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ABSTRACT

We study the elastodynamics of a periodic metastructure incorporating a defect pair that enforces a
parity-time (PT) symmetry due to a judiciously engineered imaginary impedance elements— one having
energy amplification (gain) and the other having an equivalent attenuation (loss) mechanism. We show
that their presence affects the initial band structure of the periodic Hermitian metastructure and leads to
the formation of numerous exceptional points (EPs) which are mainly located at the band edges where the
local density of modes is higher. The spatial location of the PT-symmetric defect serves as an additional
control over the number of emerging EPs in the corresponding spectra as well as the critical non-Hermitian
(gain/loss) strength required to create the first EP—a specific defect location minimizes the critical non-
Hermitian strength. We use both finite element and coupled-mode-theory-based models to investigate

these metastructures, and use a time-independent second-order perturbation theory to further

! Corresponding author.



33
34
35
36
37
38

39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Journal of Applied Mechanics

demonstrate the influence of the size of the metastructure and the PT-symmetric defect location on the
minimum non-Hermitian strength required to create the first EP in a band. Our findings motivate feasible

designs for the experimental realization of EPs in elastodynamic metastructures.

Keywords: PT-symmetry, exceptional point, elastodynamics, defect, metastructure

INTRODUCTION

The parity-time (PT) symmetry, unlike the apparent geometric symmetries such
as the translational and rotational symmetries found in common engineering designs, is
hidden in the equations of motion that describe the dynamical system. Its realization
requires judiciously designed balanced energy amplification (gain) and attenuation (loss)
mechanisms and impedance profile of the metastructure. A PT-symmetric system is
described by a non-Hermitian Hamiltonian which remains invariant under a combined
PT operation, where P is the parity operator (defined by momentum operator p - —p
and position operator X — —X) and T is the time operator (p = —p, X = X, i = —i).
Such class of Hamiltonians can possess entirely real spectra which were demonstrated
first in theoretical quantum and mathematical physics [1-4] and later explored in other
areas including solid states [5], optics and photonics [6—12], microwave [13,14],
electronics [15,16], acoustics [17-23], and elastodynamics [24,25]. When a parameter of
the PT-symmetric system, e.g., the non-Hermitian strength y, reaches a threshold value,
a PT-phase-transition point will occur where two or more eigenvalues (see Fig. 1) and
the corresponding eigenvectors become degenerate simultaneously. This transition

point is a branch-point singularity named exceptional point (EP) which can lead to
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intriguing wave phenomena such as unidirectional invisibility [12,17,19], shadow-free
sensing [18], and wave switching [14,23].

The recent implementation of PT-concepts in elastodynamics has opened up
new fascinating opportunities. For example, we have experimentally and theoretically
shown the EP-based hypersensitive sensing in elastodynamics [24] where a pair of non-
Hermitian pillars that resonate in torsional mode is embedded in an elastic substrate
that modulates the coupling between them through its bending modes and provides the
ability to detect a growing defect in the substrate. In an electromechanical
accelerometer, we have demonstrated that the EP-based sensing scheme can lead to
three-fold signal-to-noise enhancement compared to the system operating away from
the EP, enabling hypersensitive sensing [26]. Most recently, we have experimentally
demonstrated a novel utility of the eigenvector coalescence associated with the EP,
which enables enhancing emissivity by a non-Hermitian metamaterial—i.e., the
actuation force from an actuator can be enhanced beyond the standard Purcell
enhancement by appropriately coupling it to a non-Hermitian metamaterial operating at
the proximity of the EP [27]. The potential for the formation of EPs in various Hermitian
and non-Hermitian continuum elastodynamic waveguides and layered media have also
been proposed theoretically where the non-Hermiticity arises as a function of
hybridization of different elastic wave modes [28—-30]. By considering quasiperiodic,
geometric fractal, and aperiodic elastodynamic systems with PT-symmetry, we have also
shown that the emergence of the EPs follows a universal route [25] where (i) the critical

non-Hermitian strength yzp (the precise intensity of balanced gain/loss introduced into
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the system leading to the EP formation) is linearly proportional to the initial split A,
between the coalescing modes (the frequency difference between two modes in the
initial Hermitian system which will degenerate and form EP upon introducing sufficient
balanced gain/loss), i.e., Ygp~A,, and (ii) the scale-free distribution of the EPs is directly

predicted by the fractal dimension D of the spectra, i.e., the probability density function

P(yep)~Vep 1P,

Realizing such elastodynamic systems that support multiple EPs with potential
multi-scale sensitivity, however, requires judicious spatio-temporal control of multiple
balanced gain and loss mechanisms. This makes their realization challenging because of
the external circuitry that controls multiple of those elements individually through
piezoelectric coupling. Here, we show that appropriately positioning a pair of defects —
with no apparent defects in geometry or periodicity—into Hermitian periodic
elastodynamic metastructures can enforce a PT-symmetry that results in numerous EPs
that can be exploited for engineering applications with the simplicity of gain/loss control
circuitry applied only to those defects. Defects are known to affect the physical
properties of common materials. When they embody PT-symmetric characteristics, they
offer new possibilities in solitons [31-34], defect states [35], bound states [36], robust
localized modes [37], scattering of linear and nonlinear waves in waveguide arrays [38].
We also show that the non-Hermitian strength yzp required for EP formation and the
density of EPs that emerge can additionally be tailored as a function of the location and
non-Hermitian characteristics of the defect pair. We use finite element (FE) analysis and

coupled-mode theory (CMT)-based model combined with time-independent second-
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order perturbation (TISOP) theory to study the relationship between the location and
characteristics of the defect pair and the nature of the first emerging EP in the
spectrum. We also compare this metastructure’s response to its entire PT-symmetric
counterpart, i.e., a PT-symmetric periodic metastructure with half of it having gain and

the other half having loss.

RESULTS AND DISCUSSION
A simple model that explains the formation and the topological features of an EP
degeneracy is given by a two-mode model. The effective Hamiltonian that describes

such system is given by:

(V- T
HZ_( T V+iy) (1)

in which I/ is the resonant frequency of each mode, y is the corresponding gain/loss
coefficient describing attenuation and amplification mechanisms associated with each
mode, and T is the coupling between the two modes. It is easy to show that such
Hamiltonian commutes with the joint parity-time-symmetric operator, and therefore we

refer to it as a PT-symmetric Hamiltonian. The corresponding eigenvalues A, =V +

\/m are shown in Fig. 1 and they are characterized by a transition from real valued
(IT| > |yl) to complex conjugate pair (|T| < |y|). The transition point (|T| = |y| # 0)
has the square-root characteristic feature of an EP degeneracy (see Figs. 1(d)-(e)). The
former domain is known as the exact PT-symmetric phase and the eigenvectors are also
the eigenvectors of the PT-operator. The other domain is known as the broken PT-

symmetric phase. In this case, the eigenvectors are not any more the eigenvectors of
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the PT-operator. In the upper plots of Fig. 1 (Figs. 1(a)-(c), in which the Riemann
surfaces are identical), we report a parametric evolution of the real part of the
eigenvalues vs. T and y. Fig. 1(d) shows the real and imaginary parts of the eigenvalues
when y = 5, i.e., the intersection between the Riemann surfaces and the red plane in
Fig. 1(a). In this plot, we can clearly see the formation of two EPsat T = *|y| = +5
demonstrating the square-root characteristic of the EP. Similarly, when T is fixed to a
certain value, for example T = 5 as shown in Fig. 1(e), two EPs can be found aty =
+|T| = £5. The cross-section of the Riemann surfaces with the specific plane
corresponding to y = 0 where the Hamiltonian H, is Hermitian is also shown in Fig. 1(f).
In this specific case, the system develops a Dirac point degeneracy characterized by a
linear dispersion.

In this study, we consider a more complicated scenario than the one discussed
above where a PT-symmetric dimer is imbedded in a periodic metastructure as a pair of
defects and analyze the emergence of the EPs in the spectrum of such system by
performing steady-state dynamic analyses in commercial finite element software
ABAQUS Simulia. The metastructure has N cross beams—each beam has an identical
total length of 28 um and an interval of 10 um—on each (P-symmetric) side coupled via
a long horizontal beam with 20 um ledges at both ends. Fig. 2(a) illustrates an example
of an N6 (representing N = 6) periodic metastructure with 6 cross beams on each side
of the mirror plane (represented by transparent yellow), which can be paired and
labeled as 1, £2, ... £6 starting from the middle, i.e., the mirror plane. Considering its

application in MEMS-scale devices, we model the material to be silicon nitride (Young's
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modulus: 290 GPa, density: 3000 kg/m3, Poisson’s ratio: 0.27) and utilize 3-node
guadratic Timoshenko beam elements with a uniform rectangular cross-section (2 um
widths, 0.2 um thickness) throughout the model. Each cross beam is discretized with
forty elements while the coupling beam segment at each interval has twenty elements.
After fixing both ends, we harmonically excited the metastructure at the mid-point of its
left ledge by a transverse force and measured the sinusoidal displacement response at
the corresponding right side. COMSOL Multiphysics has only been used to calculate the
band structure of the system because of its simplicity in implementation compared with
ABAQUS Simulia and we chose the same Timoshenko beam elements and verified the
consistency between the displacement responses in both finite element software. Equal
magnitudes of the structural anti-damping and damping rates represent the gain and
loss mechanisms in the system during simulations, respectively.

To identify the spectral location of EP emergence in a periodic metastructure
with a PT-symmetric defect, we investigate the displacement spectrum from 0~30 MHz
in an N21 (representing N = 21) Hermitian periodic structure in Fig. 2(b), where five
bands are indicated in five different colors. When we introduce gain (loss) to the left
(right) half of the system and increase their intensity, almost all the modes in each band
shown in Fig. 2(b) start to degenerate and form EPs. Fig. 3(a) illustrates such trend in
band 4, and the disappearing peaks are evidence of the emergence of EPs as well as the
damping of the modes. For a system with only one PT-symmetric defect, however, the
modes coalesce and form EPs only at the band edge regions (indicated by grey arrows

on the x-axis of Fig. 2(b)) due to the higher density of modes in band edges. Such
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behavior can be seen in Fig. 4(a), where the limited modes near band edges become
degenerate when y is increased. Fig. 4(b) shows the formation of a typical EP in the
metastructure with a single PT-symmetric defect, and Fig. 4(c) exhibits the variation of
its corresponding real and imaginary parts of the frequency. Fig. 4(d) shows a square-
root behavior typical of order-two EP, where Agp is the frequency difference between
the corresponding two modes which degenerate to form the EP at the critical gain/loss
intensity ygp. The aforementioned behavior is similar to that of an EP formed in an
entire PT-symmetric structure (see Figs. 3(b)-(d)).

We further investigate the relationship between the emerging number of EPs
and the location of the PT-symmetric defect. Figs. 5(a)-(b) show that the number of EPs
in each of the five bands decreases as the distance between the two resonators that
make up the PT-symmetric defect, i.e., the defect position index, is increased from +1 to
+21. This decreasing EP number density is clearly observable in high frequency bands
than low frequency ones because of the higher EP density in high frequency bands. Note
that an appropriate comparison among different bands requires that the maximum
introduced gain/loss intensity ¥ of the entire band is normalized to its average level
spacing as it affects the critical gain/loss intensity for EP formation depending on the
initial split between the modes [25]. Here, we show the variation of EP numbers whose
critical non-Hermitian strength ygp < 0.01 - A, (see Fig. 5(a)) and ygp < 0.001 - Agpe
(see Fig. 5(b)), respectively. This observation implies that we can utilize the defect
position as another effective control parameter to tailor the emergence of EPs: the

stronger the coupling between the PT-symmetric defects is, the higher the number
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density of the EPs within a band under the same given value of the intensity y is. We
develop a model based on coupled-mode-theory (CMT) to examine this relation
between defect position and the number density of the EPs in a sufficiently larger
system. Its Hamiltonian can be described by:

H = (ZnlymValn| + 332 yIn + Den] + c.c.) + (En=1/m)Vdn| + ZN=1n +
t(n| + c.c.) + (J1)t(—1| + c.c.) (2)
where |n) is the basis of the local mode, t = —1 is the coupling constant between
neighboring potentials, 7, = iy(—&n‘_d + (Sn‘d) stands for the coupled on-site
potentials with a pair of defects at sites n = +d that respect PT-symmetry (d =
1,2,3 ... N is defect position). Fig. 5(c) shows a clear inverse relation between the
number density of EPs and the defect position calculated from the CMT model. The
number of EPs (Ngp), the defect position d, and the half size N of the system are related
by:

Ngp=N+1-d (3)
Note that the CMT model does not differentiate the PT-symmetric response between
the lower and higher frequency bands because of its generic nature.

We also notice that the defect position influences the critical non-Hermitian
strength yp of the first EP in each band. The first EP in each band originates from two
modes whose level spacing in the Hermitian spectra is the smallest among all other
mode pairs within that band. Fig. 6(a) shows the results from the FE models, where the
ygp first decreases and then increases as the defect position index increases

encompassing a minimum. This finding unveils another utility of specifically positioning
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the PT-symmetric defect in a metastructure: it affects the critical gain/loss intensity
required to induce a phase transition in the metastructure going from the exact phase
to the broken phase. This peculiar phenomenon can also be predicted by CMT models,
for example see the red curve in Fig. 6(b) corresponding to N50 (N = 50) system. To
further elucidate this behavior, we use a TISOP theory. The Hamiltonian of the system H
can be treated as:

H=H,+ iyV (4)
where Hy is the unperturbed matrix with eigenvalues E© and the corresponding
eigenvector ¢ = |¢)(")) [39], V is the perturbation with diagonal elements V,, =

—06p—q + Opq Where In| = 1,2, ... N:

Ho = CnZ_nIn + Dt(n| + TNZ1n + Den| + | 1)t(—1]) + c.c. (5)
V = SalnVa(nl 6)
o) _ ) krwr R=m/(2N+1) .
E;” =2t-cos— 2t - cos(kR) (7)
(m _ t / 2 . (knm\R=m/@N+1) ¢ o 2
k _ltl 2N+1 Sln(2N+1) |tl 2N+1 Sln(knR) (8)

The k" eigenvalue E}, of H can be written as a power series:

B = B +iyE® + (iy)?E® + -+ (9)
where E,El) and E,EZ) are the first and second order corrections to E, (see
supplementary material for details):

ED = (¢ V) = (kIVIk) = —ZN%[sinz(kaR) — sin?(kbR)] (10)

2
kil _ 2
EQ-E®  t(2N+1)?

sin(kaR)-sin(naR)—sin(kbR)-sin(nbR)]?

[
Znik cos(kR)—cos(nR)

2
E}E ) = Zn¢k|

(11)

10
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wherea =N+ 1—dandb = N + d are the locations of defects. The real part of E,,
can be represented as:

Real(Ey) ~ EX + (iy)2E® = E” — y2E (12)
By setting the real parts of the two modes we studied (E; and E,) equal, we obtain the

expression for the corresponding critical gain/loss intensity ygp:

1/2
_ t2(2N+1)2-[cos(R)—cos(2R)]
YEp = [sin(aR)-sin(naR)—sin(bR)-sin(nbR)]? [sin(2aR)-sin(naR)—sin(2bR)-sin(nbR)]?
Znz1 cos(R)—cos(nR) Lnz2 cos(2R)—cos(nR)

(13)

Its variation is shown in Fig. 6(b) (blue curve), revealing an agreement with the CMT
model: both of them have the same increasing and decreasing trends, and the critical
point for ygp (i.e., the location where yp reaches its minimum) is around 17 in an N50
model. When the defect position locates at the site of this critical point, the threshold
value of gain/loss intensity ygp will be the smallest for making those two modes
degenerate and form an EP, implying the smallest needed energy to realize the PT-
phase transition in the corresponding band.

To further explore the relationship between the critical point of ygp and the size
of the system, we compare the calculation results from both the CMT model and TISOP
theory. Fig. 6(c) indicates a linear relationship between the critical point of yzp and the
half size N of the system. The fitting slopes for the CMT model (red line) and the TISOP
theory calculation (blue line) are 0.312 and 0.333, respectively, exhibiting great
agreement again.

It is natural to assume that the EP degeneracy will be easier enforced for nearby

levels. Therefore, we expect that Ay and ygp, i.e., the initial frequency split between the

11
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modes which will degenerate to form EP and the critical gain/loss intensity required to
form that EP, will be linearly related to one another. Indeed, such fashion has been
confirmed in the case of elastodynamics structures with fractal spectra [25], and we
have also confirmed that this linear relationship persists. We compared the relationship
between A, and ygp among the EPs in the third band of N21 periodic metastructure in
Fig. 7(a) by using different colors to represent different systems: the entire PT-
symmetric system (black), systems with PT-symmetric defects at position +3 (red), 5
(blue), and £7 (green). The fitting slopes verify the linear relationship. In the system with
PT-symmetric defects, however, the fitting slopes contain a slightly larger offset when
two defects are too close, which can be observed in Fig. 7(b), showing the variation of
the fitting slope of EPs with respect to the defect position. For the first five bands in the
N21 FE model of periodic metastructure, the slopes come close to 1 when the defect
position increases to 5. For the N50 CMT model, the defect position index should be at
least around 10 for obtaining a linear slope. It should be noted that the FE model
simulations require significant computational cost, and the small number of EP points
investigated may affect the accuracy of the slopes especially when the defect position

index is large.

CONCLUSIONS

In summary, we designed a periodic metastructure and investigated in a steady-
state dynamic FE model and CMT-based mathematical model approach the emergence

of EPs when a pair of defects that enforce a PT-symmetry to the whole structure are

12
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introduced at different positions. When the interval between the pair of PT-symmetric
defects increases, the number of EPs that emerge in all five bands below 30 MHz
decreases. Furthermore, we revealed the variation of the threshold value of the
gain/loss intensity ygp of the first EP in each band by utilizing both the FE model and
CMT-based mathematical model and demonstrated the relationship between its critical
point (i.e., the defect position where yp reaches its minima) and system size by CMT
model and TISOP theory. Our findings show that the PT-symmetric defect position can
be exploited to effectively tailor and control the emergence and the density of EPs in an
elastodynamic metastructure paving the way for their convenient experimental

implementations in the elastodynamic metastructures and metamaterials.
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Fig. 1

Fig. 2

Figure Captions List

Riemann surfaces based on the Hamiltonian H, where V = 5. The 3D
portion in (a), (b), and (c) are identical, while the red planes are planes of
y=05,T =5, and y = 0, respectively. The corresponding intersections
between the planes and the Riemann surfaces are shown in (d), (e), and
(f), where the real and imaginary parts of the eigenvalues are represented
in red and blue, respectively. Solid and hollow dots denote two different
eigenvalues.

(a) Schematics of an N6 (representing N = 6) periodic metastructure.
Starting from the mirror plane (transparent yellow) in the middle, cross
beams on the right and left sides can be paired and indexed as %1, £2, ...
16 via mirror symmetry, respectively. The upper part shows an entire PT-
symmetric system where the whole left (right) side has energy
amplification (attenuation) indicated in red (blue), while the lower portion
is a system with a pair of PT-symmetric defects on cross beams +2 (defect
position at 2). (b) The displacement spectrum from an N21 (representing
N = 21) Hermitian periodic metastructure. The magenta curve is the
corresponding displacement amplitude response, which agrees well with
the first five bands calculated from dispersion relations shown in different
colors. Grey segments and arrows along the x-axis represent the locations

where EPs emerge in the periodic metastructure with PT-symmetric
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Fig. 3

Fig. 4

defects. The formation of a typical EP found in the dashed cyan boxed

region in band 4 is shown in Figs. 3-4.

(a) The variation of the displacement spectra in band 4 with respect to the
gain/loss intensity parameter ¥ in an entirely PT-symmetric N21 periodic
metastructure. (b) The formation of a typical EP found in the location
marked by a cyan box in (a) as well as Fig. 2(b). (c) Corresponding real (red
lines) and imaginary parts (blue lines) of mode frequency, where solid and
hollow dots denote two different eigenvalues, and (d) a log-log plot of the
frequency difference Agp vs 1 — y/ygp near this EP. The red fit line has a
slope of 0.46, reflecting the square-root characteristic typical of an order

two EP.

(a) The variation of the displacement spectra in band 4 with respect to the
gain/loss intensity parameter y from an N21 periodic metastructure with
a pair of PT-symmetric defects on cross beams +3. (b) The formation of a
typical EP found in the location marked by a cyan box in (a) as well as Fig.
2(b). (c) Corresponding real (red lines) and imaginary parts (blue lines) of
mode frequency, where solid and hollow dots denote two different
eigenvalues, and (d) a log-log plot of the frequency difference Agp vs 1 —
y/Ygp near this EP. The red fit line has a slope of 0.51, reflecting the

square-root characteristic typical of an order two EP.
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Fig. 5

Fig. 6

Fig. 7

Variation of the number of EPs in each band with respect to the defect
position in N21 periodic metastructure when the critical non-Hermitian
strength (a) ygp < 0.01-A,,. and (b) ygp <0.001-A,,., and (c)
coupled-mode-theory (CMT) models for different sizes (N ) of the

metastructure.

Variation of ygp with respect to the defect position for two modes with
the smallest level spacing in one band in (a) N21 FE model of periodic
metastructure and (b) N50 CMT model as well as TISOP theory calculation.
(c) The relationship between the critical point of yzp and the half size N of
the system. The red and blue lines are linear fittings for the CMT model

(slope 0.312) and TISOP theory calculation (slope 0.333), respectively.

(a) The relationship between A, and ygp from EPs in the third band of N21
PT-symmetric periodic metastructures with no defects (black), defect
position at 3 (red), 5 (blue), and 7 (green). Lines are the linear fittings for
the corresponding systems, and the slopes are shown in the legend. (b)
Variation of the fitting slopes of Ay and ygp with respect to the defect
position in the N50 CMT model and the first five bands from the N21

periodic metastructure. For FE analysis, ygp < 0.001 - A, for those EPs.
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