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Abstract. Thermal MeV neutrino emission from core-collapse supernovae offers a unique
opportunity to probe physics beyond the Standard Model in the neutrino sector. The next
generation of neutrino experiments, such as DUNE and Hyper-Kamiokande, can detect
O(103) and O(104) neutrinos in the event of a Galactic supernova, respectively. As supernova
neutrinos propagate to Earth, they may interact with the local dark matter via hidden
mediators and may be delayed with respect to the initial neutrino signal. We show that for
sub-MeV dark matter, the presence of dark matter-neutrino interactions may lead to neutrino
echoes with significant time delays. The absence or presence of this feature in the light curve
of MeV neutrinos from a supernova allows us to probe parameter space that has not been
explored by dark matter direct detection experiments.
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1 Introduction

Overwhelming evidence from astronomical and cosmological probes such as galaxy rotation
curve measurements [1, 2] and gravitational lensing [3–6] have shown that there is a significant
amount of non-luminous matter, i.e., dark matter (DM), in the Universe. However, the particle
nature of DM remains unknown [7–10]. Weakly interacting massive particles (WIMPs) have
been the leading scenario as the most studied DM candidate. Direct and indirect searches
for DM have extensively probed the parameter space for WIMPs. More stringent limits on
DM have been found from direct or indirect searches, targeting the interaction of WIMPs
with Standard Model (SM) particles and signatures from decay or annihilation of DM to SM
(e.g., [10–19]). In the meantime, neutrinos have emerged as the key channel in DM searches,
especially if DM interacts with the SM particles via the neutrino portal [20–26].

Direct detection searches for DM [27–29] have not found any evidence for WIMPs.
However, they have limited sensitivities to DM masses below 10GeV. A lower DM mass
threshold is achieved for DM-nucleus scattering via the Migdal effect or DM-electron scattering
with bound electrons [30]. These techniques can probe DM masses down to 1MeV. In
the meantime, DM phase-space distribution in dwarf spheroidal galaxies suggests that the
fermionic DM mass has a lower bound of ∼ 1 keV [31], while the mass range of 1 keV–1MeV
is relatively unexplored. Dark matter below an MeV may arise from self-interacting DM
freeze-out after neutrino decoupling [32, 33] or through DM freeze-in for sufficiently small
couplings [34, 35]. DM self-interactions also reduce the lower bound on DM mass from
Lyman-α constraints [36, 37].

On the other hand, neutrino physics has seen significant progress with standard neutrino
oscillation measurements [38–40]. Nevertheless, this field has its own unsolved problems, such
as the origin of neutrino mass [41–44] and detector anomalies [45, 46]. Additional sterile
neutrino states allow an explanation for neutrino masses via the seesaw mechanism, and their
existence was also motivated by the LSND and MiniBooNE anomalies. Moreover, sterile
neutrinos with masses in the keV range may also be good DM candidates via the seesaw
mechanism [47–49].

Both active neutrinos states and DM may interact with a new mediator, albeit with
different couplings. In the neutrino sector, neutrino self-interactions via these mediators
will result in new features such as delaying the free-streaming behavior of neutrinos [50–56],
which may contribute to the effective number of relativistic species Neff [57–59]. They could
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be realized in particle models predicting additional contributions to the muon anomalous
magnetic moment, (g − 2)µ, via a gauged Lµ–Lτ model [60–65].

Neutrino self-interactions have been constrained through the use of high-energy cosmic
neutrinos [66–71], cosmological studies [55, 72–74], accelerator experiments [75, 76] and
laboratory measurements [77]. For DM, self-interactions [78–87] were introduced to alleviate
problems with the standard cosmological model, such as the “too big too fail” problem [88], the
“missing satellite” problem [89, 90] and the “diversity” problem [91]. Neutrino-DM interaction
has been extensively considered in the cosmology context [92–104]. These interactions may
also be used to boost dark matter (see e.g., [105]). Presence of such interaction would
alter the expansion rate of the Universe, which could affect the observables of the big bang
nucleosynthesis (BBN) and cosmic microwave background (CMB). In addition, an ongoing
neutrino-DM scattering would damp the power spectrum of primordial fluctuations (see
e.g., [101]). Observation of high-energy cosmic neutrinos [106–108] has provided further
power to probe for new physics. Nonstandard neutrino interactions have been studied in
this context [66, 67], which bestowed competitive limits with cosmological studies. These
searches utilize features induced by DM-neutrino interaction in energy spectrum [109], arrival
direction [110], and arrival time [70] of high-energy cosmic neutrinos. The latter has become
possible with recent progress in the identification of coincident high-energy neutrinos with
transient astrophysical phenomena [111, 112].

In this work, we explore the possibility of using high-statistic neutrino events from a
nearby Galactic supernova (SN) to probe for delayed neutrino signals induced by neutrino-DM
interaction. With upcoming detectors such as Hyper-Kamiokande and DUNE, the expected
number of events should allow us to constrain non-standard interaction of neutrinos with low-
mass DM via a new mediator. Here, we show that the time-delay induced by the DM-neutrino
interaction would result in the late arrival of neutrinos between a day to a year after the
first MeV neutrino burst is observed. This signature can be used to probe the interaction of
neutrinos with DM particles in a mass range that is not easily accessible to other experiments.

2 Method

We consider a neutrino emitted by a source at a distance D, propagating through a bath
of DM particles χ. We define the optical depth τ = nχσνχD, where nχ is the DM number
density and σνχ is the total cross section for DM-neutrino interaction. Suppose that the
interactions happen in the optically-thin limit, i.e., τ � 1, such that neutrinos would at most
experience one interaction as they travel towards the Earth. In this limit, if N neutrinos are
emitted at the source, the majority will arrive together, while a fraction of ∼ τN neutrinos
will scatter and arrive later because of the increased trajectory length [70]. The time delay t
for the arrival of scattered neutrinos depends on the scattering angle, with a typical delay ∆t
given by [70]

∆t ≈ 1
2
〈θ2〉

4 D ' 1.3× 107s
(
〈θ2〉
10−4

)(
D

10 kpc

)
, (2.1)

where 〈θ2〉 is the mean of θ2, for a given differential cross section, and θ is the scattering
angle. See also refs. [113, 114].

In the SN frame, DM is at rest and the incident neutrino’s energy is Eν . For a scattering
angle θ, the scattered energy E′ν is given by

E′ν = Eνmχ

mχ + Eν(1− cos θ) , (2.2)
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where mχ is the DM mass and we neglect neutrino mass. The differential cross section for a
neutrino of incident energy Eν to have a scattered energy E′ν is

dσνχ
dE′ν

(Eν , E′ν) = dσνχ
d cos θ

d cos θ
dE′ν

, (2.3)

where
dσνχ
d cos θ = 1

32πm2
χ

(
E′ν
Eν

)2
|M|2. (2.4)

Here the squared matrix element |M|2 depends on particle physics models that we discuss be-
low. We will explore the range of mediator masses ∈ [1 eV, 100 MeV] and mχ ∈ [10 eV, 100 keV]
in this work.

We consider three particle physics models in this work. First, we consider fermionic DM
that interacts via a vector mediator Vµ, and the interaction Lagrangian of the form

Lint ⊃ gν ν̄γµνVµ + gχχ̄γ
µχVµ, (2.5)

where gν and gχ are dimensionless coupling constants of the vector mediator to neutrinos and
DM, respectively. Neutrino coupling to a vector mediator has also been used for example
in the gauged U(1)Lµ−Lτ model [57, 58, 115]. DM couplings to vector mediators have also
been considered in the cosmological context [99, 102, 116]. The Lagrangian in equation (2.5)
implies that DM-neutrino scatterings are mainly forward scatterings, allowing us to remain
within the small-angle scattering approximation. In addition, mV has little effect on the
angular distribution for mV > 5MeV.

In addition to the Lagrangian in equation (2.5), we will also consider fermionic DM with
a scalar mediator

Lint ⊃ gν ν̄νφ+ gχχ̄χφ, (2.6)

and scalar DM with a scalar mediator

Lint ⊃ gν ν̄νφ+ gχΛχ∗χφ. (2.7)

The differential and total cross sections for these interactions can be found in ref. [110]. For
the last Lagrangian, we note that the coupling is split into a dimensionless coupling gχ and an
energy scale Λ = 100GeV. In scalar mediator models, if neutrinos are Dirac fermions we would
need to consider mixing with sterile states; for Majorana neutrinos, ν̄ν should be interpreted
as νcLνL/2 + c.c. For example, DM interactions with scalar mediators arise in Standard Model
extensions, where DM couples to the Higgs sector and protected by a Z2 symmetry [117].
This leads to Higgs portal models for fermionic DM [78] or scalar DM [117, 118] after the
spontaneous electroweak symmetry breaking.

Let P (t) be the probability density function of the neutrino time delay t of the neutrinos
within the arrival energy range of interest. By working in the τ � 1 limit, P (t) depends on
(1/σνχ)dσνχ/d cos θ and is therefore independent of the coupling strength [70, 113, 119]. In
figure 1 we show the time delay distribution of neutrinos with an initial energy of 15MeV, a
dark matter mass mχ = 10 keV and a 10MeV mediator. Each model has values of gχ and gν
such that τ = 10−3, in the optically-thin regime. Here we see that among the three models,
the fermionic DM with a vector (scalar) mediator yields shorter (longer) time delays. This is
related to the details of the angular distribution of the model, where smaller scattering angles
lead to shorter time delays. For fermionic DM with a scalar mediator, we see that the ∆T
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Figure 1. Time delay distribution of 15MeV neutrinos for mχ = 10 keV and a 10MeV mediator. The
distribution is multiplied by t. For each model, gχ and gν have been chosen such that τ = 10−3 for
D = 10 kpc. These results are, in fact, independent of τ , provided that τ � 1.

decreases for DM masses above 100 keV and mφ in the 100 eV–10 keV range. This decrease is
caused by the energy threshold used in the analysis, which we address in the next section.

In order to estimate the temporal profile for the arrival of neutrinos from a SN, we adopt
a SN neutrino spectrum at the source of the form [120–122],

Φν(Eν) = Lν
〈Eν〉2

(α+ 1)α+1

Γ(α+ 1)

(
Eν
〈Eν〉

)α
exp

(
−(α+ 1)Eν

〈Eν〉

)
, (2.8)

where 〈Eν〉 is the average neutrino energy, α is a pinching parameter, Lν̄α is the neutrino
luminosity, and Γ is the Euler Gamma function. Hereafter, we assume α = 2.3 and 〈Eν〉 =
16MeV, although in general the values of α and 〈Eν〉 are different among neutrino flavors [120].
The total neutrino energy is set to Eν = LνTdur = 3 × 1053 erg, where Tdur = 10 s is the
duration of the neutrino emission.Neutrino emission consists of several stages. Around the
core bounce, the so-called νe neutronization burst is expected, which lasts for ∼ 20ms. This
is followed by the accretion phase with significant production of νe and ν̄e, which lasts for a
few seconds (e.g., [123–125]). Then, the protoneutron star cools and neutrino luminosities
of all flavors become similar, lasting for ∼ 10–100 s (e.g., [121, 126, 127]). The total energy
we are considering here can also be matched to the simulation results presented in ref. [128]
within 1 s after the bounce.

The supernova spectrum consists of ν̄e and ν̄x (non-electron antineutrinos). We assume
that both fluxes are related by Φν̄x = 0.3Φν̄e [125], such that they have the same production
spectra. This assumption is made for simplicity because using separate spectra would require
us to look at ν̄e and ν̄x with different pinching parameters α. The flux is normalized so the
total neutrino energy in all three flavors is equal to Eν . For pure adiabatic transitions, the
fluxes at the surface of the star are Φν̄1 = Φν̄e and Φν̄2 = Φν̄3 = Φν̄x , assuming normal mass
ordering [129]. The ν̄e flux on Earth becomes Φν̄e =

∑
i Φν̄i |Uei|2, where U is the neutrino

mixing matrix.
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For a nearby SN of D ∼ O(10) kpc, we can assume a local DM density nχ =
0.3 cm−3(mχ/1 GeV)−1. As we show in our results, within our parameter space the typ-
ical time delays would lie in the 102–108 s range. While the SN neutrino spectrum is
time-dependent (see e.g., ref. [128]), the characteristic time delays are much longer than Tdur,
so we use the time-integrated flux on Earth

dNν

dEν
= ΦTdur

4πD2 . (2.9)

The number of neutrino events in Hyper-Kamiokande is

Nevents = NT

∫ 50 MeV

10 MeV

dNν̄e

dEν̄e
σQE(Eν)dEν̄e , (2.10)

where NT is the number of targets (1.25 × 1034 for the 187 kton HK detector fiducial
volume [128]) and σQE is the quasi-elastic inverse beta decay cross section. We have assumed
14MeV as the neutrino energy threshold. These are the total number of events, which
accounts for both scattered and unscattered neutrinos. For our chosen parameter set, we
get Nevents = 48200. This is consistent with ref. [128], which obtained Nevents ≈ 20000 for
Tdur = 500ms, although we use a larger total neutrino energy (in all flavors) of Eν = 3×1053 erg.

To calculate the delayed neutrino spectrum dNscatt/dEν , which is the time-integrated
spectrum of all scattered neutrinos, we use

dNscatt
dEν

=
∫ ∞

0
dt

∫ E′max
ν (Eν ,t)

Eν
dE′ν

dNν

dE′ν
P (t, E′ν)dσνχ

dEν
(E′ν , Eν)nχD, (2.11)

where the integrand is the product of the SN spectrum at E′ν and the probability that a
neutrino of energy E′ν scatters once and arrives with an energy Eν , in the optically-thin
limit. The maximum energy E′max

ν accounts for the maximum neutrino energy that allows
for a scattered energy Eν and delay t, because a larger neutrino energy loss is associated
with longer delays. The spectrum dNν/dEν is inserted into equation (2.10) to obtain the
number of events that undergo scatterings. We point out that the relationship between Nscatt
and Nevents is not trivial due to the threshold, as some of the scattered neutrinos will fall
below that energy, but the relationship Nscatt ∼ τNevents provides an order of magnitude
estimate. We may write Nscatt = κτNevents, where κ is the fraction of scattered events with
Eν > 14MeV and is determined from simulations. Given that effects of P (t, Eν) and E′max

ν

are included in κ, the rest will only depend on mχ and the mediator mass when τ � 1.
Within this approximation, for fixed DM and mediator masses, we have Nscatt ∝ g2

νg
2
χLν/D.

We constrain the (g,mV ,mχ) parameter space under the assumption that no significant
background excess has been observed within a time window ∆T after the SN neutrino burst
is detected.

We use the Feldman-Cousins upper limits [130] to obtain constraints on the parameters
of DM-neutrino interactions. The background rate is obtained from the different channels
provided in [131]: invisible muons, neutral current, atmospheric neutrinos, lithium, reactor
neutrinos and diffuse supernova neutrinos. For a 187 kton detector with Gadolinium in the
energy range [14MeV, 50MeV], the total rate would be 3.41×10−6 Hz. We use this rate
to estimate the expected number of background events µb over a time ∆T after the MeV
burst. Starting from the arrival time of the unscattered signal, we take the time window ∆T
that encloses a factor 0 < β ≤ 1 of Nscatt. Our calculations of ∆T enforce an Eν > 14MeV
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threshold. The different interaction models affect ∆T only through the distribution P (t),
so the choice of time window depends on DM and mediator masses only. Within this ∆T ,
we find the Feldman-Cousins upper limit µs, assuming that the expected number of events
is µb (i.e., background only) and the observed number of events is also µb. This µs would
then correspond to the expected number of delayed neutrino events within ∆T . We set
µs = βNscatt and adjust g2

νg
2
χ to get this equality to hold. This equation for µs relies on

the scaling of Nscatt ∝ g2
νg

2
χ, which is only valid in the optically thin regime. Therefore, this

method cannot be applied for τ ≥ 1, which correspond to the shaded regions in figure 2. In
the case of heavier dark matter mχ & 100 keV, ∆T > 108 s for heavy mediators. For these
cases, we set ∆T = 108 s and adjust β accordingly.

3 Results

We calculate the 95% confidence level (CL) upper limit on the coupling constant in Hyper-
Kamiokande in the event of a 10 kpc SN, assuming no significant delayed neutrino signal is
detected. For this purpose, we define the effective coupling g = (gνgχ)1/2, and set β = 0.5. Our
choice of β is motivated by the Monte Carlo simulation results [114] which suggest that ∆T
will coincide with the peak of the tP (t) distribution (see figure 1 as an example). We show the
upper limit on the coupling for different DM and mediator mass in figure 2. We mark the set
of points for which ∆T = 108 s and ∆T = 10 s, where the latter corresponds to the duration of
the neutrino emission. We also shade the region where τ ≥ 1, where the optically thin approx-
imation is not satisfied and our results are not applicable. This region is only present within
our parameter space when we assume fermionic DM with a scalar mediator. For fermionic
DM and a vector mediator, we see that when mV . 100 eV, the time window used is too short
for the delayed signal to be well separated from the initial MeV burst. This is not the case
for scalar mediators, where the scattering angles remain relatively large for very light scalars.

We also compare our constraints against limits from other observables. The first one is
the neutrino self-interaction bound gττ < 0.27 from [55], which only applies to ντ coupling.
To convert gττ into an effective coupling geff

ν and then into the ν-DM coupling g, we proceed
as follows. The ν̄e flux from ν−DM scatterings, Φν̄e,scatt, is given by the probability that
ν̄i interacts via gττ , becomes ν̄j and is detected on Earth as ν̄e. In the limit τ � 1, this
probability is simply an effective optical depth. We then write Φν̄e,scatt =

∑
i τiΦν̄i , which is

the sum of fluxes of scattered ν̄i which are detected as ν̄e. With the assumption that ν̄e and
ν̄x are proportional to each other, we may also simplify this expression to Φν̄e,scatt = τ effΦν̄e

for an effective optical depth

τ eff = nχσ
eff
νχD = nχ

σνχD

g2
ν

∑
i,j

|Uej |2|Uτj |2|Uτi|2g2
ττPi, (3.1)

where Pi = Φν̄i/Φν̄e . Note that the cross sections involved have negligible contributions from
neutrino mass, so σνχ is the same regardless of the neutrino mass eigenstate involved. The
cross section σeff

νχ is now proportional to (geff
ν )2. We can thus absorb neutrino mixing effects

into this coupling, such that
(geff
ν )2 = g2

ττ

∑
i,j

|Uej |2|Uτj |2|Uτi|2Pi. (3.2)

With the current values of the oscillation parameters, this leads us to geff
ν = 0.1. To get the

upper bound of g, we use geff
ν together with the upper bound gχ < 4π originating from the

perturbative limit. This then leads to a bound g <
√

4πgeff
ν = 1.11.
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Figure 2. Neutrino-DM coupling constraints on g = (gνgχ)1/2 for the models described by equa-
tions (2.5) (top), (2.6) (middle) and (2.7) (bottom). The time window ∆T is the time taken to enclose
50% of the scattered neutrinos with energy above 14MeV. The region τ ≥ 1 has been shaded for the
Fermion DM and Scalar Mediator case. The other models do not have τ ≥ 1 within the parameter
space shown.
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Figure 3. Neutrino-DM coupling constraints on g = (gνgχ)1/2 for the models described by equa-
tions (2.5) (left panel) and (2.6) (right panel). Cluster constraints are shown as dotted lines for
each DM mass, assuming 125 gν = gχ, corresponding to the ratio of gν = 0.1 and gχ = 4π. BBN
nucleosynthesis constraints [55, 57] correspond to the shaded region (magenta).

We also have the BBN constraint on mediator masses, given in [55, 57]. Finally,
we also consider the constraints for merging galaxy clusters, which requires σχχ/mχ <
0.1 cm2 g−1 [132, 133]. Here σχχ is DM self-scattering cross section in the low velocity limit.
The cluster constraints provide upper bounds on gχ for fixed DM and mediator masses. To
convert this into a bound for g, we need to assume a ratio gν/gχ. Since the constraints are on
gχ only, choosing small (large) gν/gχ will strengthen (weaken) the bounds on g.

In figure 3, we show the 2D projections for selected DM masses assuming fermionic
DM and show the aforementioned bounds from laboratory measurements, BBN and cluster
constraints. For the case of fermionic DM, we take gν/gχ = 1/125, the ratio corresponding to
gχ = 4π and gν = 0.1. For this choice, our constraints are stronger than laboratory and cluster
bounds for mχ < 20 keV (mχ < 1 keV) for a vector (scalar) mediator. In the case of scalar DM
with a scalar mediator, as shown in figure 4, we find that the cluster bounds required a gν/gχ
ratio above 104 for the echo limits to be competitive. For these large ratios, we easily reach the
laboratory bound on gν , as shown by the dashed lines. In the end, our constraints are stronger
than laboratory and cluster bounds when mφ . 3MeV for gν/gχ = 7× 104(gν/gχ = 5× 105)
for mχ = 20(1) keV. For mχ = 10 eV and gν/gχ = 3 × 107, laboratory bounds are stronger
than our bounds when mφ & 1.3MeV. Overall, given the BBN bound, there is a limited range
of mφ, in which the constraints in our work are the strongest.

If the water detector does not have Gadolinium, the energy threshold would be at around
17MeV, since below it the spallation background is large [131]. Taking this energy threshold
into account, the background is dominated by invisible muons, increasing µb. Likewise, the
increased energy threshold means that a larger fraction of the scattered events will lie below it.
In this scenario, depending on mχ and mediator mass, we may require up to 3 times as many
scattered events. In turn, the couplings presented in our results would have to be increased
by up to 30%.

A general feature is that for a fixed mχ, the constraint on the coupling weakens for
larger mediator masses. The delayed neutrino spectrum is proportional to σνχ in the small
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Here, we present the constraints for three DM masses. BBN constraints [55, 57] correspond to the
shaded region (magenta). The cluster lines (dotted) show the limits for different ratios of gν and gχ.
The laboratory bounds with the same ratios used in each cluster line are shown as dotted lines. The
energy scale is Λ = 100GeV.

optical depth limit, so a larger value of g is needed to account for heavier mediators. On the
other hand, for a fixed mediator mass, the constraint gets weaker for heavier DM and this
weakening becomes more dramatic for lighter mediators. The total cross section monotonically
decreases with mχ, which contributes to weaker constraints. In all three models considered,
we see that there is a region of parameter space that is not constrained by BBN or laboratory
measurements that can be probed by the echo approach.

The time window ∆T used to constrain g is shown in figure 5 for fermionic DM with a
vector mediator. We find that for O(10 keV) mediators, we need time delays between a few
weeks and a month. We see that ∆T goes up to a year for mediators heavier than 100 keV, and
remains constant for a fixed mχ, for which the angular distribution becomes less dependent on
mV . The typical scattering angle is sensitive to mχ, and heavier DM monotonically increases
the time window ∆T to achieve a given β, for a fixed mediator mass. For DM above 100 keV,
however, a local maximum can be reached and then ∆T decreases. The reason behind this is
that ∆T is determined by the delayed neutrino signal, which incorporates a neutrino energy
threshold of 14MeV. As mχ increases, the scattering angle increases and a larger number of
neutrinos are scattered to energies below the threshold. Neutrinos below the energy threshold
are not considered part of the delay distribution used to determine ∆T , and the removal of
these events with large delays causes ∆T to decrease. This effect is clearly visible in the case
of fermionic DM with a scalar mediator (see figure 2), where the time delay distributions tend
to have a large peak close to 108 s for mχ > 100 keV, even for light scalar masses.

To get a better view of the comparison between signal and background events, we
present in figure 6 the cumulative number of signal events for 10 keV DM and a 10MeV
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Figure 5. Time window ∆T as a function of the mediator mass and DM mass, for 50% of the delayed
neutrino signal to reach Earth in the event of a SN at a distance of 10 kpc. We show the case for
fermion DM and a vector mediator.
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Figure 6. Cumulative number of delayed signal events in Hyper-Kamiokande, compared to the
background, which has a rate of 3.41×10−6 Hz. Here, we show the three different models used
for mχ = 10 keV,mV = 10 MeV,mφ = 10 MeV. Each distribution has a total number of events
corresponding to the time windows used for our upper limits. In the case of the vector mediator, this
corresponds to 10 events and ∆T = 1.7× 106 s; for the scalar mediator with scalar (fermionic) DM,
this is 17 (58) events and ∆T = 3.9× 106 s (5.1× 106 s).
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mediator. This choice of these parameters corresponds to the region with longer time delays,
where delays get closer to 108 s. Each model is normalized to the number of events required
by the Feldman-Cousins upper limit. Similar to figure 1, the vector mediator has several
neutrino events early on, as the forward scattering is predominant. Even though the signal to
background ratio is quite small, the upper limit µs grows roughly with √µb, so fewer signal
events are needed.

We note that the constraints shown were obtained for a SN with total neutrino energy of
3× 1053 erg at D = 10 kpc. Our approach relies on determining µs, which depends only on the
chosen time window (i.e. on mχ and mV . Once mχ and mV are fixed, Nscatt ∝ g2

νg
2
χEν/D, so

we can get constraints for other SNe by the appropriate scaling. Thus, choosing different SNe
models, namely changing α and 〈Eν〉, mildly affects the constraints, as long as the majority
of the SN neutrinos is above the neutrino energy threshold for Hyper-Kamiokande.

4 Discussion

The presence of DM-neutrino interaction may affect the effective number of relativistic species,
Neff , which provides additional constraints. If DM particles are in equilibrium with the
SM bath prior to the neutrino-photon decoupling, the dark matter mass is constrained to
be mχ > 1MeV [55]. However, it was shown that if the equilibrium between DM and the
SM neutrinos occurs after the neutrino-photon decoupling, then Neff constraints on the
interactions can be significantly relaxed [32], allowing for sub-MeV DM.

We also point out that, contrary to the assumption in [55], the parameter space for the
models presented also covers the region where DM is lighter than the mediator, in which case
DM freeze-out through χ− χ annihilation to two mediators is kinematically forbidden. Also,
as we provide bounds on the effective coupling g, gχ could be a lower value to be compliant
with other constraints by increasing gν or vice versa. Note that, due to this interplay between
both couplings, it is possible for our constraints to provide competitive or stronger bounds
than clusters constraints.

If we relax the assumption of a homogenous DM density, we would need to perform a
column integral of nχσνχ to get the optical depth. In this scenario, the neutrino is more likely
to interact in the regions with the largest DM density. In particular, if the source is located
such that the signal has to cross the Galactic Center, the optical depth would increase by a
factor of ∼ 20 compared to the assumption of constant DM density [13]. Since our number
of scattered events is proportional to τ , we would expect our constraints on the coupling to
be stronger by a factor ∼ 201/4 ≈ 2. When mφ > 1MeV and mχ >100 keV and the delays
become larger than 108 s, the increased optical depth may not give a stronger constraint. The
time delay also depends on where the scattering takes place. If a very dense DM region is
located close to the source such that the scattering is likely to occur far away from Earth,
the typical time delay will be longer. For heavier DM, longer delays would force us to adopt
∆T = 108 s and would begin to lose signal events to this time cut, which in turn can weaken
our constraints.

For the specific case of SN 1987A, neutrino-DM interaction constraints are discussed in
ref. [96]. For MeV DM, it was found that for a constant scattering cross section, cosmological
data provide stronger bounds than SN1987A data. As the total number of neutrinos detected
from this SN is relatively small, the bounds are obtained from the assumption that there
was no significant neutrino absorption in the observed spectrum. Compared to the bound
on the cross section σνχ/mχ < 10−25 cm2 MeV−1 from SN1987A, our projected bound with
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HK is σνχ/mχ < 1.2× 10−27 cm2 MeV−1 for fermionic DM and a scalar mediator case, with
mχ = 1 keV and mφ = 10MeV. For this projected bound we assumed a neutrino energy
Eν = 15 MeV, but within 10MeV and 25MeV of neutrino energy, the cross section does not
vary significantly for the chosen mχ and mφ. Also, for this choice of masses our forecasted
bound is stronger than the cluster and laboratory constraints. In our case, the expected
number of neutrino events in Hyper-Kamiokande in the detector is significantly larger, which
allows us to reach unexplored parameter space with the echo method.

5 Conclusions

We have shown that in the event of the next Galactic SN, we can constrain neutrino-DM
coupling by looking for the delayed neutrino signal from MeV neutrinos echoing off the local
DM in the Galaxy. Depending on the model parameters, the signal can be spread out over
a duration of O(108) s. For fermionic DM-neutrino interaction via a vector mediator, we
can constrain the effective mediator coupling to g . 1 for ∼ 10–100 keV DM and O(10)MeV
mediators. In this model, the bounds from our work are more stringent than those from cluster
constraints for mχ < 20 keV. We lose the ability to constrain mediators masses, mV . 100 eV,
where most of the delayed signal is contained in a time window shorter than the duration
of the neutrino burst. For fermionic DM and a scalar mediator, constraints for mχ . 1 keV
are stronger than other bounds for mφ between 1 and 20MeV. Above this DM mass, cluster
constraints are stronger for gν/gχ ratios consistent with gν < 0.1. For scalar DM and a
scalar mediator, constraints can be better than cluster constraints for ∼ 10–100 keV DM and
O(10)MeV mediators, provided that we adjust the gν/gχ ratio accordingly. In this model,
however, the laboratory bound on gν becomes much stronger for the large gν/gχ & 105–107

ratios used, such that only mφ . 2MeV can be explored for DM masses below 20 keV.
This study has presented a novel approach to probe DM-neutrino interaction with MeV

neutrinos from SNe. The neutrino echo method may access the parameter space that have not
been explored by DM direct detection searches due to their energy threshold or cosmology.
Next-generation neutrino detectors such as Hyper-Kamiokande and DUNE as well as JUNO
would be able to explore the keV-MeV DM region due to the large number of expected SN
neutrino interactions in these detectors.
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