y > 0,
allowing for energy losses and upscatterings of CνB neutrinos. In this case, the neutrino
time delay distribution can be split into the leading and non-leading components. A leading
neutrino is ranked based on its energy; at the injection site, the initial neutrino is considered
the leading particle. Whenever a leading neutrino scatters, the most energetic of the two
outgoing neutrinos is tagged as the leading particle, while the other becomes a non-leading
particle. In this sense, only a leading neutrino can scatter into another leading neutrino,
while non-leading ones remain as such for the duration of the cascade. From this definition,
at any point in the cascade development there can only be one leading neutrino. The time
delays in y > 0 are significantly smaller because neutrinos quickly enter the optically thin
regime after a few scatterings, so they do not experience O(300) scatterings as in the y = 0
case. The leading component has the shortest time delays because the typical scattering
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Figure 5. Left panel: time delay probability distribution, scaled by t, for a source distance
D = 500Mpc and initial neutrino energy εν = 500TeV. The distribution of all particles above 200TeV
(mostly leading particles) is shown by the black curve, as well as the leading and non-leading compo-
nents for neutrinos with energy above 50TeV, by the blue and red curves respectively. Right panel:
MC average time delay of Eν > 200TeV neutrinos, as a function of the effective optical depth in the
200TeV–500TeV energy range. This time delay is compared to the large optical depth estimate and
the conservative estimates, given by equations (3.3) and (3.5), respectively.

angle decreases with εν . In this case, the analytical expression falls in between the y = 0 and
y > 0 regimes.

3.3 Scattering in the optically thick limit with finite inelasticity

In realistic scenarios, an incident neutrino loses energy at each scattering, and the energy
is transferred to the upscattered neutrino from the CνB. Multiple scatterings then lead to
so-called neutrino cascades [28, 29, 55]. In this example we set g = 0.1 and D = 500Mpc,
and look at the scattering of neutrinos with initial energy εν = 500TeV.

We note that as the incident neutrino loses energy and leaves the resonance region, the
cross section will continue to decrease. It is therefore possible that a particle may start off in
the optically thick regime, yet ending up in the optically thin regime after a few scatterings,
when the mean free path exceeds the propagation length. We can select neutrinos that remain
in the optically thick regime by choosing an energy window that is sufficiently close to the
resonance, thus avoiding the possibility of a neutrino entering the optically thin regime.

In the limit that neutrinos cascade down to energies such that the optical depth is below
unity, the shortest time delay can be estimated with the conservative estimate [33],

∆t ∼ 1
12M〈θ

2〉λν , (3.5)

whereM is the mean number of scatterings and can be determined from the MC simulation.
To account for energy losses, we define the effective optical depth τν eff as the optical

depth using the average cross section over the energy window, which we choose as 200TeV–
500TeV. The quantity τν eff is defined for illustrative purposes to explain the physics by using
a single optical depth and is not used in the simulations themselves. We show our results in
figure 5, where the source distance D = 500Mpc corresponds to τν eff = 600. The resulting
distribution is shown by the black curve and the neutrinos that generate this distribution
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are mostly leading particles. By definition there are no non-leading particles with energies
above εres/2 = 250TeV, because when the first scattering occurs, only the leading neutrino
will have energy above 250TeV. Any non-leading neutrino from the cascade will never have
more than half the energy of the initial neutrino. The drop in the distribution for long time
delays is caused by the threshold, as particles with less energies are typically the ones with
the larger scattering angles and time delays, by virtue of equation (2.2).

We also include the leading and non-leading components at energies above 50TeV. For
this threshold we cannot guarantee the optically thick regime, but including these highlight
the shift to longer time delays as the energy threshold decreases. As expected, the leading
component is associated with shorter time delays when compared to the non-leading.

On the right panel of figure 5, we compare the average time delay with the estimates
provided by equations (3.3) and (3.5). The time delays are given as a function of the effective
optical depth in all three cases, using the energy range 200TeV–500TeV. Since almost all
the neutrinos in this energy range are leading particles, the MC average will not change if
we only consider leading neutrinos. For the conservative estimate, we find that M increases
slowly, from 1.8 at τν eff = 100 to 2.7 at τν eff = 800. For y = 0, we would haveM∝ τν , but
in the presence of energy losses, most of the particles that experience multiple scatterings lie
below the threshold and are not counted in the calculation ofM.

3.4 Scattering over cosmological distances

When the source is located at non-negligible redshifts, we must account for neutrino energy
losses due to the expansion of the Universe. Here, we use a coupling constant of g = 0.01,
providing a very small energy window for the neutrino to interact (see eq. (2.3)).

As an example, we consider a neutrino source at z = 1, which corresponds to a particle-
travel distance of D = 2.5Gpc, emitting 800TeV neutrinos. Assuming redshift losses only,
the neutrino energy reaches εres at z = 0.25. In the vicinity of z = 0.25, a scattering will
take place and the neutrino will then lose energy such that it is no longer in the resonance
window.

The resulting time delay distribution is presented in figure 6. Together with the MC
simulation, we include the case without the redshift effect, where we ignore redshift loss,
but manually change the neutrino energy to εν = εres at z = 0.25 and allow the particle to
scatter the CνB. The distribution shown by the red curve shows the redshift effect in the
transition from the optically thick to the optically thin regime. We also show the case of the
single scattering approximation, which treats the cross section as a Dirac delta function that
spikes at εres, and this is represented by the blue curve. We see that the single scattering
approximation correctly predicts the MC results, except for short time delays of t < 1 s. In
the single scattering approximation, the short time delay portion originates from particles
that experience small-angle scatterings and keep their energies very close to εres within less
than 1%. In reality, these particles should scatter again, since they are still within the
resonance region. Upon the second scattering, the time delay is expected to increase, which
is why the scenario ignoring redshift losses has a deficit in events with t . 0.3 s. If we then
compare the red curve to the MC distribution, we see that this deficit is less significant.
Once adiabatic energy losses are considered, small changes in z as the neutrino propagates
are enough to shift the energy away from the resonance, and increase the mean free path,
facilitating the transition to the optically thin regime.

Our treatment is applicable to cosmological sources as long as particles travel almost
along the line of sight. When the scattering angle is not small, due to cosmological expansion,
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Figure 6. Time delay distribution of 800TeV neutrinos starting at z = 1 and scattering off the
CνB. The black histogram is the result from our MC simulation. The red histogram is a separate
simulation, where redshift energy losses are ignored and the neutrino’s energy is manually changed to
εν = εres at z = 0.25. The single scattering approximation, which assumes that the cross section is a
Dirac delta function spiking at εres, is shown as the blue histogram.

the delay due to one scattering may scale as, e.g., ∝ (1 + zsc)lprop instead of the particle-
travel distance, where lprop is the proper scattering length and zsc is the redshift where the
scattering occurs. However, this effect would increase the delay by ∼ 10% for z . 1.

4 Applications

4.1 Source spectra

In the previous section, we have focused on monoenergetic spectra at the source. Here, we
analyze effects of neutrino-neutrino scattering assuming an ε−2

ν power law spectrum from a
source at redshift z = 1 and set a threshold energy of 1TeV.

As examples, we consider values of the coupling, g = 0.01, 0.05 and 0.2, as they represent
the τν � 1, τν ∼ 1 and τν � 1 regimes in the 100TeV–1PeV range, as shown in figure 7. The
results from the MC simulations are shown by the blue curves, while separate simulations
ignoring redshift effects, meaning no expansion losses and assuming a uniform CνB number
density of 112 cm−3, are shown by the red curves.

Starting with g = 0.01, we see that the time delay distribution close to the tP (t) peak
is not very sensitive to redshift effects and P (t) ∝ t−2 past the peak. Below the peak, we see
there are more events with t < 1 s when we neglect redshifts. In the absence of redshifts there
is a sharp decrease at 500TeV due to the resonance, together with the corresponding pileup
in the 400TeV region. This occurs over a very narrow energy region, and the pileup is not
very significant because few neutrinos lie in the resonance windows. In the realistic scenario
we see the expected decrease in the normalization, with E2

νΦν scaling as 1/(1+z). The pileup
region shifts towards lower energies, and the peak is more prominent. Because neutrinos from
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Figure 7. Time delay distributions (left panels) and observed energy spectra (right panels) of an
ε−2
ν source at z = 1, for coupling constants g = 0.01, 0.05 and 0.2 (top, middle and bottom row,
respectively). The source spectrum is normalized such that ε2

νΦν = 1. The blue curves represent the
results of our MC simulation, while the red curves correspond to a case where the redshift energy loss
and CνB density dependence on z are neglected. The dotted black lines in the energy spectra are the
neutrino spectra at the source.

the higher-energy tail get redshifted into the resonance region and scatter, it follows that the
total number of scattered neutrinos in the presence redshift is larger than the case without.
There is also a distinct break in the spectrum at the 250TeV mark, which is understood by
differentiating between scattered and unscattered neutrinos. The component of the initial ε−2

ν

spectrum that was below 500TeV remains unscattered and is simply redshifted to 250TeV
and below. On the other hand, neutrinos between 500TeV and 1PeV will eventually scatter
as they get redshifted into the resonance window, while those above 1PeV are redshifted to
a minimum energy of 500TeV and do not interact. Therefore, the observed energy spectrum
of unscattered neutrinos is an ε−2

ν spectrum with a gap in the 250TeV–500TeV region, which
is to be filled by the scattered component. For couplings this small, there are not enough
upscattered neutrinos to cover this gap, causing the discontinuity.

For g = 0.05 we have multiple scatterings, typically four to five, which causes the
tP (t) peak to appear at t ≈ 20 s. For long time delays, we also see a sudden drop around
5000 s. This is caused by the 1TeV energy threshold, which removes lower-energy neutrinos
that would have a larger scattering angle and longer time delay. The energy spectrum
shows features similar to g = 0.01, but the pileup region is wider as a result of multiple
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scatterings. The spectrum between 100 and 500TeV in the MC case is dominated by the
scattered component, so we no longer see the break in the spectrum observed when g = 0.01.

The case where g = 0.2 shows a large separation in the time delay distribution peaks
between the redshift and no redshift cases. Here, the number of neutrino scatterings is
much higher, many of them experiencing over 15 scatterings. In this case, redshift losses
decrease the neutrino energy before the next scattering takes place, at which point larger
scattering angles are preferred, according to equation (2.2). The threshold effect on the
delay distribution occurs close to 104 s, but does not have an effect on the location of the
distribution peaks, which is also true for g = 0.05 and g = 0.01. Setting the energy threshold
to 10TeV, however, would shift the peak locations to lower t for g = 0.2 only. Looking at
the energy spectrum, we see that the pileup region is much wider. We also note that E2

νΦν

is no longer flat in the 1TeV region and the MC result overcomes the no redshift case at low
energies. Now that the number of scatterings is so large, particle multiplicity allows the MC
peak to compensate for the redshift factor 1/(1+z). On the other hand, there is a drop in the
case without the redshift effect, because TeV neutrinos experience scatterings at such large
couplings, and the higher-energy neutrinos that cascade downward are unable to compensate.
After repeating these simulations with the inclusion of the t-channel contributions to the cross
section, we find negligible differences for g = 0.01 and g = 0.05 and a slight shift to longer
time delays for g = 0.2. The differences only appear at large couplings, where the resonance
width is large and the t-channel term is comparable to the s-channel away from εres.

4.2 Flavors

If we consider three neutrino flavors, the cross section has to be modified for different mass
eigenstates mi. The oscillation parameters are fixed to the best-fit oscillation results from
NuFIT 2021 [56, 57]. While there are three mass eigenstates, neutrino oscillation data tell
us that two of these are close together. We should then expect two well-separated resonance
dips. To comply with the cosmological bound of

∑
mν < 0.12 eV [24], we choose the masses

m1 = 0.022 eV, m2 = 0.024 eV and m3 = 0.055 eV. In addition, to obtain the dips in the
energy spectrum between 100TeV and 1PeV, we choose mφ = 5MeV.

The CνB density for each mass eigenstate is 112(1 + z)3 cm−3, as before. Regarding the
ε−2
ν source at z = 1, we will assume that the flavor ratio at the source is (1 : 2 : 0), which
quickly decoheres into mass eigenstates as the neutrino oscillation and coherence lengths are
shorter than the interaction length. The propagation and interactions can thus be carried
out in the mass eigenstate basis and then converted to the flavor eigenstate basis when it
reaches the source.

The neutrino coupling now becomes a 3×3 coupling matrix, and we assume the coupling
only for ντ : gαβ = diag(0, 0, gττ ). Such secret neutrino interactions involving only ντ are
of interest as they are the least constrained by laboratory experiments [17]. Under this
assumption, the invariant cross section for the process νiνj −→ νkνl is [6]

σijklν = |Uτi|
2|Uτj |2|Uτk|2|Uτl|2g4

ττ

32π
sj

(sj −m2
φ)2 +m2

φΓ2
φ

, (4.1)

where sj = 2mjEν , Γφ = g2
ττmφ/16π and U is the Pontecorvo-Maki-Nakagawa-Sakata

matrix.
The results of the MC simulation are shown in figure 8 for gττ = 0.05. The energy

spectrum shows two dips due to the three resonances. Besides that, the spectral shape is
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Figure 8. Time delay distributions (left panel) and observed energy spectra (right panel) of an
ε−2
ν source at z = 1, for gττ = 0.05 and mφ = 5MeV. The source spectrum is normalized such
that ε2

νΦνe = 1.

about the same for all three neutrino flavors, separated by factors which correspond to the
observed flavor ratio at Earth after oscillations are averaged out. When a scattering takes
place, the outgoing mass eigenstates νk and νl depend on |Uτk|2 and |Uτl|2 only. For our
choice of oscillation parameters, we have |Uτ1|2 < |Uτ2|2 < |Uτ3|2. As a result, there is a
slight tendency for ν3 to be produced over the other states, which builds up over several
scatterings, creating the deficit in νe when we convert the ν3 flux to a flavor flux. Our results
on the spectra are consistent with those by ref. [6].

For the time delay, the delay distributions are almost identical. One could see that
P (t) is slightly larger for νe in the 0.01 s–1 s range. This part of the distribution comes
from neutrinos that only scatter once, while the long time-delay tail consists of particles that
scatter multiple times.

5 Summary and conclusions

We have presented a numerical study of secret neutrino interactions of TeV–PeV neutrinos
and their associated time delays. We developed a MC simulation code that accounts for the
sudden changes in the s-channel interactions as we approach the resonance energy, allowing us
to accurately calculate the scattering locations. The developments can be applied to various
astrophysical neutrino sources, by which constraints on νSI can be placed with neutrino data
(see ref. [58] as an application to the Galactic supernova).

As the first example, we have shown that in the optically thin limit the simulation
result is in agreement with the analytical expression. Deviations from it become apparent at
τν ∼ 0.1, when multiple scatterings become more relevant. In the optically thick limit with
y = 0, there is a significant difference in the time delay distribution between our result from
the MC simulation and the analytical expression, because the angular distribution is not a
Gaussian. The case y = 0 predicts longer delays than y > 0 as energy losses allow particles
to leave the resonance window, causing less scatterings to take place. In the case τν � 1 and
y > 0, we have found that the time delay distribution is also sensitive to the energy threshold:
lowering it leads to the inclusion of the lower-energy particles that experience more scatterings
and longer time delays. A clear separation between the distribution peaks for leading and non-
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leading components is seen at an energy threshold of 50TeV. The characteristic time delays
in the MC simulations are found to lie between the large optical depth and conservative
estimates.

Considering sources at cosmological distances, we have shown that for a source at z = 1
and the coupling strength g = 0.01, redshift effects are most important for neutrinos in the
short time-delay tail. We have also highlighted the difference between the MC simulation and
the single scattering approximation, and the latter predicts more events in the short time-
delay tail, compared to the former. For a source at redshift z = 1 with an ε−2

ν spectrum, the
observed neutrino spectrum presents the expected pileup region below the resonance energy.
As the coupling strength increases, the resonance width increases and the location of the
pileup moves to lower energies. Breaks in the spectrum at coupling strengths g = 0.01 and
g = 0.05 are present, at energies slightly above the pileup region, where the scattered and
unscattered components of the spectrum intersect. This effect is not present when we ignore
redshift effects. The time delay distributions for larger couplings lead to longer delays, as
more scatterings occur, with delays of approximately 1 hour for g = 0.05.

The MC simulation code developed in this work can also be applied for a broader set of
BSM interactions. As long as the small-angle scattering approximation is satisfied, then the
MC code presented here can be applied to neutrino scattering with dark matter or axions,
as discussed in refs. [33, 59]. Other BSM interactions which produce SM particles such as
muons and pions, which decay into neutrinos, can also be accommodated readily. The code
is expected to be publicly available in the near future.
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