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A B S T R A C T   

Many aquatic environments contain cohesive sediments that flocculate and create flocs with a wide range of 
sizes. The Population Balance Equation (PBE) flocculation model is designed to predict the time-dependent floc 
size distribution and should be more complete than models based on median floc size. However, a PBE floccu
lation model includes many empirical parameters to represent important physical, chemical, and biological 
processes. We report a systematic investigation of key model parameters of the open-source PBE-based size class 
flocculation model FLOCMOD (Verney, Lafite, Claude Brun-Cottan and Le Hir, 2011) using the measured tem
poral floc size statistics reported by Keyvani and Strom (2014) at a constant turbulent shear rate S. Results show 
that the median floc size d50, in terms of both the equilibrium floc size and the initial floc growth, is insufficient 
to constrain the model parameters. A comprehensive error analysis shows that the model is capable of predicting 
three floc size statistics d16, d50 and d84, which also reveals a clear trend that the best calibrated fragmentation 
rate (inverse of floc yield strength) is proportional to the floc size statistics considered. Motivated by this finding, 
the importance of floc yield strength is demonstrated in the predicted temporal evolution of floc size by modeling 
the floc yield strength as microflocs and macroflocs giving two corresponding fragmentation rates. The model 
shows a significantly improved agreement in matching the measured floc size statistics.   

1. Introduction 

Unlike non-cohesive sediment such as sand, cohesive sediments 
exhibit a unique physical process called flocculation that causes indi
vidual particles to stick together when two or more particles collide. 
Through flocculation, the role of cohesive sediments in aquatic envi
ronments has a crucial impact on the ecosystem. When particulate 
concentrations in the water column are high, aquatic organisms face 
severe consequences due to the absence of photosynthesis, low levels of 
dissolved oxygen and depletion of energy sources (Jones et al., 2012; 
Vaz et al., 2019). Simultaneously, cohesive sediments exert a funda
mental control on the fate of nutrients and organic matter and, hence, 
alter the water quality (Asmala et al., 2022). Furthermore, low-density 
hydrophobic substances such as oil droplets can be deposited on the 

seafloor due to flocculation with suspended particulate matters (Daly 
et al., 2016; Ye et al., 2021). Therefore, studying flocculation dynamics 
of cohesive sediment is an important and thriving research subject in 
aquatic science and engineering. 

Flocculation is defined by two main processes that coexist simulta
neously, aggregation, and fragmentation (breakup). Aggregation may 
take place when cations from dissolved salt in water create surface 
bridging around clay particles and decrease their repulsion force 
(Sutherland et al., 2015). Moreover, cohesion between particles can be 
significantly increased by bio-cohesion such as extra-cellular polymeric 
substance (EPS) (Malpezzi et al., 2013; Passow and Alldredge, 1995). 
For energetic aquatic systems, flow turbulence is considered as the 
dominant mechanism driving particle collision, which is quantified by 
the turbulent shear rate (Mhashhash et al., 2018; Spicer and Pratsinis, 
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1996). This is directly responsible for floc formation and the growth of 
different floc sizes and their respective densities (porosity; e.g. Lawrence 
et al., 2022). 

Simultaneous with the aggregation process, the flocs can experience 
a fragmentation (breakup) that decreases their size due to turbulent 
shear in energetic environments. Flocs can maintain their complex 
structures up to a specific size because of the floc strength maintained by 
inter-particle bonds (Bache et al., 1999; Jarvis et al., 2005). The flocs 
become more fragile as their size increases, and flocs can be broken up 
when a shear or tensile stress overcomes the floc strength (Yeung and 
Pelton, 1996). Unfortunately, quantifying the floc strength is not trivial 
due to difficulties in direct measurement, and a variety of factors, such 
as mineral types, zeta-potential, floc structures, turbulent shear must be 
quantified (Jarvis et al., 2005; Sharp et al., 2006; Spencer et al., 2022). 
Thus, most of the numerical models use a constant value of the floc 
strength for simplicity (Maggi et al., 2007; Verney et al., 2011; Win
terwerp, 1998). In this study, we investigate the limitation of the con
stant floc yield strength assumption and begin to explore an alternative 
with satisfactory results. 

The single floc size statistic method (Winterwerp, 1998) is usually 
implemented to track the temporal evolution of the median floc size d50. 
Although this method has been used in many studies (Kuprenas et al., 
2018; Son and Hsu, 2009), it is not designed to represent the complex 
floc size distribution. On the other hand, the most detailed method is to 
simulate flocculation using a grain-resolved approach since it tracks all 
the individual cohesive particles in a fully resolving turbulence field 
(Vowinckel et al., 2019). This allows to compute the floc strength and 
the fractal dimension by analyzing the bonds between the primary 
particles and the floc size/shape. The challenge lies in its limitation to 
represent practical flocculation problems due to its high computational 
cost. The middle-ground approaches are to model the floc size distri
butions. The distribution-based model (Maerz and Wirtz, 2009) requires 
the assumption of a fixed distribution, which constrains the bimodal floc 
behaviors observed in aquatic systems (Lee et al., 2011; Manning and 
Dyer, 2007; Soulsby et al., 2013). This limitation can be overcome by 
solving Population Balance Equations (PBE) that calculate the number of 
flocs for each given size class while maintaining the mass balance 
(Verney et al., 2011; Mietta et al., 2011). Many studies focus on cali
brating multiple model parameters in the PBE-based size-class floccu
lation model using the equilibrium or temporal evolution of median floc 
size d50 (Jeldres et al., 2015; Shen et al., 2018; Zhang et al., 2019), or 
floc size distribution at the equilibrium state (Coufort et al., 2007). A 
systematic PBE model calibration was carried out by Mietta et al. (2011) 
using temporal evolution of the median floc size d50 and the equilibrium 
floc size distribution for a wide variety of compositions (clay type, salt 
type and different salinity). Importantly, using the temporal evolution of 
d50, this study showed an inverse proportionality between the collisional 
efficiency and the zeta-potential. However, it is unclear whether the 
optimal model parameters can be well constrained by these limited 
physical quantities. 

Motivated by the increasing popularity of PBE flocculation models 
for cohesive sediment transport applications (Liu et al., 2019; Sherwood 
et al., 2018), the main goal of this study is to advance the understanding 
of several key model parameters of the PBE flocculation model and how 
they determine the resulting temporal evolution of floc size statistics 
driven by a constant turbulent shear rate. Motivated by the earlier 
studies on PBE modeling (Verney et al., 2011; Mietta et al., 2011) and 
floc yield strength (e.g., Jarvis et al., 2005), the specific objectives of this 
study are to (1) confirm whether the median floc size statistics d50, in 
terms of both the equilibrium floc size and the initial floc growth, is 
sufficient to constrain the model parameters, (2) investigate if the model 
parameters can be better constrained by using the temporal evolution of 
different floc size statistics, and (3) understand the importance of floc 
yield strength in the predicted floc size statistics. The remainder of the 
paper is organized as follows. Section 2 provides a description of the 
PBE-based size-class flocculation model and the laboratory data used. 

Section 3 focuses on extensive model investigations and error analyses 
for predicting the measured data. Section 4 is dedicated to investigating 
the floc yield strength in the flocculation model and Section 5 concludes 
this study. 

2. Flocculation model description and configuration 

2.1. PBE-based size-class flocculation model 

The PBE-based size-class flocculation model FLOCMOD (Verney 
et al., 2011) is adopted to study the physics of flocculation. The model is 
based on solving PBEs, namely the temporal evolution of the number 
concentration of each floc size class (i.e., number-based distribution) in 
a homogeneous isotropic turbulent flow, and it can be written as 

dnk

dt
= Gaggr(k) + Gbreak shear(k) − Laggr(k) − Lbreak shear(k) (1)  

where n (unit m−3) is the number concentration (number of flocs per unit 
volume) of the kth floc size class, t is time (s), G and L with subscripts 
represent the gain and loss of class k flocs due to aggregation (subscript 
aggr) or breakup induced by turbulent shear stress (subscript 
break shear). In estuarine and coastal environments, flows are generally 
energetic, and the model assumes that the turbulent shear is the domi
nant mechanism driving flocculation. Other aggregation mechanisms 
resulting from Brownian motion and differential settling are neglected 
(Maggi et al., 2007). For the low sediment concentration considered in 
this study, we also neglect the gain and loss of class k due to 
collision-induced breakup. The gain Gaggr and loss Laggr by aggregation 
are written as 

Gaggr(k) =
1
2

∑

i+j=k
αA(i, j)ninj (2)  

Laggr(k) =
∑N

i=1
αA(i, k)nink (3)  

where A is the two-body collision probability function for spherical 
particles and α is the collisional efficiency, which parameterizes the 
sticking properties of flocs and other physical processes not modeled by 
A (e.g., preferential accumulation that encourages collision or the effect 
of porosity). This parameter α is assumed constant for the calibration 
process following Verney et al (2011). Since we assume that the main 
driving force for flocculation is the turbulent shear, the two-body 
collision probability function depends on the turbulent shear rate S 
and the diameters of two colliding flocs, written as 

A(i, j) =
1
6

S
(
di + dj

)3 (4)  

where di and dj are the spherical equivalent diameters of two colliding 
flocs of discrete classes i and j. 

The gain Gbreak shear and loss Lbreak shear by breakup driven by turbu
lent shear stress S are defined as 

Gbreak shear(k) =
∑

i=k+1
FDBSkiBini (5)  

Lbreak shear(k) = Bknk (6)  

where FDBS is the distribution function of fragmented flocs representing 
the gain of daughter flocs from larger floc size classes. Following Verney 
et al., (2011), we specify the binary distribution assuming that the mass 
of a floc after breakup is divided in half. The rate at which flocs break 
due to the turbulent shear rate S is given by the function B, and it is 
defined as 
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Bi = βS3/2di

(
di − dp

dp

)3−fd

(7)  

where dp is the primary particle diameter, fd is the fractal dimension 
(Kranenburg, 1994) for equivalent spherical diameter, and β is the 
fragmentation rate. The fragmentation rate is in fact a dimensional 
quantity (s1/2⋅m−1) and it is written as (Maggi et al., 2007; Winterwerp, 
1998) 

β = E
(

μ
Fy

)1
2

(8)  

where μ (Pa⋅s) is the dynamic viscosity of water, E is an empirical 
(dimensionless) parameter and Fy (N) is the floc yield strength. Although 
β is a dimensional quantity, it is assumed to be an empirical constant in 
Verney et al. (2011). This inevitably presumes that the floc yield 
strength Fy is a constant, which is consistent with the fractal approach 
(Kranenburg, 1994). Because the direct measurement of floc yield 
strength is difficult, the assumption of a constant Fy is commonly 
adopted by many other studies (e.g., Maggi et al., 2007; Wang et al., 
2013). 

Verney et al. (2011) have pointed out that both the collisional effi
ciency α and fragmentation rate β are sensitive model parameters that 
need to be calibrated first with a given cohesive sediment sample. 
Although the fractal dimension fd has been estimated from many labo
ratory and field experiments (e.g., Manning et al., 2010) to be around 2 
to 2.5 and there may be a floc size dependency (Khelifa and Hill, 2006; 
Maggi, 2007) such that larger flocs are more porous and the interparticle 
bonds are smaller; assuming a constant fractal dimension within a given 
flocculation experiment remains to be the most practical approach. To 
successfully calibrate these three empirical parameters concurrently for 
a given experiment, sufficient information from the measured data is 
necessary, and a proper calibration strategy may also benefit from a 
more thorough examination of the governing equations to be solved. 

By substituting equations (2) to (6) into the equation (1), the 
resulting number concentration equation of each floc size class k is 
written as 

dnk

dt
=

1
2

∑

i+j=k
α 1

6
S

(
di + dj

)3ninj +
∑

i=k+1
FDBSkiβS3/2di

(
di − dp

dp

)3−fd

ni

−
∑N

i=1
α 1

6
S

(
di + dj

)3nink − βS3/2dk

(
dk − dp

dp

)3−fd

nk (9) 

During the initial stage of the flocculation (i.e., floc growth stage), 
the breakup terms can be neglected (the second and fourth term on the 
right-hand-side (RHS) of equation (9)) since flocs must grow from small 
flocs or primary particles and the aggregation terms (first and third 
terms on the RHS) are dominant. This means that a model calibration 
focusing on the initial flow growth stage allows us to mainly calibrate α 
(Mietta et al., 2011). However, beyond the initial floc growth stage, the 
breakup terms must become important because there must be a balance 
between aggregation and breakup so that an equilibrium can be 
reached. Following the analysis presented in Winterwerp (1998), mean 
equilibrium floc size must depend on the ratio of r = α /β and fractal 
dimension fd. Therefore, both the equilibrium stage and the initial floc 
growth stage should be considered for a complete calibration procedure. 

Further insights into equilibrium floc size distribution can be gained 
by setting dnk/dt = 0 in equation (9) which renders an expression for 
number concentration of each floc size class as 

nk =

[
1
12

r
S1/2

∑
i+j=k

(
di + dj

)3ninj +
∑

i=k+1FDBSkidi

(
di−dp

dp

)3−fd
ni

]

[
1
6

r
S1/2

∑N
i=1

(
di + dj

)3ni + dk

(
dk −dp

dp

)3−fd
] (10)  

In addition to r = α/β and fd, the breakup distributions functions FDBSki 

also control the floc size distribution and must be considered in the 
calibration. However, the physical evidence of floc breakup distribution 
function is limited, and most studies assume a binary breakup. Never
theless, if we focus on very large floc fractions (e.g., macroflocs), their 
gain due to breakup (Gbreak shear) and loss due to aggregation (Laggr) can 
be assumed insignificant compared with the smaller size fraction. 
Therefore, equation (10) for the very large floc size fraction can be 
reduced approximately to 

nk =

[
1
12

r
S1/2

∑
i+j=k

(
di + dj

)3ninj

]

[

dk

(
dk−dp

dp

)3−fd
] (11)  

where the breakup distribution function FDBSki disappears. Comparing 
the modeled large floc size statistic with measured data allows cali
brating the parameters α, β and fd with minimum impact of FDBSki. On 
the other hand, the breakup distribution function FDBSki must be 
important for fine floc fractions. Thus, calibrating different size class 
statistics is valuable, particularly for the coarse floc fraction to avoid 
uncertainty in FDBSki. 

Additional analysis of equation (9) is performed to compare the ag
gregation and breakup timescales. Following Winterwerp (1998), we 
estimate the initial floc growth timescale using the aggregation term in 
the equation (9) and it is written as 

Tagg =
1

αSϕf ,k
(12)  

where ϕf ,k is the volumetric concentration of floc of size class k. The 
above expression shows that the collisional efficiency α controls the 
initial floc growth timescale, and an appropriate calibration process 
for α should be based on the initial growth time series (Mietta et al., 
2011). On the other hand, at the later stage of the floc growth before 
reaching equilibrium, the floc breakup must play an important role to 
counteract aggregation. We can examine the breakup timescale as 
inversely proportional to β and S3/2 as 

Tbrk ∼
1

βS3/2 (13) 

For example, to expedite floc growth at the later transient stage, the 
breakup timescale must be decreased by increasing β (i.e., increase the 
effect of breakup), which is equivalent to reducing floc yield strength. 
This point will be revisited in Section 4. 

2.2. Experimental data 

Keyvani and Strom (2014) report a flocculation experiment in a 
mixing tank using a mixture of kaolinite and montmorillonite clay. The 
flocculation experiment was performed for approximately 1800 min by 
using a total sediment mass concentration of C = 0.05 kg/m3 and a 
homogeneous turbulence shear rate S of 35 s−1. Hence, the study ne
glects more complex transport mechanism such as differential advection 
and settling. Although homogeneous turbulence is highly idealized, it 
allows a comprehensive calibration of model parameters before the 
model can be used in conditions with increasing complexity. In addition 
to the measured median floc diameter d50 at equilibrium, Keyvani and 
Strom (2014) also provide measured temporal evolutions of three 
different floc size statistics, d16, d50 and d84 (see Fig. 1) by computing a 
series of image ensemble every 1 to 5 minute depending on the phase 
(growth or equilibrium). This comprehensive dataset is selected to 
calibrate key empirical model parameters in the PBE-based size-class 
flocculation model of Verney et al. (2011). We simulate three important 
aspects in the measured time series, the equilibrium state (t ≥ 700 min 
in Fig. 1), the floc growth stage (t ≤ 200 min in Fig. 1), and the entire 
time series. In particular, matching the modeled initial floc growth stage 
with measured data allows us to evaluate the model’s ability to predict 
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the flocculation rate, which has been used by other studies to further 
quantify the stickiness of flocs (Ye et al., 2021) and to calibrate colli
sional efficiency (Mietta et al., 2011). The abundance of measured data 
allows a deeper calibration of the model parameters. 

2.3. Flocculation model configuration 

Following Keyvani and Strom (2014), the total mass concentration 
and turbulent shear rate from the experiment are prescribed accordingly 
in the flocculation model. The minimum floc size diameter is established 
as dmin = 4 μm, which corresponds to the diameter of the primary 
particle typically used for flocculation modeling (Winterwerp, 1998). 
The maximum floc size is specified to be dmax = 300 μm to ensure the 
modeled distribution is sufficiently wide and to avoid fluctuations in the 
distributed mass concentration at the equilibrium state (see Figure S1 in 
supplementary material). Since Keyvani and Strom (2014) did not 
discuss the initial floc size distribution, our exploratory numerical ex
periments show that using a log-normal distribution represents the 
experimental data better than punctual distribution especially at the 
early stage of floc growth (see Figure S2 in supplementary material). 

Following Verney et al. (2011), an explicit (Euler) time integrator is 
implemented to solve the PBEs (Equation 1) with an initial time step size 
equal to 1 s, which is also specified as the maximum allowable time step 
size throughout the integration. If this value is insufficient to preserve 
the total sediment mass within a threshold, the time step is decreased by 

half and the cycle is recomputed until the mass conservation criterion is 
satisfied. The flocculation model of Verney et al. (2011) requires the use 
of many classes to discretize the floc diameter distribution. Therefore, 
establishing the minimum number needed for an accurate numerical 
solution of the size distribution is an important step. The evaluation is 
carried out with different numbers of size class Nc to discretize the 
distribution. Verney et al. (2011) recommended Nc = 15 to be sufficient 
based on calibrating the median floc size d50 at the equilibrium state. 
However, our results suggest that even at Nc = 25, the low resolution 
negatively affects the predicted temporal evolution and, hence, the 
flocculation rate (see the first 80 minutes of floc growth in Fig. 2a) for 
fine, median, and coarse fractions. Another issue is the pronounced 
step-like feature during the floc growth when Nc is small. Careful ex
amination of the model results indicates that the step-like feature is due 
to coarse numerical discretization of the floc size distribution, but not 
the time step, (the absence of certain size classes causes a jump in 
modeled size statistics during floc growth). A converged solution can be 
obtained when Nc ≥ 75. In Fig. 2b, we evaluate this convergence by 
using the Root-Mean-Square-Error RMSEc from the target solution using 
Nc = 200. Large errors are observed when Nc = 15 especially for the 
coarse fraction (RMSEcd84 > 40 μm). By increasing the Nc to 25 and 50, 
the errors decrease significantly. Our additional numerical experiments 
suggest that the convergence evaluation is not sensitive to a variation of 
model parameter of α, β and fd within a reasonable range. In the rest of 
the paper, we use Nc = 75 to maintain an affordable computational time 

Fig. 1. Measured data reported by Keyvani and Strom (2014) for the temporal evolution of three floc size statistics (d16, d50 and d84). The analysis presented here 
further divides the time series into the initial floc growth stage (initial flocculation rate, t ≤ 200 min) and the equilibrium state (t ≥ 700 min). 

Fig. 2. Convergence analysis for different Nc. (a) Temporal evolution of floc size statistics d[16, 50,84] with different number of classes Nc. (b) Root-Mean-Square-Error 
RMSEc for different Nc. 
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(around 20 minutes per simulation in workstation) with 
RMSEcd[16,50,84]

≤ 0.5 ∼ 3 μm. 

3. Results 

Motivated by the previous study of Verney et al. (2011), we 
concurrently calibrate α and β to match measured data and evaluate if 
the resulting fractal dimension fd falls within the expected range. 6, 400 
simulations were carried out using α = 5 × 10−2 ∼ 80 × 10−2 with an 
interval of 5 × 10−2, and β = 2 × 10−3 ∼ 80 × 10−3 with an interval 
of 2 × 10−3 for ten different fractal dimension values in the range of 
1.7 to 2.9. All simulations use a computational time of 1800 min. Using 
the measured data (Keyvani and Strom, 2014) as reference, three 
different RMSE are computed to evaluate the model performance at the 
equilibrium state RMSEeq (t ≥ 700 min), the growth stage of floccula
tion RMSEfr (t ≤ 200 min), and the entire flocculation time series 
RMSEfp for the tri-temporal floc size statistics d16, d50 and d84 (see 
Figures S3~S5 in the Supplemental Material). In Section 3.1 and 3.2, the 
search for the optimized parameters α, β and fd is carried out exclusively 
to match measured d50 by these three criteria, namely, minimizing the 
errors at the equilibrium state min(RMSEeqd50 ), at the initial growth 
stage of flocculation min(RMSEfrd50 ), and for the entire time series 
min(RMSEfpd50 ). In Section 3.3, two more criteria are imposed (objective 
functions) by matching measured fine and coarse fractions, i.e., 

min(RMSEfpd16 ) and min(RMSEfpd84 ). 

3.1. Temporal evolution of median floc size d50 

The median floc size d50 is the most widely reported quantity in 
laboratory experiments and field observations. We analyze the model’s 
capability to represent the flocculation process using exclusively d50 
with constraints of the parameters α, β and fd. Moreover, since many 
studies only report the median floc size in the equilibrium state, it is 
important to investigate if the model can reproduce the entire measured 
time series by solely calibrating model parameters using the equilibrium 
median floc size. 

Using the measured data from Keyvani and Strom (2014) as refer
ence, the RSME at the equilibrium state RMSEeqd50 (t ≥ 700 min) is 
calculated for the 6,400 simulations and results are summarized in Fig. 3 
for all combinations of the parameters α, β for any given fd. Each 
interaction between these parameters is examined in a simulation with 
the error magnitudes demarcated by a hot colormap. The dark-red color 
represents excellent agreement with measured d50 in the equilibrium 
state. Importantly, all the fractal dimensions (fd = 1.7 ∼ 2.9) show 
multiple choices of α and β that are in very good agreement 
(RMSEeqd50 = 1.72 μm, the finite value of 1.72 μm reflects the vari
abilities in the measured data) with the measured d50 at the equilibrium 
state. Clearly, low error values cluster around a line with a constant 

Fig. 3. Root-Mean-Square-Error matrix for the median floc size d50 in the equilibrium state for different combinations of collisional efficiency α and fragmentation 
rate β at fractal dimension fd from 1.7 to 2.9. 
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slope for each fractal dimension indicating that the best agreement is 
obtained at a nearly constant α/β ratio, regardless of the individual α 
and β values. This finding is consistent with that reported by Verney 
et al. (2011). In addition to the multiple choices of the α and β pair, 
another important limitation of using only the equilibrium d50 data to 
calibrate the flocculation model is that excellent agreement can be found 
for very large (e.g., fd = 2.9) or very low (e.g., fd = 1.7) fractal 
dimension values outside the typical range for mud. As we will discuss 
next, despite the multiple options for α and β pairs to match the equi
librium d50, the predicted time series of d50 for some of the options are 
not acceptable (see Fig. 4). At this point, we can conclude that sole 
measurement of d50 in the equilibrium state is insufficient to narrow the 
values of α, β and fd. Additional characteristics of the flocculation sta
tistics should be considered for an improved model calibration. 

Since there are multiple pairs of α,β values that satisfy minimizing 
errors in the equilibrium state with min(RMSEed50)=1.72 μm, we 
sequentially applied the second criterion of minimizing the error values 

at the initial stage of the flocculation (t ≤ 200 min) min (RMSEfrd50 ). 
The predicted time series associated with the best and the worst 
agreement with measured data for the initial stage of flocculation 
RMSEfrd50 ) are presented for the fractal dimension in the range of fd =

1.9 ∼ 2.9 (see Fig. 4). The calibrated parameter values and respective 
minimum errors at a given fractal dimension are detailed in Table 1. The 
predicted time series using the pair of α, β that matches the equilibrium 
d50 but having large error of RMSEfrd50 are clearly far from satisfactory 
(see red lines in Fig. 4). This confirms that using solely the first criterion 
of minimizing the equilibrium median floc size errors is insufficient to 
predict the entire time series of median floc size evolution. However, 
applying first the criterion of min RMSEfrd50 followed by the second 
criterion of min RMSEfrd50 yields generally good agreement with the 
measured data for the entire time series when fd = 2.2 ∼ 2.7 (see blue 
lines in Figure 4c~4i) with a RMSEfrd50≤2.8 μm (see “best” in Table 1). 
Further analysis confirmed that the same results can be obtained by 
simply minimizing the errors of the entire flocculation time series, i.e., 

Fig. 4. Temporal evolution of the median floc size d50 for different fractal dimension applying the condition min(RMSEeqd50 )→min(RMSEfrd50) (blue line, best 
agreement and red line, worst agreement) 
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using the objective function min(RMSEfpd50). Nevertheless, we 
emphasize our main point that one should proceed with caution when 
utilizing the equilibrium data as the only model calibration criterion. 
This result also confirms the importance of matching the flocculation 
time series to obtain adequate aggregation timescale Tagg because it 
provides a nearly independent data to calibrate α (Mietta et al., 2011). 

We further explore the benefits of simply minimizing the errors 
present at the initial floc growth stage. The best calibrated model pa
rameters and error values can be found in Table 2. As expected, this 
approach decreases the errors in the predicted flocculation rate (cf. 
RMSEfrd50) in Table 1 and Table 2). The equilibrium state is affected 
negatively RMSEeqd50) values increase from 1.72 μm to 6.06 μm for 
fractal dimension fd = 2.2 ∼ 2.7) but only slightly. Fig. 5 illustrates 
visually these consequences where the floc growth stage is predicted 
well but the agreement in the equilibrium value is slightly reduced. This 
approach also allows us to narrow down the choice of fractal dimension, 
based on the best three min(RMSEfrd50, to be fd = [2.4, 2.5, 2.6]. When 
evaluating the agreement for the entire time series, we observe that 
RMSEfpd50) is around 5.7 μm for fd = [2.4, 2.6]. This is considered good 
agreement as only one criterion of min RMSEfrd50) is adopted. We can 
also conclude that the PBE-based size class flocculation model has a 
good capability of predicting equilibrium median floc size once the key 
model parameters are calibrated for predicting the initial growth of 
flocculation (i.e., the flocculation rate). 

3.2. Tri-temporal floc size statistics using min RMSEfrd50) 

Since the best calibrated cases that match the measured temporal 
evolution of median floc size are obtained for a wide range of fractal 

dimension fd = 2.2 ∼ 2.7 (see Fig. 4, RMSEfpd50≤2.8 μm), the selection 
of a unique set of α, β parameters is not yet conclusive. Fortunately, 
Keyvani and Strom (2014) provide two more measured floc size statis
tics of d16 and d84 and these are added to the model calibration to 
evaluate the possibility of further constraining the model parameters. 
Fig. 6 illustrates the predicted tri-temporal floc size statistics (d50, d16 
and d84) at the six fractal dimension values fd = 2.2 ∼ 2.7 using the α, β 
parameters that achieve the best agreement for the temporal evolution 
of the median floc size d50 (recall Fig. 4). At the initial floc growth stage 
(t < 30 min), good agreement can be seen for both the fine d16 and 
coarse d84 fractions (Fig. 6). However, larger discrepancies arise before 
reaching the equilibrium stage (30 min < t < 200 min) for the coarse 
floc fraction. As discussed before (see equation (13)), this means that the 
breakup timescale Tbrk for d84 should be reduced (increase the effect of 
breakup). Moreover, it becomes clear that by minimizing the error for 
the median floc size d50, the equilibrium floc statistics for the finer 
fraction d16 is under-predicted by the model while the coarse fraction d84 
is over-predicted. 

Identifying the optimum parameters hierarchically to represent the 
tri-temporal floc size statistics from Fig. 6 can be difficult based on its 
similar trend across the fractal dimension values. Therefore, we evaluate 
the error values during the initial growth stage of the flocculation 
(RMSEfr) and the entire flocculation time series (RMSEfp) in a wider 
range of fractal dimension fd = 1.7 ∼ 2.9 (see Fig. 7). The RMSEfr con
firms the discrimination process for the lowest (fd ≤ 2.1) and highest 
(fd = 2.9) fractal dimension since their errors increase considerably. 
Regarding the fractal dimensions fd = 2.2 ∼ 2.7, the RMSEfr for the 
median floc size statistics d50 behaves in a quasi-stable way. However, 
the error values for d16 and d84 show opposite trends when one of them is 
minimized (see fd = 2.3 and fd = 2.7). Looking at the average perfor
mance for these floc fractions, the first, second and third option are fd =

2.7, 2.6 and 2.4, respectively (see dashed black line in Fig. 7a). This 
result can also be obtained when computing the mean value of RMSEfp 
(see Fig. 7b). 

3.3. Tri-temporal floc size statistics using min(RMSEfpd16 ) or 
min(RMSEfpd84 )

Through a systematic error analysis of d50 for the initial floc growth 
and the entire flocculation process presented in the previous sections, 
optimal model parameters are obtained. However, the predicted fine 
(d16) and coarse (d84) floc fractions are adversely affected. That is, better 
agreement in the fine fraction comes at the expense of worse agreement 
in the coarse fraction. Now, we evaluate the possibility to narrow the 

Table 1 
Root-Mean-Square-Errors (in μm) and flocculation parameters of the median floc size statistics d50 obtained in Fig. 4.   

Option RMSEeqd50 RMSEfrd50 RMSEfpd50 α β r = α/β 

1.7 best 1.72 14.58 5.18 0.10 0.010 10.00  
worst 1.72 21.71 7.45 0.80 0.078 10.25 

2.0 best 1.72 13.36 4.81 0.20 0.022 9.091  
worst 1.72 19.85 6.85 0.70 0.078 8.974 

2.1 best 1.72 14.28 5.09 0.30 0.034 8.824  
worst 1.72 18.93 6.56 0.70 0.080 8.750 

2.2 best 1.72 5.98 2.7 0.15 0.018 8.333  
worst 1.72 21.74 7.44 0.05 0.006 8.333 

2.3 best 1.72 6.38 2.80 0.20 0.024 8.333  
worst 1.72 27.47 9.35 0.05 0.006 8.333 

2.4 best 1.72 5.27 2.54 0.25 0.032 7.813  
worst 1.72 13.58 4.88 0.65 0.080 8.125 

2.5 best 1.72 5.76 2.65 0.40 0.052 7.692  
worst 1.72 10.22 3.86 0.20 0.026 7.692 

2.6 best 1.72 5.34 2.55 0.50 0.066 7.576  
worst 1.72 14.80 5.25 0.20 0.026 7.692 

2.7 best 1.72 4.71 2.41 0.55 0.074 7.432  
worst 1.72 26.72 9.25 0.15 0.020 7.500 

2.9 best 1.72 9.13 3.55 0.60 0.080 7.500  
worst 1.72 36.35 13.97 0.15 0.020 7.500  

Table 2 
Root-Mean-Square-Errors (in μm) and flocculation parameters of the median floc 
size statistics d50 obtained in Fig. 5.   

RMSEeqd50 

(μm) 
RMSEfrd50 

(μm) 
RMSEfpd50 

(μm) 
α β r =

α/β 

1.7 15.11 6.36 14.25 0.05 0.006 8.33 
2.0 6.06 3.16 5.72 0.10 0.010 8.33 
2.1 10.70 3.31 10.00 0.15 0.020 7.50 
2.2 6.06 2.99 5.71 0.20 0.030 7.69 
2.3 6.06 3.25 5.72 0.20 0.030 7.69 
2.4 6.06 2.85 5.70 0.30 0.040 7.50 
2.5 6.06 2.93 5.70 0.40 0.050 7.41 
2.6 6.06 2.49 5.68 0.50 0.070 7.14 
2.7 6.06 3.55 5.74 0.55 0.080 7.24 
2.9 4.64 8.99 5.50 0.60 0.078 7.69  
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flocculation model parameters and improve the overall agreement by 
minimizing the fine or coarse floc sizes statistic errors (i.e., 
min(RMSEfpd16 ) or min(RMSEfpd84 )) using the same systematic error 
analysis. 

The criterion of minimizing the fine fraction min(RMSEfpd16 ) pro
duces non-satisfactory results for the overall floc size statistics since the 
coarse fraction d84 stands out for its high error values 
(RMSEfpd84 ≥ 34.62 μm). This magnitude is higher than 
RMSEfpd84 obtained by using the previous criterion min(RMSEfpd50 ). 
Error comparisons are presented in the supplementary material 
(Figure S6) and they are not further discussed here. Conversely, 
applying the criterion min(RMSEfpd84 ) shows satisfactory results espe
cially in the RMSEfr values since the best value is distinguished from the 
other acceptable errors (see fd = 2.5 in Fig. 8a). However, the minimum 
value of RMSEfp averaged over the three size statistics is located at fd =

2.9 (Fig. 8b). This is a limitation in the flocculation model since fd = 2.9 
is a much higher than expected value for typical flocs. Considering the 
error analysis criterion for the initial floc growth stage, the optimum 
fractal dimension is selected to be fd = 2.5 (see black line in Fig. 8a). 

The tri-temporal floc size statistics for three selected cases are pre
sented in Fig. 9. We established previously for the equilibrium state that 
minimizing the median floc size errors leads to over- and under- 

predicted results for coarse and fine flocs, respectively (see also 
Fig. 9a and 9b). Hence, the difference between Case 1 with fd = 2.4 and 
Case 2 with fd = 2.7 lies mainly in the degree of agreement to represent 
the coarse fraction d84 (see RMSEeq values in Table 2) since Case 2 with 
fd = 2.7 shows 49.12% better agreement compared to Case 1. This 
contrast can also be noticed in the distributed mass concentration at the 
equilibrium state (see blue-dashed line vs red-solid line in Fig. 10). 
Comparing with Case 1, Case 2 relocates a small amount of sediment 
mass in the coarse fraction to the median and fine fractions due to a 
relatively larger breakup effect signified by smaller r = α/β = 7.432 
value in Case 2. Using a lower fractal dimension of fd = 2.5 in Case 3 
allows for an even lower r = 6.7 (i.e., the breakup is stronger in Case 3 
than in Case 1 and 2), which significantly reduces the sediment mass in 
the coarse fraction (see smaller d84 in Fig. 9c) and this is evidently due to 
a more significant relocation of mass from the coarse fraction to the finer 
fraction (see a shift of sediment mass distribution to the left represented 
by the black-dashed line in Fig. 10). Case 3 proves the need of increasing 
the effect of breakup (or lower breakup timescale Tbrk) for the coarse 
fraction, which can be achieved by increase the fragmentation rate β. 
Section 4 investigates this possibility by considering a lower floc yield 
strength for larger flocs. 

Fig. 5. Temporal evolution of the median floc size statistics d50 for different fractal dimension applying the criteria min(RMSEfrd50)  
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4. Discussion - effect of floc yield strength 

The results presented in Section 3 indicate that by rigorously cali
brating the PBE-based size-class flocculation model against measured 
tri-temporal floc size statistics (d16, d50 and d84), we can identify several 
combinations of the model parameters (α, β and fd) that show good 

agreement with measured data. However, there are still uncertainties in 
the selection of the best model parameters, particularly in Case 2, which 
has the best agreement but with a high value of the fractal dimension of 
2.7. In this section, we include one other significant physical quantity in 
the model parameters to improve the overall agreement. To avoid 
overfitting model results, the choice of the additional physics to be 

Fig. 6. Temporal evolution of the tri-floc size statistics d16, d50 and d84 for different fractal dimensions minimizing the entire flocculation process error 
values RMSEfpd50). 

Fig. 7. Root-Mean-Square-Error for tri-temporal floc size statistics (d16, d50 and d84) by applying the criterion min RMSEfpd50 of minimizing the errors in the 
measured time series of the median fraction d50. (a) Root-Mean-Square-Error for the growth stage of flocculation (RMSEfr). (b) Root-Mean-Square-Error for the entire 
temporal evolution (RMSEfp). 
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included must first be justified. 
Motivated by improving the limited capability of the model to 

represent the coarse and fine fractions simultaneously, and the need to 
increase floc breakup (or decrease Tbrk) for the coarse floc fraction, we 
evaluate the effect of considering the fragmentation rate β as a function 

of floc size. As shown in equation (8), the fragmentation rate β is a 
function of the empirical coefficient E, fluid viscosity μ and floc yield 
strength Fy. The justification of treating β as a constant is to assume the 
floc yield strength is a constant. In the literature, floc yield strength is 
routinely assumed to be Fy = 10−10N in flocculation modeling and the 

Fig. 8. Root-Mean-Square-Error for tri-temporal floc size statistics by applying min(RMSEfpd84). (a) Root-Mean-Square-Error for the initial floc growth stage. (b) 
Root-Mean-Square-Error for the entire temporal evolution of d16, d50 and d84. 

Fig. 9. Modeled tri-temporal floc size statistics (lines) compared with measured data (symbols) reported by Keyvani and Strom (2014). (a) and (b) are Case 1 and 
Case 2 results using the criteria min(RMSEfpd50 ) and (c) Case 3 results using the criterion min(RMSEfpd84 )

J.A. Penaloza-Giraldo et al.                                                                                                                                                                                                                  



Water Research 233 (2023) 119780

11

model calibrations are carried out either through the coefficient E, or 
directly using the parameter β (Maggi et al., 2007; Verney et al., 2011; 
Winterwerp, 1998). However, in the water quality literature, Jarvis et al. 
(2015) presented a review of many laboratory measurements of floc 
yield strength (or yield stress) which indicated that the floc yield 
strength Fy is inversely proportional to the floc size (e.g., Bache et al., 
1999; Yeung and Pelton, 1996). In other words, when a floc grows to a 
sufficient size, the larger the floc size is, the easier the floc can be broken 
by turbulent shear. This fact is supported by our error analysis presented 
in Section 3. Fig. 11 presents the best calibrated β values by minimizing 
the error in the three size fractions (d16, d50 and d84) plotted as a func
tion of fractal dimension between 2.3 and 2.6. We observe a clear trend 
in each fractal dimension that the larger the size fraction when the error 
is minimized, the larger β (or smaller Fy) is required. Moreover, this 
trend agrees with the need to decrease the breakup timescale Tbrk for 
coarse fraction as has been stated in the previous section. Hence, we 
investigate the effect of considering the floc yield strength Fy inversely 
proportional to floc size. 

Since measuring the floc yield strength as a function of floc size can 
be difficult and most studies of cohesive sediment transport do not 
report such data, as a first step we propose to model the floc yield 

strength in terms of microflocs and macroflocs (Manning and Dyer, 
2007) and divide the fragmentation rate β into two different values 
accordingly. To distinguish these two groups, a floc size limit dL is 
defined such that the fragmentation rate of flocs with a size smaller 
(larger) than dL is specified as βmicro while the fragmentation rate of flocs 
larger than dL is specified as βmacro. We investigate the effect of applying 
the two-value fragmentation rate by simulating Case 1a and Case 3a, 
which are variants of Case 1 and Case 3 having the same values of α and 
fd found in Section 3.2. As for βmicro and βmacro, the mean value between 
these two fragmentation rates in Case 1a and Case 3a match with the 
constant β value used in Case 1 and Case 3, respectively, while satisfying 
the physical behavior of higher tendency for breakup in macroflocs with 
βmacro > βmicro. 

The use of the two-value βmicro/βmacro fragmentation rate in Case1a 
shows a remarkable improvement compared to using a constant β 
method in Case 1 with fd = 2.4. For the coarse fraction d84 under the 
criterion min(RMSEfpd50 ), the over-predicted errors RMSEfpd84 for the 
entire time series in Case 1 (Fig. 12a) are significantly reduced from 
16.43 μm to 4.66 μm (nearly a factor 4 reduction of error, compare 
Table 3 and 4). The same improvement can be seen for the fine fraction 
d16 with an error value RMSEfpd16 reducing from 11.27 μm to 3.38 μm. 
Furthermore, these improvements preserve the excellent agreement of 
d50 because the RMSEeqd50 maintains its low error values (errors slightly 
increase by 5% from 2.54 μm to 2.67 μm). For the floc growth stage, 
using the two-value βmicro/βmacro fragmentation rate in Case 1a signifi
cantly improves the agreement for the coarse fraction 
(RMSEfrd84 decreases from 20.3 μm to 9.87 μm, about a factor 2 smaller) 
while only marginally decreasing the agreement for the median (11% 
increase of error) and fine (42% increase of error) fraction. Evaluating 
the overall performance through the mean error values, we observe a 
factor 3 reduction of errors for the entire time series (mean (RMSEfp)

reduces from 10.08 μm to 3.57 μm). The improvement by using the two- 
value βmicro/βmacro fragmentation rate is particularly significant for 
equilibrium floc sizes. 

Relatively minor improvement is observed for Case 3a (fd = 2.5, see 
Table 4) when the two-value fragmentation rate is applied (see 
Fig. 12b). This is partly because the agreement in the coarse fraction 
when using a single value β is already good (see Case 3 in Table 3, e.g., 
RMSEfp for d84 is only 3.77 μm). However, the improvement for median 
fraction and fine fractions by using the two-value fragmentation rate for 
the entire time series is evident as it is quantified by an error reduction 
from 10.15 μm to 5.68 μm and from 16.45 μm to 11.3 μm, respectively. 
As for the floc growth stage, the two-value fragmentation rate also 

Fig. 10. Distributed mass concentration at the equilibrium state for Case 1 (fd = 2.4) and Case 2 (fd = 2.7) with the criterion min(RMSEfpd50 ), and Case 3 (fd = 2.5) 
with the criterion min(RMSEfpd84 ). 

Fig. 11. Fragmentation rate β variation with respect to size fraction based on 
the criterion min(RMSEd[16,50, 84]

) for fractal dimension fd = 2.3 ∼ 2.6. 
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reduces the errors by a factor of about 1.6 and 2.5 for d16 and d50, 
correspondingly. However, the error for the coarse fraction shows a 
small increase of 39%. A numerical experiment has been carried out for 
Case 2 with a high fractal dimension of 2.7. We obtain the similar 
conclusion that the improvement by using a two-value fragmentation 
rate in Case 2 is very good but not as effective as in Case 1. 

The distributed mass concentration at the equilibrium state is 
another important characteristic that can be used to compare the two- 
value fragmentation rate approach with the constant β approach (see 
Fig. 12c and 12d). When the fractal dimension is fd = 2.4, a reduction of 
the mass concentration in Case 1a is observed for floc classes lower than 
55.25 μm and higher than 118 μm (compare the red line with the black 
line in Fig. 12c). As a result of mass conservation, the mass concentration 
distribution over the floc size classes is squeezed laterally, and the 

concentration between the floc classes 55.25 ∼ 118 μm increases. 
Consequently, the equilibrium floc statistics for coarse d84 (fine d16) 
fraction must decrease (increase). A similar behavior can be seen when 
the fractal dimension is fd = 2.5 (in Case 3a) but with a different feature. 
For instance, using a single-value fragmentation rate, the equilibrium 
floc size for the coarse fraction d84 is already in good agreement with 
measured data. Interestingly, the use of a two-value fragmentation rate 
effectively decreases the mass concentration in the fine fraction and 
moves the mass toward the median fraction (Fig. 12d), while the coarse 
fraction is nearly unchanged. Specifically, the mass concentration in
creases between 69.77 ∼ 157.9 μm (see Fig. 12d) and decreases in finer 
fraction (di ≤ 69.77 μm). There is a very small increase of mass con
centration in the coarser fraction (di ≥ 157.9 μm). 

Fig. 12. Comparison between constant fragmentation rate (β) and two-value fragmentation rate (βmicro and βmacro) for Case 1 and Case 3. (Upper panel) Tri-temporal 
floc size statistics (d16, d50 and d84) based on the (a) criterion min(RMSEd50 ) and (b) min(RMSEd84 ). (Lower panel) mass concentration distribution over the floc size 
classes using the criterion (c) min(RMSEd50 ) and (d) min(RMSEd84 ). 

Table 3 
A summary of recommended cases for their model parameters and errors (in μm).  

Case f d di α β r RMSEfr RMSEfp mean(RMSEfr) mean(RMSEfp) 

1 2.4 16 0.25 0.032 7.813 4.08 11.27 9.88 10.08   
50    5.27 2.54     
84    20.30 16.43   

2 2.7 16 0.55 0.074 7.432 4.22 11.27 7.86 7.63   
50    4.71 2.41     
84    14.65 9.22   

3 2.5 16 0.35 0.052 6.731 7.71 16.45 6.46 10.12   
50    6.20 10.15     
84    5.47 3.77    

Table 4 
A summary of the two-value fragmentation rate cases for their model parameters and errors (in μm).  

Case f d di α βmicro βmacro r dL RMSEfr RMSEfp mean(RMSEfr) mean(RMSEfp) 

1a 2.4 16 0.25 0.020 0.044 1.95 95.0 5.81 3.38 7.18 3.57   
50      5.85 2.67     
84      9.87 4.66   

3a 2.5 16 0.35 0.045 0.059 1.68 110.0 4.86 11.30 4.98 7.05   
50      2.47 5.68     
84      7.60 4.16    
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Conclusion 

We present a systematic investigation of the key model parameters 
for the PBE-based size class flocculation model of Verney et al. (2011) 
using the experimental data reported by Keyvani and Strom (2014). An 
analysis on constraining the key model parameters, namely the colli
sional efficiency, fragmentation rate, and fractal dimension, is first 
carried out for the median floc size statistics d50. A criterion based on 
minimizing the equilibrium state median floc size errors provides mul
tiple options of model parameters with many of them misleading since 
they fail to match the measured initial floc growth. The agreement can 
be significantly improved by applying a second criterion sequentially 
minimizing the error for the floc growth stage, or equivalently by 
minimizing the entire flocculation time series of d50. Interestingly, uti
lizing the objective function of simply minimizing the error for the floc 
growth stage (min(RMSEfrd50 )) shows generally good agreement with the 
entire measured time series of flocculation, confirming a good predictive 
ability of the present PBE- flocculation model. The resulting model pa
rameters are constrained to multiple options of fractal dimension in the 
range of fd = 2.2 ∼ 2.7 and we conclude that the median floc size d50 
alone is insufficient to constrain the flocculation model parameters. 

The PBE flocculation model can reasonably predict d16 and d84 using 
solely the calibration results from the median floc sizes d50 in the range 
of fd = 2.2 ∼ 2.7. The best two options with minimum errors are 
selected for fd = 2.4 and fd = 2.7 with the latter selected because of its 
good agreement with measured coarse fraction d84 even though the fd 
value is higher than expected. Evaluating two different criteria based on 
minimizing the entire temporal floc size statistic errors of d16 and d84 
indicates that minimizing the errors in the fine fraction is not viable due 
to the high errors in the coarse fraction. On the contrary, minimizing the 
error in the coarse fraction shows good agreement with the measured 
floc growth at fd = 2.5 and suggests that the coarse fraction requires 
lower breakup timescale (or increased breakup) to balance the aggre
gation. 

To improve the model’s predictive ability for fine, median, and 
coarse fractions at typically expected fractal dimension ranges for 
cohesive sediment, we propose a two-value fragmentation rate approach 
(floc yield strength is smaller for macroflocs than microflocs) motivated 
by limited measured data in the water quality literature and the present 
model analysis for a single fragmentation rate β, which clearly shows a 
positive correlation between calibrated β and floc size (see Fig. 11). The 
results from the two-value fragmentation rate approach demonstrate 
significant improvement in representing the tri-temporal floc size sta
tistics compared with data from using a constant β, especially for the 
case of lower fractal dimension at fd = 2.4. 

Findings reported in this study are based on modeling the measured 
three floc size statistics in homogenous turbulence for a single type of 
clay reported by Keyvani and Strom (2014). Therefore, this work calls 
for future research on expanding the knowledge of floc yield strength for 
more diverse configurations. For instance, more laboratory data of 
temporal floc size distribution for a wide range of turbulence intensity 
and clay types are needed. Moreover, direct measurements of floc yield 
strength as a function of floc size are needed. For numerical modeling, 
coupling the PBE model with a boundary layer sediment transport model 
to further investigate the role of flocculation dynamics on settling, 
advection and turbulent suspension of cohesive sediment is warranted. 
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