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We interpret the Taylor–Green cellular vortex model in terms of the Kolmogorov length
and velocity scales, in order to study the balance between aggregation and breakup
of cohesive sediment in fine-scale turbulence. One-way coupled numerical simulations,
which capture the effects of cohesive, lubrication and direct contact forces on the
flocculation process, reproduce the non-monotonic relationship between the equilibrium
floc size and shear rate observed in previous experiments. The one-way coupled results
are confirmed by select two-way coupled simulations. Intermediate shear gives rise to the
largest flocs, as it promotes preferential concentration of the primary particles without
generating sufficiently strong turbulent stresses to break up the emerging aggregates. We
find that the optimal intermediate shear rate increases for stronger cohesion and smaller
particle-to-fluid density ratios, and we propose a simple model for the equilibrium floc
size that agrees well with experimental data reported in the literature.

Key words: suspensions, sediment transport, cohesive sediments

1. Introduction

The aggregation of cohesive particles in turbulence depends on such quantities as particle
size, density and volume fraction, as well as on the cohesive force strength and the
turbulent shear rate. Experimental studies have provided substantial insight into key
aspects of the flocculation process, although the role of the shear rate remains somewhat
controversial. The pioneering work by Winterwerp (1998) found that the equilibrium
floc size Df ,eq scales inversely with the turbulent shear rate G, viz. Df ,eq ∼ G−0.5.
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Figure 1. (a) Streamlines of the spatially periodic, two-dimensional cellular Taylor–Green vortex flow.
(b) The relationship between the dimensionless particle size D̃p and the shear rate G in the present
simulations.

Most subsequent experiments confirmed that Df ,eq decreases for larger G (Spicer et al.
1998; Soos et al. 2008; Bubakova, Pivokonsky & Filip 2013; Zhang et al. 2019). On the
other hand, several authors observed the opposite trend of larger flocs for stronger shear
in flows with low shear (He et al. 2012; Wang et al. 2018). Dyer (1989) introduced the
concept of a maximum floc size at intermediate shear, while emphasizing the need for
further investigation. Serra, Colomer & Logan (2008) speculated that for low-shear flows
the preferential concentration of sediment by turbulence dominates over the breakage of
aggregates, so that stronger shear promotes larger flocs. Mietta et al. (2009) discussed the
role of experimental error, and they argued that it is difficult to keep particles suspended
in low-shear flow due to settling, so that the flocculation process may be incomplete in
experimental devices with limited depth.
The current investigation aims to shed light on the above issues by employing

particle-resolving numerical simulations that can capture the interplay of hydrodynamic,
inertial and inter-particle forces during the growth, deformation and breakup of flocs.
In the spirit of earlier investigations by Maxey (1987), Bergougnoux et al. (2014) and
Zhao et al. (2020), we will employ one-way coupled simulations of two-dimensional,
steady, spatially periodic Taylor–Green vortices (with fluid density ρf and dynamic
viscosity μ), cf. figure 1(a). For a few select parameter combinations we will compare the
one-way coupled results with two-way coupled simulations. The shear rate and Reynolds
number associated with this flow are G = U/η and Re = ηUρf /μ, where η and U are
the characteristic length and velocity scales of the cellular vortex flow, respectively. In
order to investigate behaviour at viscous scales of turbulence, we fix Re = 1 which yields
η = √

μ/(ρf G) and U = √
μG/ρf .

2. Physical and computational model

We analyse the one-way coupled motion of small cohesive spherical particles in cellular
flow fields given by the streamfunction

ψ = Uη

π2 sin
(

πx
η

)
sin

(
πy
η

)
, (2.1)
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Intermediate shear produces maximum aggregate size

and the corresponding fluid velocity uf = (uf , vf )T. We employ this fluid velocity field
as a conceptually simple model of the fine-scale structure of turbulence, so that we
associate η and U with the Kolmogorov length and velocity scales. We consider a flow
with N spherical particles of identical diameter Dp and density ρp, with particle i having
translational velocity up,i = (up,i, vp,i)T and angular velocity ωp,i. We focus on particles
with Dp > 2μm, so that we can neglect Brownian motion (Chen, Li & Marshall 2019).
The physical and computational approach for tracking the particle motion is described in
detail in Zhao et al. (2020), so that we only provide a brief summary here.
By choosing η, U and ρf as the characteristic length, velocity and density scales, the

dimensionless fluid velocity field can be expressed as

ũf = 1
π
sin(πx̃) cos(πỹ), ṽf = − 1

π
cos(πx̃) sin(πỹ), (2.2a,b)

while the dimensionless equations for the motion of the primary particles take the form

m̃p
dũp,i
dt̃

= − m̃p(ũp,i − ũf ,i)
St︸ ︷︷ ︸

F̃ d,i

+
N∑

j=1,j /= i

(F̃ con,ij + F̃ lub,ij + F̃ coh,ij), (2.3)

Ĩp
dω̃p,i

dt̃
=

N∑
j=1,j /= i

(T̃ con,ij + T̃ lub,ij), (2.4)

where dimensionless quantities are denoted by tildes. The dimensionless mass of a
particle is defined as m̃p = πD̃3

pρs/6, its moment of inertia as Ĩp = πρsD̃5
p/60 and the

solid-to-fluid density ratio according to ρs = ρp/ρf . F̃ con,ij, F̃ lub,ij and F̃ coh,ij denote the
direct contact, lubrication and cohesive forces, with details given in Biegert, Vowinckel &
Meiburg (2017), Zhao et al. (2020) and Vowinckel et al. (2019), respectively. Johnson
& Greenwood (1997) suggested that the present additive adhesion/collision modelling
framework is valid for collisions with a Tabor parameter value μT < 0.1. As analysed
in Appendix A, the Tabor parameter is quite small in the present simulations, μT <

0.03, which indicates that the present modelling framework is appropriate. This is also
consistent with the findings of Yao & Capecelatro (2021), who demonstrated that the
additive adhesion/collision modelling framework is valid when the Tabor parameter μT ≤
0.98.
We introduce a pseudo-volume fraction of the particles as φ = (πD̃3

pN)/(6L̃xL̃yD̃p),
where L̃x and L̃y represent the dimensionless width and height of the computational
domain. The Stokes number is defined as

St = ReρsD̃2
p

18
= ρsD̃2

p

18
, (2.5)

and indicates the ratio of inertial to viscous forces acting on a particle. We remark
that the Reynolds number Re = ηUρf /μ formed with the length and velocity scales
of an individual cellular vortex equals unity, so that these cellular vortices are indeed
representative of the Kolmogorov scales of a turbulent flow field. Consequently, we
obtain for the dimensionless particle diameter D̃p = Dp

√
ρf G/μ. Hence, for constant

dimensional particle size Dp, viscosity μ and density ρf , we explore the influence of the
dimensional shear G by varying D̃p.
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The cohesive force is normalized by the inertial force of a fluid element at the
Kolmogorov scale. The strength of the dimensionless cohesive force is captured by the
cohesive number

Co = max(‖F̃ coh,ij‖) = max(‖F coh,ij‖)
U2η2ρf

= AHDpρf

16λζ0μ2 , (2.6)

where the range of the cohesive force λ = Dp/20 and the microscopic size of surface
asperities ζ0 = 0.00025Dp, consistent with Zhao et al. (2020). The Hamaker constant AH
is a function of the particle and fluid properties, representative values of AH for common
natural systems can be found in Vowinckel et al. (2019). We remark that the dimensional
values Dp, μ and ρf are fixed in the present simulations, so that the cohesive number Co
is determined by AH .
To summarize, the independent dimensionless simulation inputs are the particle

diameter D̃p, the volume fraction φ of the particles, the density ratio ρs and the cohesive
number Co. Note that the Stokes number St does not constitute an independent parameter,
as it is determined by D̃p and ρs. Hence, our choice of the Kolmogorov scales as the
characteristic scales of the flow field reduces the number of independent parameters by
one, compared with the earlier work of Zhao et al. (2020). The range over which the
physical and dimensionless parameters varied in the simulations is provided in table 1.
Shear rates vary in the range 6 s−1 ≤ G ≤ 3700 s−1, which covers both natural sediment
transport conditions (5 s−1 ≤ G ≤ 600 s−1, Tran, Kuprenas & Strom 2018), as well as
many industrial processes including coating, spraying, lubrication and injection moulding
(G < 5000 s−1, Christopher, Trushant & Gareth 2008). The ratio of the Kolmogorov
length scale to primary particle size, η/Dp, takes values up to O(80), which covers
common sediment transport applications (Markussen & Andersen 2014; Strom & Keyvani
2016). The range of particle volume fractions corresponds to typical sediment transport
applications (Serra et al. 2008). The range of the turbulent dissipation rate ε = μ3/(ρ3

f η
4)

is presented as well. As mentioned above, for a constant dimensional particle sizeDp, fluid
viscosity μ and density ρf , we have D̃p ∼ √

G, cf. figure 1(b), so that we can investigate
the influence of varying the dimensional shear rate G by modifying D̃p. The range of the
Hamaker constant AH in our simulations, 10−21 J < AH < 10−18 J, covers common natural
sediment applications, and even cloud processes (Chen et al. 2019; Vowinckel et al. 2019).

3. Flocculation dynamics of aggregates

We analyse ensembles ofN = 100 particles in order to obtain insight into their flocculation
dynamics. Table 2 summarizes the combinations of domain size L̃x × L̃y, pseudo-volume
fraction φ and dimensionless particle diameter D̃p considered. For each of these
combinations we simulated the four density ratios ρs = 2.65, 5, 8 and 10, along with
the six Co values of 0.002, 0.005, 0.013, 0.05, 0.2 and 0.5, resulting in a total of 360
simulations. In each simulation, all of the particles have identical diameters and densities,
and they are initially at rest and separate from each other. The domain size increases for
cases with larger particles, yielding similar volume fractions (except cases L9 and L10).
In order to accelerate the evolution of the equilibrium stage, we initially place the

particles randomly within a small rectangular subsection of the overall computational
domain. The wide and the length of the subsection are defined as Lix and Liy, respectively.
For cases L1–11 with relatively small particles, this subsection consists of a thin strip in the
y-direction, as shown by the slightly transparent spheres in figure 2(a). For cases L12–15
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Physical parameters

Particle diameter Dp 5μm
Particle density ρp 2650–10 000 kgm−3

Dynamic viscosity μ 1.0 × 10−3 Pa s
Fluid density ρf 1000 kgm−3

Shear rate G 6–3700 s−1

Kolmogorov length scale η 16.44–408.25μm
Kolmogorov velocity scale U 2.45 × 10−3–6.08 × 10−2 m s−1

Turbulent dissipation rate ε 3.60 × 10−5–13.69m2 s−3

Hamaker constant AH 2.0 × 10−21–5.0 × 10−19 J

Dimensionless parameters

Density ratio ρs 2.65–10
Particle diameter D̃p 1.22 × 10−2–3.04 × 10−1

Volume fraction of particles φ 3.60 × 10−5–3.27 × 10−4

Cohesive number Co 2.0 × 10−3–5.0 × 10−1

Stokes number St 2.21 × 10−5–5.13 × 10−2

Table 1. Range of physical parameters employed in the present work. The independent dimensionless inputs
are ρs, D̃p, φ and Co.

Case L̃x × L̃y φ D̃p

L1 14 × 14 4.01 × 10−5 1.22 × 10−2

L2 20 × 20 3.60 × 10−5 1.66 × 10−2

L3 24 × 24 3.64 × 10−5 2.00 × 10−2

L4 26 × 26 3.87 × 10−5 2.24 × 10−2

L5 32 × 32 3.83 × 10−5 2.74 × 10−2

L6 38 × 38 3.63 × 10−5 3.16 × 10−2

L7 42 × 42 3.71 × 10−5 3.54 × 10−2

L8 60 × 60 3.64 × 10−5 5.00 × 10−2

L9 40 × 40 8.18 × 10−5 5.00 × 10−2

L10 20 × 20 3.27 × 10−4 5.00 × 10−2

L11 100 × 100 3.93 × 10−5 8.66 × 10−2

L12 144 × 144 3.79 × 10−5 1.22 × 10−1

L13 200 × 200 3.93 × 10−5 1.73 × 10−1

L14 280 × 280 4.01 × 10−5 2.45 × 10−1

L15 360 × 360 3.74 × 10−5 3.04 × 10−1

Table 2. Dimensionless parameters of the flocculation simulations.

with larger particles, the area into which we initially place the particles is shaped like a
square. We will demonstrate below that the influence of the initial particle configuration
on the equilibrium number of flocs is negligible. Figure 2(a) shows a few typical floc
configurations for case L7, with Co = 0.5, ρs = 2.65 and D̃p = 3.54 × 10−2, at time
t̃ = 95, distinguished by colour. We recognize that some flocs have a compact structure
(black, green and red), while others are more loosely aggregated (blue).

3.1. Flocculation and equilibrium stages
Consistent with our earlier work (Zhao et al. 2020, 2021), we consider different particles
to belong to the same floc if their surface distance is less than half the range of the
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Figure 2. (a) Typical floc configurations observed at t̃ = 95 for case L7 with Co = 0.5, ρs = 2.65 and D̃p =
3.54 × 10−2. Initially, the primary particles, shown as slightly transparent spheres, are randomly placed within
a subsection of width Lix = 0.16 and length Liy = 2. (b) Temporal evolution of the average number of primary
particles per floc N̄p for the typical case L5 with Co = 0.5 and ρs = 2.65. Simulation data and a least-squares
fit according to (3.1) are shown, with Np,eq and teq denoting the equilibrium value of N̄p and the beginning
of the equilibrium stage, respectively. (c) Influence of the initial particle distribution on the flocculation for
the typical case L7, with Co = 0.5 and ρs = 2.65. The initial particle distribution affects only the duration of
the transient flocculation stage, but not the average floc size during the equilibrium stage. (d) Influence of the
number of primary particles on the equilibrium floc size for the typical case L5, with ρs = 2.65, Co = 0.5
and φ ≈ 3.8 × 10−5. The equilibrium floc size is found to be largely independent of the number of primary
particles. (e) Influence of the number of primary particles on the number of flocs for the typical case L5.
( f ) Temporal evolution of the average number of primary particles per floc N̄p for typical cases L15 and L5 with
ρs = 2.65, Co = 0.5 and φ ≈ 4 × 10−5. Comparisons between one-way coupled simulations and equivalent,
fully two-way coupled simulations show good agreement.
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cohesive force. In terms of a physical force balance, breakage occurs when the net force
pulling the particles apart is sufficiently strong to overcome the maximum of the cohesive
force holding the particles together. Figure 2(b) shows the temporal evolution of the
average number of primary particles per floc N̄p for the representative case L5, with
ρs = 2.65 and Co = 0.5. We remark that an individual particle is considered to be the
smallest possible floc. As the primary particles aggregate, N̄p increases rapidly with time
from its initial value of one, before levelling off around a constant value Np,eq that reflects
a stable equilibrium between aggregation and breakage. Hence, we observe two distinct
stages of the flow, viz. an initial flocculation stage and a subsequent equilibrium stage,
consistent with previous experimental observations (Winterwerp et al. 2006; Son & Hsu
2008; Tran et al. 2018).
In order to obtain a quantitative criterion for the ending of the flocculation stage and the

beginning of the equilibrium stage, we employ a fitting model for N̄p of the form

N̄p = (1 − Np,eq)Bt̃ + Np,eq. (3.1)

A least-squares fit yields the coefficient B = 0.9766 and the equilibrium average floc size
Np,eq = 10.87 for case L5, with a coefficient of determination value R-squared of 0.8. We
define the first instant when N̄p = Np,eq as the beginning of the equilibrium stage teq, as
shown in figure 2(b).

3.2. Influence of the initial particle configuration on the flocculation dynamics
We carefully assessed the influence of the initial particle distribution on the flocculation
dynamics by varying the width Lix in figure 2(a). We note that all particles are initially at
rest and separate from each other. Figure 2(c) shows the evolution of the average number
of primary particles per floc N̄p for case L7, for various initial distributions. The density
ratio and the cohesive number are fixed as ρs = 2.65 and Co = 0.5. We find that while
a more dilute initial particle distribution slows down the flocculation process, it does not
affect the average equilibrium floc size, which is the focus of the present investigation.

3.3. Influence of the primary particle number
To assess the influence of the number of primary particles on the equilibrium floc
size, we compared simulations with N = 30–3000 initial particles. Figure 2(d) presents
the evolution of the average number of primary particles per floc N̄p for different N.
Figure 2(e) shows the evolution of the number of flocs Nf for different N accordingly.
The primary particle size, the density ratio and the cohesive number are kept constant
at D̃p = 2.74 × 10−2, ρs = 2.65 and Co = 0.5. The domain size L̃x × L̃y varies with N,
to keep the particle volume fraction fixed at φ ≈ 3.8 × 10−5. The initial local particle
concentration was different in all three simulations, yielding different transient behaviours.
The equilibrium floc size Np,eq reflecting the balance between breakage and aggregation
depends only on the number of primary particles per unit domain when other governing
parameters are fixed. We find that Np,eq is statistically independent of the number of
primary particles N once N > Np,eq. The fluctuations of the average floc size during the
equilibrium stage become smaller with for increasing particle numbers. This confirms that
the value N = 100 employed in most of our simulations is sufficient for obtaining insight
into the equilibrium stage of small flocs such as those considered here.
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3.4. Comparison of flocculation dynamics in one-way and two-way coupled simulations
The one-way coupled simulation approach outlined above does not account for the effect
of the particles on the fluid motion. Several previous investigations had considered the
influence of two-way coupling, such as the shielding of the innermost particles in a large
floc, which can have a major impact on the agglomerate breakup (Dizaji & Marshall 2017;
Chen et al. 2019). In order to demonstrate the ability of the one-way coupled approach to
capture the aggregation of small flocs, we now provide a comparison between one-way
and two-way coupled simulations. For the two-way coupling approach, we employ the
immersed boundary method implemented in Vowinckel et al. (2019) to describe the
particle–fluid interactions, and we use the spectral approach of Eswaran & Pope (1988) to
generate statistically stationary turbulence. We remark that the present one-way coupled
approach is sometimes referred to as ‘three-way coupled’, while the current two-way
coupling is also regarded as ’particle-resolved four-way coupling’ by some previous
researchers (Zhu et al. 2022). Additional information on the two-way coupled simulations
is provided in Appendix B.
Figure 2( f ) presents the temporal evolution of N̄p for typical cases L5 and L15, with

ρs = 2.65 and Co = 0.5. When the flocculation is relatively weak (such as case L15 shown
by dashed lines), the evolution of N̄p is very similar for the one-way and two-way coupled
simulations, since the modification of the local fluid flow by small flocs with few primary
particles is limited. When the flocculation becomes stronger (such as case L5 shown by
solid lines), two-way coupling results in a somewhat faster floc growth, although the
average floc size during the equilibrium stage, Np,eq, which is the focus of the present
investigation, remains very similar. We conclude that one-way coupled simulations are
able to provide insight into the aggregation of small flocs such as those considered here.
Consequently, the one-way coupled Taylor–Green flow provides an efficient approach for
analysing the formation of moderate-size flocs in turbulence. We expect that two-way
coupled simulations will be required for analysing the dynamics of very large flocs (Yao
& Capecelatro 2021).

3.5. Influence of the governing parameters

Recall that for a constant dimensional particle size and fluid properties, D̃p ∼ √
G, so that

we can assess the influence of the dimensional shear rate G by varying D̃p. Towards this
end, figure 3(a) demonstrates the influence of D̃p, and henceG, on the average equilibrium
floc size Np,eq for Co = 0.002 and Co = 0.5, respectively. The other parameters are kept
constant at ρs = 2.65 and φ ≈ 4 × 10−5. As D̃p (and hence the shear rate G) increases,
Np,eq grows at first, then peaks and subsequently decays. Consequently, the simulations
demonstrate that, for primary particles of the same size, intermediate shear rates produce
the largest average floc size. This represents a central finding of the present investigation,
and is consistent with previous experimental observations by He et al. (2012), Serra
et al. (2008) and Wang et al. (2018), who analysed the influence of the shear rate on
the average floc size for different sediment types. For certain fluid/sediment combinations,
these authors reported the existence of an optimal intermediate shear rate that gives rise to
the largest average floc size. Figure 3(a) furthermore shows that, as Co increases, the peak
value of Np,eq grows and shifts to larger shear rates. Figure 3(b) presents Np,eq as function
of the Stokes number St, for the same Co, ρs and φ as figure 3(a).
Figure 4(a) presents the average equilibrium floc size Np,eq as a function of the shear

rate, for different density ratios ρs, with Co = 0.002 and φ = 4 × 10−5. For larger ρs,
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Figure 3. (a) Equilibrium value Np,eq as function of the shear rate G, for different Co values, with ρs = 2.65
and φ ≈ 4 × 10−5; (b)Np,eq as function of the Stokes number St, with the same ρs and φ as (a). The relationship
closely follows a log-normal distribution.

the peak value of Np,eq grows and shifts to smaller D̃p (and hence smaller shear rates).
Figure 4(b–d) shows a non-monotonic relationship between Np,eq and St, for ρs = 5, 8, 10,
respectively. By comparing cases L8, L9 and L10 for fixed values of ρs and Co (not
shown), we find that the pseudo-volume fraction φ only weakly affects Np,eq. This finding
agrees with experimental observations by Serra et al. (2008), who performed experiments
at different particle volume fractions (2.0 × 10−5 < φ < 1.0 × 10−4), without noticing
appreciable differences in Np,eq for the same shear rate.
In order to obtain insight into the mechanisms responsible for the non-monotonic

relationship between D̃p and Np,eq, we keep track of the evolution of three different types
of flocs over a suitably specified time interval Δt̃ = 2: (a) those flocs that maintain their
identity, i.e. they consist of the same primary particles at the start and the end of the time
interval; (b) those that add additional primary particles while keeping all of their original
ones; and (c) all others, i.e. all those that have undergone a breakage event during the
time interval. We define the fractions of these respective groups as θid, θad and θbr, with
θid + θad + θbr = 1. Figure 5 shows the evolution of θbr and θad for the three cases L1
(D̃p = 1.22 × 10−2), L5 (D̃p = 2.74 × 10−2) and L11 (D̃p = 8.66 × 10−2), respectively,
with fixed values Co = 0.002, ρs = 2.65 and φ ≈ 4 × 10−5. It clearly demonstrates that
floc collisions and break-up processes remain active throughout the entire simulations.
The red symbols in figure 3(a) show that of these three cases L5 has the largest average
equilibrium floc size. Figure 5(a) shows that θbr generally increases with D̃p, while,
figure 5(b) demonstrates that for the early flocculation stage (t̃ < 10) the intermediate case
L5 has the largest fraction of growing flocs. At this intermediate value of D̃p, the primary
particles rapidly aggregate, but the turbulent stresses are not large enough to easily break
the flocs.

3.6. Limitation of the aggregate size by the vortex size
In order to capture the physical floc size in the two-dimensional cellular Taylor–Green
vortex flow, we define a characteristic scale Lf of the floc as

Lf = 2max(‖xp,i − xc‖) + Dp, 1 � i � N, (3.2)
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Figure 4. (a) Equilibrium valueNp,eq as a function of the dimensionless particle size D̃p (proportional toG0.5),
for different density ratios ρs. (b–d) Show the relation between Np,eq and the Stokes number St for ρs = 5, 8, 10,
respectively. The cohesive number Co = 0.002 and the pseudo-volume fraction φ ≈ 4 × 10−5 are fixed.
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Figure 5. Temporal evolution of the fraction of flocs that over the time interval Δt̃ = 2, with Co = 0.002,
ρs = 2.65, φ ≈ 4 × 10−5, (a) undergo breakage; (b) add primary particles.

where xp,i denotes the position of the centre of primary particle i, and xc = ∑N
i=1 xp,i/N

is the floc’s centre of mass. We remark that Lf is known as the Feret diameter of flocs in
turbulent flow.
We track the average value L̄f and the maximum value max(Lf ) of floc size with time.

Figure 6(a) displays the temporal evolution of size ratio between flocs and the individual
vortex, with Co = 0.5, ρs = 2.65, D̃p = 5.00 × 10−2 and φ = 3.64 × 10−5. The average
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Figure 6. (a) Temporal evolution of the ratio between the physical floc size Lf and the Kolmogorov length scale
η, for Co = 0.5, ρs = 2.65, D̃p = 5.00 × 10−2, φ = 3.64 × 10−5. Here, L̄f and max(Lf ) denote the average
floc size and the maximum floc size at time t̃, respectively. (b) Ratio between the equilibrium floc size Lf ,eq
and the Kolmogorov length scale η, as well as between Lf ,eq and the dimensional diameter of primary particles
Dp, for different Stokes numbers St, with Co = 0.5, ρs = 2.65, φ ≈ 4 × 10−5.

floc size remains smaller than the Kolmogorov length scale (L̄f /η < 1), while the size
of the biggest floc can temporarily exceed η before rapidly decreasing. This finding is
consistent with previous experimental observations by Stricot et al. (2010) and Braithwaite
et al. (2012), who found that big flocs cannot resist the turbulent stresses for long, and that
they are torn apart quickly. For sufficiently strong turbulence the median floc size should
be of the same order as the smallest turbulent eddies.
Figure 6(b) shows the ratio between the equilibrium floc size Lf ,eq and the Kolmogorov

length scale η for different Stokes numbers St, with Co = 0.5, ρs = 2.65 and φ ≈ 4 ×
10−5. Within the present range of parameters shown in table 1, the equilibrium floc size
remains smaller than the physical size of an individual vortex. The relation between the
length ratio Lf ,eq/Dp and the Stokes number St is shown as well. As the dimensional size
of the primary particles Dp is fixed, we find that intermediate St (and hence intermediate
shear rate) produces the maximum physical floc size Lf ,eq, similar to figure 3(b) in which
the floc size is given in terms of the number of particles.

3.7. Floc size distribution during the equilibrium stage

Figure 7 displays the equilibrium floc size distribution for different values of D̃p, i.e.
different shear rates. The other parameters are approximately constant. Here, Np denotes
the number of primary particles in a floc, while Lf ,eq/Dp represents the physical size
ratio between the floc and the primary particle and Nf indicates the number of flocs.
Figure 7(a,b) indicates that the distribution peaks at small size values for the largest and
the smallest D̃p, while it shifts to larger values of floc size for intermediate values of D̃p.
This is consistent with our earlier observation that the average equilibrium floc size has a
maximum for intermediate values of D̃p, cf. figures 3(a) and 6(d).

3.8. A model for the average floc size during the equilibrium stage
According to Khelifa & Hill (2006), for flocs with fractal dimension nf , the mean
equilibrium floc size is related to the average number of primary particles per floc as

D̃f ,eq = D̃pN
1/nf
p,eq . (3.3)
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Figure 7. Equilibrium floc size distribution for different D̃p. Here, ρs = 2.65, φ ≈ 4 × 10−5, Co = 0.002.
(a) Floc size is in terms of the number of primary particles per floc Np. (b) Floc size is denoted by the size ratio
Lf ,eq/Dp.

Figure 3(a) suggests that the relation between D̃p and Np,eq can be fitted by a log-normal
probability density function of the form

Np,eq = ad2 + bd2
σ
√
2πD̃pd1

exp
−[ln(D̃pd1) − c]2

2σ 2 , (3.4)

where a, b, d1 and d2 represent empirical coefficients, while c denotes the mean and σ the
standard deviation of the natural logarithm of D̃p, respectively. The simulation results over
the parameter ranges given in table 2 are processed via a least-squares fit, we obtain

a−1 = 0.0924 + 0.0129(lnCo)2 + 3.628 exp (−ρs), (3.5)

b−1 = 1.455 − 0.9718 lnCo − 23.66 exp (−ρs), (3.6)

c−1 = −0.2727 + 0.2080Co lnCo, (3.7)

σ−1 = 4.729 + 1.504ρ2
s ln ρs − 1.109ρ2.5

s . (3.8)

For the present cellular model flow the values d1 = d2 = 1 in (3.4) yield optimal
agreement with the simulation data, with a fitting deviation of ±30%. For real turbulent
flows, we can determine d1 and d2 by calibrating with available experimental data by
other investigators, as follows. In order to capture representative sediment transport
applications, we employ the data from four sets of experiments described in the literature,
cf. figure 8, which yields the values of d1 and d2. We note that our simulations explore
the influence of all of the experimental parameters except the pH value, whose influence
will be investigated in a future study. As seen in figure 8, d2 = 5 captures all of the
experiments, while d1 varies within the range from 0.5 to 3.5. In summary, the simulation
results indicate that the present model (3.3)–(3.8) can successfully predict the average
equilibrium floc size for a wide range of sediment transport applications characterized by
the dimensionless input parameters D̃p, ρs, Co and d1. These capture the influence of the
particle size, shear strength, density ratio and cohesive force, respectively. Once the model
has been calibrated for one particular fluid/particle combination and a given flow field,
it is expected to be used to predict the floc size distributions for the same fluid/particle
combination at different volume fractions, particle sizes and turbulence properties.
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Figure 8. Calibration of the empirical coefficients d1 and d2 in the present model with experimental data.
(a) Experiments of Serra et al. (2008) for latex particles in salt water (nf = 2, AH = 1.3 × 10−20 J), yield
d1 = 3. (b) Experiments of He et al. (2012) for a Kaolin clay suspension (nf = 1.12, AH = 5.0 × 10−20 J), yield
d1 = 3.5. (c) Experiments of Mietta et al. (2009) for natural mud in an estuary (nf = 2, AH = 1.0 × 10−20 J),
yield d1 = 0.5. (d) Experiments by Wang et al. (2018) for a Kaolin clay solution with humic acid (nf = 1.12,
AH = 5.0 × 10−20 J), yield d1 = 1.7. Noted that all of the experiments yield the constant d2 = 5. For details
of the experiments, we refer the reader to the cited works.

4. Conclusions

We have presented one-way coupled simulations to study the influence of the shear rate on
the flocculation of suspended cohesive particles in a model turbulent flow field. For select
parameter combinations, the one-way coupled results were confirmed by two-way coupled
simulations. The computational model captures Stokes drag, cohesion, lubrication and
direct contact forces. After a transient flocculation stage, we observe a statistically steady
equilibrium stage where aggregation and breakage balance each other. The simulations
reproduce the non-monotonic relationship between the equilibrium floc size and the
turbulent shear rate observed by earlier experiments. They suggest that an intermediate
shear rate results in the largest flocs, as it promotes preferential concentration of the
primary particles without producing sufficiently large stresses to break up the emerging
aggregates. We find that this optimal intermediate shear grows for stronger cohesion and
smaller density ratios, while it does not exhibit a strong influence of the particle volume
fraction. The relationship between the equilibrium floc size and the shear rate displays
a log-normal shape, which enables us to propose a model for predicting the equilibrium
floc size for different shear rates. Upon calibration with several experimental data sets, the

965 A5-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.380


K. Zhao, B. Vowinckel, T.-J. Hsu, B. Bai and E. Meiburg

proposed model yields good agreements with measured data across a wide range of fluid
and sediment properties.
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Appendix A. Elastic deformation of cohesive spheres

Two distinct frameworks have been developed for modelling cohesive forces: (i) the
Derjaguin–Muller–Toporov (DMT) framework, in which forces are additive because
particles do not overlap substantially (Derjaguin, Muller & Toporov 1975); and (ii) the
Johnson–Kendall–Roberts (JKR) framework, where the cohesive forces scale with the
contact area and particles deform upon contact (Johnson, Kendall & Roberts 1971). The
Tabor parameter μT helps to decide between those two frameworks, as it reflects the ratio
of the elastic deformation and the cohesive interaction range (Tabor 1977)

μT =
(
Rij(Δγ )2

E∗2z03

)1/3

. (A1)

Here, the reduced particle radius Rij = Dp/4, the work of adhesion Δγ = 2γ , the
combined elastic modulus of the spheres E∗ = E/2(1 − νT

2), the effective elastic modulus
E and the Poisson number νT . Chen et al. (2019) described the equilibrium separation
as z0 = (9πγRij

2/E)1/3. Yao & Capecelatro (2021) expressed the surface energy of the
particle as γ = AH/24πδ2. Marshall & Li (2014) defined the length δ = 0.165 nm.
As shown in table 1, the particle diameter in the present simulationsDp = 5μm is fixed,

and the range of the Hamaker constant is 2.0 × 10−21 J ≤ AH ≤ 5.0 × 10−19 J, yielding
the range of the surface energy 9.8 × 10−4 Jm−2 ≤ γ ≤ 2.4 × 10−1 Jm−2. For typical
natural particles, the Tabor parameter values are smaller than 0.03, as listed in table 3.
Actually, due to the present values of Rij and Δγ are very small, the Tabor parameter in
the simulations is typically smaller than 0.1, even though the values of the elastic modulus
and the Poisson number varied in the wide ranges, i.e. E > 0.01GPa and 0 < νT < 1. The
Johnson–Greenwood mapping introduced by Johnson & Greenwood (1997) indicates that
the magnitude of the pull-off force varied continuously from the DMT value for μT < 0.1
to the JKR value for μT > 5. Hence, the additive DMT model is more appropriate to
describe the cohesion and collision between particles for these cases with small Tabor
numbers.

Appendix B. Two-way coupled simulations

In order to validate the one-way coupled simulations, we conduct grain-resolved two-way
coupled simulations for two typical cases. The immersed boundary method is employed
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Type of sediment E νT μT

Fine sand 5.91GPa 0.47 3.57 × 10−3–2.24 × 10−2

Continental terrace silty clay 3.14GPa 0.478 4.38 × 10−3–2.74 × 10−2

Deep-sea silty clay 3.08GPa 0.487 4.38 × 10−3–2.74 × 10−2

Table 3. Tabor parameter μT of typical natural sediments, for the present particle diameter Dp = 5μm, and
surface energies ranging from γ = 0.00098–0.24 Jm−2. Values of the elastic modulus E and the Poisson
number νT are cited from Hamilton (1971).

to describe the particle–fluid interactions as implemented in Vowinckel et al. (2019).
Sometimes this two-way coupled approach is referred to as ’particle-resolved four-way
coupled’. We consider the grain-resolved two-way coupled motion of suspended cohesive
particles in three-dimensional, incompressible homogeneous isotropic turbulence. The
motion of the single-phase fluid with constant density ρf and kinematic viscosity ν is
governed by

∇ · uf = 0, (B1)

∂uf
∂t

+ (uf · ∇)uf = − 1
ρf

∇p + ν∇2uf + F tur + F ibm, (B2)

where uf = (uf , vf ,wf )
T denotes the fluid velocity vector and p indicates the

hydrodynamic pressure. We employ the spectral approach of Eswaran & Pope (1988)
to obtain the forcing term F tur, which generates and maintains statistically stationary
turbulence, as implemented in Chouippe & Uhlmann (2015). Here, F tur is non-zero only
in the low-wavenumber band where the wavenumber vector |κ | < κf , with κf = 2.3κ0 and
κ0 = 2π/L0, with L0 denoting the length of the physical domain. The origin κ = 0 is not
forced. In addition to the cutoff wavenumber κf , the random forcing process is governed
by the dimensionless parameter Ds = ψ2T0L40/ν

3, where ψ2 and T0 indicate the variance
and the time scale of the random process, respectively. Regarding the details of evaluating
F tur from κf and Ds, we refer the reader to the original work by Eswaran & Pope (1988);
F ibm represents an artificial volume force introduced by the immersed boundary method
(Vowinckel et al. 2019).
We calculate the motion of each individual spherical particle by solving an ordinary

differential equation for its translational velocity and angular velocity,

mp
dup,i
dt

=
∮

Γp

τ · n dA +
N∑

j=1,j /= i

(F con,ij + F lub,ij + F coh,ij), (B3)

Ip
dωp,i

dt
=

∮
Γp

r × (τ · n) dA +
N∑

j=1,j /= i

(T con,ij + T lub,ij), (B4)

where τ denotes the hydrodynamic stress tensor, r is the position vector of the surface
point with respect to the centre of mass of a particle.
In two-way coupling simulations, we set the number of primary particles N = 82 and

the size ratio between the domain and the primary particles L0/Dp = 102.4, yielding
the volume fraction of particles φ ≈ 4.0 × 10−5. The density ratio ρp/ρf = 2.65 and
the cohesive number Co = 0.5 are fixed. The triply periodic computational domain is
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a cube with the number of grid cells Nx × Ny × Nz = 1024 × 1024 × 1024. The length
ratios between the Kolmogorov scale and the size of primary particles are η/Dp = 36 and
η/Dp = 3.3 for cases L5 and L15, respectively.
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