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Abstract

Multimodal approaches to predict depression severity is a
highly researched problem. We present a multimodal depres-
sion severity score prediction system that uses articulatory co-
ordination features (ACFs) derived from vocal tract variables
(TVs) and text transcriptions obtained from an automatic speech
recognition tool that yields improvements of the root mean
squared errors compared to unimodal classifiers (14.8% and
11% for audio and text, respectively). A multi-stage convo-
lutional recurrent neural network was trained using a staircase
regression (ST-R) approach with the TV based ACFs. The ST-R
approach helps to better capture the quasi-numerical nature of
the depression severity scores. A text model is trained using the
Hierarchical Attention Network (HAN) architecture. The mul-
timodal system is developed by combining embeddings from
the session-level audio model and the HAN text model with
a session-level auxiliary feature vector containing timing mea-
sures of the speech signal. We also show that this model tracks
the severity of depression for subjects reasonably well and we
analyze the underlying reasons for the cases with significant de-
viations of the predictions from the ground-truth score.

Index Terms: depression, multimodal, vocal tract variables, ar-
ticulatory coordination, staircase regression

1. Introduction

Major Depressive Disorder (MDD) is a mental health disorder
that has taken a massive toll on society both socially and finan-
cially. Timely diagnosis of MDD is extremely crucial to min-
imize serious consequences such as suicide. Prosodic, source
and spectral features [1] are found to be very effective in speech
based depression detection and severity prediction.

Articulatory Coordination Features (ACFs) developed
based on psychomotor slowing (a condition of slowed neuromo-
tor output) which is a key feature of MDD [2, 3], quantifies the
changes in timing of speech gestures that helps to distinguish
depressed and not-depressed speech. Previously, the correla-
tion structure of formants or mel-frequency cepstral coefficients
(MFCCs) were used as a proxy for underlying articulatory co-
ordination [4]. Authors of this paper showed that ACFs derived
from a set of direct articulatory parameters called Vocal Tract
Variables (TVs) are more effective in depression classification
[5,6,7, 8]

While the changes in the coordination of articulatory ges-
tures convey a lot of information about the mental state of a
person, there are other modalities that provide complementary
information such as facial expressions, physical gestures and
language. Clinicians and psychologists make use of cues from
all of these modalities when making a decision about their pa-
tient’s mental health condition. Recent studies that developed
speech based automatic systems to assess depression show the
synergies of combining multiple modalities compared to uni-
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modal systems [9, 10, 11, 12]. In [13], we show that the per-
formance of binary depression classification can be improved
by using TV-based ACFs and textual features obtained through
Automatic Speech Recognition (ASR).

Depression assessment scales evaluate different items per-
taining to depression symptoms whose itemized scores add up
to the final severity score assigned to a subject under diagno-
sis. Given that a set of individual items contribute towards the
overall severity score, these quasi-numerical scores have an in-
herent ordinal component. Thus, depression score prediction is
even more challenging compared to depression classification. A
lot of ongoing work in the speech based depression assessment
domain attempts to improve the performance of the depression
score prediction task [14, 10, 15, 4, 12, 16].

In this experiment, we gauged the usefulness of TV based
ACF in predicting the depression severity score task for the first
time. The key contributions of this paper are as follows:

(1) The development of a multimodal system using TV
based ACFs for the first time along with textual features to im-
prove the performance of the depression severity score predic-
tion. Generalizability is improved by combining two speech
depression databases with different characteristics.

(2) Application of the idea of staircase regression in a deep
learning setting for the first time and incorporating the perfor-
mance boosting of the segment to session approach from [13].

2. Feature Extraction

2.1. Articulatory Coordination Features (ACFs)

ACFs can be used to characterize the level of articulatory coor-
dination and timing. To measure the coordination, assessments
of the multi-scale structure of correlations among the TVs were
used.

We use the channel-delay correlation matrix proposed in
[17] as the ACFs in this work. For an M -channel feature vector
X (such as TVs or formants), the delayed correlations (rf{ )
between " channel x; and j** channel x; delayed by d frames,
are computed as: Nedo1

d _ 2o wiltlz[t +d]
ri = M
N —|d|
where N is the length of the channels. The correlation vector
for each pair of channels with delays d € [0, D] frames will be
constructed as follows:

Rij=[rl;, rij, ... rfj]TeR“(D“) )

The delayed auto-correlations and cross-correlations are
stacked to construct the channel-delay correlation matrix:

RM,M] Te ]RM2 *(D+1)
3)

Information pertaining to multiple delay scales are incorpo-
rated into the model by using dilated Convolutional Neural Net-

work (CNN) layers with corresponding dilation factors while

EACF == [Rl,l Ri,j
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maintaining a low input dimensionality. Each R; ; will be pro-
cessed as a separate input channel in the CNN model.

In [13], we showed that TV based ACFs outperformed
the ACFs derived from MFCCs and formants and the base-
line openSMILE features in the binary depression classification
task. Hence, we use TV based ACFs in the depression sever-
ity score prediction task as well. TVs are developed based on
Articulatory Phonology [18] and define the kinematic state of 5
distinct constrictors (lips, tongue tip, tongue body, velum, and
glottis) located along the vocal tract in terms of their constric-
tion degree and location. We use a speaker-independent deep
neural network based speech inversion system [19] to estimate 6
TVs for 3 of the constricting organs - Lip Aperture, Lip Protru-
sion, Tongue Tip Constriction Location, Tongue Tip Constric-
tion Degree, Tongue Body Constriction Location and Tongue
Body Constriction Degree. In addition, we use the periodicity
and aperiodicity measures obtained from an Aperiodicity, Peri-
odicity and Pitch detector [20] to represent the glottal TV. Be-
fore computing the ACFs, TVs were standardized individually.

2.2. Auxiliary Audio Features

We computed additional timing measures to be used as prosodic
information which were used as auxiliary speech features to the
audio model. These features are speaking rate (number of sylla-
bles per second), pause percentage, speech to pause ratio, mean
pause duration and standard deviation of pause durations. [21]
states that differences in these features can be seen between de-
pressed subjects and those who are in remission. To extract the
timing measures we used the algorithm implemented by [22] in
Praat that uses the intensity contour of the speech signal.

2.3. Textual Features

Language conveys a great amount of information about peo-
ple’s emotions, behavioral characteristics and social relation-
ships. Therefore, adding language information should help to
improve our models. We used the Google speech-to-text API to
obtain transcribed text of the free speech recordings that were
used to train the audio models. Since the Hierarchical Attention
Network (HAN) can be expected to explicitly capture contex-
tual information, we decided to use context-independent GloVe
word embeddings (100-dimensions) [23] to initialize the em-
bedding layer of the text model.

3. Model Architectures

3.1. Audio Model - Staircase Regression Approach (Macr)

We extended the segment-to-session-level architecture used in
[13] to incorporate staircase regression to predict the sever-
ity score. Staircase regression which was previously used in
[24, 25] defines an ensemble of models trained on multiple par-
titions of the same training data set. The outcomes of these
individual models are fused via a regressor to obtain the total
HAMD score prediction. Staircase regression is particularly in-
teresting as its structure is essentially attempting to answer a
collection of simpler questions and build the final prediction on
top of those. This approach is able to better capture the quasi-
numerical nature of the HAMD scores better.

Inspired by this approach, we trained four segment-level
classifiers with 4 different partitions of the dataset as follows:
class 0 (low) ranges were 0-7, 0-13, 0-18, 0-22 and class 1
(high) ranges were the complements of these, given the HAMD
range from O to 52. These range boundaries were chosen ac-
cording to the standard severity level boundaries for HAMD
(Figure 1). The architecture of the segment-level classifier can
be found in Figure 2.
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Figure 1: Data partitions used to train the segment-level classi-
fiers in staircase regression approach

The segment-to-session level model used in [13] was mod-
ified to be used as the audio model in this experiment. The
output of the first dense layer (D1 in Figure 2) of each of these
pretrained best segment-level classifiers denoted by X1, X2,
X3 and X4 were concatenated and passed as the input to the
session-level classifier. The dimensions of X1, X2, X3 and
X4 are 16, 8, 8, and 16, respectively.

A sequence of these concatenated hidden embeddings from
the segment-level classifier is passed through two LSTM lay-
ers with the second LSTM layer returning a fixed size sum-
mary vector. The five dimensional session-level prosodic fea-
ture vector is concatenated to this summary vector. It is passed
through a dense layer with ReLU activation. The output re-
gression layer with linear activation predicts the z-normalized
HAMD score. The estimated score is de-normalized using the
precomputed training statistics bringing the HAMD scores to
the original range.

3.2. Text Model (M.) - Hierarchical Attention Network
(HAN)

We trained a Bidirectional LSTM based HAN model to obtain
a session-level classification for the text model. HAN applies
the attention mechanism in word-level and sentence-level tak-
ing the hierarchical structure of the transcribed session text into
consideration [26]. This allows the model to learn the important
words and sentences taking the context into consideration. The
embedding layer was fine-tuned for the task by allowing it to
train on the errors back-propagated from the output layer.

3.3. Multi-modal Architecture

The multi-modal regressor in Figure 3 was developed with a
late fusion approach to perform severity score prediction. The
context vector from the second LSTM layer of Macr and the
session-level text vector of My were concatenated with the aux-
iliary session-level timing feature vector and passed through a
Dense layer with ReLu activation to perform HAMD score pre-
diction at the output layer. The late fusion helps to overcome
the requirement to have one-to-one correspondence between the
audio segments and text sentences and allows us to create seg-
ments of different modalities independently in the most optimal
way for each modality.

4. Experimental Setup

4.1. Dataset Preparation

Similar to our previous work [7, 13], we used free speech data
from two databases: MD-1 [27] and MD-2 [21]. Both databases
were collected in a longitudinal study where subjects diagnosed
with MDD participated over a period of 6 and 4 weeks, re-
spectively. The clinician rated bi-weekly HAMD scores were
used to determine groundtruth labels for the segment level clas-
sifiers and also were used as groundtruth scores for the final
regression task. Originally there were 472 (35 speakers) and
753 (105 speakers) recordings from MD-1 and MD-2 respec-
tively. The 140 speakers were divided into train / validation /
test splits (60 : 20 : 20) preserving a similar class distribution
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Figure 3: Staircase regression based multi-modal architecture
that uses TV based ACFs, auxiliary timing related summary fea-
tures and GLoVe embeddings as inputs. LSTM-1 and LSTM-2
have 128 and 64 hidden units (HU) and 0.7 and 0.7 dropout
probabilities (DP), respectively. The word-level encoder and
sentence-level encoder have 128 and 100 HU and 0.3 and 0.1
DP, respectively. The Dimension of attention layers are 64. The
final Dense Layer (before the Regression Layer) has 16 HU.

in each split and ensuring that there are no speaker overlaps.
For the segment-level models, we segmented the audio record-
ings that are longer than 20s into segments of 20s with a shift
of 5s. Recordings with duration less than 10s were discarded
and other shorter recordings (between 10s-20s) were used as
they were. Before extracting the low-level features, segments
were normalized to have a maximum absolute value of 1. Out-
put variable (HAMD score) was z-normalized using the mean
and variance statistics of the training set. This helped the mod-
els to achieve better model convergence. Table 1 summarizes
the amount of speech data available after the segmentation for
the case when HAMD > 7 was considered as ‘depressed’ and
HAMD < 7 was considered as ‘not-depressed’.
Table 1: Available Data in hours/ # segments/ # sessions

Database Depressed Not-depressed
MD-1 11.8/2131/111 2.5/444722
MD-2 16.8 /3056 /232 17183717

Before extracting GLoVe embeddings for the text data, the
transcribed text was preprocessed by removing punctuation, ex-
panding contractions, lemmatizing and removing stop words
(except negation words to preserve the contextual meaning).

4.2. Model Training

Hyper-parameters of the models were tuned using a grid search.
Parameter values for the best performing multimodal regres-
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level classifiers. Since predicting the HAMD severity score is
a regression task, we used the RMSE and MAE to evaluate the
performance of the session-level regressors. Additionally, we
also computed the Spearman’s rank correlation coefficient (p)
6> d?

definedas p =1 — Y CEmy
the two ranks of each observation and n is the sample size. This
measure evaluates the correlation of the relative ranking of the
groundtruth and predicted severity measures.

where d; is the difference between

4.3. Experiments and Results

We trained both unimodal and multimodal systems that perform
session-level HAMD score prediction. The results are given in
Table 2.

Table 2: HAMD score prediction results

Feature Set RMSE MAE »p

Formant_ACF (MD-1 only) [4] 5.99 - 0.48
TV_ACF 6.28 523 051

TV _ACF + Prosodic 6.13 499 0.53
GLoVe 5.87 488 0.58

TV_ACF + Prosodic + GLoVe 5.22 433  0.69

Using the timing features in addition to the TV based ACFs
improved the metrics in general. Therefore we decided to use
both TV based ACFs and timing features as speech features in
the multimodal regressor. It is interesting to see that the best
performing text model outperforms the best performing audio
model. The multimodal system was trained using TV based
ACFs, timing features and GLoVe embeddings. RMSE of the
multimodal system showed relative improvements of 14.82%
and 11.03% compared to the best performing audio only and
text only models, respectively. The respective relative improve-
ments of p were 31.88% and 19.3%. While these improvements
yield comparable metrics in comparison to the results from pre-
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Figure 5: Confusion matrix of groundtruth and predicted
HAMD scores when associated with depression severity levels

vious studies ([14, 10, 15]), due to the differences in databases
used, these results cannot be directly compared. Note that in
[4], subject adaptation was used.

4.4. Discussion and Error Analysis

The multimodal system produces better results as shown in ta-
ble 2. This implies that different modalities provide comple-
mentary information to better estimate the depression severity
score. When the unimodal regressors are considered, we see
a clear improvement in the audio-only model when both TV
based ACFs and timing related features were used. This is in-
line with the findings of previous studies that show that prosody
related features help to detect depression.

Even though we obtained sizable improvements for the per-
formance of the score prediction task, there is still room for im-
provement. While the absolute score being off by a few points
may not be super critical given the quasi-numerical nature of the
severity scores, it is important that the predicted scores be in the
same range as the severity level category of the corresponding
groundtruth scores (Eg: HAMD 18 and 16 would both indicate
moderate depression). When we categorize the groundtruth and
predicted scores into the standard depression severity levels as
shown in Figure 1, we obtained the confusion matrix shown
in Figure 5. It seems like the model in general overestimates
the HAMD score (because there aren’t predicted scores that
belong to the “normal” category and the summation of super-
diagonal elements is higher than the summation of subdiagonal
elements). The numbers highlighted by the red squares are off
by two levels relative to the groundtruth score which indicates
larger errors made by the model. When it comes to reducing the
errors of the score prediction model, it is extremely important to
reduce errors that significantly underestimate the severity score,
as these cases could potentially have serious consequences for
human safety. While not as critical, overestimating the score
can lead to unnecessarily exhausting resources.

We also analyzed the ability of the multimodal regressor
in tracking the depression severity longitudinally. For this, we

chose those subjects in the test set who have data for at least
3 sessions for this analysis. For some subjects, the predicted
severity scores are remarkably close to the groundtruth HAMD
score as shown in Figure 4a. For some subjects, the pattern
of changes in the predicted scores follow a similar pattern as
seen in the groundtruth scores as shown in Figure 4b. Predicted
scores of this subject were overestimated. We also analyzed a
case where the model accurately predicted the scores of a ma-
jority of the sessions except the score of a single session which
heavily deviated from the groundtruth as shown in Figure 4c.
For this subject, the predicted HAMD score of the third session
is lower than the actual score, while the other predictions are
accurate. Inspecting the audio and the text for this case showed
no signs of depression even though the session was assigned a
high severity score.

While the multimodal system tracks the depression sever-
ity reasonably well in general, there are a few instances where
the model has performed poorly as shown in Figure 4d. It can
be seen that the trend from sessions 1-2 and 2-3 is not being
followed by the predictions from the multimodal system and
the predictions are very similar to the predictions from the uni-
modal text-only system. However, the unimodal audio-only
system has closely followed the groundtruth scores. It seems
like the multimodal system overlooked the information from
the audio modality when predicting the severity score. This sug-
gests that implementing an attention mechanism at the modality
fusion stage may enable the model to prioritize modalities when
predicting the severity score.

5. Conclusion

We presented a multimodal system to predict the depression
severity score which utilizes speech data from two different
depression databases and text data obtained by ASR. The ap-
proach of incorporating staircase regression in the segment-to-
session level audio model proved to be effective in the score pre-
diction task. We obtained noteworthy improvements of RMSE,
MAE and Spearman’s correlation coefficient when the multi-
modal system was developed combining TV based ACFs, tim-
ing features and GLoVe embeddings. We also showed that the
model is capable of longitudinal tracking the severity of depres-
sion. It could be potentially improved by incorporating subject
adaptation. In the future we plan to incorporate video modality
which could potentially improve the results further.
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