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Abstract

Coral reefs are biologically diverse and structurally
complex ecosystems, which have been severally affected by
natural and anthropogenic stressors. Hence, there is a need
for rapid ecological assessment of coral reefs, current ap-
proaches require time-consuming manual analysis. In this
work, we propose a method to identify individual species
within the ecosystem for further analysis by domain experts.
We propose a method to detect individual species in the
3D reconstruction of coral reef ecosystem and assess this
method’s accuracy. Given 2D region proposals in an RGB
image our method generates 3D region proposals for each
2D region proposals. 3D reconstructions were generated
using commercial Structure-from-Motion software with im-
ages extracted from video surveys. To identify the individual
objects in the 3D reconstructed map, camera parameters
were used to back project the 2D region proposals into the
3D Reconstruction.

1. Introduction

The marine ecology, more specifically the coral reef
ecology, is gaining growing importance recently to study
since both natural and anthropogenic stressors threaten
coral reefs across the globe. Since these stressors, including
climate change, ocean acidification, sea-level rise, pollutant
runoff, and overfishing [1, 7], have combined to fast deteri-
oration of coral reefs worldwide over the past three decades
[2], it is essential to map and monitor these ecosystems.

While coral reefs are a subject of cultural and scien-
tific importance, their complex ecosystem makes it techni-
cally challenging to monitor and study them. The current
approach of monitoring the coral reef ecosystem involves
time-consuming manual analysis either during a dive survey
or on data collected during the survey by domain experts.

The study of the coral reef ecosystem is limited by the

difficulty of generating accurate and repeatable maps of the
ecosystem. The current mapping approaches that include
physical mapping performed by human divers are time-
consuming. Though Satellite and Ariel imaging provides
decent insights on ecosystems on a large dimensional scale,
they are limited because seawater absorbs light strongly,
limiting monitoring shallow ecosystems like coral reefs [5].
Acoustic mapping is capable of mapping ecosystems on a
large scale; it is inefficient in mapping finer details of the
coral reef ecosystem.

Thanks to recent advances in Autonomous Underwater
Vehicles (AUV) equipped with high-resolution cameras, the
manual mapping techniques used to map coral reef ecology
are being replaced by image and video-based robotic sur-
veys. AUVs move systematically over coral reef environ-
ments and can continuously acquire high-quality images of
small portions of the coral reef ecosystem, which has led to
growing interest within the research communities in marine
biology and marine ecology to exploit machine learning
techniques for automatic mapping and analysis of under-
water images []. Using computer vision and machine learn-
ing algorithms(SFM and SLAM), the individual images are
automatically assembled into a large-scale, 3D reconstruc-
tion (or map) of the coral reef ecosystem. Recent advances
in machine learning and computer vision, especially deep
learning [11] using convolutional neural networks (CNNs /
ConvNets), offer the potential to automate the analysis of
these ecosystems.

CNN’s / ConvNets are multi-layered neural network-
based classifiers that apply a convolutional filter to an in-
put image to create a feature map that summarizes the pres-
ence of detected features in the images. CNN automat-
ically learns discriminating features from the image data
without any human intervention compared to the conven-
tional method of hand-engineered feature extractors that re-
quire domain knowledge [11]. CNN provides a framework
for many computer vision applications, allowing many ba-
sic computer vision tasks to be performed much more



accurately and efficiently than pre-engineered workflows.
CNN’s excel at image classification, i.e., assigning a single
label to an entire image, object detection, i.e., identifying
instances of specific objects in an image, and semantic seg-
mentation, i.e., labeling each pixel in an image as belonging
to one of several predefined classes.

Our previous works on coral reefs focused on integrating
advances in 3D mapping and CNNs to automatically gener-
ate semantically segmented 3D maps of the reef ecosystem
[9]. The semantically segmented maps generated using SfM
based reconstruction and CNN-based image analysis helps
in identifying the surface area occupied by a species in the
ecosystem.

In our work, we propose a method to identify individ-
uals within the ecosystem, thereby addressing the critical
questions in population ecology revolving around individ-
uals, which are the fundamental units of social interaction.
Identification of individuals, counting them, and spatial lo-
calizing them are essential to understanding the dynamics of
the underlying population. Since individuals are also com-
ponents of ecological communities, this data can be used
to identify distinct biological communities. To identify dis-
crete individuals within a 3D mesh surface, we propose to
apply object detection algorithms to the input 2D images
of the ecosystem. We back-project the bounding boxes of
detected objects onto the 3D mesh reconstruction in a man-
ner similar in principle to our 3D semantic segmentation
approach[9].

2. Related Work
convolutional Neural Networks (CNN’s or ConvNets)

and related Deep Neural Networks (DNNs) have revolution-
ized computer vision, especially regarding image segmen-
tation, feature extraction and classification, and object de-
tection and recognition [10, 11]. The superior performance
of CNN- and related DNN-based approaches has led to their
rapid adoption in ecological research. Brodrick et al. (2019)
argue that CNNs may become essential tools for ecologists
due to their power. Williams et al. (2019) have employed
CNNs to assess the abundance of major taxa and substrates
on coral reefs, achieving classification accuracies similar to
human annotators.

Advances in computer vision have also enabled 3D re-
construction and 3D visual mapping from ’local’ imagery
at a much higher resolution than is possible with remote
sensing. These 3D reconstructions and mapping approaches
have begun to be used in ecology, and several recent studies
illustrate how novel, sophisticated ecological insights can
be obtained from the resulting 3D maps. Edwards et al.
(2017) mapped coral colonies on Palmyra Atoll and showed
that coral spatial patterns were consistent with reproduction
models via fragmentation and dispersal.

Previous application of Computer Vision and Machine

Learning techniques on the coral reef ecosystem focused on
object detection, segmentation, and classification of the im-
ages or 3D map generation, treating them as separate prob-
lems.

Our previous works [8, 9] merged the state-of-the-art
approaches of 3D scene reconstruction (SfM-based recon-
struction) and semantic segmentation using CNN’s to gen-
erate 3D semantically segmented maps of coral reefs. We
exploited the fact that we acquire multiple images of a coral
reef from varying viewpoints for most coral reef surveys,
typically via stereoscopic images or underwater videos. We
proposed a patch-based CNN (nViewNet) and an FCNN
(TwinNet) architectures to use these stereoscopic and multi-
view image information to improve semantic segmentation
and classification accuracy.

The TwinNet FCNN architecture processes both the left-
and right-perspective stereo images directly to generate a
single classification. nViewNet patch-based CNN architec-
ture is capable of processing images from different view-
points and combining them to yield a single classification
via logit pooling [9]. The nViewNet architecture was used
to semantically segment 3D reconstructions of coral reefs,
identifying corals, algae, and substrates.

Our work uses an object detector that predicts a bound-
ing box outlining each object in an image and identifies
its class. The bounding boxes of detected objects will be
mapped onto a semantically-segmented 3D reconstruction
generated using the nViewNet architecture to identify indi-
viduals in the ecosystem.

3. Materials and Methods

3.1. Underwater Image Data Acquisition

The underwater coral images used in the work reported
were manually collected by a team of divers from coral reefs
off the Florida keys using a stereo-video camera. An under-
water stereo camera rig, comprising of a Go Pro Dual Hero
camera system, was used to collect the underwater video
data while swimming over sections of the coral reef. The
stereo camera rig was carried over the reef in a serpentine
(i.e., lawn mower) pattern in order to capture a complete
section of the seafloor. Stereo images were extracted from
the video data at a rate of two frames per second.

A subset of the collected images from our coral reef im-
age data-set was annotated to provide ground truth bound-
ing boxes. During the annotation process, an object in an
image is selected and it is assigned to one of the follow-
ing eight classes: (1) Acropora palmata, (2) Orbicella (3)
Siderastrea (4) Porites astreoides, (5) Gorgonia ventalina,
(6) Sea Rods and (8) Antillo Gorgia.



3.2. 3D Reconstruction

3D reconstructions was generated from the images col-
lected manually, using an commercial Structure From
Motion (SFM) software (Agisoft Photoscan 1.4.3 now
Metashape). We use approximately between 100 to 5000
images for each reconstruction.

The SFM software identifies matching features in differ-
ent images. These features are tracked from image to image
and is used to estimate the camera positions and orientations
and the coordinates of the features. This produces a sparse
point cloud representing the reef. A dense point cloud is
constructed by identifying additional common features be-
tween the images. A triangular mesh was generated from
the dense point cloud, producing roughly 200k-300k trian-
gular faces that represents the surface of the coral reef. A
texture map was produced from the images for visualization
as shown in figure 1.

Figure 1. 3D Reconstruction

Camera transformation matrices and camera calibration
parameters were obtained from Agisoft Photoscan as part of
the 3D reconstruction procedure.

3.3. Object Detection Algorithms

Object detection is one of the important problem in com-
puter vision which predicts what objects are present in an
image, with a bounding box enclosing the objects.

Image classification predicts the class of an object in an
image. Object localization refers to identifying the location
of one or more objects in an image and drawing abounding
box around the object. Object detection combines these two
tasks and localizes and classifies one or more objects in an
image.

There are two types of state of the art object detectors
discussed next.

Single Stage Detectors single stage detector algorithms
like RetinaNet [12], YOLO [14], SSD etc,. considers object
detection as a simple regression problem. It performs both
the classification and localization in a single pass. Single

stage object detectors are fast but tens to reach lower accu-
racy.

Two Stage Detectors Two stage detector algorithms like
Faster RCNN [15],Mask RCNN [4] etc,. uses a Region Pro-
posal Network (RPN) to narrow down the region of interest
in an image filtering out the background data. In the second
stage classification is performed these regions. Two stage
detectors tend to perform better than a single stage detec-
tors but are comparatively slow.

3.4. Pinhole Camera Model

Understanding the geometrical model of the camera pro-
jection serves as the core idea for the paper. In this paper,
we use the pinhole camera model [16] with distortion fac-
tor [6] [3]. A Pinhole Camera model gives a mathematical
relationship (u, v) = f(X,Y, Z) that explains how a point
in a 3D space is projected onto the image plane. We can
inversely use this model to also back project an image pixel
to the 3D world space.

Figure 2. Pinhole Camera

In a pinhole camera model the camera coordinate and
world coordinate frames are related by rotation and trans-
lation. The mathematical function that describes projection
of 3D world points to 2D image plane can be written as

p = K[R|t] ∗ P (1.1)

Where p is the pixel point (u, v) in the image plane, K is
the camera intrinsic matrix that represents the camera cal-
ibrations like the focal length and the optical center of the
camera and [R|t] is the extrinsic parameters representing
where the camera was located in the 3D scene. The R and t
in the Extrinsic Parameters represents a 3×3 rotation matrix



and a 3×1 translation matrix respectively and P represents
the 3D point (X,Y, Z) expressed in the world coordinate.

The Eq. (1.1) can be expanded as

uv
1

 =

fx 0 u0

0 fy v0
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1
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(1.2)

Where u0 and v0 is the Principal point (or) The optical
center of the camera lens, fx and fy represents the Focal
length in pixels which is a measure of the distance between
the optical center of the camera lens and the image plane.

3.5. Camera Distortion

The above equations (1.1) and (1.2) does not account
for lens distortion while calculating the pixel points in the
image plane. In Practice cameras introduces some distor-
tion to its images. To accurately represent a real camera, to
the the camera model we include the radial and tangential
lens distortion to calculate the pixels in the camera coordi-
nate.

Radial Distortion Radial distortion occurs when the light
rays bend when passing through the lens. This type of dis-
tortion causes straight lines to appear curved. In a typical
lens, the distortion is usually 0 at the center of the image
and increases as we moved further outside. In other words,
the light rays further from the optical center of the lens
are curved more than the ones closer; hence this distortion
could be noticed near the edge of the images.

Radial distortion can be corrected for the distorted pixel
points (ud, vd) using the formula below,

ucorrected = ud(1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6)
vcorrected = vd(1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6)

where

r =
√
u2 + v2

(2.1)

where (ucorrected, vcorrected) are the corrected pixel co-
ordinates of the distorted pixels (ud, vd) and k1, k2 and k3
are radial distortion coefficients of the lens

Tangential Distortion Tangential distortion occurs due to
some manufacturing mistakes where the lens is not aligned
parallel to the image plane. This type of distortion causes
the image to look tilted, which in turn makes some objects
in the image look further than they really are.

Radial distortion can be corrected for the distorted pixel
points (ud, vd) using the formula below,

ucorrected = ud + [2 ∗ p1 ∗ ud ∗ vd + p2 ∗ (r2 + 2 ∗ u2
d)]

vcorrected = vd + [p1 ∗ (r2 + 2 ∗ y2) + 2 ∗ p2 ∗ ud ∗ vd]
where

r =
√
u2 + v2

(2.2)
where (ucorrected, vcorrected) are the corrected pixel

coordinates of the distorted pixels (ud, vd) and p1, p2 are
tangential distortion coefficients of the lens.

We can calculate the corrected pixels in the camera co-
ordinate after accounting for both the radial and tangential
distortion by adding equations (2.1) and (2.2) to the pixels
in the image frame as

ucorrected = ud(1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6)+
[2 ∗ p1 ∗ ud ∗ vd + p2 ∗ (r2 + 2 ∗ u2

d)]

vcorrected = vd(1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6)+
[p1 ∗ (r2 + 2 ∗ y2) + 2 ∗ p2 ∗ ud ∗ vd]

where

r =
√
u2 + v2

(2.3)

3.6. Ray Triangle Intersection

Given the Origin of a Ray and the ray destination , we
can draw a line passing through both the points using the
Möller-Trumbore ray tracing algorithm [13]. Any point on
the line can be calculated by the equation

p = O + t ∗D (3.1)

where p is the point in the line, O is the line origin and D
is the line direction, t is the distance between the origin and
the point p.

Any point in a triangle can be defined as

p = (1− u− v) ∗ p0 + u ∗ p1 + v ∗ p2 (3.2)

where p0, p1, p2 are the vertices of the triangle and u, v
is a point that lies inside the triangle.

From the equations (3.1) and (3.2), for a ray to intersect
the triangle.

O + t ∗D = (1− u− v) ∗ p0 + u ∗ p1 + v ∗ p2 (3.3)

We have 3 unknowns values t,u,v that could be calculated
by rearranging the equation (3.3) as

[
−D (p1 − p0) (p2 − p0)

]
∗

tu
v

 = O − p0 (3.4)



3.7. Pixel Back Projection

Given a pixel (u,v) in the image plane, we can calculate
the camera coordinates by using the camera’s intrinsic pa-
rameters.

We account for both tangential and radial lens distortion
of the camera to get the undistorted pixel coordinate

Figure 3. Relationship between the images and Mesh

A 3D Point in the camera coordinate can be transformed
to the world coordinates by using the cameras extrinsic pa-
rameters as 

x′
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Since we can calculate the Ray’s origin and the ray’s di-
rection using the equation (3.5). We can use the ray triangle
intersection algorithm to find which point of the World ob-
ject the pixel represents.

4. Proposed Method
Our Data Consist of Coral Reef Image that are acquired

using a Stereo-Video Camera. We use these acquired stereo
images for two purposes, To reconstruct a Triangular Mesh
representing the surface of the reefs and to train the object
detection models.

3D reconstructions were generated from these images
using an commercial Structure From Motion (SFM) soft-
ware (Agisoft Photoscan 1.4.3 now Metashape). Camera

transformation matrices and camera calibration parameters
were obtained from Agisoft Photoscan as part of the 3D re-
construction procedure.

Object detector Algorithm were trained to predict the lo-
cation and the class of different objects present in each im-
age. One Single stage Object detector (RetinaNet [12]) and
one dual stage detector (Faster RCNN [15]) were trained
and their performances were compared. These Object de-
tectors predicts the location of the objects in the images and
their classes in form of a bounding box along the pixel axis
as shown in figure 6.

The core idea of our proposed method involves using the
Camera calibration matrices obtained during the 3D recon-
struction to back project the bounding boxes predicted for
an image using the object detection algorithm into the re-
constructed 3D mesh. The pixel points representing each
corner of the predicted bounding boxes of the objects in
the images are projected into the camera plane by apply-
ing the camera calibration model accounting for both radial
and tangential non-linear distortions. The camera transform
matrices were used to transform the pixel points from the
camera coordinates to the world coordinates. The 3D mesh
element these pixels represent is calculated by projecting a
ray from the camera center passing through the calculated
world coordinate, checking for the point of intersections
with the mesh. Using the information obtained, we pre-
dicted the 3D bounding box by finding the minimum and
maximum x, y, and z mesh coordinates enclosing all the
mesh elements representing the object of interest.

Since objects are typically viewed in multiple images,
multiple bounding boxes are created in the 3D space for the
same object when we back project the detected 2D bound-
ing boxes, as seen in figure 5. If the intersection volume of
any two bounding boxes that represent the same class label
in the 3D reconstruction is over a set threshold, we merge
them into a single bounding box.

Since we back project the 2D bounding boxes in pixels
representing an object into the reconstructed mesh and cal-
culate the minimum and maximum x, y, and z coordinates
representing the same object in a 3D mesh, the bounding
boxes in the 3D reconstruction tends to be bigger than the
object of interest. Hence, we refine our results to get a more
compact bounding box enclosing the object in the 3D mesh.

In our initial refinement, we determine all the mesh ele-
ments within the mapped bounding box. We then find the
minimum and maximum x, y, and z coordinates from all
these mesh element centers and predict a new bounding box
enclosing the object in the 3D mesh.

To get an even more compact bounding box in the 3D
reconstruction we refine our results even further by using
the results from the nViewNet [9]. nViewNet provides a
segmentation result for each mesh element using informa-
tion from multiple views of the same object that each mesh



Figure 4. Proposed Architecture. We first use a 2D CNN object detector to propose 2D regions and classify their content. We also use
the images to reconstruct a 3D structure. Using camera parameters, camera distortion and Ray Tracing techniques we back project the 2D
predictions to the 3D structure

Figure 5. Back Projecting 2D bounding boxes to 3D From Left to Right, 1. Results from the 2D object detection algorithm , locating
and classifying the objects present in an image, 2. Back Projected results of the images in the 3D reconstruction, 3. Merging multiple back
projected bounding boxes of the same object into a single object

element represents.

With the results from the nViewNet specifying the class
labels of each mesh element and the back projected bound-
ing boxes predicted by our method, we find all the mesh
elements within the mapped bounding box that match the
object’s class label. Every mesh element share each of its
vertex with another element, with this information we can
draw a tree structure with all the mesh elements inside the
bounding box connected by their vertices. We can find all

the connected component representing the faces inside the
bounding box that belong to the same object and are con-
nected with each other. We can extract the minimum and
maximum coordinates from the connected components and
predict a new compact bounding box enclosing only the ob-
ject in the 3D mesh.



5. Performance Evaluation Metrics

To evaluate our model, we project the 3D Bounding
Boxes predicted using our methods back to the 2D images
from which the bounding boxes were predicted. The cam-
era transform matrices are inverted and used to transform
the mesh elements representing the 3D object bounding box
corners from the world coordinate to the camera coordinate.
These mesh elements representing the object bounding box
corners in the camera coordinates are projected to the image
plane by applying the camera calibration model account-
ing for radial and tangential non-linear distortions. These
projected values are used to define a predicted 2D bound-
ing box by finding the minimum and maximum x and y
pixel coordinates and compared with manually annotated,
ground-truth boxes.

We use the concept of Intersection over Union (IoU) to
determine if our predicted bounding boxes are correct. IoU
measures the overlap between the predicted and the ground
truth bounding boxes for all predicted bounding boxes. If
the IoU is over the set threshold, we classify the detected
object as a True Positive(TP). On the other hand, if IoU is
less than the set threshold, we classify it as False Positive
(FP). We classify values present in the ground truth but not
detected by our models as False Negative(FN). Using the
IoU results we can calculate the precision and recall values
as,

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(4.1)

With the precision and recall values, we calculate the
average precision of all the individual classes representing
how accurately our model detected each class. Average
Precision(AP) is calculated by finding the area under the
precision-recall curve. AP is calculated by segmenting the
recall into 11 parts (0, 0.1, 0.2, .., 0.9, 1) and averaging the
corresponding precision values like

AP =
1

11

∑
Recalli

Precision(Recalli) (4.2)

The mean Average Precision (mAP) score is calculated
by taking the mean AP over all classes, predicting how ac-
curate our model performs.

6. Results

2D Object prediction Training was done with different
object detection algorithms . We focus on one single-stage
2D object detector (RetinaNet) and one dual-stage 2D ob-
ject detector (Faster RCNN) for locating and classifying

the objects present in 2D images and compare their perfor-
mances. The results of the Object Detection models on the
two dimensional images are given in Table 1.

Based on our evaluation metric, We project the 3D
bounding boxes predicted by our proposed core and refined
methods from the 3D reconstruction to the images and cal-
culate the mAP for our model. The mean average pre-
cision(mAP) results of our model after projecting the 3D
bounding boxes to the image is given in Table 2

Table 2 shows the mAP results produced by projecting
the 3D bounding boxes of all the classes to the images. The
results generated from the combination of results from the
3D bounding boxes and semantic segmentation from nView
net and applying connected component technique to find all
the faces inside the bounding boxes that belong to the same
class as the detected object and are connected tends to per-
form better. A breakdown of per class results are shown
in table 3 [BH: this paragraph is hard to follow - it is very
terse. improve the logical flow and expand on what the re-
sults mean and how they relate to the different version of
the method]

Table 3 shows that our proposed method tends to work
better for stationary objects. The results indicates that we
are able to produce almost the same results in 3D as the 2D
prediction results from the object detection algorithms for
most of the classes [BH: the statement is not supported by
the table -there seems to be a substantial drop off in accu-
racy for most classes]. The results are also influenced by
the amount instances of each classes used for training and
testing our model.

7. Conclusion and Future Work
The 3D mapping and detection method described in

this paper performed well for stationary objects(substrate,
trees, corals, etc.). We showed how integrating results from
nView net’s semantic segmentation information improves
the accuracy of detecting individual coral species in the 3D
reconstruction of coral reefs.

In the area 2D detection, we Explored two 2D object de-
tection architectures, one which considers the object detec-
tion as a simple regression problem, and the other, that uses
region proposal network to narrow down the region of in-
terest in the image. In the scope of 3D detection we ex-
plored how camera parameters can be used to back project
the bounding boxes to the 3D map, we also explored how
using the segmentation results of the 3D map can be used
to identify the individuals more accurately compared to just
back projecting the regions detected by the object detection
algorithms.

While our method helps in accurately detecting sta-
tionary objects, many ecologically significant organisms
moves freely (animals/fishes) or with the water/wind cur-
rents (grasses, algae). In our future work we plan to explore



Model Batch Size mAP20 mAP30 mAP40 mAP50 mAP60 mAP70 mAP80

Faster RCNN 32 59.91 59.10 57.42 54.23 50.34 41.29 23.39
RetinaNet 32 66.69 65.54 63.82 60.44 53.34 43.19 24.57

Table 1. 2D Object Detection Results Mean Average Precision of the 2D object detector models over a range of IoU’s (20%, 30%...80%)

Model Merge Thr. 2D mAP 3D mAP 3D+Faces mAP 3D+Faces+CC mAP

Faster RCNN 0.6 40.42 15.38 25.05 25.41
RetinaNet 0.6 60.44 9.60 22.75 24.74
RetinaNet 0.8 60.44 14.76 27.91 24.23

Table 2. 3D Object Detection Results. From Left to Right, 2D Object Detection Model, Merging Threshold used for merging multiple
bounding boxes in the 3D reconstruction, mAP of 2D object detection model , mAP after back projecting 2D bboxes to 3D reconstruction,
mAP after back projecting bboxes to 3D reconstruction and finding the min and max face centers, mAP after back projecting bboxes to 3D
reconstruction and using nView Net results

Models Merge Thr. Method Acropora palmata Orbicella Siderastrea Porites astreoides Gorgonia Ventalina Sea Rods Antillo Gorgia

Faster RCNN 0.6 2D mAP 51.02 9.33 67.82 42.75 36.21 24.24 51.58
Faster RCNN 0.6 3D mAP 20.33 6.25 50.42 0.68 7.10 6.26 16.63
Faster RCNN 0.6 3D+Faces mAP 23.67 6.25 50.42 42.61 26.04 2.57 23.77
Faster RCNN 0.6 3D+Faces+CC mAP 26.42 6.25 50.42 39.86 17.69 1.71 35.50

RetinaNet N/A 2D mAP 87.43 46.16 63.51 62.95 61.59 36.00 65.45
RetinaNet 0.6 3D mAP 15.77 1.02 27.73 1.72 2.48 1.55 16.93
RetinaNet 0.6 3D mAP+Faces 20.89 2.70 37.26 51.03 21.11 7.43 18.86
RetinaNet 0.6 3D mAP+Faces+CC 22.26 4.22 60.40 42.14 10.75 4.05 29.36
RetinaNet 0.8 3D mAP 26.00 6.56 36.07 3.51 25.65 4.65 21.72
RetinaNet 0.8 3D+Faces mAP 30.55 12.35 36.07 46.12 25.65 8.02 25.09
RetinaNet 0.8 3D+Faces+CC mAP 25.96 12.35 51.66 32.4 12.14 3.69 31.41

Table 3. 3D Class Results. From Left to Right, Object Detection Model, method used and per class results

deep learning approaches to enable better detection of these
non stationary objects in the 3D reconstruction of the coral
reef.
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