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Many-body Coulomb interactions drastically modify the optical response of highly doped semiconductor
quantum wells leading to a merger of all intersubband transition resonances into one sharp peak at the frequency
substantially higher than all single-particle transition frequencies. Starting from standard density matrix equa-
tions for the gas of pairwise interacting fermions within Hartree-Fock approximation, we show that this effect is
due to Coulomb-induced synchronization of the oscillations of coherences of all N intersubband transitions and
sharp collective increase in their coupling with an external optical field. In the high-doping limit, the dynamics
of light-matter interaction is described by the analytic theory of N coupled oscillators which determines new
collective normal modes of the system and predicts the frequency and strength of the blueshifted collective

resonance.
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I. INTRODUCTION

Intersubband optical transitions in doped semiconductor
quantum wells attracted strong recent interest due to their
giant optical nonlinearities, tunability, and ultrafast response,
which promise a broad range of applications from nonlinear
frequency mixing, ultrafast saturation, and mode locking to
ultra-strong coupling in cavity quantum electrodynamics; see,
e.g., recent papers [1-5] and references therein. There has
been a number of experimental and theoretical studies of
dramatic changes in the intersubband absorption and emission
in highly doped semiconductor quantum wells. These changes
are the manifestation of the Coulomb-induced collective effect
called the depolarization field [6,7], when in the presence of
the electromagnetic (EM) radiation each electron is affected
by an effective field induced by the excitations of other elec-
trons. The main result of such coupling is the macroscopic
polarization which is established in the quantum well as a
result of collective modes of oscillations of the electron gas.
When the electron density is low and only a single subband
is occupied, the depolarization field results in a blue shift of
the absorption peak with respect to the “bare” transition fre-
quency. This resonance frequency corresponds to the so called
intersubband plasmon [8]. The effect of the depolarization
field is much more dramatic if the quantum well is highly
doped so that several subbands are occupied. In this case, in-
stead of several absorption peaks corresponding to transitions
between different subbands, the experiment shows a single
strong peak, blueshifted from all “bare” transitions [9]. This
has been interpreted as the excitation of the collective mode
of the system, the so-called multisubband plasmon [9,10].

The model describing this effect [10,11] was based on
the formalism of “bosonization” of the electron gas. In this
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formalism the Hamiltonian describing the electron gas is
reduced to the expression that contains bosonic operators
instead of fermionic ones, namely, the operators of creation
and annihilation of excitations associated with a given inter-
subband transition. Such bosonic operators are proportional to
the dyadics p,, = &l&m, where &l and &, are the creation and
annihilation operators of electrons in corresponding states.
When the populations are assumed constant, the operators Py,
obey the standard bosonic commutation relation [0, ,?),’Ln] =
const. The same operators p,, define the operator of the
electric polarization which appears in the total Hamiltonian in
the dipole gauge [12] as an independent variable and describes
the effects of dipole-dipole interactions and the coupling of
the electronic polarization with a quantized EM field [11,13—
15]. Tt is worth noting that the equations describing the dy-
namics of the dyadics P, = @, in single-particle limit do
not depend on whether the creation and annihilation operators
&Z and a,, are fermionic or bosonic (see Refs. [11,13-15]).
We develop an alternative approach to describe the light-
matter dynamics which does not rely on any approximations
related to bosonization and replacement of the fermionic
Hamiltonian by effective bosonic one. We obtain the absorp-
tion spectrum of the high-density two-dimensional electron
gas confined in a quantum well by solving von Neumann den-
sity matrix equations taking into account pairwise Coulomb
interactions of electrons within the Hartree-Fock (HF) ap-
proximation. We show that at high doping, the exchange
interaction (Fock) terms become insignificant as compared
to Hartree terms. Moreover, the exchange interaction effects
contributing to the intersubband transition energy renormal-
ization and the coupling of coherences nearly cancel each
other. Therefore, the exchange interaction introduces negli-
gible corrections to the spectrum, which is dominated by

©2023 American Physical Society


https://orcid.org/0000-0003-2879-8264
https://orcid.org/0000-0001-5233-8685
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.245403&domain=pdf&date_stamp=2023-06-02
https://doi.org/10.1103/PhysRevB.107.245403

TOKMAN, ERUKHIMOVA, WANG, AND BELYANIN

PHYSICAL REVIEW B 107, 245403 (2023)

R
~ -

A

<3

<

S

< A ¢
<2

—

FIG. 1. Mechanical model of the “Coulomb springs” effect in a
high-density regime. The oscillations of dipole moments at populated
intersubband transitions (here the number of active transitions N, =
3) are modeled by vertical vibrations of masses m on green springs
with corresponding spring constants k;. The allowed motion is one
dimensional (along x axis), and only the oscillations with immobile
center of mass of each oscillator are considered. The Coulomb cou-
pling is modeled by grey springs which tie each “upper” mass with
all “lower” masses and vice versa. These springs are characterized by
spring constant K, which increases with increasing electron density
in a QW. Each oscillator can be independently excited by an external
force. Under the condition KN, > k;, the collective in-phase oscilla-
tion with frequency defined by the spring constant of the “Coulomb
spring” and proportional to /N is excited most efficiently; see the
solution in Appendix C.

electron interaction through a common field. Mathematically,
the problem is reduced to the system of linearly coupled
2N first-order differential equations for coherences excited
at the intersubband transitions by an external monochromatic
force, where N is a number of the intersubband transitions.
Therefore, the observed spectra can be understood within an
intuitive and transparent picture of self-synchronization in a
system of N coupled oscillators, which is a universal phe-
nomenon in the nonlinear dynamics, with numerous analogies
not only in quantum-well optics (e.g., self-synchronization
of quantum-cascade laser modes [16] or Coulomb-induced
Fermi-edge singularity [17]) and plasma physics (e.g., syn-
chronization of oscillations of free electrons in the collective
field of a Langmuir wave), but across all areas of physics
and other sciences [18-20]. We are able to obtain important
analytic results, in particular the frequencies and oscillator
strengths of the new collective normal modes of the system.
The collapse of all transitions into a single absorption peak
is naturally explained by the presence of Coulomb-induced
couplings between intersubband coherences, similarly to the
effect of springs connecting mechanical oscillators. In fact,
the mechanical analogy can be made mathematically exact;
see Fig. 1 and Appendix C. The action of these “Coulomb
springs” leads to both the blueshift of the collective resonance
frequency and giant enhancement of its oscillator strength.
The paper is organized as follows. In Sec. II, we present
the Hamiltonian of the system of Coulomb-coupled identical

fermions in a quantum well within the second quantization
formalism. In Sec. III, the von Neumann equations for coher-
ences are derived in Hartree-Fock approximation. The final
form of the equations taking into account the Hartree modi-
fication of the ground state and Hartree coupling terms, and
neglecting the exchange interaction is presented. In Sec. 1V,
the solution of this system of coupled equations for coher-
ences at different intersubband transitions is obtained in a
general form. The expression for the absorption spectrum of
a highly doped quantum well with several occupied subbands
is derived analytically. It represents the superposition of col-
lective oscillation eigenmodes with amplitudes proportional
to the oscillator strengths and eigenfrequencies different from
the original “bare” intersubband transition frequencies. In
Sec. IV A, we prove that the Coulomb interaction leads to a
collapse of several excited intersubband transitions into one
sharp peak at the frequency substantially higher than all the
transition frequencies. This effect is illustrated by the mechan-
ical model of “Coulomb springs.” The conditions imposed
on the electron concentration and the quantum well thick-
ness under which this effect dominates the optical response
are formulated in Sec. IVB. The analytic expression for
the frequency of a single bright resonance mode is obtained
there. In Sec. IV C, the numerically calculated absorption
spectra of an electron gas with different concentrations and
quantum wells with different thicknesses are presented. In
Sec. V, we investigate analytically and numerically the impact
of exchange effects on the absorption spectra and come to
the conclusion that they are negligible at high doping. Ap-
pendix A describes the eigenfunctions and eigenstates of the
Hartree Hamiltonian. Appendix B proves the sum rule for
the new collective normal modes of the system. Appendix C
derives the equations of motion for the mechanical model of
“Coulomb springs” and Appendix D evaluates the screening
effect coming from higher-order correlations.

II. THE MODEL AND THE HAMILTONIAN

In the second quantization form, the Hamiltonian of
the system of interacting identical electrons placed in the
QW confinement potential and the potential of ions can be
written as

O+ﬁee+Heiv (1)
where
. . P’ N
Hy = / d3rzpj(r)(— + Ve(z)> &, (r)
2m*
is a free-particle term,
T 1 3 RN AT 71T, AN/
H, = 5 d’r | &ry] (W, )V (r—rW.")Y.(r)
describes electron-electron interactions, and
A= =N [ @' [ &5 @0V (r= D)

describes electron-ion interactions. Here m* is the effective
mass, V,(z) is the confinement potential, z is the growth
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direction of the quantum well structure, V(jr —r'|) =
e?/eolr — | is the Coulomb interaction potential, & is the
background dielectric constant, N;p is the sheet doping den-
sity, and p;(z) is the normalized doping profile of the ions,
satisfying [ pi(z)dz = 1. The operator @, (r) can be expanded
using the wave functions which form a complete one-particle
basis. The basis functions are not necessarily the wave func-
tions which diagonalize a single-particle Hamiltonian

P’
2 *
The only requirement is that these are eigenfunctions of the

two-dimensional momentum operator p; = — where R is
the coordinate in the plane of quantum well:

eikR
=) w@)—=a
%: n \/E nk

where @, is the fermionic annihilation operator in the corre-
sponding state. The quantity S is the normalization area in the
QW plane,

A° = +V.(2).

BR’

&, (r)

1 o - T
< / d’R / Az (D)pm(2)e R R = 8,800
N N —00
Then we get for the components of the Hamiltonian in Eq. (1)

ﬁO = Z Z Hr(er(k)amka”k’
mn

1 B
y ee A At A oA
ee = ﬁ E Z anlp(q)amkl_qa]k2+qa])kzank1

mnlp kikaq

1
= ﬁ mnlp(q)|q -0 Z amk1 alkzapkzankl

mnlp kikz
970
+i§ EV“()ef a, . aga
28 mnlp q mk1—q "~ lky+q pk2%nky
mnlp kik2q

ﬁei = _NZD Z Ve, (q)’q =0 Z mka”k’
mn

(k) pim (k) —

L d

1

—NZDZ i oim () = Vi o () —

Hyp, (k) (k) +

where
Vit p(@) = / dz / d7 e~ 119k ()0, ()9 (2 )ep(2),
Ve (g) = / dz / 42 T gt (o). (@)

The charge neutrallty condition requires that SN;p =
>k Mnk», Where ny = (&Zk&nk). The g = 0 terms should be
interpreted as

2me? , . 2me? ,
e 4127l — lim e 4127l
€0q g=0 170 &oq
2
2D ’
=V (Ply=o — lz =21,

2 . . . .
where V2P (q) = ZZTZ is the two-dimensional Fourier trans-

form of the Coulomb potential. Divergence of V?P(g) can be

avoided by considering the screening effect, see Appendix D.
In the presence of an optical field £(¢) polarized along with

the growth direction, the Hamiltonian contains another term

Hepn = =&(1) Z Z ,umn&,i,k&nka
mn k

where w,,, are the dipole matrix elements. When the two
indices are equal, (4, = €Z,,, Where z,, is the average position
for level n. This element is only relevant for asymmetric QWs,
otherwise it is just a constant in the Hamiltonian.

III. DYNAMICS IN THE HARTREE BASIS
The dynamics of the density matrix elements p,, (k) =
(&Tnk&nk) is described by the Heisenberg equations

ih—{a ' kank> ([ajnkankv ﬁO + ﬂee + ﬁei + ﬁe—phD'

dt
For commutation with H,, and H,;, it can be shown that the
terms proportional to VP ()| =0 give zero. For the rest of the
terms, we get

Z i (K) Z ppeK) — Z Vieappni () D ppe(K')
-

lpg

— &)Y (ot pim () = i o ()
!

1 1
=5 22D Vi @Pmpp ke + @)+ < > > Vi @ )ppek + ), 3)

Ipg q#0

where
w(2)on ()] (2ep(@),

Vnilep - f dz /
“

7 el /27-[62 AP ’
Vo = — dz | dz T|Z -2 |<Pm(Z)§0n(Z),0i(Z ). )

In the derivation above, the random phase approximation
(RPA) is used, namely we split quadruple correlators and only

Ipg q#0

(

keep the density matrix elements which are diagonal with
respect to k.

It is important that the first two lines in Eq. (3) can be
obtained by including only the coupling of electrons through
their collective Coulomb field and their interaction with the
optical field, i.e., they follow from the single-particle Hamil-
tonian including the self-consistent field:

A = A° — ep(e) + A,
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Here the electric potential ¢(z) obeys the one-dimensional
Poisson’s equation

4
¢ = -2 0().
€0

where the spatial charge density distribution Q(z) is self-
consistently expressed via the density matrix elements:

1
Qz) = eNappi(z) — e DY ) @)en(2).
mn k

The last line in Eq. (3) is due to exchange interaction. It cannot
be obtained in the single-particle picture.

The eigenstates of the single-particle Hamiltonian A% =
H° — e¢p(z), in which the collective field potential ¢(z) is
self-consistently produced by electrons with an equilibrium
diagonal distribution over these particular eigenstates, form
the so-called Hartree basis. The Hartree Hamiltonian can be
written as

o 2
A — A 4 e

2
—_ / i1z — o)

2 1
e’ ZmemUc)[dz 2 = ZllgnI. (6)

Here we calculated the potential by integrating the Poisson
equation in symmetric form and applying integration by parts.
The equation for eigenfunctions and eigenvalues is

ikR ikR

A9, () — = Ef (k)p,(z)—.
@(z)ﬁ (/917 (z)\/g

Equilibrium populations p,,,,(k) obey the Fermi-Dirac statis-
tics over the self-consistently obtained energies EX (k)=

@)

EH + an* which can have different effective masses m;; for
different subbands because of conduction band nonparabol-
icity. The equations that can be used for the numerical
calculation of the Hartree basis are presented in Appendix A.
Considering the exchange interaction and the interaction
with the optical field as perturbations, the equilibrium diag-
onal distribution over the Hartree states should be used as an
unperturbed state of the system. Equation (3) is greatly simpli-
fied in the Hartree basis defined by Egs. (6) and (7). In linear
approximation with respect to perturbations, the equations of
motion for the nondiagonal density matrix elements take the
form
d
ih 7 Pum (k) =

(EF (k) — EfL(K)) pum (k)

1
+ § Z Vnenezgp Z ppg

PFE
1
=5 22 2 Lok + (Vi (@) (k)
Ip q#0
- Vzifpm(q)pnz (k))
-3 Z >V (@ + @) (o k)

p#g q7#0
- )Onn(k)) - g(t)ﬂnm(pmm(k) -

(pmm (k) pﬂl‘l (k))

pan(k)). (8)

In Sec. V below, we analyze the impact of the exchange
(Fock) terms on the absorption spectra and show that at
high-doping levels they have a much smaller effect on the
absorption spectra as compared to the Hartree terms and
moreover, they partially cancel each other. Therefore Fock
terms, i.e., the third and fourth terms on the right-hand side
of Eq. (8), can be safely neglected. If we furthermore neglect
band nonparabolicity and assume that all subbands E,fl k)
have the same curvature, we can sum over k and obtain
much more compact equations for the dynamics of variables

Pnm = %Zk Onm (k)

ihipnm = (E:I

di ,Onm + Z nmgp(pmm - pnn)ppg

P#8
- g(t)/dbnm(pmm - prm) - ihrpnm~ (9)

Here we have added the relaxation term in its simplest form.
Equation (9) clearly demonstrates that the Coulomb interac-
tion creates linear coupling of effective electron oscillators
at different transitions between the subbands dressed by the
self-consistent field; see the second term on the right-hand
side. This coupling is stronger with increasing population
differences. Note that Eq. (9) contains total populations due
to summation over k and therefore the population differences
can be large despite the Pauli blocking of some k-states.

In Secs. IV A and IV B below, we develop a qualitative
analytic theory neglecting band nonparabolicity. However, we
include band nonparabolicity when calculating the absorption
spectra for numerical plots in Figs. 2—4; see Secs. IVC and V.
While the change in effective subband mass affects the shape
of the absorption lines (see, e.g., Ref. [21]), it is clear from
Fig. 4 that the modification of the absorption spectra at high
doping is dominated by Coulomb interactions, specifically the
Hartree coupling. Therefore ignoring nonparabolicity in the
qualitative analysis is justified.

IV. THE ABSORPTION SPECTRUM OF HIGHLY DOPED
QUANTUM WELLS

Equations (9) represent a system of first-order differen-
tial equations for N; linearly coupled variables p; = oy, in
the presence of an “external force.” Here N, is a number of
discrete levels (Coulomb-dressed subbands) involved in the
interaction. The corresponding number of the transitions is
N,:%N; (N; — 1). Introducing the index numerating the transi-
tions j = {nm}, where the transitions {nm} = j and {mn} = j’
are counted separately, we can rewrite Egs. (9) in the form

2N

pj:—iZZﬂpl—f—ifj(t)—ij. (10)
=1

Here the elements of matrix Z are given by
2

e
Zﬂ:wj8ﬂ+ﬁ1j1rAnj, (11)
where the notations are
1 H H 1 ee
wj = % (En - Em)’ Ij = _Vnmgp’
Anj = pum — Pun, fit) = M,E(t)An,, Wi = fnm  (12)
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FIG. 2. The calculated absorption spectra of a L = 18.5 nm
quantum well with different 2D electron densities N,p. From bot-
tom to top: Nop = 1 x 10!, 1 x 10'2,5 x 10'2, 1 x 10", and 2.2 x
10" cm~2. The phenomenological broadening of transitions (full
width at half maximum) is 10 meV. The temperature is 300 K.
Red continuous lines are the absorption spectra, calculated with
Eq. (25) taking into account Hartree modification of energies and
Coulomb coupling of oscillations at different intersubband transi-
tions described by Eq. (9). Blue dashed lines are the absorption
spectra calculated with Eq. (18) obtained without taking into account
Coulomb coupling. The insets present the band structure, Hartree
energy levels, and square moduli of the Hartree wave functions.
The Fermi energy corresponding to electron densities in each case
is indicated by a (violet) dashed line.

for j = {nm), I = {pg},and I' = (gp}.
Considering a monochromatic external field,
E(t) = Re(E®e™™"),
we are looking for the induced solution of Eq. (10),
pj = pfe " + p; e,

for which the differential equations Eq. (10) are reduced to the
algebraic ones:

2N;
—iwpy = —iZZj,pl‘” +iff —Tp7, (13)
=1
where
w 1 w
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FIG. 3. The calculated absorption spectra of QWs with different
thicknesses; from bottom to top: L = 10, 20, and 30 nm, and the
same 2D electron density of 2 x 10'2 cm~2. The phenomenological
broadening of transitions (full width at half maximum) is 10 meV.
The insets present the band structure, Hartree energy levels, and
square moduli of the Hartree wave functions. The notations and
material parameters are the same as in Fig. 2.

Equation (13) can be presented in the vector form, where the
dimension of vector space is equal to 2N;:
—iwp® = —iZp® + if® — T p®.

The averaged dipole moment per unit area of the quantum
well, excited as a response to the incident EM wave is calcu-
lated as

2N,
P(t) = Z:U*mnpnm = Z Mj (p;‘ueiiwt + p;weiwt).
m,n j=1

For simplicity, we can assume that the matrix elements of the
dipole moment are real, so that w,,, = n,. Now we can cal-
culate dimensionless absorbance upon traversing a quantum
well layer, which is defined as energy absorption coefficient
times the QW thickness:

4w 25,
(@) = —Im Z,ujp;)/Ew . (15)

j=1

If the Coulomb interaction of electrons, and therefore the
coupling of oscillations at different transitions, is neglected,
the matrix Z in Eq. (11) is diagonal, Z;; = w;5;;, and the
induced solution at frequency w is defined by the standard
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FIG. 4. The calculated absorption spectra with exchange inter-
action taken into account perturbatively. The Hartree ground state
is treated as unperturbed. Different perturbing terms are taken into
account independently. Case 1: without any Coulomb coupling; case
2: with Fock energy renormalization; case 3: with Hartree cou-
pling (coincides almost exactly with case 6); case 4: with Hartree
coupling and Fock energy renormalization; case 5: with Fock cou-
pling and Fock energy renormalization; case 6: with Hartree-Fock
coupling and Fock energy renormalization, i.e., with all effects in-
cluded. The following parameters are used: L = 18.5 nm and Nop =
2.2 x 10" ¢cm~2. The phenomenological broadening of transitions
(FWHM) is 10 meV.

Lorentzian:
ife
w J
e 16
Pi i(wj—w)+T (16)
In this case, the absorbance given by Eq. (15) yields
2N,
4 e /E”
L) = —Re| Y L (17)
c P i(wj—w)+T
Taking into account that ; = —wj, u; = uy, fi’ = —f7,
Eq. (17) can be transformed into
€2N2]) N 4w
Y(w) = Re F; 18
@)= e Z "2 + i(w;? — »?) (18)
Jj(w;>0)

Here the dimensionless parameter F; is the “oscillation
strength” of the transition with frequency w;, multiplied (as
compared with the standard definition) by the population
difference at this transition normalized to the sheet doping
density An;/Nop:

* *ulw: )
2m m-w;j An;

i = mw,fujff/E“’ = Ny 19

These modified “oscillation strengths” still obey the sum rule,

2N,

D E=1

j=1

This can be proven with the wuse of the relation
> |u,,m|2wmn = %, which is true for any one-dimensional
Hamiltonian. If the transitions are well resolved, the
absorption spectrum Eq. (18) represents the combination

of resonant lines with the peak absorbance values given by
26’2N2D F j
cm* T
The Coulomb interaction leads to coupling of oscillations
at different transitions and enables a dramatic modification of

the absorption spectra. The matrix Z in Eq. (11) acquires off-
diagonal elements. By the linear change of variables

Y(wj) ~

P = Bijp;j,
the matrix Z can be transformed to the diagonal form, so that
for the new variables p; Eq. (13) takes the form

—iwpy = —iQpy +ify — oy (20)

The transformation matrix B = {B;;} is composed of eigen-
vectors of the transposed Coulomb coupling matrix Z7 :

ZzijBli = QBy;,
i

or in equivalent form, Z” B; = Q;B;. The eigenvalues ; of
matrix Z (or matrix ZT) are the frequencies of eigenmodes
in the system of coupled oscillators. The “force vector” f¢ is
transformed by the same matrix as

flw = B[,f]w
The new components of the “force vector” are the projections
of this vector onto the directions defined by the vectors By,
i.e., they can be calculated as a scalar product

1 =B f°). (21)

The solution of Eq. (20) has a simple form, similar to Eq. (16):
] ify

© — . 22

P i@ — o)+ T 22)

Applying the inverse transformation to Eq. (22) and substi-
tuting the result into Eq. (15), we get the following expression
for the absorbance:

4o (& ufe/EC

It looks exactly like Eq.(17), but with different resonance
frequencies, dipole moments, and external forces, defined for
the new collective normal modes of the system. Note that the
effective “dipole vector” u is transformed according to the
operator which differs from B:

~ _1\H
= B"") u;.
It can be shown that new components of the “dipole vector”

are the projections of this vector onto the directions defined
by the eigenvectors of matrix Z (ZD; = 2,;Dy):

fi = Dy« ). (24)

The matrix Z is not symmetric, and therefore its eigenvectors
are not orthonormal, and the matrix B is not unitary. However,
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since matrix Z obeys the following relation:
Zij=~Zjw,

for every number / which counts a new normal mode, there
exists such a number !’ that ; = —, B;j = Byj,and D;; =
Dy j. As result, we have fi; = i, and fi = —fl,. Thus we can
rewrite the expression for the absorption spectrum Eq. (23) in
the form similar to Eq. (18),
2 N

: NZ*D Re Z F 4 wz 2

cm =) 2w + I(QI —w )

Y(w) =

(25)

Here the “oscillator strengths” of new normal oscillators are
introduced:

Fm 2 QO IES = Dy - By - f)E”
l_ezNzD 1ML]y _€2N2D 1Dy« )by .

(26)
The absorption spectrum in Eq. (25) represents the super-
position of resonant lines at frequencies of the new normal
modes €2; with the peak absorbance values proportional to
new “oscillator strengths” £;:

2€2N2D F[

em* T
It is remarkable that the sum rule holds true for the new
“oscillation strengths” as well (see Appendix B for the proof):

Yo =)~

2N,

Y=t @7)
I=1

To summarize this section, the Coulomb coupling of co-
herences at different intersubband transitions leads to the shift
of resonant frequencies and redistribution of the “oscillation
strengths” between new normal modes. In the next section,
we show that such redistribution leads to a dramatic effect in
which most of the absorbance occurs at one of the normal
mode frequencies, which is strongly blueshifted with respect
to all “bare” intersubband transition frequencies.

A. Coulomb-induced self-synchronization of dipole oscillations.
“Coulomb springs” regime

In this section, we investigate the properties of the
Coulomb coupling matrix Z [Eq. (11)] and show that under
certain conditions the eigenvector of this matrix correspond-
ing to one of the normal modes is optimally oriented with
respect to the “force vector,” so that the “oscillation strength”
for this normal mode dominates and reaches its maximum
value (£, = F,y ~ 1). In other words, oscillations at differ-
ent intersubband transitions get self-synchronized to produce
one powerful collective mode of oscillations. We also show
that the eigenfrequency for this mode is large compared with
“bare” frequencies of intersubband transitions.

We assume that the doping is high enough, so that several
subbands are populated in equilibrium, and there are 2N;
intersubband transitions with significant dipole moments and
total population difference. As an estimation, for an isolated
symmetric QW A, is a number of populated subbands and the
relevant transitions are those between neighboring subbands,
because they tend to have a much larger transition dipole

matrix element as compared to the transitions between more
distant subbands. One can of course modify and control the
transition dipole moments and frequencies on demand by
designing asymmetric coupled QW structures.

For analytic illustration of the effect, we take some aver-
aged values of the transition frequencies, overlap integrals,
dipole moments, and population differences for all transitions:

o2
lj ~ o, | T Anj) ~ €2,

w 1 w
ljl =~ w, | f; | = ﬁﬂjE Anj| ~ f (28)

for all j. In a real system, these parameters for different
transitions are different, and the resulting response will differ
from the ideal one, but the basic reasoning remains the same.

Since there is a correspondence between the overlap inte-
grals I;; [see Eqs. (12) and (4)] and the dipole moments,

sign(l;;) = sign(u;p;),

the coupling matrix Z can be presented in the following form:

~. (1 0 Q Q\_(z, z
Z““’O(o —i)”(—@ —@)‘(Zl Zf)’
(29)

where

dim(1) = dim(Q) = N, x N,,

Qij = 8i8;, 6; = sign(u;).

Here the numbering order of the subbands is chosen in such
a way that w; > 0 for 1 < j < N; and j/ = j + N;. Then the
“dipole vector” and “force vector” are equal to

)= 2=

where dim(8) = N,. It is taken into account in Egs. (29) and
(30) that Mj = My, Al’lj = —Al’lj/, and w; = —w;j.

Consider the matrix Z ., which is the “positive frequency”
part of matrix Z. The eigenvector of Z which corresponds
to the in-phase addition of all oscillators, and therefore to
the maximum increase of the corresponding eigenvalue, turns
out to be “co-directional” with both the “dipole vector” p
and the “force vector” f,, so that the corresponding scalar
products are maximal. Such an eigenvector is proportional to
d. Taking into account the coupling with “negative frequency”
vector components, we search for the optimal eigenvector of
matrix Z in the following form (marked by index “m”):

s
Dy = C<(a - 1)3)’

where C is the normalization factor, whereas the parameter o
is found from the equation

_ (ﬂ +otN,)8 _ 8
ZD,,,_CQ<(% S —an)s) = @ - 1s)
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Solving for it, we find

() + w 2 + 2600 .
N, Q2 N, 2 N, Q
The frequency of the normal mode which corresponds to this
eigenvector is

Q= wo? + 2N, Q.

Under the condition
N, Q2> wy, (3D

the frequency of this normal mode turns out to be much larger
than a typical bare transition frequency

Q= 200N, Q2 > wy. (32)

For the effective dipole moment corresponding to this nor-
mal oscillator and for the “force vector” component, from
Egs. (21) and (24), we obtain

m A (o, /224, fin & f(woN, /22)"4.

As a result, the “oscillator strength”, defined by Eq. (26), is

* *

_ 2m -
Qufimfy [EC =

Fy=—S—
€2N2D

N, E?.
€2N2D twol’l“f/ Z

It shows that the “oscillator strength” at the frequency €2,
is N; times higher as compared with the oscillator strengths
at uncoupled transitions Eq. (19). By virtue of the sum rule
for the new “oscillation strengths” Eq. (27), an almost to-
tal suppression of the optical response at all other normal
frequencies will take place. From Eq. (27), we obtain that
F,, = 1/2. Furthermore, according to Eq. (32), the frequency
of this bright mode is +/2N;Q2/wy times higher than bare
transition frequencies. Note that even if one subband were
populated, N, = 1, the frequency of the effective oscillator
taking into account Coulomb interaction of electrons would be
still /1 4 22 /wy larger than the “bare” transition frequency.
If several subbands are populated the frequency of the bright
mode gets even higher.

Under the ideal conditions when the whole “oscillation
strength” is concentrated in one oscillator the absorbance at
this frequency reaches the value

€2N2D

Lnax=2(w = Q) & .
cm*I

(33)
To summarize, Coulomb interaction leads to effective syn-
chronization of the oscillations of coherences at different
intersubband transitions. This effect can be illustrated by a
simple mechanical model of coupled oscillators as in the
sketch shown in Fig. 1, where corresponding equations are in
Appendix C. Each active intersubband transition can be mod-
eled by a classical oscillator (the masses on a green spring)
with frequency w;. The Coulomb couplings of oscillators
are shown by the effective additional grey “springs.” These

“Coulomb springs” synchronize the oscillations in phase for
all oscillators, which also leads to an increase of eigenfre-
quency.

B. Conditions for a strong Coulomb effect

Let us analyze the conditions for strong modification of
the absorption spectrum in a QW with thickness L and two-
dimensional electron gas density N,p. These two parameters
determine the spectrum for a given shape of the quantum well
potential and material parameters.

The parameter €2 is the characteristic frequency, which is
a measure of the influence of Coulomb effects on the oscilla-
tions of the dipole moment in a QW. Its magnitude scales as
[see Eq. (28)]

2
Q~ ﬁ(lﬂ)(An,). (34)

For strong Fermi degeneracy the population of the nth sub-
band is equal to p,, = ;L;;(EF — EM), where Ef is the Fermi
energy. Here it is assumed that the temperature is low enough,
ie., kgT <« Erp — E,, in order to get analytic results. (All nu-
merical plots in Figs. 2—4 are calculated at room temperature
T = 300K and with full Fermi-Dirac distribution.) Hence it
follows that if several subbands are populated, i.e., N, > 1,
the averaged population difference at the transitions between
neighboring levels a can be estimated as

<An,->~%<wj>, (;) = wo. (35)

More than one subband is populated if Np > ?—;wl, where w,
is the transition frequency between the first two levels.

The magnitude of one-dimensional overlap integrals 1;; is
proportional to the QW thickness and can be estimated as

T

(Lir) LJ, (36)

€o
where J is the dimensionless factor defined by the shape of
a QW potential. This parameter does not change much for
different transitions between neighboring levels, For example,
in a square potential, J ~ 0.2.
It follows from Egs. (34)—(36) that

LJ
Q~wy——,
a* g
2, .
where o* = 32’17 is an analog of the Bohr’s radius defined for

an effective electron mass m*. For example, for GaAs QWs
with m* = 0.067m,, the value of «* ~ 0.8 nm. The condition
Eq. (31) of strong Coulomb modification of the absorption
spectrum in a QW with several populated subbands can now
be written as

LJ
N——> 1 (37)
a” &
It means that the quantum well thickness multiplied by the
number of populated subbands must be sufficiently large.
Taking the above parameters and &y ~ 13 for the background
dielectric constant [22], the latter condition becomes

N,L > 50 nm. (38)
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As follows from Eq. (32) the resonance frequency of the
main peak under the condition (37) becomes

LJ
Q ~ wp. | 2N, — = (39)
o* &0

The intersubband transition frequencies wy also depend on
the QW thickness. The typical scaling is

* a* ?
wo ~ (f) . (40)

Here w* = “;fi‘*nD, where D is a dimensionless factor be-
tween 1 and 10 which is defined by the quantum well potential
shape distorted in some way due to the Hartree effect. For
example, in an infinite square potential and neglecting the
Hartree contribution, we have D = %n

Taking into account the dependence of transition frequen-
cies on the quantum well thickness, Eq. (40), the condition for
several subbands to be occupied (N; > 1) is reduced to

Nopl? > D,

so that for QW thicknesses L ~ 10-20 nm, the 2D electron
density needed to populate several subbands is of the order of
Nop ~ 10'2-10'3 cm~2, as in the experiments [9,23].

C. Examples of absorption spectra

In the previous sections, the analytical estimations for
absorption spectra were obtained using rather rough simpli-
fications Eq. (28). These estimations are qualitative, but they
describe the effect quite well in the high-doping limit, as
illustrated by the numerical examples below. First, we solve
numerically Eqgs. (Al) and (A2) to find the matrix of trans-
formation from the “bare” to Hartree basis, the energies of
Hartree levels, and their populations. Then we solve for eigen-
vectors and eigenvalues of Z matrix in Eq. (11). This yields
the frequencies of new normal modes €2; and corresponding
vectors D; and B; which define the “oscillator strengths” of
new modes F; in Eq. (26). The plots of absorption spectra
[Eq. (25)] are presented in Figs. 2 and 3 for different 2D
electron densities in QWs of different thicknesses, and for
room temperature 7 = 300 K. The spectra are compared with
the ones obtained from Eq. (18) neglecting the Coulomb cou-
pling.

The series of plots presented in Fig. 2 illustrates the
transformation of the absorption spectrum with increasing
electron density for a fixed quantum well thickness L = 18.5
nm used in experiments [9]. At the highest density Nop =
2.2 x 10" ¢cm™2 corresponding to the experimental struc-
ture in Ref. [9], five subbands are populated. The effective
subband masses at this electron density are 0.0395, 0.0429,
0.0478, 0.0537, 0.0601, and 0.0667 of free electron mass,
based on band parameters from Ref. [24]. Using the same
material and QW parameters as in the experiment reported
in Ref. [9], the resulting calculated absorption spectrum is in
excellent agreement with the experimental one: compare the
top plot in Fig. 2 with the experimental spectrum in Fig. 2

of Ref. [9] which both show the dominant peak at 170 meV.
The analytically predicted strong modification of the spectra
is obvious at higher dopings. The frequency of the blueshifted
absorption peak agrees with the analytic estimation (39). It
is much higher than the frequencies of the absorption peaks
due to “bare” intersubband transitions in the model neglecting
Coulomb coupling. In fact, the modified spectrum demon-
strates almost full transparency at the frequencies of “bare”
intersubband transitions. The plots in Fig. 3 show the spectral
evolution with varying QW thickness for a electron density.
We see that the larger the width of the well, the greater the
relative change in the spectrum associated with the Coulomb
coupling.

The insets to both figures show the band structure, Hartree
energy levels, and square moduli of the Hartree wave func-
tions. The Hartree eigenstates are not much different from
bare eigenstates, since the doping is in the well region, so the
overall distortion of the potential is small. This is yet another
illustration of the surprising effect of Coulomb synchroniza-
tion: the giant blueshifted peak in absorbance spectrum is not
due the shift of eigenenergies, but due to in-phase addition of
weakly coupled Hartree oscillators, i.e., coherences in Hartree
basis. Mathematically, the effect is due to the second term on
the right-hand side of Eq. (9).

V. THE INFLUENCE OF EXCHANGE INTERACTION
EFFECTS

To evaluate the effects of the exchange interaction, we
plot the absorption spectrum for the doping density 2.2 x
103 cm=2 and QW thickness L = 18.5 nm by calculating
the density matrix elements from Eq. (8) which take into
account the exchange terms as perturbation to the Hartree
ground state. These equations include different exchange
(Fock) terms, namely, those responsible for the frequency
shift of intersubband transitions [the third term on the right-
hand side of Eq. (8)] and for the coupling of coherences
[the fourth term on the right-hand side of Eq. (8)], which
can be taken into account independently. In Fig. 4, we show
the absorption spectrum when different terms are included.
We can see that the blueshifted strong peak is mainly due
to Hartree terms in the coupling. Slight blue shift produced
by Fock terms in the energy renormalization is almost com-
pletely compensated by red shift caused by Fock terms in
coupling. This effect of compensation can be explained by
comparing different terms in Eq. (8) taking into account ex-
pression (2) for the overlap integrals V.7, (¢). It is obvious
that both “Fock” sums in Eq. (8) are mostly defined by terms
proportional to coefficients V', (¢) which tend to infinity
with g close to zero. Such divergences can be avoided by
taking into account the screening effect (see Appendix D),
but these terms are still prevailing in the sums. The co-
efficients anf,’l‘;(q) in these terms have indices m =n, [ =
p and only weakly depend on them, so that they can be
approximately written as V%* (q) ~ VD5 4=08mnb1p X F(q),

mnlp
where V2P%(g) is the two-dimensional Fourier transform of
the screened Coulomb potential and F(g) is a positive-value
dimensionless decaying function with characteristic decay
scale equal to 1/L. Here the superscript s stands for screened.
Leaving only these dominant terms, the part of the overall
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sum responsible for the Fock energy renormalization is

d
ih— nmk
th—p. (k)

Fock energy renorm

S

1
== 2 2 Pook + DV, @i = Vi, (@)pn ()
Ip q

1 .
~ =V Y F @)k + q) = Pk + 4))pun(R);
q

whereas the part of the sum which defines the exchange effects in coupling is given by

d
ih— nmk
ih=p. (k)

Fock coupling p#g 4

1
S

-5

npgm(q)ppg(k + q)()omm(k) - pnn(k))

~ =2V 0D F @k + @) () = pun(K)).
q

The region of wave vectors k + ¢q € 8k,,,, where the population difference (0,,(k + q) — pum(k + q)) is far from zero,
coincides with the region where the coherence p,,(k + ¢q) is excited. Replacing these quantities in this region by their
mean values p,,(k +q) — ppumk + q) =~ 0,,(k) — D,y k), ik + q) = 0,,,(k), we get the following estimations for the two

exchange effects:

L d 1 — - s
i P () ~ =< PR By K) = P EDVPH| o D Fl)
dt Fock energy renorm S q,k+qedk,,,
. d 1_ s
iTi— D (k) ~ <P ) = pun TNV " F(g). (41)
dt Fock coupling S q.k+qedk,,,

One can see from here that the blue frequency shift due to
Fock terms in energy renormalization and red shift caused by
Fock terms in coupling are of the same magnitude but opposite
sign and therefore nearly compensate each other. Indeed, by
order of magnitude |p(k) — pum(k)] < 2 and V25| o ~

2 . .
’;ﬁ , where the last expression follows from screening theory

presented in the Appendix D. Furthermore, the number of
electron states in the region of wave vectors k + q € 8k, is
of the order of S5~ w,. Then for the frequency shifts we get

~ —1
AFock energy renorm ~ — AFock coupling ™~ @0 X o((kpL)™),

where in notations of Sec. IV A, wy is the average transition
frequency, kr is the Fermi wave number for a typical transi-
tion, and the small value 0((ka)’1 ) is defined by the decaying
function F(q). Each of these frequency shifts separately is
smaller than wg and their difference is even much smaller.
The result is confirmed by numerical calculations in Fig. 4
and provides the rationale for neglecting the exchange terms
when calculating the absorption spectra of highly doped QWs.

VI. CONCLUSIONS

We presented a consistent theoretical explanation of the
effect of Coulomb-induced collapse of multiple intersubband
absorption peaks in highly doped quantum wells into one
strong and extremely blueshifted peak. The theory is based
on the density matrix equations taking into account pairwise
Coulomb interactions of electrons within the Hartree-Fock
(HF) approximation. We show that in the high-doping limit
the optical response is described by linearly coupled 2N
first-order differential equations for intersubband coherences,
where N is the total number of the intersubband transitions.

(

Therefore the observed spectra can be understood within
an intuitive and transparent picture of self-synchronization
in a system of N coupled oscillators, which has numerous
analogies including the exact mechanical analogy. Analytic
expressions are obtained for the frequencies and oscillator
strengths of the new collective normal modes of the system,
renormalized by strong Coulomb interaction through the col-
lective field. In the high-doping regime, Coulomb-induced
synchronization leads to a merger of all intersubband ab-
sorption resonances into one sharp peak at the frequency
substantially higher than all “bare” intersubband transitions
and accumulating all their oscillator strength.
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APPENDIX A: THE HARTREE BASIS

The eigen functions of the Hartree Hamiltonian (6) can be
found from equation Eq. (7) written in “bare” (single-particle)
basis, using the expansion over the eigenfunctions of a single-
particle Hamiltonian A°, o)=Y, c”mgog (2):

S Hl = Eld, (Al)
m
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where the matrix elements of the Hartree Hamiltonian in the
“bare basis” are given by

Hy = E)Sun — NooVi + D ou(ef) efVin,, (A2)
Ipg

Here the overlap integrals V¢ and Ve given by Eq. (4)
and Eq. (5) are calculated over “bare” basic functions. p;; =
% Zk pu(k) are the Hartree subband populations, which are
calculated self-consistently from an integral over the global
Fermi distribution at finite temperature which contains the
sum over all Hartree subbands. At zero-temperature limit

(complete Fermi degeneracy), one can simply obtain

*

mj H
= —S(Er — E"), A3
pu=—3 (Er —E[") (A3)

where Er is Fermi energy and
(A4)

Nop = Z ou-
]

However, we used exact numerical calculations at room tem-
perature for all absorption spectra in Figs. 2—4.

APPENDIX B: THE SUM RULE FOR NEW COLLECTIVE
NORMAL MODES

Here we prove that the sum of new “oscillator strengths”
defined for the normal modes is equal to the sum of “oscillator
strengths” in the system of uncoupled partial oscillators:

2N, 2N,

ZF, :ZF,- =1. (B1)
=1

j=1

Taking into account Eq. (26), we can rewrite the first sum in
the form

N 2m* N
S A= S o
2 l
=1 e*NopE® 1=
2m* 25 2N
= W ZDjzlij ZBlkfzf)Qi-
l,j k=1

Then, using the relation D;;2; = leN‘ Z;;D;;, we obtain

2N, * 2N,

_ 2m
E = — E B fPZ::D:
£ ! ezNzDE‘” i M lkfk JitZil

Taking into account the relation D;; = (B~');; and Eq. (11),
the following transformation is possible:

2N, % 2N,

- 2m ®
;Fl = ANpE® %:Mjfk Z;i0ki

e 2t
= PNpE® Zﬂkf/f)wk + FNpE® Zﬂjf/f)ljk'A”p
k jk

Using Eq. (14) and the natural assumption that one-
dimensional basic functions are real, so that /;; = I}, it can

be shown that the second sum is equal to zero:

2m* il 2m* il
—_— L An; = —— i An; Angd;
ANy E® %:M./fk Jjk AN 2 Nop %:M]Mk AN
2m* il N
= —— ZMjAnj Z wi (Al — Al ) = 0.
h NZD J k,wr>0

As result, taking into account Eq. (19), we obtain Eq. (B1).

APPENDIX C: THE MECHANICAL MODEL OF
“COULOMB SPRINGS”

Here write the equations of motion for the model of
mechanical oscillators shown in Fig. 1. We consider one-
dimensional (along axis x) mirror-symmetric oscillation mode
of “upper” (blue) and “lower” (yellow) masses m coupled in
pairs by green springs, when their coordinates are equal in
absolute value and have a different sign. Let NV, be a total num-
ber of such oscillators (in Fig. 1 N; = 3). The grey “Coulomb
springs” couple each “upper” mass with all “lower” masses
and vice versa. The equations for the distances /; between the
two masses in each oscillator are

1 a 1
Emd7A1,- = —kiAl; — KAl = > ZK(Ali + AL,
J#i
where Al; =1; — Iy, Iy is the equilibrium spring length, k;
are spring constants of green springs which define par-
\/ % Note that the

“Coulomb springs” not only couple different oscillators but
also strengthen the coupling between the masses within
each oscillator. Under the condition of a large stiffness of
“Coulomb springs” as compared with the stiffness of green
springs,

tial frequencies of oscillations w; =

K]Vl‘ >> ki’

there is obviously a normal mode with in-phase motion of all
oscillators Al; = Al:

2
dr’
Its frequency is defined by the relation

K
Qpu = [/2—N;.
m

It is analogous to Eq. (32).

Al = —Q2 Al

APPENDIX D: THE SCREENING EFFECT OF
HIGHER-ORDER CORRELATIONS

Beyond the Hartree-Fock approximation, the screening
effect coming from higher order correlations should be in-
cluded. To do this, we need to replace the overlap integrals
of the Coulomb potential V,zfl,p(q) in Eq. (2) with their
screened values V¢’ (¢) in accordance with the following

! mnlp
relations [25]:

(@) = D empmi @V (@),
ij
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where

Emini(q) = Smidnj — V(@10 (g),

with

1-[0 (q) — lim )Omm(k + ‘I) - )Onn(k)

e—0F A (H’gm(k +q) — Hr?n(k)) — i (D1)

Note that we use static screening [26,27].
When the denominator in Eq. (D1) is zero, the numerator
will also be zero, so we need to consider the ways these two

limits are approached. If |g| — 0 and m = n, and we have

*

M0.(q — 0) = ——— ppu(k =0

If |q| # 0, the denominator in Eq. (D1) can still be zero, let us
say at k = kg, in which case

/Omm(kO + q) - pnn(k()) — apnn(k)
(HY,, (ko + q) — HY, (ko)) OHD, (k) iy,
— 0 Pmm (k)
aHr(r)Lm(k) k=ko+‘1.

So, the elements in the summation of Eq. (D1) are always
well-defined.

[1] S. A. Mann, N. Nookala, S. C. Johnson, M. Cotrufo, A.
Mekawy, J. F. Klem, 1. Brener, M. B. Raschke, A. Alu, and
M. A. Belkin, Optica 8, 606 (2021).

[2] N. Nefedkin, A. Mekawy, J. Krakofsky, Y. Wang, A. Belyanin,
M. Belkin, and A. Alu, Adv. Mat. 2106902 (2021).

[3] M. Piccardo, B. Schwarz, D. Kazakov, M. Beiser, N. Opacak,
Y. Wang, S. Jha, J. Hillbrand, W. C. M. Tamagnone, A. Y. Zhu,
L. L. Columbo, A. Belyanin, and F. Capasso, Nature (London)
582, 360 (2020).

[4] M. Jeannin, J.-M. Manceau, and R. Colombelli, Phys. Rev. Lett.
127, 187401 (2021).

[5] P. Forn-Diaz, L. Lamata, E. Rico, J. Kono, and E. Solano, Rev.
Mod. Phys. 91, 025005 (2019).

[6] M. Helm, The Basic Physics of Intersubband Transitions, In-
tersubband Transitions in Quantum Wells, Physics and Device
Applications (Academic Press, San Diego, 2000).

[7]1 T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
(1982).

[8] L. Wendler and E. Kandler, Phys. Stat. Sol. 177, 9 (1993).

[9] A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma,
M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori,
Phys. Rev. Lett. 109, 246808 (2012).

[10] G. Pegolotti, A. Vasanelli, Y. Todorov, and C. Sirtori, Phys. Rev.
B 90, 035305 (2014).

[11] Y. Todorov and C. Sirtori, Phys. Rev. B 85, 045304 (2012).

[12] M. Babiker and R. Loudon, Proc. R. Soc. London A 385, 439
(1983).

[13] M. Tokman, X. Yao, and A. Belyanin, Phys. Rev. Lett. 110,
077404 (2013).

[14] M. D. Tokman, M. A. Erukhimova, and V. V. Vdovin, Ann.
Phys. 360, 571 (2015).

[15] M. Tokman, Y. Wang, and A. Belyanin, Phys. Rev. B 92,
075409 (2015).

[16] A. K. Wéjcik, N. Yu, L. Diehl, F. Capasso, and A. Belyanin,
Phys. Rev. Lett. 106, 133902 (2011).

[17] J.-H. Kim, G. T. N. 11, S. A. McGill, Y. Wang, A. K. Wojcik, A.
Belyanin, and J. Kono, Sci. Rep. 3, 3283 (2013).

[18] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences, Cambridge Nonlinear
Science Series (Cambridge University Press, UK, 2001).

[19] Handbook of Chaos Control, edited by E. Scholl and H. G.
Schuster, 2nd ed. (Wiley-VCH, Weinheim, 2008).

[20] J. A. Acebrén, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and
R. Spigler, Rev. Mod. Phys. 77, 137 (2005).

[21] 1. Waldmiiller, J. Forstner, S.-C. Lee, A. Knorr, M. Woerner, K.
Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog,
Phys. Rev. B 69, 205307 (2004).

[22] E. H. Li, Phys. E 5, 215 (1999).

[23] A. Delteil, A. Vasanelli, Y. Todorov, B. Paulillo, G. Biasiol, L.
Sorba, and S. Sirtori, Appl. Phys. Lett. 102, 031102 (2013).

[24] 1. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl.
Phys. 89, 5815 (2001).

[25] P. Sotirelis, P. von Allmen, and K. Hess, Phys. Rev. B 47, 12744
(1993).

[26] J. Li and C. Z. Ning, Phys. Rev. Lett. 91, 097401 (2003).

[27] H. Haug and S. W. Koch, Quantum Theory of the Optical
and Electronic Properties of Semiconductors (World Scientific,
Singapore, 2004).

245403-12


https://doi.org/10.1364/OPTICA.415581
https://doi.org/10.1002/adma.202106902
https://doi.org/10.1038/s41586-020-2386-6
https://doi.org/10.1103/PhysRevLett.127.187401
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1103/RevModPhys.54.437
https://doi.org/10.1002/pssb.2221770102
https://doi.org/10.1103/PhysRevLett.109.246808
https://doi.org/10.1103/PhysRevB.90.035305
https://doi.org/10.1103/PhysRevB.85.045304
https://doi.org/10.1098/rspa.1983.0022
https://doi.org/10.1103/PhysRevLett.110.077404
https://doi.org/10.1016/j.aop.2015.05.030
https://doi.org/10.1103/PhysRevB.92.075409
https://doi.org/10.1103/PhysRevLett.106.133902
https://doi.org/10.1038/srep03283
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/PhysRevB.69.205307
https://doi.org/10.1016/S1386-9477(99)00262-3
https://doi.org/10.1063/1.4788753
https://doi.org/10.1063/1.1368156
https://doi.org/10.1103/PhysRevB.47.12744
https://doi.org/10.1103/PhysRevLett.91.097401

