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Many aquatic environments contain cohesive sediments that flocculate and create flocs with a wide range of
sizes. The Population Balance Equation (PBE) flocculation model is designed to predict the time-dependent floc
size distribution and should be more complete than models based on median floc size. However, a PBE floccu-
lation model includes many empirical parameters to represent important physical, chemical, and biological
processes. We report a systematic investigation of key model parameters of the open-source PBE-based size class
flocculation model FLOCMOD (Verney, Lafite, Claude Brun-Cottan and Le Hir, 2011) using the measured tem-
poral floc size statistics reported by Keyvani and Strom (2014) at a constant turbulent shear rate S. Results show
that the median floc size ds, in terms of both the equilibrium floc size and the initial floc growth, is insufficient
to constrain the model parameters. A comprehensive error analysis shows that the model is capable of predicting
three floc size statistics di6, dso and dg4, which also reveals a clear trend that the best calibrated fragmentation
rate (inverse of floc yield strength) is proportional to the floc size statistics considered. Motivated by this finding,
the importance of floc yield strength is demonstrated in the predicted temporal evolution of floc size by modeling
the floc yield strength as microflocs and macroflocs giving two corresponding fragmentation rates. The model
shows a significantly improved agreement in matching the measured floc size statistics.

1. Introduction

seafloor due to flocculation with suspended particulate matters (Daly
et al., 2016; Ye et al., 2021). Therefore, studying flocculation dynamics

Unlike non-cohesive sediment such as sand, cohesive sediments
exhibit a unique physical process called flocculation that causes indi-
vidual particles to stick together when two or more particles collide.
Through flocculation, the role of cohesive sediments in aquatic envi-
ronments has a crucial impact on the ecosystem. When particulate
concentrations in the water column are high, aquatic organisms face
severe consequences due to the absence of photosynthesis, low levels of
dissolved oxygen and depletion of energy sources (Jones et al., 2012;
Vaz et al., 2019). Simultaneously, cohesive sediments exert a funda-
mental control on the fate of nutrients and organic matter and, hence,
alter the water quality (Asmala et al., 2022). Furthermore, low-density
hydrophobic substances such as oil droplets can be deposited on the
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of cohesive sediment is an important and thriving research subject in
aquatic science and engineering.

Flocculation is defined by two main processes that coexist simulta-
neously, aggregation, and fragmentation (breakup). Aggregation may
take place when cations from dissolved salt in water create surface
bridging around clay particles and decrease their repulsion force
(Sutherland et al., 2015). Moreover, cohesion between particles can be
significantly increased by bio-cohesion such as extra-cellular polymeric
substance (EPS) (Malpezzi et al., 2013; Passow and Alldredge, 1995).
For energetic aquatic systems, flow turbulence is considered as the
dominant mechanism driving particle collision, which is quantified by
the turbulent shear rate (Mhashhash et al., 2018; Spicer and Pratsinis,
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1996). This is directly responsible for floc formation and the growth of
different floc sizes and their respective densities (porosity; e.g. Lawrence
et al., 2022).

Simultaneous with the aggregation process, the flocs can experience
a fragmentation (breakup) that decreases their size due to turbulent
shear in energetic environments. Flocs can maintain their complex
structures up to a specific size because of the floc strength maintained by
inter-particle bonds (Bache et al., 1999; Jarvis et al., 2005). The flocs
become more fragile as their size increases, and flocs can be broken up
when a shear or tensile stress overcomes the floc strength (Yeung and
Pelton, 1996). Unfortunately, quantifying the floc strength is not trivial
due to difficulties in direct measurement, and a variety of factors, such
as mineral types, zeta-potential, floc structures, turbulent shear must be
quantified (Jarvis et al., 2005; Sharp et al., 2006; Spencer et al., 2022).
Thus, most of the numerical models use a constant value of the floc
strength for simplicity (Maggi et al., 2007; Verney et al., 2011; Win-
terwerp, 1998). In this study, we investigate the limitation of the con-
stant floc yield strength assumption and begin to explore an alternative
with satisfactory results.

The single floc size statistic method (Winterwerp, 1998) is usually
implemented to track the temporal evolution of the median floc size ds.
Although this method has been used in many studies (Kuprenas et al.,
2018; Son and Hsu, 2009), it is not designed to represent the complex
floc size distribution. On the other hand, the most detailed method is to
simulate flocculation using a grain-resolved approach since it tracks all
the individual cohesive particles in a fully resolving turbulence field
(Vowinckel et al., 2019). This allows to compute the floc strength and
the fractal dimension by analyzing the bonds between the primary
particles and the floc size/shape. The challenge lies in its limitation to
represent practical flocculation problems due to its high computational
cost. The middle-ground approaches are to model the floc size distri-
butions. The distribution-based model (Maerz and Wirtz, 2009) requires
the assumption of a fixed distribution, which constrains the bimodal floc
behaviors observed in aquatic systems (Lee et al., 2011; Manning and
Dyer, 2007; Soulsby et al., 2013). This limitation can be overcome by
solving Population Balance Equations (PBE) that calculate the number of
flocs for each given size class while maintaining the mass balance
(Verney et al., 2011; Mietta et al., 2011). Many studies focus on cali-
brating multiple model parameters in the PBE-based size-class floccu-
lation model using the equilibrium or temporal evolution of median floc
size dso (Jeldres et al., 2015; Shen et al., 2018; Zhang et al., 2019), or
floc size distribution at the equilibrium state (Coufort et al., 2007). A
systematic PBE model calibration was carried out by Mietta et al. (2011)
using temporal evolution of the median floc size dsy and the equilibrium
floc size distribution for a wide variety of compositions (clay type, salt
type and different salinity). Importantly, using the temporal evolution of
dso, this study showed an inverse proportionality between the collisional
efficiency and the zeta-potential. However, it is unclear whether the
optimal model parameters can be well constrained by these limited
physical quantities.

Motivated by the increasing popularity of PBE flocculation models
for cohesive sediment transport applications (Liu et al., 2019; Sherwood
et al., 2018), the main goal of this study is to advance the understanding
of several key model parameters of the PBE flocculation model and how
they determine the resulting temporal evolution of floc size statistics
driven by a constant turbulent shear rate. Motivated by the earlier
studies on PBE modeling (Verney et al., 2011; Mietta et al., 2011) and
floc yield strength (e.g., Jarvis et al., 2005), the specific objectives of this
study are to (1) confirm whether the median floc size statistics dsp, in
terms of both the equilibrium floc size and the initial floc growth, is
sufficient to constrain the model parameters, (2) investigate if the model
parameters can be better constrained by using the temporal evolution of
different floc size statistics, and (3) understand the importance of floc
yield strength in the predicted floc size statistics. The remainder of the
paper is organized as follows. Section 2 provides a description of the
PBE-based size-class flocculation model and the laboratory data used.
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Section 3 focuses on extensive model investigations and error analyses
for predicting the measured data. Section 4 is dedicated to investigating
the floc yield strength in the flocculation model and Section 5 concludes
this study.

2. Flocculation model description and configuration
2.1. PBE-based size-class flocculation model

The PBE-based size-class flocculation model FLOCMOD (Verney
etal., 2011) is adopted to study the physics of flocculation. The model is
based on solving PBEs, namely the temporal evolution of the number
concentration of each floc size class (i.e., number-based distribution) in
a homogeneous isotropic turbulent flow, and it can be written as

% G (1) + G (k) ~ Lagr () — Lt e (4) M
where n (unit m~3) is the number concentration (number of flocs per unit
volume) of the k" floc size class, t is time (s), G and L with subscripts
represent the gain and loss of class k flocs due to aggregation (subscript
aggr) or breakup induced by turbulent shear stress (subscript
break_shear). In estuarine and coastal environments, flows are generally
energetic, and the model assumes that the turbulent shear is the domi-
nant mechanism driving flocculation. Other aggregation mechanisms
resulting from Brownian motion and differential settling are neglected
(Maggi et al., 2007). For the low sediment concentration considered in
this study, we also neglect the gain and loss of class k due to
collision-induced breakup. The gain Gagr and loss Lqgr by aggregation
are written as

1
Guger (k) = > aA(ij)nin (2)
i+j=k
N
Lager(k) = > aA(i, k)nmy 3

i=1

where A is the two-body collision probability function for spherical
particles and a is the collisional efficiency, which parameterizes the
sticking properties of flocs and other physical processes not modeled by
A (e.g., preferential accumulation that encourages collision or the effect
of porosity). This parameter « is assumed constant for the calibration
process following Verney et al (2011). Since we assume that the main
driving force for flocculation is the turbulent shear, the two-body
collision probability function depends on the turbulent shear rate S
and the diameters of two colliding flocs, written as

1
Alij) = gS(d, +d)’ 4

where d; and d; are the spherical equivalent diameters of two colliding
flocs of discrete classes i and j.

The gain Gbreak_shear and loss Lbreak_shear bY breakup driven by turbu-
lent shear stress S are defined as

Gireak_shear(K) = > _ FDBSBin; (5)

P
Lireak_shear (k) = By (6)

where FDBS is the distribution function of fragmented flocs representing
the gain of daughter flocs from larger floc size classes. Following Verney
etal., (2011), we specify the binary distribution assuming that the mass
of a floc after breakup is divided in half. The rate at which flocs break
due to the turbulent shear rate S is given by the function B, and it is
defined as
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where d, is the primary particle diameter, f; is the fractal dimension
(Kranenburg, 1994) for equivalent spherical diameter, and g is the
fragmentation rate. The fragmentation rate is in fact a dimensional
quantity (s'/2.m1) and it is written as (Maggi et al., 2007; Winterwerp,
1998)

_g(HY
i)

where u (Pa-s) is the dynamic viscosity of water, E is an empirical
(dimensionless) parameter and Fy (N) is the floc yield strength. Although
B is a dimensional quantity, it is assumed to be an empirical constant in
Verney et al. (2011). This inevitably presumes that the floc yield
strength F, is a constant, which is consistent with the fractal approach
(Kranenburg, 1994). Because the direct measurement of floc yield
strength is difficult, the assumption of a constant F, is commonly
adopted by many other studies (e.g., Maggi et al., 2007; Wang et al.,
2013).

Verney et al. (2011) have pointed out that both the collisional effi-
ciency a and fragmentation rate f are sensitive model parameters that
need to be calibrated first with a given cohesive sediment sample.
Although the fractal dimension f; has been estimated from many labo-
ratory and field experiments (e.g., Manning et al., 2010) to be around 2
to 2.5 and there may be a floc size dependency (Khelifa and Hill, 2006;
Maggi, 2007) such that larger flocs are more porous and the interparticle
bonds are smaller; assuming a constant fractal dimension within a given
flocculation experiment remains to be the most practical approach. To
successfully calibrate these three empirical parameters concurrently for
a given experiment, sufficient information from the measured data is
necessary, and a proper calibration strategy may also benefit from a
more thorough examination of the governing equations to be solved.

By substituting equations (2) to (6) into the equation (1), the
resulting number concentration equation of each floc size class k is
written as

dny 1 1 3 di—d, \*™7
=3 ZkagS(di +d;) i + -Xk:] FDBS,;$S*/*d; (d—p” ) n;
I+j=1 i=k+

X1 3 i, (di—d, '
-3 g S(di+dy) mim = SR | == n ©
i=1

i P

During the initial stage of the flocculation (i.e., floc growth stage),
the breakup terms can be neglected (the second and fourth term on the
right-hand-side (RHS) of equation (9)) since flocs must grow from small
flocs or primary particles and the aggregation terms (first and third
terms on the RHS) are dominant. This means that a model calibration
focusing on the initial flow growth stage allows us to mainly calibrate o
(Mietta et al., 2011). However, beyond the initial floc growth stage, the
breakup terms must become important because there must be a balance
between aggregation and breakup so that an equilibrium can be
reached. Following the analysis presented in Winterwerp (1998), mean
equilibrium floc size must depend on the ratio of r = a /# and fractal
dimension f;. Therefore, both the equilibrium stage and the initial floc
growth stage should be considered for a complete calibration procedure.

Further insights into equilibrium floc size distribution can be gained
by setting dny/dt = 0 in equation (9) which renders an expression for
number concentration of each floc size class as

r 3 di—d, \> 4
[mf Siope e+ ) mim + X, FDBSd, (% ) n,-}

e = 3
[t aynral )]

(10)

In addition to r = a/p and fy, the breakup distributions functions FDBSy;
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also control the floc size distribution and must be considered in the
calibration. However, the physical evidence of floc breakup distribution
function is limited, and most studies assume a binary breakup. Never-
theless, if we focus on very large floc fractions (e.g., macroflocs), their
gain due to breakup (Gpreqk_shear) and loss due to aggregation (Lqgr) can
be assumed insignificant compared with the smaller size fraction.
Therefore, equation (10) for the very large floc size fraction can be
reduced approximately to

. 3
Ll_z Sz Zi+j:k (di + d/‘) ”i”j]
di—d, 3~fa
{ dk( kdp ) }

where the breakup distribution function FDBSy; disappears. Comparing
the modeled large floc size statistic with measured data allows cali-
brating the parameters a, # and f; with minimum impact of FDBSy;. On
the other hand, the breakup distribution function FDBSy; must be
important for fine floc fractions. Thus, calibrating different size class
statistics is valuable, particularly for the coarse floc fraction to avoid
uncertainty in FDBSy;.

Additional analysis of equation (9) is performed to compare the ag-
gregation and breakup timescales. Following Winterwerp (1998), we
estimate the initial floc growth timescale using the aggregation term in
the equation (9) and it is written as

an

ng =

1

Toge = m 12)
where ¢ is the volumetric concentration of floc of size class k. The
above expression shows that the collisional efficiency a controls the
initial floc growth timescale, and an appropriate calibration process
for a should be based on the initial growth time series (Mietta et al.,
2011). On the other hand, at the later stage of the floc growth before
reaching equilibrium, the floc breakup must play an important role to
counteract aggregation. We can examine the breakup timescale as
inversely proportional to  and S%/2 as

Ty ~ a3

1
B2
For example, to expedite floc growth at the later transient stage, the
breakup timescale must be decreased by increasing f (i.e., increase the
effect of breakup), which is equivalent to reducing floc yield strength.
This point will be revisited in Section 4.

2.2. Experimental data

Keyvani and Strom (2014) report a flocculation experiment in a
mixing tank using a mixture of kaolinite and montmorillonite clay. The
flocculation experiment was performed for approximately 1800 min by
using a total sediment mass concentration of C = 0.05 kg/m® and a
homogeneous turbulence shear rate S of 35 s~!. Hence, the study ne-
glects more complex transport mechanism such as differential advection
and settling. Although homogeneous turbulence is highly idealized, it
allows a comprehensive calibration of model parameters before the
model can be used in conditions with increasing complexity. In addition
to the measured median floc diameter dsq at equilibrium, Keyvani and
Strom (2014) also provide measured temporal evolutions of three
different floc size statistics, di¢, dso and dg4 (see Fig. 1) by computing a
series of image ensemble every 1 to 5 minute depending on the phase
(growth or equilibrium). This comprehensive dataset is selected to
calibrate key empirical model parameters in the PBE-based size-class
flocculation model of Verney et al. (2011). We simulate three important
aspects in the measured time series, the equilibrium state (t > 700 min
in Fig. 1), the floc growth stage (t < 200 min in Fig. 1), and the entire
time series. In particular, matching the modeled initial floc growth stage
with measured data allows us to evaluate the model’s ability to predict
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Fig. 1. Measured data reported by Keyvani and Strom (2014) for the temporal evolution of three floc size statistics (di6, dsp and dg4). The analysis presented here
further divides the time series into the initial floc growth stage (initial flocculation rate, t < 200 min) and the equilibrium state (¢t > 700 min).

the flocculation rate, which has been used by other studies to further
quantify the stickiness of flocs (Ye et al., 2021) and to calibrate colli-
sional efficiency (Mietta et al., 2011). The abundance of measured data
allows a deeper calibration of the model parameters.

2.3. Flocculation model configuration

Following Keyvani and Strom (2014), the total mass concentration
and turbulent shear rate from the experiment are prescribed accordingly
in the flocculation model. The minimum floc size diameter is established
as dpin = 4 pm, which corresponds to the diameter of the primary
particle typically used for flocculation modeling (Winterwerp, 1998).
The maximum floc size is specified to be dy.x = 300 um to ensure the
modeled distribution is sufficiently wide and to avoid fluctuations in the
distributed mass concentration at the equilibrium state (see Figure S1 in
supplementary material). Since Keyvani and Strom (2014) did not
discuss the initial floc size distribution, our exploratory numerical ex-
periments show that using a log-normal distribution represents the
experimental data better than punctual distribution especially at the
early stage of floc growth (see Figure S2 in supplementary material).

Following Verney et al. (2011), an explicit (Euler) time integrator is
implemented to solve the PBEs (Equation 1) with an initial time step size
equal to 1 s, which is also specified as the maximum allowable time step
size throughout the integration. If this value is insufficient to preserve
the total sediment mass within a threshold, the time step is decreased by

150 —Ne =25

g 125 —Ne =50
P —N= g

F)

2 dis

o pera)
=S

(a)

1

10° 10
t (min)

10

half and the cycle is recomputed until the mass conservation criterion is
satisfied. The flocculation model of Verney et al. (2011) requires the use
of many classes to discretize the floc diameter distribution. Therefore,
establishing the minimum number needed for an accurate numerical
solution of the size distribution is an important step. The evaluation is
carried out with different numbers of size class N, to discretize the
distribution. Verney et al. (2011) recommended N, = 15 to be sufficient
based on calibrating the median floc size dso at the equilibrium state.
However, our results suggest that even at N. = 25, the low resolution
negatively affects the predicted temporal evolution and, hence, the
flocculation rate (see the first 80 minutes of floc growth in Fig. 2a) for
fine, median, and coarse fractions. Another issue is the pronounced
step-like feature during the floc growth when N, is small. Careful ex-
amination of the model results indicates that the step-like feature is due
to coarse numerical discretization of the floc size distribution, but not
the time step, (the absence of certain size classes causes a jump in
modeled size statistics during floc growth). A converged solution can be
obtained when N, > 75. In Fig. 2b, we evaluate this convergence by
using the Root-Mean-Square-Error RMSEc from the target solution using
N; = 200. Large errors are observed when N, = 15 especially for the
coarse fraction (RMSEcq,, > 40 ym). By increasing the N to 25 and 50,
the errors decrease significantly. Our additional numerical experiments
suggest that the convergence evaluation is not sensitive to a variation of
model parameter of ,  and f; within a reasonable range. In the rest of
the paper, we use N, = 75 to maintain an affordable computational time

50 ‘ ' ‘

(b) ——RMSEcy,
ol ——RMSEcy, |
E ——RMSEc,,
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> 20 Zoom
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0 | 75100
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Fig. 2. Convergence analysis for different N.. (a) Temporal evolution of floc size statistics dj16, 50,84 With different number of classes N.. (b) Root-Mean-Square-Error

RMSEc for different N,.
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(around 20 minutes per simulation in workstation) with

RMSEchDM <05~ 3 um.
3. Results

Motivated by the previous study of Verney et al. (2011), we
concurrently calibrate a and f to match measured data and evaluate if
the resulting fractal dimension f; falls within the expected range. 6,400
simulations were carried out usinga =5 x 1072 ~ 80 x 10~2 with an
interval of 5 x 1072, and f =2 x 1073 ~ 80 x 1073 with an interval
of 2 x 1072 for ten different fractal dimension values in the range of
1.7 to 2.9. All simulations use a computational time of 1800 min. Using
the measured data (Keyvani and Strom, 2014) as reference, three
different RMSE are computed to evaluate the model performance at the
equilibrium state RMSEeq (t > 700 min), the growth stage of floccula-
tion RMSEfr (t <200 min), and the entire flocculation time series
RMSEfp for the tri-temporal floc size statistics dig, dso and dg4 (see
Figures S3~S5 in the Supplemental Material). In Section 3.1 and 3.2, the
search for the optimized parameters a, § and f; is carried out exclusively
to match measured dsg by these three criteria, namely, minimizing the
errors at the equilibrium state min(RMSEeqq,,), at the initial growth
stage of flocculation min(RMSEfry,, ), and for the entire time series
min(RMSEfpg,, ). In Section 3.3, two more criteria are imposed (objective
functions) by matching measured fine and coarse fractions, i.e.,
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min(RMSEfpg,,) and min(RMSEfpg,, ).

3.1. Temporal evolution of median floc size dsg

The median floc size dso is the most widely reported quantity in
laboratory experiments and field observations. We analyze the model’s
capability to represent the flocculation process using exclusively dso
with constraints of the parameters a,  and f3. Moreover, since many
studies only report the median floc size in the equilibrium state, it is
important to investigate if the model can reproduce the entire measured
time series by solely calibrating model parameters using the equilibrium
median floc size.

Using the measured data from Keyvani and Strom (2014) as refer-
ence, the RSME at the equilibrium state RMSEeq,,, (t > 700 min) is
calculated for the 6,400 simulations and results are summarized in Fig. 3
for all combinations of the parameters a, f for any given f;. Each
interaction between these parameters is examined in a simulation with
the error magnitudes demarcated by a hot colormap. The dark-red color
represents excellent agreement with measured dso in the equilibrium
state. Importantly, all the fractal dimensions (f; = 1.7 ~ 2.9) show
multiple choices of a and g that are in very good agreement
(RMSEeqq4,, = 1.72 ym, the finite value of 1.72 um reflects the vari-
abilities in the measured data) with the measured ds at the equilibrium
state. Clearly, low error values cluster around a line with a constant
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8
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Fig. 3. Root-Mean-Square-Error matrix for the median floc size dsg in the equilibrium state for different combinations of collisional efficiency a and fragmentation

rate § at fractal dimension f; from 1.7 to 2.9.
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slope for each fractal dimension indicating that the best agreement is
obtained at a nearly constant «/f ratio, regardless of the individual «
and g values. This finding is consistent with that reported by Verney
et al. (2011). In addition to the multiple choices of the a and g pair,
another important limitation of using only the equilibrium ds, data to
calibrate the flocculation model is that excellent agreement can be found
for very large (e.g., fg = 2.9) or very low (e.g., fs = 1.7) fractal
dimension values outside the typical range for mud. As we will discuss
next, despite the multiple options for a and $ pairs to match the equi-
librium dsg, the predicted time series of dso for some of the options are
not acceptable (see Fig. 4). At this point, we can conclude that sole
measurement of dsg in the equilibrium state is insufficient to narrow the
values of a, # and f;3. Additional characteristics of the flocculation sta-
tistics should be considered for an improved model calibration.

Since there are multiple pairs of a,p values that satisfy minimizing
errors in the equilibrium state with min(RMSEgg50)=1.72 pm, we
sequentially applied the second criterion of minimizing the error values
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at the initial stage of the flocculation (t < 200 min) min (RMSEfrgsg ).
The predicted time series associated with the best and the worst
agreement with measured data for the initial stage of flocculation
RMSEfrgs ) are presented for the fractal dimension in the range of f; =
1.9 ~ 2.9 (see Fig. 4). The calibrated parameter values and respective
minimum errors at a given fractal dimension are detailed in Table 1. The
predicted time series using the pair of @, f that matches the equilibrium
dso but having large error of RMSEfrgsg are clearly far from satisfactory
(see red lines in Fig. 4). This confirms that using solely the first criterion
of minimizing the equilibrium median floc size errors is insufficient to
predict the entire time series of median floc size evolution. However,
applying first the criterion of min RMSEfrgsy followed by the second
criterion of min RMSEfrgs yields generally good agreement with the
measured data for the entire time series when f; = 2.2 ~ 2.7 (see blue
lines in Figure 4c~4i) with a RMSEfrg59<2.8 pm (see “best” in Table 1).
Further analysis confirmed that the same results can be obtained by
simply minimizing the errors of the entire flocculation time series, i.e.,

110 '
a) fa=17
o0 (&)

50

(b) f1=20

Best
Worst

20

Keyvani and Strom (2014)

L L

T T

80
50
20 |

10° 10" 102

108 100. 10" 102 108
t (min)

Fig. 4. Temporal evolution of the median floc size dso for different fractal dimension applying the condition min(RMSEeqgso )—>min(RMSEfrgso) (blue line, best

agreement and red line, worst agreement)
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Table 1
Root-Mean-Square-Errors (in ym) and flocculation parameters of the median floc size statistics dso obtained in Fig. 4.
Option RMSEeqgso RMSEfrgso RMSEfpgso o [i] r=o/p
1.7 best 1.72 14.58 5.18 0.10 0.010 10.00
worst 1.72 21.71 7.45 0.80 0.078 10.25
2.0 best 1.72 13.36 4.81 0.20 0.022 9.091
worst 1.72 19.85 6.85 0.70 0.078 8.974
2.1 best 1.72 14.28 5.09 0.30 0.034 8.824
worst 1.72 18.93 6.56 0.70 0.080 8.750
2.2 best 1.72 5.98 2.7 0.15 0.018 8.333
worst 1.72 21.74 7.44 0.05 0.006 8.333
2.3 best 1.72 6.38 2.80 0.20 0.024 8.333
worst 1.72 27.47 9.35 0.05 0.006 8.333
2.4 best 1.72 5.27 2.54 0.25 0.032 7.813
worst 1.72 13.58 4.88 0.65 0.080 8.125
2.5 best 1.72 5.76 2.65 0.40 0.052 7.692
worst 1.72 10.22 3.86 0.20 0.026 7.692
2.6 best 1.72 5.34 2.55 0.50 0.066 7.576
worst 1.72 14.80 5.25 0.20 0.026 7.692
2.7 best 1.72 4.71 2.41 0.55 0.074 7.432
worst 1.72 26.72 9.25 0.15 0.020 7.500
2.9 best 1.72 9.13 3.55 0.60 0.080 7.500
worst 1.72 36.35 13.97 0.15 0.020 7.500

using the objective function min(RMSEfpgso). Nevertheless, we
emphasize our main point that one should proceed with caution when
utilizing the equilibrium data as the only model calibration criterion.
This result also confirms the importance of matching the flocculation
time series to obtain adequate aggregation timescale T,g because it
provides a nearly independent data to calibrate @ (Mietta et al., 2011).

We further explore the benefits of simply minimizing the errors
present at the initial floc growth stage. The best calibrated model pa-
rameters and error values can be found in Table 2. As expected, this
approach decreases the errors in the predicted flocculation rate (cf.
RMSEfrgsg) in Table 1 and Table 2). The equilibrium state is affected
negatively RMSEeqqs0) values increase from 1.72 ym to 6.06 um for
fractal dimension f; = 2.2 ~ 2.7) but only slightly. Fig. 5 illustrates
visually these consequences where the floc growth stage is predicted
well but the agreement in the equilibrium value is slightly reduced. This
approach also allows us to narrow down the choice of fractal dimension,
based on the best three min(RMSEfrgso, to be f3 = [2.4, 2.5, 2.6]. When
evaluating the agreement for the entire time series, we observe that
RMSEfpgso) is around 5.7 um for f; = [2.4, 2.6]. This is considered good
agreement as only one criterion of min RMSEfrgs¢) is adopted. We can
also conclude that the PBE-based size class flocculation model has a
good capability of predicting equilibrium median floc size once the key
model parameters are calibrated for predicting the initial growth of
flocculation (i.e., the flocculation rate).

3.2. Tri-temporal floc size statistics using min RMSEfrgso)

Since the best calibrated cases that match the measured temporal
evolution of median floc size are obtained for a wide range of fractal

Table 2
Root-Mean-Square-Errors (in ym) and flocculation parameters of the median floc
size statistics dso obtained in Fig. 5.

RMSEeqgso RMSEfrgso RMSEfpgso o B r=

(pm) (um) (pm) o/p
1.7 15.11 6.36 14.25 0.05 0.006 8.33
2.0 6.06 3.16 5.72 0.10 0.010 8.33
2.1 10.70 3.31 10.00 0.15 0.020 7.50
2.2 6.06 2.99 5.71 0.20 0.030 7.69
2.3 6.06 3.25 5.72 0.20 0.030 7.69
2.4 6.06 2.85 5.70 0.30 0.040 7.50
2.5 6.06 2.93 5.70 0.40 0.050 7.41
2.6 6.06 2.49 5.68 0.50 0.070 7.14
2.7 6.06 3.55 5.74 0.55 0.080 7.24
2.9 4.64 8.99 5.50 0.60 0.078 7.69

dimension f3 = 2.2 ~ 2.7 (see Fig. 4, RMSEfpg50<2.8 pm), the selection
of a unique set of @, f parameters is not yet conclusive. Fortunately,
Keyvani and Strom (2014) provide two more measured floc size statis-
tics of dig and dg4 and these are added to the model calibration to
evaluate the possibility of further constraining the model parameters.
Fig. 6 illustrates the predicted tri-temporal floc size statistics (dso, di6
and dgy4) at the six fractal dimension values f; = 2.2 ~ 2.7 using the a, S
parameters that achieve the best agreement for the temporal evolution
of the median floc size ds (recall Fig. 4). At the initial floc growth stage
(t < 30 min), good agreement can be seen for both the fine d; and
coarse dsg4 fractions (Fig. 6). However, larger discrepancies arise before
reaching the equilibrium stage (30 min < t < 200 min) for the coarse
floc fraction. As discussed before (see equation (13)), this means that the
breakup timescale Ty for dg4 should be reduced (increase the effect of
breakup). Moreover, it becomes clear that by minimizing the error for
the median floc size dsp, the equilibrium floc statistics for the finer
fraction d;¢ is under-predicted by the model while the coarse fraction dg4
is over-predicted.

Identifying the optimum parameters hierarchically to represent the
tri-temporal floc size statistics from Fig. 6 can be difficult based on its
similar trend across the fractal dimension values. Therefore, we evaluate
the error values during the initial growth stage of the flocculation
(RMSEfr) and the entire flocculation time series (RMSEfp) in a wider
range of fractal dimension f; = 1.7 ~ 2.9 (see Fig. 7). The RMSEfr con-
firms the discrimination process for the lowest (f; < 2.1) and highest
(fg = 2.9) fractal dimension since their errors increase considerably.
Regarding the fractal dimensions f; = 2.2 ~ 2.7, the RMSEfr for the
median floc size statistics dso behaves in a quasi-stable way. However,
the error values for d;¢ and dg4 show opposite trends when one of them is
minimized (see f; = 2.3 and f; = 2.7). Looking at the average perfor-
mance for these floc fractions, the first, second and third option are f; =
2.7, 2.6 and 2.4, respectively (see dashed black line in Fig. 7a). This
result can also be obtained when computing the mean value of RMSEfp
(see Fig. 7b).

3.3. Tri-temporal floc size statistics using min(RMSEfpg,,) or
min(RMSEfpg,, )

Through a systematic error analysis of dso for the initial floc growth
and the entire flocculation process presented in the previous sections,
optimal model parameters are obtained. However, the predicted fine
(d16) and coarse (dg4) floc fractions are adversely affected. That is, better
agreement in the fine fraction comes at the expense of worse agreement
in the coarse fraction. Now, we evaluate the possibility to narrow the
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Fig. 5. Temporal evolution of the median floc size statistics dso for different fractal dimension applying the criteria min(RMSEfrgso)

flocculation model parameters and improve the overall agreement by
minimizing the fine or coarse floc sizes statistic errors (i.e.,
min(RMSEfpg,,) or min(RMSEfpg,,)) using the same systematic error
analysis.

The criterion of minimizing the fine fraction min(RMSEfpg,,) pro-
duces non-satisfactory results for the overall floc size statistics since the
coarse fraction dg4 stands out for its high error values
(RMSEfpg,, > 34.62 ym).  This  magnitude is  higher than
RMSEfpg,, obtained by using the previous criterion min(RMSEfpq,,).
Error comparisons are presented in the supplementary material
(Figure S6) and they are not further discussed here. Conversely,
applying the criterion min(RMSEfpg,,) shows satisfactory results espe-
cially in the RMSEfr values since the best value is distinguished from the
other acceptable errors (see f; = 2.5 in Fig. 8a). However, the minimum
value of RMSEfp averaged over the three size statistics is located at f; =
2.9 (Fig. 8b). This is a limitation in the flocculation model since f; = 2.9
is a much higher than expected value for typical flocs. Considering the
error analysis criterion for the initial floc growth stage, the optimum
fractal dimension is selected to be f; = 2.5 (see black line in Fig. 8a).

The tri-temporal floc size statistics for three selected cases are pre-
sented in Fig. 9. We established previously for the equilibrium state that
minimizing the median floc size errors leads to over- and under-

predicted results for coarse and fine flocs, respectively (see also
Fig. 9a and 9b). Hence, the difference between Case 1 with f; = 2.4 and
Case 2 with f; = 2.7 lies mainly in the degree of agreement to represent
the coarse fraction dg4 (see RMSEeq values in Table 2) since Case 2 with
fa=2.7 shows 49.12% better agreement compared to Case 1. This
contrast can also be noticed in the distributed mass concentration at the
equilibrium state (see blue-dashed line vs red-solid line in Fig. 10).
Comparing with Case 1, Case 2 relocates a small amount of sediment
mass in the coarse fraction to the median and fine fractions due to a
relatively larger breakup effect signified by smaller r = a/f = 7.432
value in Case 2. Using a lower fractal dimension of f; = 2.5 in Case 3
allows for an even lower r = 6.7 (i.e., the breakup is stronger in Case 3
than in Case 1 and 2), which significantly reduces the sediment mass in
the coarse fraction (see smaller dg4 in Fig. 9c) and this is evidently due to
a more significant relocation of mass from the coarse fraction to the finer
fraction (see a shift of sediment mass distribution to the left represented
by the black-dashed line in Fig. 10). Case 3 proves the need of increasing
the effect of breakup (or lower breakup timescale Tj) for the coarse
fraction, which can be achieved by increase the fragmentation rate f.
Section 4 investigates this possibility by considering a lower floc yield
strength for larger flocs.
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Fig. 7. Root-Mean-Square-Error for tri-temporal floc size statistics (di6, dso and ds4) by applying the criterion min RMSEfpgso of minimizing the errors in the

measured time series of the median fraction dso. (a) Root-Mean-Square-Error for the growth stage of flocculation (RMSEfr). (b) Root-Mean-Square-Error for the entire
temporal evolution (RMSEfp).

4. Discussion - effect of floc yield strength agreement with measured data. However, there are still uncertainties in

the selection of the best model parameters, particularly in Case 2, which
has the best agreement but with a high value of the fractal dimension of
2.7. In this section, we include one other significant physical quantity in
the model parameters to improve the overall agreement. To avoid
overfitting model results, the choice of the additional physics to be

The results presented in Section 3 indicate that by rigorously cali-
brating the PBE-based size-class flocculation model against measured
tri-temporal floc size statistics (di¢, dso and dg4), we can identify several
combinations of the model parameters (o, § and f;) that show good
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Fig. 9. Modeled tri-temporal floc size statistics (lines) compared with measured data (symbols) reported by Keyvani and Strom (2014). (a) and (b) are Case 1 and
Case 2 results using the criteria min(RMSEfpg,,) and (c) Case 3 results using the criterion min(RMSEfpg,, )

included must first be justified.

Motivated by improving the limited capability of the model to
represent the coarse and fine fractions simultaneously, and the need to
increase floc breakup (or decrease Ty ) for the coarse floc fraction, we
evaluate the effect of considering the fragmentation rate f§ as a function

of floc size. As shown in equation (8), the fragmentation rate § is a
function of the empirical coefficient E, fluid viscosity 4 and floc yield
strength F,. The justification of treating $ as a constant is to assume the
floc yield strength is a constant. In the literature, floc yield strength is
routinely assumed to be F, = 1071°N in flocculation modeling and the

10
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with the criterion min(RMSEfpg,, ).

model calibrations are carried out either through the coefficient E, or
directly using the parameter g (Maggi et al., 2007; Verney et al., 2011;
Winterwerp, 1998). However, in the water quality literature, Jarvis et al.
(2015) presented a review of many laboratory measurements of floc
yield strength (or yield stress) which indicated that the floc yield
strength Fy is inversely proportional to the floc size (e.g., Bache et al.,
1999; Yeung and Pelton, 1996). In other words, when a floc grows to a
sufficient size, the larger the floc size is, the easier the floc can be broken
by turbulent shear. This fact is supported by our error analysis presented
in Section 3. Fig. 11 presents the best calibrated $ values by minimizing
the error in the three size fractions (d;¢, dso and dgs4) plotted as a func-
tion of fractal dimension between 2.3 and 2.6. We observe a clear trend
in each fractal dimension that the larger the size fraction when the error
is minimized, the larger § (or smaller F,) is required. Moreover, this
trend agrees with the need to decrease the breakup timescale T for
coarse fraction as has been stated in the previous section. Hence, we
investigate the effect of considering the floc yield strength F, inversely
proportional to floc size.

Since measuring the floc yield strength as a function of floc size can
be difficult and most studies of cohesive sediment transport do not
report such data, as a first step we propose to model the floc yield
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Fig. 11. Fragmentation rate § variation with respect to size fraction based on
the criterion min(RMSEy,,, ,,) for fractal dimension fy = 2.3 ~ 2.6.
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strength in terms of microflocs and macroflocs (Manning and Dyer,
2007) and divide the fragmentation rate § into two different values
accordingly. To distinguish these two groups, a floc size limit d; is
defined such that the fragmentation rate of flocs with a size smaller
(larger) than d, is specified as f;.;o While the fragmentation rate of flocs
larger than d; is specified as f,,.,,- We investigate the effect of applying
the two-value fragmentation rate by simulating Case 1a and Case 3a,
which are variants of Case 1 and Case 3 having the same values of @ and
fa found in Section 3.2. As for fi;o and facro, the mean value between
these two fragmentation rates in Case la and Case 3a match with the
constant $ value used in Case 1 and Case 3, respectively, while satisfying
the physical behavior of higher tendency for breakup in macroflocs with
ﬂmacro > ﬁmicro'

The use of the two-value f,..o/Pmacro fragmentation rate in Casela
shows a remarkable improvement compared to using a constant g
method in Case 1 with f; = 2.4. For the coarse fraction dg4 under the
criterion min(RMSEfpg,,), the over-predicted errors RMSEfpg,, for the
entire time series in Case 1 (Fig. 12a) are significantly reduced from
16.43 ym to 4.66 um (nearly a factor 4 reduction of error, compare
Table 3 and 4). The same improvement can be seen for the fine fraction
dy¢ with an error value RMSEfpg,, reducing from 11.27 ym to 3.38 ym.
Furthermore, these improvements preserve the excellent agreement of
dso because the RMSEeq,,maintains its low error values (errors slightly
increase by 5% from 2.54 ym to 2.67 um). For the floc growth stage,
using the two-value f,i.ro/Pmacro fragmentation rate in Case 1la signifi-
cantly improves the agreement for the coarse fraction
(RMSEfrg,,decreases from 20.3 ym to 9.87 um, about a factor 2 smaller)
while only marginally decreasing the agreement for the median (11%
increase of error) and fine (42% increase of error) fraction. Evaluating
the overall performance through the mean error values, we observe a
factor 3 reduction of errors for the entire time series (mean (RMSEfp)
reduces from 10.08 ym to 3.57 um). The improvement by using the two-
value ficro/Prmacro fragmentation rate is particularly significant for
equilibrium floc sizes.

Relatively minor improvement is observed for Case 3a (f; = 2.5, see
Table 4) when the two-value fragmentation rate is applied (see
Fig. 12b). This is partly because the agreement in the coarse fraction
when using a single value f is already good (see Case 3 in Table 3, e.g.,
RMSEfp for ds4 is only 3.77 ym). However, the improvement for median
fraction and fine fractions by using the two-value fragmentation rate for
the entire time series is evident as it is quantified by an error reduction
from 10.15 pgm to 5.68 ym and from 16.45 ym to 11.3 um, respectively.
As for the floc growth stage, the two-value fragmentation rate also
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Table 3
A summary of recommended cases for their model parameters and errors (in pm).
Case fa d; o B r RMSEfr RMSEfp mean(RMSEfr) mean(RMSEfp)
1 2.4 16 0.25 0.032 7.813 4.08 11.27 9.88 10.08
50 5.27 2.54
84 20.30 16.43
2 2.7 16 0.55 0.074 7.432 4.22 11.27 7.86 7.63
50 4.71 2.41
84 14.65 9.22
3 2.5 16 0.35 0.052 6.731 7.71 16.45 6.46 10.12
50 6.20 10.15
84 5.47 3.77
Table 4
A summary of the two-value fragmentation rate cases for their model parameters and errors (in ym).
Case fa d; o Brmicro Bmacro r dy, RMSEfr RMSEfp mean(RMSEfr) mean(RMSEfp)
la 2.4 16 0.25 0.020 0.044 1.95 95.0 5.81 3.38 7.18 3.57
50 5.85 2.67
84 9.87 4.66
3a 2.5 16 0.35 0.045 0.059 1.68 110.0 4.86 11.30 4.98 7.05
50 2.47 5.68
84 7.60 4.16

reduces the errors by a factor of about 1.6 and 2.5 for dis and dso,
correspondingly. However, the error for the coarse fraction shows a
small increase of 39%. A numerical experiment has been carried out for
Case 2 with a high fractal dimension of 2.7. We obtain the similar
conclusion that the improvement by using a two-value fragmentation
rate in Case 2 is very good but not as effective as in Case 1.

The distributed mass concentration at the equilibrium state is
another important characteristic that can be used to compare the two-
value fragmentation rate approach with the constant § approach (see
Fig. 12c and 12d). When the fractal dimension is f; = 2.4, a reduction of
the mass concentration in Case 1a is observed for floc classes lower than
55.25 ym and higher than 118 ym (compare the red line with the black
line in Fig. 12c¢). As a result of mass conservation, the mass concentration
distribution over the floc size classes is squeezed laterally, and the

12

concentration between the floc classes 55.25 ~ 118 um increases.
Consequently, the equilibrium floc statistics for coarse dg4 (fine dj¢)
fraction must decrease (increase). A similar behavior can be seen when
the fractal dimension is f; = 2.5 (in Case 3a) but with a different feature.
For instance, using a single-value fragmentation rate, the equilibrium
floc size for the coarse fraction dg,4 is already in good agreement with
measured data. Interestingly, the use of a two-value fragmentation rate
effectively decreases the mass concentration in the fine fraction and
moves the mass toward the median fraction (Fig. 12d), while the coarse
fraction is nearly unchanged. Specifically, the mass concentration in-
creases between 69.77 ~ 157.9 um (see Fig. 12d) and decreases in finer
fraction (d; < 69.77 um). There is a very small increase of mass con-
centration in the coarser fraction (d; > 157.9 um).
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Conclusion

We present a systematic investigation of the key model parameters
for the PBE-based size class flocculation model of Verney et al. (2011)
using the experimental data reported by Keyvani and Strom (2014). An
analysis on constraining the key model parameters, namely the colli-
sional efficiency, fragmentation rate, and fractal dimension, is first
carried out for the median floc size statistics dsg. A criterion based on
minimizing the equilibrium state median floc size errors provides mul-
tiple options of model parameters with many of them misleading since
they fail to match the measured initial floc growth. The agreement can
be significantly improved by applying a second criterion sequentially
minimizing the error for the floc growth stage, or equivalently by
minimizing the entire flocculation time series of dso. Interestingly, uti-
lizing the objective function of simply minimizing the error for the floc
growth stage (min(RMSEfr4,, )) shows generally good agreement with the
entire measured time series of flocculation, confirming a good predictive
ability of the present PBE- flocculation model. The resulting model pa-
rameters are constrained to multiple options of fractal dimension in the
range of f; = 2.2 ~ 2.7 and we conclude that the median floc size dsq
alone is insufficient to constrain the flocculation model parameters.

The PBE flocculation model can reasonably predict d;¢ and dg4 using
solely the calibration results from the median floc sizes dsg in the range
of f4 = 2.2~ 2.7. The best two options with minimum errors are
selected for f; = 2.4 and f; = 2.7 with the latter selected because of its
good agreement with measured coarse fraction dg4 even though the f;
value is higher than expected. Evaluating two different criteria based on
minimizing the entire temporal floc size statistic errors of d;¢ and dg4
indicates that minimizing the errors in the fine fraction is not viable due
to the high errors in the coarse fraction. On the contrary, minimizing the
error in the coarse fraction shows good agreement with the measured
floc growth at f; = 2.5 and suggests that the coarse fraction requires
lower breakup timescale (or increased breakup) to balance the aggre-
gation.

To improve the model’s predictive ability for fine, median, and
coarse fractions at typically expected fractal dimension ranges for
cohesive sediment, we propose a two-value fragmentation rate approach
(floc yield strength is smaller for macroflocs than microflocs) motivated
by limited measured data in the water quality literature and the present
model analysis for a single fragmentation rate 5, which clearly shows a
positive correlation between calibrated $ and floc size (see Fig. 11). The
results from the two-value fragmentation rate approach demonstrate
significant improvement in representing the tri-temporal floc size sta-
tistics compared with data from using a constant f3, especially for the
case of lower fractal dimension at f; = 2.4.

Findings reported in this study are based on modeling the measured
three floc size statistics in homogenous turbulence for a single type of
clay reported by Keyvani and Strom (2014). Therefore, this work calls
for future research on expanding the knowledge of floc yield strength for
more diverse configurations. For instance, more laboratory data of
temporal floc size distribution for a wide range of turbulence intensity
and clay types are needed. Moreover, direct measurements of floc yield
strength as a function of floc size are needed. For numerical modeling,
coupling the PBE model with a boundary layer sediment transport model
to further investigate the role of flocculation dynamics on settling,
advection and turbulent suspension of cohesive sediment is warranted.
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