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Abstract—Structure from Motion (SfM) techniques are in-
creasingly being used to create 3D maps from images in many
domains including environmental monitoring. However, SfM
techniques are often confounded in visually repetitive environ-
ments as they rely primarily on globally distinct image features.
Simultaneous Localization and Mapping (SLAM) techniques
offer a potential solution in visually repetitive environments since
they use local feature matching; however, SLAM approaches
work best with wide-angle cameras that are often unsuitable for
documenting the environmental system of interest. We resolve
this issue by proposing a dual-camera SLAM approach that
uses a forward facing wide-angle camera for localization and
a downward facing narrower-angle, high-resolution camera for
documentation. Video frames acquired by the forward facing
camera are processed using a standard SLAM approach provid-
ing a trajectory of the imaging system through the environment
which is then used to guide registration of the documentation
camera images. Fragmentary maps, initially produced from
the documentation camera images via monocular SLAM, are
subsequently scaled and aligned with the localization camera
trajectory and finally processed using a global optimization
procedure to produce a unified, refined map. An experimental
comparison with several state-of-the-art SfM approaches shows
the dual-camera SLAM approach to perform better in repetitive
environmental systems based on select samples of ground control
point markers.

I. INTRODUCTION
The spatial arrangement of organisms within an ecosystem

reflects fundamental underlying ecological processes such as
competition, resource availability, trophic relationships, and
symbioses [1], [2]. Consequently, the ability to map the
abundance and distribution of organisms within an ecosystem
is critical for advancing ecology. Traditionally, mapping or-
ganismal distributions entailed time-consuming, manual field
work, thereby limiting the scale and frequency at which maps
could be generated. In recent decades, satellite remote sensing
has offered unprecedented insight into the spatial arrangement
and coverage of various ecosystems, but because of the coarse
resolution of satellite imaging (≈1–30 m pixel size) it is
typically only useful at the ecosystem level (e.g. distribution
of forest vs. grassland) and cannot assess the distribution of
individual species [3]. Recent advances in computer vision
algorithms, most notably in Structure-from-Motion (SfM) [4],
[5], [6], have begun to see their application in ecology for
construction of much higher resolution (mm to cm) 3D optical
maps of ecosystems. When combined with machine learning
tools for automated classification, these maps are capable

of delineating the distribution of individual species across
landscape scales [7], [8].

SfM has been the tool of choice for map generation from
images for ecologists and geographers due to its ability to use
structured or unstructured image collections and the availabil-
ity of high-quality commercial and open-source implementa-
tions [9], [10]. SfM relies on globally distinct visual features
in images to register overlapping images for map generation.
This requirement is typically met when images are acquired at
high altitude via unmanned aerial vehicles (UAVs or drones).
However, when ecosystem images are acquired closer to the
scene, for example to resolve small plants or animals, they
often become repetitive causing conventional SfM approaches
to fail. In contrast, Simultaneous Localization and Mapping
(SLAM) approaches developed in the robotics community
process images sequentially in the order they are acquired
using locally distinct visual features to map the environment
and determine the camera pose [11], [12]. SLAM approaches,
though promising for mapping repetitive scenes [13], work
best with high-frame rate or high-speed (and consequently
lower resolution), wide-angle cameras whose images are of
limited use for identification of organisms [14].

In this paper, we describe a dual-camera SLAM approach
to map visually repetitive environments such as grasslands,
shrublands, or agricultural fields (Fig. 1). A high-speed, wide-
angle camera is used for conventional visual SLAM-based
localization whereas the other high-resolution, medium- to
narrow-angle (video or still image) camera is used to acquire
high-quality ecosystem images suitable for “documentation”,
i.e., identification and localization of organisms to the species
or genus level. The documentation camera does not need to
be tightly integrated at the hardware level with the SLAM
camera, allowing the use of extremely high-quality and low-
cost commercial off-the-shelf (COTS) digital cameras. The
trajectory of the localization camera is used to guide detailed
map generation from the documentation camera images using
the proposed dual-camera SLAM approach.

The primary contributions of this work are: (a) a novel
approach to ecosystem map generation that allows flexible
use of high-resolution, medium- to narrow-angle COTS digital
cameras to resolve smaller organisms by decoupling local-
ization and documentation; (b) development of a multistage
alignment process for the documentation camera images that



Fig. 1. System Overview: The dual-camera SLAM system consists of a forward facing stereo-camera for localization and a downward facing, high-resolution
camera for documentation. Trajectories (magenta line), landmark maps (black and red dots), and image poses (blue frames) are generated for each camera.
The image poses and landmark map from the documentation camera are used to generate a map of the targeted, visually repetitive salt marsh environment.

uses the localization camera to guide image pose determination
and map point positioning; and (c) experimental demonstration
of the proposed system’s ability to map visually repetitive
environments.

II. RELATED WORK

A. Ecosystem Mapping

Although mapping the distribution of ecosystems (e.g. for-
est, coral, and grassland extent) from satellite imagery has a
long history [3], [15], we confine our overview to methods that
exploit higher-resolution imagery (mm-cm pixel size) enabling
more fine-grained taxonomic resolution (species, genera) since
they are more closely related to our work. The most common
ecosystem mapping workflow is comprised of image acquisi-
tion from a structured aerial survey using a UAV at ≈10–250
m altitude followed by image positioning and map generation
via SfM. This approach provides ground resolution of ≈1 cm,
suitable for classifying and delineating moderate- to large-
sized organisms.

Hayes et al. [16] use SfM to construct orthomosaics of
seabird colonies from UAV images acquired at 60–90 m
altitude followed by CNN-based object detectors to count
individual birds for population tracking. Baena et al. [17]
map the distribution of the keystone Algarrobo tree in Pacific
Equatorial dry forests using SfM procedures on large-scale 260
m altitude UAV imagery. However, in low-visibility underwa-
ter environments, images are typically acquired closer to the
scene (several meters) either manually or using underwater
vehicles and then processed via SfM [18] or customized
approaches [19].

B. Structure from Motion (SfM)

SfM approaches to scene reconstruction (i.e., mapping) and
image pose determination are currently the primary tool for
image-based ecosystem mapping. SfM attempts to map a
scene from unordered images from uncalibrated and possibly
multiple cameras, imposing minimal constraints on image

acquisition [6], [9]. The relative pose between images is
computed by extracting features and associated descriptors
(e.g. SIFT) from the unordered image collection and matching
these features between images, using geometric verification to
remove outliers [20]. Matched feature points are triangulated
to generate a sparse representation of the scene. The image
poses, scene points, and camera calibration parameters are
optimized via a bundle adjustment procedure [21]. Further, this
sparse scene representation can be made dense using multi-
view stereo methods [22], and/or converted to a triangular
mesh representation.

SfM is extremely flexible and relatively easy for non-
specialists to use since it imposes minimal constraints on the
image acquisition process, but the allowance for unordered im-
age sets makes SfM computationally expensive with a super-
linear time complexity [6], [23]. Furthermore, because images
are unordered they must be visually similar only to their
true neighbors; otherwise matches between spatially disparate
locations may be incorrectly accepted. Consequently, SfM is
often confounded in scenes with repetitive features when this
requirement is violated resulting in visual aliasing [24].
C. Simultaneous Localization and Mapping (SLAM)

SLAM techniques typically provide a similar final mapping
solution to SfM, i.e., a sparse or dense representation of the
scene and image poses [12]. However, SLAM assumes that
the images are acquired sequentially, reflecting its origins
in robotics. For ecosystem mapping, the sequential image
acquisition constraint is generally not onerous as images are
typically acquired from a single camera as it is moved over
the underlying ecosystem. Since images are processed sequen-
tially, the features need be only locally distinct, thus making
SLAM better suited to handle repetitive environments. How-
ever, SLAM works best with a wide-angle, high frame rate
camera whose limited image resolution is typically impractical
for organismal identification [14]. This motivates our incorpo-
ration of an additional, higher-resolution camera for ecosystem



documentation. Although several multi-camera SLAM systems
have been developed for robotics, they assume that precise
synchronization information, in the form of exact timing and
precise orientation, is available for each camera [25], [26],
[27], thereby preventing use of most inexpensive, high quality
COTS cameras, which do not expose synchronization signals.
By relaxing the precise synchronization requirement, we allow
use of COTS cameras, but do not incorporate documentation
camera images into the estimation of the system pose.

III. PROPOSED SYSTEM

The proposed dual-camera SLAM-based ecosystem map-
ping approach uses SLAM to determine the trajectory of the
localization camera, which is then used to guide map gen-
eration from the documentation camera images (Fig. 2). The
system assumes the relative orientation of the two cameras is
constant and approximately known and that the image streams
are roughly (< 0.5 s) synchronized. As SLAM is applied
to the localization camera images, the documentation camera
images are processed concurrently via monocular SLAM using
the localization trajectory to guide generation of an initial
ecosystem map and approximate image poses. However, the
initial ecosystem map is generally fragmentary as tracking
is frequently lost due to rapid scene movement resulting
from the narrow field of view (FOV) and limited number of
trackable features in the documentation camera images. After
completion of SLAM processing of the localization camera
image sequence, the fragmentary maps from the documenta-
tion camera are scaled and transformed to approximately align
with the localization camera trajectory based on the acquisition
time of documentation camera images and the pose of the
documentation camera relative to the localization camera. Fi-
nally, the documentation camera poses and associated map are
optimized based on constraints derived from the localization
camera trajectory and landmark-to-camera correspondences in
the fragmentary maps using a factor graph framework. Our
strategy of composing a global map from fragments is similar
to many previous approaches [28], [29], [30], but the method
described here makes use of a secondary camera trajectory and
allows for loose temporal coupling between the two camera
systems.

A. SLAM System Core

The proposed system employs a modified version of ORB-
SLAM2 [31], a keyframe-based SLAM approach, as its base
since it is a comprehensive SLAM approach capable of using
monocular, stereo, and RGB-D cameras and produces accurate
maps through multiple rounds of optimization (i.e., bundle
adjustment). ORB-SLAM2 performs the following main op-
erations: tracking, which localizes each frame relative to the
existing map and determines when new keyframes should be
added, mapping, which maintains the current map and updates
it via insertion of new keyframes, triangulation of new map
points, and optimization of the map via bundle adjustment,
and loop closing, which identifies revisited locations (i.e.,
trajectory loops) and revises the map accordingly.

We made several notable modifications to the ORB-SLAM2
system. First, the system was extended to handle multiple
cameras simultaneously, with each camera maintaining a sep-
arate master map. The map data structure was converted
into a recursive tree structure to handle sub-maps that are
generated when tracking is lost. Sub-maps can be kept private
or optionally registered with their parent to make keyframes
and map points accessible to the parent. The relocalization
state, which ORB-SLAM2 enters immediately upon loss of
tracking, was eliminated; instead a new sub-map is spawned
and the SLAM procedure reinitialized upon loss of tracking.
For the localization camera, the new sub-map is registered with
the parent assuming the camera maintained a constant velocity
between the time when tracking was lost and when a new map
was successfully initialized. Finally, per-frame camera trajec-
tories are explicitly recorded as SE(3) transformations relative
to reference keyframes, whose positions are continuously
updated via optimization. The availability of these trajectories
is critical for positioning of the documentation camera images
based on the localization camera poses. Our SLAM code is
available online at https://github.com/bmhopkinson/hyslam.

B. Generation of the Fragmentary Maps

The first step in generating the ecosystem map and asso-
ciated documentation camera/image poses is the application
of the modified monocular ORB-SLAM2 procedure to the
sequentially acquired documentation images. A new map
is initialized by tracking ORB feature points [32] through
multiple frames until there is sufficient parallax to accurately
triangulate map points corresponding to the tracked features. In
our system, the resulting map of arbitrary scale is brought into
an approximately consistent scale with the localization camera
map by estimating the absolute motion of the documentation
camera over the initialization period using the motion of the
localization camera. The pose of the documentation camera
can be estimated at any time t as:

Xd(t) = Xl(t)Tdl (1)

where Xd(t) is the pose of the documentation camera at time t,
Xl(t) is the pose of the localization camera at time t, and Tdl is
the rigid-body SE(3) transformation between the localization
and documentation cameras. All poses are expressed in the
camera-to-world transformation convention. The motion of the
documentation camera over the initialization period can then
be determined as:

Vd0(t) = X−1
d0 Xd1 (2)

The new map is scaled using the estimated motion (Vd0),
which works well in most cases but can occasionally be
inaccurate as a result of small absolute distances traveled
during monocular SLAM initialization. The fragmentary maps
are later rescaled using the full distance travelled during their
generation providing a consistent, absolute scale among the
fragmentary maps.

Once the map is initialized, the documentation images
are processed using standard monocular SLAM [31], [33]



Fig. 2. Dual Camera SLAM Procedure: Images from the localization and documentation cameras are processed in parallel starting with feature extraction,
followed by initial pose estimation through landmark tracking, and finally optimization of the pose and generation of new landmarks in the mapping phase.
Processing of the entire video streams results in an intermediate map consisting of a unified map for the localization camera and fragmentary maps from
the documentation camera. The localization camera’s trajectory is used to align the fragmentary maps, which are then linked through commonly viewed
landmarks. Finally, all poses and landmarks are globally optimized to produce a finalized map from the documentation camera.

which provides a convenient and robust way to determine
the approximate relative documentation camera poses between
the documentation images and identify features that are con-
sistently matched and geometrically verified. Tracking loss,
which occurs when the number of tracked map points drops
below a predefined threshold, occurs regularly due to the
narrow FOV and rapid relative motion of the downward facing
documentation camera at which point a new fragmentary map
is initialized.

C. Alignment of Fragmentary Maps

The relevant outputs of the initial processing steps consist
of the full localization camera trajectory and multiple frag-
mentary maps from the documentation camera as depicted
in the Intermediate Map in Fig. 2. The fragmentary maps
are already approximately scaled to the localization trajectory
but their orientations and positions may diverge substantially
from their true values. Although a full non-linear optimization
procedure is ultimately employed to provide the best estimate
for the documentation camera map, proper initialization is
necessary for convergence. Since the documentation camera
fragmentary maps often deviate substantially from their correct
configurations, a two-step procedure is used to approximately
align the fragmentary maps with the localization camera
trajectory. First, the camera centers for the documentation
images in each fragmentary map are brought into alignment
with their expected positions based on the localization camera
trajectory using a Sim(3) transformation estimated using
Horn’s method [34]. When the path traveled within any frag-
mentary map is approximately linear, which is often the case,
there is inherent rotational ambiguity in the documentation
camera pose when the alignment is performed based solely
on the documentation camera center positions. To resolve this
ambiguity, an optimal SO(3) transform is determined, again
using Horn’s method [34], from the documentation camera
poses in their current and expected positions augmented with
points representing unit positions along the documentation

camera pose axes. The SO(3) transform is applied to the
documentation camera poses, resulting in fragmentary maps in
a coherent world coordinate system defined by the localization
camera. The two-step procedure ensures that the arbitrary-
length vectors taken to represent positions along the documen-
tation camera frame axes, that are used to resolve the rotational
ambiguity, do not influence the scale parameter estimated in
the first step.
D. Linking Fragmentary Maps

Each fragmentary map has its own private set of landmarks,
some of which represent real-world landmarks that are repeat-
edly viewed across fragmentary maps, thus providing critical
inter-map constraints needed to weave the fragmentary maps
into a unified ecosystem map. We identify these landmarks by
collecting all landmarks from other fragmentary maps poten-
tially visible in a given fragment. Correspondences between
these landmarks and keypoints in the keyframes of the target
fragmentary map are determined and validated using geometric
and feature-based criteria. When sufficient correspondences
are established to keypoints associated with a landmark in the
target fragmentary map, the duplicate landmarks are merged,
providing a new constraint between the fragmentary maps.
E. Global Optimization of the Ecosystem Map

The previously described procedures yield a set of frag-
mentary ecosystem maps from the documentation camera im-
ages approximately aligned based on the localization camera
trajectory and linked via mutually visible landmarks. This
ecosystem map, comprising of keyframes and landmarks, is
refined using global, non-linear optimization on the SE(3)
manifold resulting in a consistent, unified ecosystem map,
depicted as the Finalized Map in Fig. 2. The objective (error)
function incorporates costs assigned to all landmark-to-feature
point associations and constraints on the keyframe poses based
on the localization trajectory (Fig. 3). The constraints and
estimated variables (i.e., keyframe poses and landmark po-
sitions) are represented as a locally-connected factor graph to



facilitate global optimization [35]. The optimization procedure
largely follows previous work [31], [36], the novelty being
the incorporation of constraints imposed by the localization
trajectory.

As depicted in Fig. 3, the constraints on the documentation
camera keyframe poses derived from the localization trajectory
involve two variables: the documentation image acquisition
time ti and the transformation Tdl between the localization and
documentation cameras, both of which are, in turn, constrained
by their prior estimates. The documentation and imaging cam-
eras are not required to be precisely synchronized in time, i.e.,
the acquisition time for each documentation camera image,
in terms of the localization trajectory, is only approximately
known. Specifically, the constraint on the documentation cam-
era keyframe pose is expressed as a ternary edge in the factor
graph wherein ti implies a specific localization camera pose
that can be obtained from the trajectory. The localization
camera pose can then translated into an implied documentation
camera pose via Tdl and equation (1). Since the imaging
system upon which the cameras are mounted is assumed to
be rigid and stable throughout the data collection process, a
single value of Tdl is estimated for the entire data set. The non-
linear optimization attempts to minimize the following error
function:

argmin
Xd,L,Tdl,t

∑
i,j

ρh(ri,j(Xdi , Lj)) +
∑
i

ρ(pi(Xdi ,Xli ,Tdl))

+
∑
i

ρ(ti − tiprior ) + ρ(T−1
dl Tdlprior )

]
(3)

where ti denotes the documentation image acquisition time
and tiprior its prior estimate, Xdi

the documentation camera
pose at time ti, Lj the landmark position, Tdl the transfor-
mation between the localization and documentation cameras
and Tdlprior its prior estimate, ρ the squared-error function,
ρh the robust Huber error function, ri,j the reprojection error
for landmark j observed in keyframe i and pi the pose error
between the estimated pose Xdi

of documentation camera i
and its pose implied by the localization camera pose Xli at the
time the documentation image was taken via transformation
Tdl. Specifically:

pi = X−1
di

XliTdl (4)

IV. EXPERIMENTAL EVALUATION

A. Data Collection

A dual-camera rig was constructed consisting of a Stereo-
labs ZED-mini interfaced to a Jetson Xavier computer as the
localization camera and a Panasonic GH5s configured with a
14 mm prime lens as the documentation camera. The cameras
were secured to a rigid frame so that their relative orientation
was constant. The Panasonic GH5s was oriented downward to
provide ecosystem images of the highest quality. The ZED-
mini was either facing directly forward or angled slightly
downward (≈ 25°, measured for each deployment). Aligning

Fig. 3. Documentation Camera Factor Graph: Circles represent model
parameters estimated via global optimization and squares represent error terms
constraining the parameters.

Fig. 4. Sample Reconstructions: A: Accurately reconstructed campus lawn
using dual camera SLAM. B: SfM failure due to visual aliasing (blue squares
represent aligned images). The three lines of images (highlighted in red)
should be parallel but instead converge on a single point in the reconstruction.

the localization camera with the direction of travel allows for
persistence of features in the FOV and observation of features
at a wide range of distances, thereby improving tracking. How-
ever, it was found to be advantageous to angle the localization
camera slightly downward to observe more proximal features
thereby improving motion estimation and avoiding tracking
loss. The ZED-mini stereo video was recorded at 60 fps with
1280 × 720 resolution and the Panasonic GH5s video at 60 fps
with 4096 × 2160 resolution. The image data was collected in
two visually repetitive environments: a lawn on the University
of Georgia (UGA) campus and a salt marsh on Sapelo Island,
GA, USA. Patches of roughly 10 m × 10 m were imaged by
traversing the area in a lawn-mower (boustrophedon) pattern.
At four sites on Sapelo Island, nine AprilTag markers [37]
were placed in the imaged patch to serve as ground control
points for accuracy assessment. The ground-truth positions of
the AprilTags were determined to < 2 cm accuracy using an
RTK-GPS system comprising of a Trimble R12 GNSS receiver
and Trimble TSC7 controller.

B. Comparison with SfM

The dual-camera SLAM approach was compared to two
state-of-the-art SfM programs, i.e., COLMAP [9] and Agisoft
Metashape [38], since these SfM programs are commonly used



in current environmental applications. We did not compare our
system to pure SLAM approaches because our initial SLAM-
based approaches to mapping repetitive ecosystems revealed
complications, such as tracking loss and low image quality,
that motivated development of the dual-camera approach. Six
datasets (four from salt marshes on Sapelo Island, two from
the UGA campus lawn) were processed to generate maps
using our dual-camera SLAM approach and the two SfM
programs. Video frames were extracted at 4 fps from the
documentation camera videos (resulting in 80%-90% inter-
frame overlap) and processed using the default SfM program
settings that were slightly modified based on preliminary trials
to improve reconstruction quality. First, the reconstructions
were visually assessed to determine if the reconstruction was
roughly consistent with the planar geometry of the patches
and whether the inferred image locations relative to the
reconstruction approximately matched the camera trajectory.
Second, the completeness of the reconstructions was assessed
using reconstruction metrics based on the fraction of aligned
images for the SfM programs and, in the case of the dual-
camera SLAM system, the fraction of visible mesh elements
out of those determined to be potentially visible. For the SfM
approaches all sub-maps were considered, offering a charitable
representation of their performance. On these six datasets,
the dual-camera SLAM approach was able to successfully
reconstruct repetitive environments in cases when traditional
SfM systems either failed entirely or were unable to fully
reconstruct the imaged location (Table I). COLMAP was
better able to generate reconstructions than Metashape, but
the reconstructions were typically broken into multiple (up to
22) fragmentary maps. In contrast, our dual-camera SLAM
approach was able to produce a single, unified map. As
examples, we show texture mapped reconstructions of a salt
marsh grassland (Fig. 2) and a UGA campus lawn (Fig. 4A).
The SfM approaches often incorrectly merged subsections due
to visual aliasing (Fig. 4B).

TABLE I
COMPARISON WITH SFM PROGRAMS

Sample Metashape COLMAP DC-SLAM
P1 6% / Y 39% / Y 99% / Y
P2 16% / N 92% / N 100% / Y
P3 15% / N 65% / Y 99% / Y
P4 34% / Y 79% / Y 99% / Y
P5 83% / Y 99% / Y 99% / Y
P6 40% / Y 100% / Y 100% / Y

For each method the completeness metric is reported
first followed by whether the reconstruction geometry
was correct (Y) or not (N).

C. Accuracy of Dual Camera SLAM

At all the test sites, the dual-camera SLAM system produced
reconstructions that appeared reasonable and covered the entire
imaged patch (Table I). For quantitative assessment of the
reconstruction quality, distances between the ground control
points (AprilTags) in the reconstructions were compared with
the true distances determined using RTK-GPS positions. At

Fig. 5. Accuracy assessment via comparison of inter-tag distances measured
using RTK-GPS (true distances) and from the dual-camera SLAM reconstruc-
tions (estimated distances) for four imaged patches (P1–P4). The solid line is
a linear regression fit to the data forced through the origin (equation and R2

listed on the plot) and the dotted line is the 1:1 line.

four locations on Sapelo Island, nine AprilTags were placed
spanning the imaged patch: four at the corners forming a
square defining the edges of the patch, four forming a nested
square, and one at the center of the patch. Determination
of AprilTag locations in the reconstructions was done as a
post-processing step. After running the dual-camera SLAM
program, a triangular surface mesh was fit to the landmark
point cloud. AprilTags were detected in the documentation
camera images and their 3D locations determined via back-
projection onto the mesh using the camera poses and inverse
camera model. Since most AprilTags were viewed in multiple
images, the backprojected 3D positions of all views were
averaged to produce a single location for each tag. Euclidean
distances between all reconstructed tag pairs and their RTK-
GPS positions were computed and compared (Fig. 5). The
estimated inter-tag distances were generally in good agreement
with the true distances (Fig. 5), though slightly overestimated
(≈ 3% on average). Nonetheless, the reconstructions were
deemed sufficiently accurate for most ecological applications.

V. CONCLUSIONS AND FUTURE WORK

We proposed a dual-camera SLAM approach to map repet-
itive environments for use in ecological monitoring appli-
cations. While the proposed approach does entail a more
complicated image acquisition setup, it offers much more
reliable mapping of repetitive environments, typical of many
ecosystems and agricultural fields. Furthermore, decoupling
the localization and documentation cameras allows use of
cameras ideally suited to each task and flexible swapping
of either camera as required for the task at hand. Future
improvements include incorporation of additional constraints
such as IMU or GPS data [39] into the factor graph for
more accurate mapping and development of fully coupled
optimization strategies for the reconstructions generated by
the localization and documentation cameras [26].
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