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Abstract
The velopharyngeal (VP) valve regulates the opening be-

tween the nasal and oral cavities. This valve opens and closes
through a coordinated motion of the velum and pharyngeal
walls. Nasalance is an objective measure derived from the
oral and nasal acoustic signals that correlate with nasality. In
this work, we evaluate the degree to which the nasalance mea-
sure reflects fine-grained patterns of VP movement by com-
parison with simultaneously collected direct measures of VP
opening using high-speed nasopharyngoscopy (HSN). We show
that nasalance is significantly correlated with the HSN signal,
and that both match expected patterns of nasality. We then
train a temporal convolution-based speech inversion system in
a speaker-independent fashion to estimate VP movement for
nasality, using nasalance as the ground truth. In further exper-
iments, we also show the importance of incorporating source
features (from glottal activity) to improve nasality prediction.
Index Terms: speech inversion, nasalance, source features,
high-speed nasopharyngoscopy

1. Introduction
Speech is produced by the coordinated movement of articula-
tors such as tongue, velum, and lips that shape the acoustic
signal produced by the larynx, forming alternations of vocal
tract constriction (for consonants) and opening (for vowels) [1].
These movement patterns can differ according to the language,
dialect, abilities, and habits of the speaker, but the fact that the
movements themselves overlap in time means that the evidence
of their movement in the acoustic signal can be compressed,
scattered across time, and sometimes obscured by co-occurring
events. The result is that many linguistic phenomena that are
hard to express in acoustic terms are more readily explained
by differences in the timing and degree of vocal tract constric-
tion [2, 3]. Systems that do speech inversion rely on ground
truth articulatory variables; by using extracted acoustic features
such as Mel Frequency Cepstral Coefficients (MFCCs), Mel-
spectrograms, or the waveform itself as the input speech rep-
resentation, the system can learn a mapping to the articulatory
variables. However, none of the publicly available articulatory
speech corpora have direct articulatory level data capturing the
velar and glottal constrictions [4, 5]. Therefore, most of the
available SI systems (trained on these datasets) are limited to
estimating the articulatory level information pertaining to lip
and tongue constrictions [6, 7, 8, 9, 10].

Acoustic-to-articulatory speech inversion inspired by Ar-
ticulatory Phonology [11] maps the acoustic speech signal to
the kinematic state of each constriction synergy (lips, tongue
tip, tongue body, velum, and glottis) by its corresponding con-
striction degree and location coordinates, which are called vocal
tract variables (TVs). In this work, we extend a speech inver-

sion system based on TVs to estimate the activity of the ve-
lar constriction by collecting a dataset that can be effectively
used in training a speaker-independent SI system. We choose
‘Nasalance’ as the ground-truth to capture nasality for two rea-
sons. First, it is a non-invasive measure and can be easily
collected from a larger population, which will be beneficial in
building a more generalizable, speaker-independent SI system.
However, nasalance measures the ratio of acoustical energy be-
tween the nasal and oral tract. Accordingly, as a variable it is
dependent on the amount of energy flowing through the glottis,
and thus has only an indirect relationship with VP articulation
[12, 13]. Hence, the far reaching goal of the proposed SI sys-
tem is not aimed at deriving aerodynamic relationships (such as
nasalance) from the acoustic signal, but rather aimed at deriv-
ing VP articulatory movements. Our approach to achieve this
goal was twofold. To investigate if nasalance is an accurate
representation of velar constriction degree [11], we validated it
with a more direct, invasive and accurate measure of VP activ-
ity called high-speed nasopharyngoscopy (HSN). To the best of
our knowledge, this is the first time a SI system has been devel-
oped to estimate a proxy for a velar constriction degree TV, that
will, in essence, capture the nasality in speech.

The second reason for using nasalance derives from this
susceptibility to glottal source effects. Learning a mapping
from an acoustic representation that is rich with source level
information (eg. Melspectrograms, auditory spectrograms) to
nasalance, along with source features (eg. voicing and pitch)
may positively influence the SI system performance for nasality
prediction. To investigate such effects of using source features,
Electroglottography (EGG) was synchronously collected to ex-
tract a voicing parameter, and aperiodicity, periodicity and pitch
extracted from an aperiodicity, periodicity and pitch (APP) de-
tector [14] are also used as additional targets to further improve
nasality prediction.

The content in the following sections of the paper is orga-
nized as follows. In section 2, we discuss the details of the
dataset and explain the steps used to extract and validate the
ground-truth nasalance parameter. In section 3, we highlight
the details of the proposed SI system and the importance of us-
ing source features to estimate nasality. Finally in section 4, we
discuss the key conclusions drawn from the experiments and
possible future directions.

2. Dataset
This work is based on a subset of data from ongoing, collab-
orative data collection. The complete dataset, once collected,
will be made public (subject to standard open source licens-
ing agreements). One of the main goals of this dataset is to
develop a speaker-independent speech inversion system to ac-
curately estimate velar and glottal activity. The current dataset
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has been collected from 8 subjects (5 Female, 3 Male), and the
demographic details of the speakers are listed in Table 1.
2.1. Ground-truth Nasalance Parameter
2.1.1. Background and Procedure for Data Collection

Table 1: Dataset Description. SW: South-west, C: Central, W:
White, B: Black, H: Hispanic, NH : Non-Hispanic

Subject Gender Language HSN status Age (years) Ethnicity/Race

1 M English(SWOhio) HSN 28 W, NH
2 F English(STexas) No HSN 24 W, H
3 F English(SWOhio) No HSN 31 W, NH
4 F English(SWOhio) No HSN 40 W, NH
5 F English(CKentucky) No HSN 28 B, NH
6 F English(SWOhio) HSN 34 W, NH
7 M English(SWOhio) No HSN 23 W, NH
8 M English(SWOhio) No HSN 35 W, NH

As noted above, nasalance is the relative proportion of nasal
vs. oral acoustic output from two microphones (mic) mounted
to the top and bottom of a separation plate located between the
nose and upper lip to create an acoustic barrier. It is a sim-
ple, well-known, non-invasive and reliable technology for track-
ing VP constriction. We used a subset of speakers (subject 1
and subject 6) to synchronously collect a more direct but inva-
sive measure of VP constriction using high-speed nasopharyn-
goscopy (HSN).

Figure 1 shows the setup used to collect the HSN and au-
dio measurements to compute the nasalance parameter. For the
HSN, a flexible scope (outer diameter: 2.2 or 3.6 mm) was con-
nected to a video camera (MIRO 310; Vision Research, Inc.,
Wayne, New Jersey), and the images were captured at a rate of
1000 frames/second using 304 × 256 pixel resolution. To col-
lect the audio data, 2 microphones (1/4”, Type 4958, Bruel and
Kjær, Duluth, Georgia) were connected to the top and the bot-
tom of the separation plate made of aluminum. Windscreens
were used to cover the microphones to prevent interference
from airflow directed toward the microphones. The separation
plate was placed against the participant’s upper lip to create an
acoustic barrier between the oral and nasal audio recordings.
The acoustic data from the microphones were captured at 51.2
kHz using a data acquisition system (NI 9234, National Instru-
ments, Austin, Texas) and customized LabVIEW code that dig-
itized and converted the data to a “.wav” audio file. The initi-
ation of the audio recording and imaging data (from the HSV
nasopharyngoscopy) was synchronized using an input/output
module (NI 9402; National Instruments) [15]

Figure 1: Illustration of the experimental setup. HSN measure-
ments were taken by connecting a flexible scope to a high-speed
video camera (not shown). The figure is taken from [15] in The
Cleft Palate-Craniofacial.

Using this setup, approximately 10 minutes of speech ma-
terial per subject was recorded. This consisted of a mixture of
short and long sentences and short paragraphs. For example, for
nasality, the full set of prosodic nasal contrasts from Krakow et
al. [16] was included, including e.g. “hoe me” vs. “home E”,
“seam ore” vs. “Seymour”. For voicing, sentences contrast-
ing words such as “Dodd” vs. “Todd” in a carrier phase were

included. Sentences illustrating consonant cluster articulatory
patterns were drawn from Zsiga et al. [17, 18]. For cross-dataset
comparison, we also included some sentences from speech ma-
terials used in the U.W. x-ray microbeam corpus [4].

2.1.2. Nasalance Parameter
Oral and nasal mic signals collected from the nasometer set-
up were used to compute the nasalance parameter. The baseline
wander was first removed from the two signals using a high pass
filter (cutoff around 0.1Hz). The Root Mean Square (RMS) sig-
nals were then computed for both oral and nasal signals sep-
arately. During the RMS signal generation, both the squared
signals were smoothed out using a moving average filter with
a window size of 1000 (∼ 20 ms) samples. Then a nasalance
parameter (Nasalanceraw) was computed using the equation 1
based on Bunton et al. [19]. The Nasalanceraw parameter was
then downsampled to 100Hz and smoothed using a window of
10 samples (using Matlab function ‘Fastsmooth’ by [20]). The
final nasalance parameter was then normalized to [-1,1] range
to be used as the ground-truth for the speech inversion system.

Nasalanceraw =
RMSnasal

RMSnasal +RMSoral
(1)

2.2. Validating Nasalance with HSN
HSN was synchronously collected from subject 1 and subject
6 to assess the accuracy and agreement with the computed
nasalance parameter. Here the temporal dynamics of the VP
port is captured by summing the light intensity in the images
(intensity of pixels) of the high-speed video (HSV) data. The
resulting intensity trace has been shown to be an accurate mea-
sure for capturing the velum [15]. Figure 2 shows a sample HSV
intensity trace and the corresponding HSV images at different
points in time. Here an open VP port would be overall charac-
terized by darker regions that come from the cavity of the VP
port. On the other hand, a closed VP port would be character-
ized with brighter regions because of the increased amount of
light reflecting off the tissue. It should be noted that the HSN
parameter shows a trough (i.e. lower values) for nasal sounds
in speech. This is in contrast to nasalance, which shows the
opposite pattern of a peak.

Figure 2: HSV intensity trace for a male native speaker of Amer-
ican English from Cincinnati, OH producing ”It’s a see more,
Sid. It’s a seam ore, Sid”. Images of the VP port at key time
points are indicated by arrows.

The HSV data has a sampling rate of 1kHz and the
nasalance parameter as discussed earlier is sampled at 100Hz.
To match the number of samples to compute the cross cor-
relations, the nasalance parameter is linearly interpolated to
match with the HSV intensity trace. The Pearson correlation
coefficients are then computed for each sample data from the
subject. The average correlation coefficients across the sam-
ples for subject 1 and subject 6 are -0.6081(p<0.001) and -
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0.5136(p<0.001) respectively. These statistically significant
negative correlations give an important validation on the accu-
racy of the computed nasalance parameter with respect to HSN.

2.3. Patterns of timing for Nasality
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Figure 3: The vertical red dash lines in the top and bottom pan-
els mark the onset of bilabial contact for the /m/. The black
triangles mark velum lowering offset and the coordinated event
in the lower lip (lip raising onset or offset)

A number of studies have shown that American English
shows different patterns of velum raising and lowering (i.e. VP
port constriction) according to syllabic organization [21]. As
shown in Krakow et al. [21] an example of this pattern for
“home E” vs “hoe me” is that the velum moves earlier and the
VP port stays open longer when the /m/ is in the rime (home)
than when the /m/ is in the onset of the following word (me).
The lip-velum coordination during the syllable-initial and -final
nasal was also observed in Krakow et al. [21], where it has been
noted that there is close temporal proximity between the end of
velum lowering and the beginning of lip raising for the syllable-
initial and a large offset between the end of velum lowering and
the end of lip raising for syllable-final.

To see if the nasalance parameter will also showcase such
patterns (word-initial vs word-final /m/) with respect to the HSN
and lip movement, the words ‘hoe me’ and ‘home e’ were ana-
lyzed. Figure 3 shows the data for ‘It’s hoe me’ and ‘It’s home
e’ collected from subject 1 in the dataset. To analyze the lip
movement pattern, the lip aperture tract variable (LA TV) was
extracted from the articulatory speech inversion system in [9].
Both the HSN and nasalance patterns shown in Figure 3 repli-
cate the timing patterns described in Krakow et al.[21] with
respect to the LA TV. Data from a larger group of subjects is
needed to further verify the pattern.

2.4. Voicing parameter: EGG envelope
Electroglottography (EGG) is a well-established technology for
tracking vocal fold oscillation, using the degree of electrical
conductance across the glottal gap between electrodes placed
on the two parallel outer sides of the throat. In this study, EGG
data was also collected (from all the subjects) synchronously

with the other HSN and audio measurements in section 2.1.1.
The EGG signal is sampled at 51.2 KHz, and to compute

a parameter which can capture the voicing activity of speech,
the envelope of the EGG signal was extracted. As with the
nasalance parameter, we first high pass filtered the signal to re-
move the baseline wander. Then the magnitude of the Hilbert
transform [22] was computed as the envelope of the EGG sig-
nal. The envelope was downsampled to 100 Hz and smoothed
and normalized the same way to the nasalance parameter to gen-
erate the final voicing parameter.

3. Speech Inversion System
3.1. Input Audio Representation
The audio recorded by the oral and nasal mic signals were
mixed together to create a combined audio signal. The com-
bined signal was then downsampled to 16kHz and segmented to
2 second long segments. The shorter, remaining segments were
zero padded at the end. The segmentation was done mainly to
increase the number of audio samples to train the DNN based
SI system and to have input acoustic representations of fixed
dimensionality to the input layer of the DNN model.

We used auditory spectrograms (Audspec) [23] as the input
speech representation for the SI system. The auditory spectro-
grams have a logarithmic frequency scale and provide a unified
multi-resolution representation of the spectral and temporal fea-
tures likely critical in the perception of sound [23].

3.2. Model Architecture and Training
3.2.1. Model Architecture
We developed a Temporal Convolution Network (TCN) based
SI system inspired by the work in [9]. The model was op-
timized using the Mean Squared Error (MSE) loss computed
between the predicted parameters and the ground truth. The
SI system was implemented in PyTorch with 1-D convolutional
(CNN) layers. Figure 4 shows the proposed model architecture
with its sub-modules used for pre-processing and dilated TCN.
The pre-processing module contains two 1-D CNN layers with
1×1 kernels (C1, and C2), which have 128 filters each. The d1,
d2 and d3 dilated CNN layers have a kernel size of 3 with 1,4
and 16 dilation rates respectively. Upsampling (window size
4) was done after C4 layer and average pooling (window size
5) was done after C5 layer along with BatchNorm layers after
every CNN layer in the TCN network. The upsampling and
average pooling operations take care of matching the time di-
mension of the input spectrograms to the target time dimension
of TVs.

Dilated TCN module

TCN NetworkPre-processing module

d3d1 d2

C1 C2
C3

C4 C5

Input

Batch Norm, ReLU, Upsample

ReLU

Group Norm

Batch Norm, ReLU, AVG pool

Batch Norm, ReLU

Nasalance
+

Voicing
+

Pitch
+

Aperiodicity
+

Periodicity

Batch Norm, Tanh

Figure 4: Model architecture (SI system). Here C1-C5 represent
1D-CNN layers and d1-d3 represent 1D dilated CNN layers

3.2.2. Model Training
All the model parameters were randomly initialized with a seed
(=7) for reproducibility. Table 3 lists the hyper-parameters and
the corresponding values considered to fine-tune the model.
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Table 2: PPMC scores (mean and .std across 8 trials) for the SI systems trained with and without source features as additional targets
to estimate nasalance.

Nasalance Voicing Perio. Aperio. Pitch Average

SI-SF 0.7341(0.02) 0.80541(0.01) 0.9008(0.03) 0.8257(0.02) 0.7995(0.03) 0.8131(0.03)
SI-noSF 0.6967(0.02) - - - - -

Table 3: Hyperparameter Tuning for the TCN model

Parameter Possible Values Chosen Values

Learning Rate [1e-4, 3e-4, 1e-3, 1e-2] 1e-3
Batch size [16,32,64,128] 64
Optimizer ADAM, RMSprop, SGD ADAM
Rate scheduler ExponentialLR, PolynomialLR ExponentialLR

A grid search was performed when fine-tuning the hyper-
parameters and the best parameters were chosen based on the
validation loss. All the models were implemented with PyTorch
machine learning framework and trained with NVIDIA TITAN
X GPUs. The best performing model has around 1 million
trainable parameters, takes around 8 minutes (±2) to converge,
and can be found in a Github repository1

The dataset was divided into training, validation and test-
ing splits, so that the training set has utterances from 6 speak-
ers (4 females, 2 males). The validation and testing splits have
data from 2 speakers (1 male, 1 female) with 1/2 of the data
from each speaker in the validation split and the other half in
the test split. None of the data from the speakers in the valida-
tion and test splits were included in the training split and hence
all the models are trained in a ‘speaker-independent’ fashion.
The splits also ensured that around 70% of the total number of
utterances were present in training ( 1 hour of speech), and all
the allocations were done in a completely random manner.

3.3. Results of Speaker-independent Speech Inversion
Two speech inversion systems were trained to estimate the
nasalance parameter from the input auditory spectrograms.
Pearson Product Moment Correlation (PPMC) score is used as
the metric to evaluate the predictions by the SI systems. Table 2
shows the PPMC scores for correlations between the estimated
and ground-truth nasalance parameter for the systems trained
with additional source features as targets (SI-SF) and the one
with nasalance parameter as the only target (SI-noSF).

Figure 5 shows sample nasalance estimation by the SI-SF
and SI-noSF models for an utterance in the test set. The utter-
ance, ‘Say tube again’ contains a nasal consonant [n] around
1.15-1.25 seconds which is captured by both the SI systems.
However, it is important to note that the nasalance parameter
estimated by the SI-SF model has better agreement with the
ground-truth compared to the SI-noSF model.

4. Discussion and Conclusion
The results of correlation analysis in the section 2.2 gives a
general, but an important validation for the nasalance param-
eter with respect to the more direct HSV intensity trace. The
fact that we found known patterns of timing for nasality (dis-
cussed in section 2.3) further supports the validity of using
nasalance as a proxy variable for velopharyngeal constriction.
This work highlights the performance of our SI system in esti-
mating velopharyngeal movement dynamics for unseen speaker
data. It also shows that incorporating source features as addi-

1https://github.com/Yashish92/TCN-SI-tool-Nasality
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Figure 5: Nasalance and source features for the utterance ‘Say
tube again’ estimated by the SI-SF model and nasalance esti-
mated by the SI-noSF model with respect to the ground-truth .
Solid blue Line - ground truth, red dotted line - predictions by
the SI-SF, yellow dotted Line - predictions by SI-noSF.

tional targets improves the estimation accuracy of the velopha-
ryngeal movement parameter. This is consistent with the obser-
vations made in [9] with conventional acoustic-to-articulatory
speech inversion, and could also suggest that the TCN model is
particularly sensitive to source/VP interactions.

In future work, the authors plan to improve the performance
and generalizability of the current SI system by training on data
from a larger group of subjects (from the ongoing data collec-
tion). More emphasis will also be made on validating and fine
tuning the nasalance parameter as a proxy to the velar TV. Fur-
ther experiments will also be done to understand what the DNN
models are actually picking as source-filter interactions that are
ultimately helping the overall SI task.

To summarize, in this work we present the details on a
dataset collected to estimate the velar and glottal activity in
speech. We particularly looked into estimating a validated
nasalance parameter (as a proxy to a velar TV) using a speaker-
independent SI system. It should be noted, that having a SI
system to estimate parameters directly related to the velar (and
glottal) constrictions can be hugely beneficial, since it gives
an almost complete articulatory level representation of speech
which can be useful in diverse speech applications (eg. articu-
latory speech synthesis [24, 25]). An accurate, validated speech
inversion system would also be a significant breakthrough for
researchers with little or no ability to collect articulatory data
directly, e.g. scholars without well-equipped phonetics labo-
ratories, scholars doing field studies in dispersed communities.
While speech inversion data is not equivalent to direct observa-
tion, it may enable hypothesis formation and testing that will
motivate more targeted studies.
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