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The addition of geometric reconfigurability in a cable driven parallel robot (CDPR)
introduces kinematic redundancies which can be exploited for manipulating
structural and mechanical properties of the robot through redundancy
resolution. In the event of a cable failure, a reconfigurable CDPR (rCDPR) can
also realign its geometric arrangement to overcome the effects of cable failure
and recover the original expected trajectory and complete the trajectory tracking
task. In this paper we discuss a fault tolerant control (FTC) framework that relies
on an InteractiveMultiple Model (IMM) adaptive estimation filter for simultaneous
fault detection and diagnosis (FDD) and task recovery. The redundancy resolution
scheme for the kinematically redundant CDPR takes into account singularity
avoidance, manipulability and wrench quality maximization during trajectory
tracking. We further introduce a trajectory tracking methodology that enables
the automatic task recovery algorithm to consistently return to the point of
failure. This is particularly useful for applications where the planned trajectory
is of greater importance than the goal positions, such as painting, welding
or 3D printing applications. The proposed control framework is validated in
simulation on a planar rCDPR with elastic cables and parameter uncertainties
to introduce modeled and unmodeled dynamics in the system as it tracks a
complete trajectory despite the occurrence of multiple cable failures. As cables
fail one by one, the robot topology changes from an over-constrained to a fully
constrained and then an under-constrainedCDPR. The framework is appliedwith
a constant-velocity kinematic feedforward controller which has the advantage of
generating steady-state inputs despite dynamic oscillations during cable failures,
as well as a Linear Quadratic Regulator (LQR) feedback controller to locally
dampen these oscillations.

KEYWORDS

Reconfigurable CDPR (Cable Driven Parallel Robot), IMM (interacting multiple model)
algorithm, LQR (linear quadratic regulator) control, FTC (fault tolerant control), FDD
(fault diagnosis and detection), EKF (extended kalman filter), redundancy resolution,
switching control

1 Introduction

Cable driven parallel robots (CDPRs) are lightweight mechanisms with favourable
power-to-weight ratios. They can be designed and structured to be manipulable over large
workspaces, which can prove useful in application domains such as painting, bricklaying,
material hauling, warehousing and concrete 3D printing. Large workspace domains bring
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with them a set of challenges such as increased cable sag, unmodeled
cable dynamics and the increased effects of environmental factors
such as unmodeled vibrations and air resistance. Heavy and
dynamically-changing payloads may also cause cables to experience
high tensions while possibly exciting unmodeled dynamic effects,
such as swinging payloads (if the system is under-constrained)
or unexpected cable collisions with surrounding objects in the
workspace. Here, the addition of geometric reconfigurability is
able to offer the flexibility needed to overcome some of these
challenges. Geometric reconfigurability in this context is the ability
of a robot to change its configuration through kinematic redundancy
which is introduced by actuating the cable attachment points
on the base frame of the CDPR. This robot is known as a
reconfigurable CDPR or rCDPR in this work. Although most CDPRs
can be manually reconfigured to accommodate different workspace
reachability requirements by changing their geometric attachment
points (as designed in (Gagliardini et al., 2016)), automating this
process for online reconfiguration provides unique advantages
that are still only minimally explored. For example, the robot
can not only move to new configurations or new locations in
the workspace without manual intervention, but can also gain
capabilities that would otherwise not be possible (Rasheed, 2019),
such as changing the quality (or performance index) of the pose
at the end-effector without effecting its position or orientation
(Zhou et al., 2014; Raman et al., 2020). Online reconfigurability
introduces the properties of kinematic redundancy (i.e. singularity
avoidance, self-motion) to a naturally actuation redundant system
(i.e. the kinematically controllable degrees-of-freedom at the end-
effector of a CDPR is less than the number of cables that support it).
In this work, we exploit geometric reconfigurability to introduce a
new control strategy for fault tolerance against cable failures.

This research is motivated by the development of a cooperative
robot (cobot) assisting in concrete delivery tasks such as concrete
3D printing or human-directed concrete application (Figure 1).
The cobot is expected to consist of two subsystems: (i) a cable
driven parallel manipulator that controls a payload over a large
workspace (called the macro-manipulator); and (ii) a continuum
robot enclosing a concrete delivery tube that provides finely directed
control through congested spaces (called the micro-manipulator)
(Srivastava et al., 2022).

This work contributes to the development of the first subsystem
by focusing on research questions involving the challenges posed
by the addition of kinematic redundancies to conventional CDPRs
(Raman et al., 2020; 2021; Walker et al., 2022). Online geometric
reconfiguration can recover the static workspace and mobility
lost through cable failures while also optimizing the quality of
that mobility to a feasible extent. The basic idea is pictorially
demonstrated in Figure 2. This form of fault tolerant control (FTC)
may be unique to the addition of kinematic reconfigurability in
CDPRs.

In our previous work (Raman et al., 2022) we demonstrated
a proof-of-concept implementation of the automatic cable failure
tolerant control framework that could simultaneously identify and
overcome cable failures in an automatically without requiring an
accessory diagnostic fault detection protocol. Failure identification,
pose estimation, and cable failure tolerant control are accomplished
simultaneously in this framework by relying on pose measurements
from the end-effector alone. An interactive multiple model (IMM)

adaptive estimation algorithm with a set of extended Kalman filters
(EKFs), where each EKF corresponds to a different motion model,
is applied to this measurement data and integrated into the control
scheme which in turn provides input information from a set of
controllers dependent on the different motion models of the failure
modes.

In this research, we build upon that body of work by eliminating
some design assumptions and increasing the uncertainties in
model and noise measurements. The plant model is simulated
to be as realistic as possible by incorporating disturbances,
actuator dynamics and non-linearities arising from cable elasticity
to demonstrate the real-world feasibility of the framework. In
addition, we track complete trajectories despite cable failures by
automatically returning to the point of failure to continue the task.
The framework is updated to include two controllers (i) a feed-
forward controller which has the advantage of input stability in the
face of dynamic oscillations during cable failures and (ii) an LQR-
based feedback controller stabilized around the desired joint inputs
that is helpful in damping dynamic oscillations during a failure
event and in recovering the trajectory quickly. The addition of the
feedback controller eliminates the need for the resource-intensive
feedforward kinematic controller to run at every timestep.

2 Related work

Fault tolerant control in robotics has a long history
(Visinsky et al. (1994)). The use of kinematic redundancy to
compensate for joint failures in serial robots is also well-established
***Maciejewski (1990). Early studies accounting for cable failures in
CDPRs (Roberts et al. (1998)) showed that static equilibrium can be
maintained (upon failure) if the robot is aligned to specific singular
configurations. Bosscher and Ebert-Uphoff (2004) noted two kinds
of failure modes: cable breakage due to excessive positive cable
tensions or slackness due to the lack of cable tension. These failure
modes could be precluded by limiting the desired wrenches at the
end-effector to lie within the available wrench set Bouchard et al.
(2010); Notash (2012) examined additional modes of cable failure
such as stuck actuators (applying a passive restraint on the end-
effector) or situations in which the actuator moves but the output
is biased. However, these works are limited to kinematic models of
CDPRs with ideal and inelastic cables. In a later work, Caro and
Merlet (2020) outlined all possible dynamic failures for cable driven
suspended robots and presented a practical passive solution to raise
the end-effector load and ensure human safety in the event of cable
failure. The authors noted the challenges of relying only on cable
length measurements through the encoders or the loss of cable
tensions to recognize that a cable failure has occurred. The authors
instead recommended measuring the cable angles through IMUs
affixed on the cables to detect a cable failure.

Outside of the context of cable failure, the challenges of
relying on encoder and force measurements have been noted
extensively in the context of CDPR control. Le Nguyen and Caverly
(2021); Korayem et al. (2018); Caverly and Forbes (2016) addressed
the futility of relying on forward kinematics from cable length
measurements to determine end-effector pose, reasoning that
encoder measurements do not necessarily correspond to the true
cable length, which may be affected by unknown deformations
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FIGURE 1
Micro + macro manipulator concept drawing for concrete 3D printing.

FIGURE 2
Geometric reconfigurability allows the trajectory tracking to continue.
(A) A cable fails. (B) However, sliders reconfigure to allow the
trajectory tracking to continue.

and stiffnesses. To mitigate this issue, pose estimation techniques
based on Extended (EKF) and Unscented (UKF) Kalman Filters
applied on data from payload mounted IMUs were implemented.
Korayem et al. (2018) further incorporated filtering with linearized
feedback control for CDPRs, demonstrating that payload mounted
IMUs can improve pose estimations in the presence of moderate-to-
high dynamic effects.

Other literature on CDPR cable failures focused on dynamic
failure recovery strategies or dynamic collision avoidance strategies.
For instance, Passarini et al. (2019) studied emergency stop
strategies for preventing collisions in cable suspended robots,
whereas Boumann and Bruckmann (2022) focused on a force
control strategy in the remaining cables of a cable-suspended robot
to minimize the safety risk of dynamic effects during cable failures
in the workspace. The authors assumed that the cable failures, when
triggered, were always correctly identified and the proposed control
framework was restricted to a post-failure setting.

Kinematic redundancies have also been shown to enable robust
fault tolerant systems in parallel kinematic manipulators (PKMs).
Notash (2011), for instance, investigated the effect of joint failures
on the motion of kinematically redundant PKMs by analyzing the
behavior of the changed kinematic model and setting task priorities
to recover complete or partial motion. However, literature on the use
of such redundancies for fault tolerant control (FTC) in cable driven
manipulators is non-existent.

In this work we have explored a popular approach to failure
detection and diagnosis (FDD) that has been utilized abundantly in
aerospace applications. This FDD technique employs Multi Model
Adaptive Estimation (MMAE) through the use of a bank of filters,
with each filter correlated to a possible failure mode that may occur.
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FIGURE 3
The kinematically redundant 4 cable CDPR.

FIGURE 4
Plant model.

In this study, we utilize an Interactive MMAE or IMM for short.
Within robotics, IMMs have been employed for tracking trajectories
(Mazor et al. (1998)) and behaviour prediction (Gill et al. (2019)) as
well as in actuator fault detection and identification (Tudoroiu and
Khorasani (2005)). Many of these studies focus on FDD only and
do not attempt to integrate controllers for task recovery. One of the
few exceptions is the work of Hill et al. (2021), where a non-linear
Model Predictive Controller is applied to recover from reaction
wheel failures that are identified through an UKF-based IMM for
satellite maneuvering; an approach that is similar to our proposed
strategy.

In this study, the cables are modeled as elastic springs.
Furthermore, we assume that the employed dynamic models for
control and estimation are imperfect and do not correspond
perfectly to physical reality (e.g., through the inclusion of parametric
uncertainties and process noise). We also assume that encoder
readings do not correspond accurately to the true position of the
end-effector and constitute an unreliable source of information; a
reasonable assumption to make when accounting for elasticity in
cables.

The inclusion of elastic behavior in the cables presents an
additional control challenge. A feedforward controller that employs

a simplified inelastic model does not account for this flexibility,
causing the internal dynamics to present as undesired oscillations
or vibrations at the end-effector. A feedback controller can be
challenging to design when the local cable stiffness parameters
(at time tk) are unknown or uncertain and the mapping from
input to end-effector state is highly non-linear. The challenges of
dynamic feedback control in CDPRs are well studied in literature,
but their application has largely been focused on systems with
cables of high stiffness. Feedback linearization Begey et al. (2018);
Picard et al. (2020), sliding mode, and H∞ controllers have been
successfully employed. Feedforward dynamic controllers like input-
shaping have shown success (Baklouti et al. (2021)) in minimizing
unwanted dynamics, especially in underactuated CDPRs (Idà et al.
(2021)). In all these systems, theCDPRdynamics is oftenwell known
and the topology is unchanging making the system predictable and
controllable. Nevertheless, model uncertainties and measurement
noise can continue to present a challenge and can be overcome
by the inclusion of an additional state estimation framework
Kosari et al. (2013). Another approach to optimal control is the
Linear-Quadratic-Gaussian (LQG) approach. In a recent work
Chen et al. (2022) successfully employed an LQGwith time-varying
LQR gains on a CDPR and demonstrated improved performance
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FIGURE 5
The 3 kinds of failures in a 4-PRPR CDPR (A) No failures (B) 1 cable
fails (C) 2 cables fail.

compared to a baseline feedforward controller. Korayem et al.
(2017) employed LQG alongside a feedback linearized controller
to demonstrate improved tracking performance in the presence
of model uncertainty and measurement noise. In this work we
use LQRs for local stability by employing the state estimates from
the IMM for state feedback. The steady-state control inputs that
the LQRs are stabilized around are generated through kinematic
feedforward controllers.

In this research, the applied IMM utilizes a parallel bank of
Extended Kalman Filters, with each filter corresponding to one of
the various cable failure modes. The mixed estimate from the IMM
provides a corrected pose estimate together with an understanding
of the current working mode. A parallel bank of feedforward
controllers computes a set of possible joint inputs to the plant model
(robot simulation) based on the desired trajectory information from
the waypoint following algorithm. This forms the steady-state input
that is modulated through a set of LQRs to generate updated inputs

to minimize dynamic oscillations. The control inputs from the LQR
are mixed with the IMMweights to control the robot.This approach
simultaneously detects the fault, provides a corrected estimate and
updates the input such that the systemcan robustly copewith sudden
failures.

This framework is implemented in a simulation-only setting and
thus serves as a proof-of-concept implementation of this framework.
The highlights of this paper are as follows: (i) an Interactive Multi
Model Filter is derived and demonstrated as a robust estimator for
cable failure detection and diagnosis (FDD) as well as for real-time
pose estimation of the rCDPR end-effector; (ii) a waypoint following
and a constant-velocity path tracking algorithm is introduced to
maintain constant velocity while path tracking and to recover the
trajectory from the waypoint closest to the break-point after a
cable failure event; (iii) a bank of kinematic feedforward controllers
generate steady-state control inputs through kinematic redundancy
resolution of each rCDPR model corresponding to each failure
mode; and finally (iv) and LQR-based local stabilization framework
is applied on the non-linear system to minimize local oscillations at
the plant and hasten the recovery.

3 System models

This section introduces the mathematical model of the robot
utilized in this research. The robot is a planar kinematically
redundant CDPR with a platform that is driven by 4 cables and 4
linear actuators housing the cable winch mechanism. The system
model is described in Figure 3. When the robot is fully functional,
the system possesses four cables which are actuated by cable winches
mounted on platforms on a linear actuator. The end-effector is a
planar rigid body whose center is given by the origin of frame {O}.
Of the three available degrees of freedom ({x,y,ϕ}), only two ({x,y})
are actively controlled. The cables are modeled as linear springs
whose spring constant is a function of the current free (untensioned)
cable length. The material constant of the cable stiffness is given
by k0, where k0 is interpreted as the stiffness per unit reciprocal
length of free cable. This indicates that longer cable lengths lead
to lower stiffness in the cable and thus higher elastic deformations
for the same tension. The current stiffness of the cable is therefore
given by k = k0

lp,0
where lp,0 is the current free length of the cable.

The true cable length lp is the length of the prismatic joint from
{S3}i to {F}i as seen in Figure 3 such that lp = lp,0 +Δlp where Δlp is
the cable elongation due to tension. Many approaches to modeling
cable stiffness assume that the true cable length and free cable length
are equal in the calculation of the current cable stiffness Verhoeven
(2006), which helps decouple the dependence of cable stiffness on
the cable tension and helps linearize the system. This assumption
is not made here. The free cable length lp,0 was determined to be
closer to the encoder value given by lc = rθ where r is the winch
radius and the interdependence of cable stiffness and cable tension is
maintained.The tension in the cables is represented by τ = k (lp − lc)
where the condition lc < lp is maintained as much as possible to
prevent cable sag. The cable tension is modulated by a unit step
function, such that when this constraint is violated, the cable tension
becomes zero, mimicking a realistic consequence of cable sag.

The cable-winch attachment points, {S2}, are not constant as in
traditional CDPRs, but insteadmove along linear actuators along the
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FIGURE 6
The Interactive Multiple Model (IMM) filter.

FIGURE 7
Constant velocity carrot-follower.

x-axis of the base frames {S1}. The longitudinal positions of these
attachment points with respect to the base frame are given by ls.
Both the slider joints and the cable winchingmechanisms are subject
to actuation dynamics which inform the cable tensions and cable
stiffnesses that effect the dynamics at the end-effector.

3.1 Actuator dynamics

Let the complete joint input vector from the controller (i.e.
desired reference values to the plant model) be expressed as q =
[ls lc] and the realized joint vector (actual values at time t) be
given by q′ = [l′s l′c].Themoving slider bases aremodeled as single

degree-of-freedom (DOF) second order linear systems subject to
maximum and minimum velocity constraints to mimic the motion
of a screw-type linear actuator. The bases are modeled with inertia
and friction and a simple proportional controller as shown in Eq. 1.
For every ith actuator in the vector ls (dropping the subscript i to
indicate each individual slider joint) wemodel the dynamic equation
as,

m ̈l′s + d ̇l
′
s = gp,ls (ls − l

′
s)

s.t. ̇l′s,min < ̇l
′
s < ̇l
′
s,max

(1)

where gp,ls is the proportional gain and the maximum velocity that
a linear screw actuator can travel in is limited to a small value
(| ̇l′s,min| = | ̇l

′
s,max|). The motor cable spooling l′c is modeled as a first

order lag system, i.e.

Ts
̇l′c + l
′
c = gp,lc (lc − l

′
c) (2)

where Ts is the settling time and gp,lc is the proportional gain. In
addition to the specifiedmodels and constraints, there are also limits
placed on the position values of the actuator joints in order to set
hard constraints defined by geometric limits.

3.2 End-effector dynamics

The cable failure is modeled as a linear drop in the cable stiffness
of the failed joint, i.e., ki→ 0 over a small but finite time interval
Δtf . Thus if there is no change in winch angle as the cable fails, the
tension in the corresponding cable falls. The full dynamic model of
the rCDPR can be derived via the Lagrangian approach as

Mẍe +D(ẋe) ẋe = Jw (xe, l
′
s) Kq [lp (xe, l

′
s) − l
′
c] (3)

where end-effector pose is given by xe = [x y ϕ]T and Jw(xe, l
′
s) is

the pulling map or wrench Jacobian.The prismatic length, lp, comes
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from inverse kinematics. Both are dependent on the current pose,
xe, and the realized geometric attachment points, l′s , while the joint
state stiffness matrix, Kq, is a diagonal matrix with the elements
(k1,…,k4). M is the mass/inertia matrix whose coefficients are
informed by themass and shape of the end effector.This formulation
ignores the effects of Coriolis forces.The damping coefficients of the
damping matrix D are minor and expected to be a result of surface
friction alone. An effect of low cable stiffness and damping constants
is that oscillations induced due to system dynamics in operation or
during cable failure do not dissipate easily. A feedforward controller
for such a system would be intractable. The complete dynamic
system is shown in Figure 4.

3.2.1 First order motion model
The states of the end-effector are given by x = [xe ẋe]T. The

resulting non-linear system model is given by

ẋ (t)= f (x (t) ,q′ (t) , t) +ω

ỹ = h (x (t) , t) + v
(4)

where ω and v are zero mean Gaussian vector processes accounting
for model and measurement delta correlated noise. The non-linear
vector functions f and h emerge as

f (x,q′)= [

[

ẋe
M−1Jw (xe, l

′
s)Kq (lp (xe, l

′
s) − l
′
c) −M

−1Dẋe
]

]
h (x) = [xe]

(5)

where the explicit dependence on time has been dropped for
ease of notation. The measurement model assumes that unbiased
noisy position measurements are directly available, for instance by
processing and filtering information from an on-board IMU or a
range-based localization system.

3.3 Model assumptions for estimation and
control

The motion models employed in the Extended Kalman Filters
for the IMM (Section. 3.2) and the LQR (Section 5.4) use Eq. 4
and 5 as the motion model. Three motion models are employed
to describe the seven working modes 4.1. For each working mode,
the effect of the corresponding cable failure is incorporated in the
dynamic model through the loss of stiffness in the respective cables.
However, the model does not consider the true stiffness constant
value from the plant model but instead employs static parameters
corresponding to the different failure modes. In addition, it does
not consider the model for actuator dynamics, but instead accepts
a measurement of the current joint state, q̃′ = q′ + v′, where v′

is modeled as a zero mean Gaussian delta correlated noise. On
the other hand, the LQR assumes that the joint input to the
motion model is the desired joint state. This is further discussed in
Section 5.4.

The kinematic feedforward controller does not use the dynamic
models and instead relies on the computation of the forward and
inverse kinetostatic solutions for the redundant system. The cable
stiffness model used to compute the desired cable tensions is
approximated to consider the true cable length instead of the free

cable length (k = k0
lp
).Thiswas done to remove the direct dependence

of the cable stiffness parameter on lc which is a control variable.
These assumptions add unmodeled uncertainties to the control

and estimation problem. The complexity introduced by this
bears resemblance to similar challenges associated with real-
world experimental implementations. In addition, only a single
measurement source (at the end-effector) is considered. It must
be emphasized that the simulated measurement noise is unbiased
and Gaussian. The deteriorating effect of measurement bias (such
as IMU drift) on most estimation approaches is well known and
well explained and are not considered in this work. Sensors such as
ultrasonic sensors, GPS devices or visual systems can help eliminate
bias. The selected measurement noise characteristics in this work
was not based on simulations of a real measurement device.

4 Estimation of failure states

4.1 Failure mode classification

Cable failure in a CDPR reduces the degrees of freedom (DOFs)
or the quality of the DOF (i.e. manipulability or dexterity) available
at the end-effector. We control only 2 DOFs at the end-effector for
the four-cable planar CDPR model in this paper. The total working
modes considered can be described by 3 motion models (i) an over-
constrained CDPR with 4 cables, (ii) a fully constrained CDPR with
3 cables and (iii) and under-constrained CDPR with two cables
(Figure 5).

Therefore, there are 7 total working modes (mode 1) no cables
have failed, (modes 2–5) only cable A, B, C, or D fail, (mode 6)
cables A and B have failed, (mode 7) cables C and D have failed.
If any other failure combination occurs, significant areas of the
workspace become unreachable and are considered to be complete
failure modes (i.e. cannot be recovered from). If the sliders were
not constrained to geometric limits and free to move like mobile
robots or drones, then these additional failure modes can also be
considered.

4.2 Interactive multiple model estimation

An interactive multiple model filter (IMM) is a dynamic
estimator (Blom and Bar-Shalom (1988)) which can be used when
model changes appear suddenly or gradually over time, providing
means for failure detection.The process flow of an IMM is shown in
Figure 6.

In general, the bank of filters in an IMM can be realized by a
variety of estimation approaches, i.e., Kalman Filters (KF), Extended
Kalman Filters (EKF), Unscented Kalman Filters (UKF), Particle
Filters (PF), et cetera. In this study, we use an EKF formulation in
which the error dynamics are approximated by a first order Taylor
series expansion about the estimated state, x̂, i.e.

F =
∂ f (x,u)

∂x
, H =

∂h (x)
∂x

(6)

Here, F6 × 6 is determined numerically by a complex step derivative
approximation and H3 × 6 is simlpy given by [I3×3 03×3], since we
directly measure the end-effector’s position. In this study, the EKF
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FIGURE 8
Feed-forward kinematic controller.

is applied in the discrete time domain; hence, the Euler-Maruyama
discretization of the motion model yields.

xk = xk−1 + f (xk−1,q
′
k−1)Δt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ϕ(xk−1,q
′
k−1)

+ωk
√Δt (7)

ỹk = h(xk) + vk (8)

where ỹ ∈ ℝm is the measurement vector, ωk ∼N (0,Qk) denotes the
process noise with covariance Qk ∈ ℝ

n×n, and vk ∼N (0,Rk) is the
measurement noise with covariance Rk ∈ ℝ

m×m. The sampling time
is denoted by Δt, and k is the current time step.

LetM be the number of all workingmodes in a CDPR at the kth
time step. Then, the input to the filter is the current measurement
and mixed state estimate x̂+0. The algorithm broadly consists of four
stages (Gill (2019)).

1. Interaction and Mixing: The weights and the estimates from the
last cycle are mixed as per their associated Markov transition
probabilities given by the Markov transition matrix, A (also
sometimes called the Markov switching matrix). The predicted
probability for the filter to end up in mode j in each cycle, given
that it was in the mode i during the previous cycle is given by

w(i|j)k =
1
̄cjk
w(i)k aij

̄cjk =
M

∑
i=1

w(i)k aij

(9)

with ̄cjk being the normalization factor, and where aij is the Markov
transition probability from mode i to mode j. As the true transition
probabilities are unknown, the matrix A is a symmetric positive
definite matrix of scalars that are tuned experimentally.The selected
values have a significant impact on the response time and sensitivity
in responding to cable failures. High values at the diagonals may
cause the IMM to be sluggish whereas evenly distributed values
along the whole matrix may cause the system to be overly sensitive
to change. The mixed initial state estimate at the start of the current
time step is provided by

x̂+0jk =
M

∑
i=1

w(i|j)k x̂+ik

P+0jk =
M

∑
i=1

w(i|j)k [(x̂
+i
k − x̂
+0j
k )

(x̂+ik − x̂
+0j
k )

T
+ P+ik ]

(10)

2. Model Specific Filtering: The mixed initial estimates are fed into
the EKF and processed in two steps, i.e.

• Propagation:

x̂−jk = x̂
+0j
k + f(x̂

+0j
k ,q
′
k)Δt

P−jk =Φ
j
kP
+0j
k ΦjT

k +Qk

Φj = I+ FjkΔt

(11)

• And update:

K(j)k = P
−j
k H

jT
k [H

j
kP
−j
k H

jT
k +Rk]

−1

x̂+jk = x̂
−j
k +Kk [ỹk − h(x̂

−j
k )]

P+jk = [I−KkHk]P
−j
k

(12)

Here, ‘+’ denotes the a posteriori estimatewhereas ‘−’ denotes the
a priori quantity before the update.The likelihood of ameasurement
is then given by

p(ỹk|x̂
−j
k ) =

1

[det(2πE−jk )]
1/2

⋅exp[−1
2
e−jTk (E

−j
k )
−1
e−jk ]

with E−jk =H
j
kP
−j
k H

jT
k +Rk

e−jk = ỹk − ŷ
−j
k

(13)

and where e−jk is the estimation error.

3. Model Probability Update: Now, the model probabilities are
updated via the likelihood with subsequent normalization, i.e.

wj
k= w

j
k−1p(ỹk|x̂

−j
k )

wj
k←

wj
k

∑M
i=1

wj
k

(14)

4. Combination: Finally, the updated estimate is given by

x̂+k =
M

∑
j=1

wj
kx̂
+j
k

P+k =
M

∑
j=1

wj
k [(x̂
+j
k − x̂
+
k)(x̂
+j
k − x̂
+
k)

T
+ P+jk ]

(15)
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The weight vector, wk, displays the importance associated with
each model in the bank. For example, if there are no cable failures,
the IMMwill determine the first model (mode 1) to have the largest
weight. This vector also informs the balance of joint inputs to the
controller as described in the next section.

5 Control framework

The objectives of the control framework are to not only stably
manipulate the end-effector for trajectory tracking, but to do so with
constant velocity and reliability of trajectory recovery upon cable
failure. An earlier effort Raman et al. (2022) deployed a feedforward
PD based control law for task space trajectory error minimization,
but this was considered insufficient for addressing some finer
requirements. For example, in 3D printing tasks the end-effector
is required to (i) return to the point of failure before continuing,
(ii) maintain constant velocity during trajectory tracking and, (iii)
minimize dynamic oscillations at the end-effector after cable failure.

While designing a path following controller for a CDPR, the
end-effector can generally be modelled as a holonomic robot.
However, in most CDPRs, the ability to control the orientations
of the end-effector is severely limited by geometric constraints.
Reconfigurability can be an advantage here, but since our system
model limits the motion of this attachment point to a straight
line with finite dimensions, the orientations are only moderately
more controllable than a traditional CDPR. Thus, we drop these
from consideration for control and seek to only align the desired
2-D end-effector velocity vector with the tangent of the required
trajectory.

In this section we present waypoint following algorithm
integrated with a velocity level path following controller to recover
the trajectory from the break-point (i.e. the precise location on
the trajectory where the cable fails). This framework allows the
recovery algorithm to be completely reliable even in the event of false
positives by the estimator. In addition, this section also details the
challenges of cascaded control and redundancy resolution in both
the static space and task space while manipulating a kinematically-
and actuation-redundant parallel manipulator.

5.1 Path following

Wefirst discretize and parameterize the reference trajectory into
a set of constant arc-length waypointsWs.

Ws = {pi = (xi,yi) i ∈ 1→Ni} (16)

where Ni is the total number of waypoints. The constant
arc-length waypoints are numerically determined from the path
equation. This re-parameterization ensures that regardless of the
chosen trajectory equation the distance between any two waypoints
is never too large. Waypoints function as an ordered set of markers
without time parameterization that can be dropped from the
waypoint map as the robot traverses within a threshold of it. The
robot always moves toward the next waypoint in the map regardless
of cable failure or any other unpredictable disturbance at the end-
effector that may temporarily navigate the robot away from the
desired trajectory.

Next, we use a constant-velocity carrot following controller
to traverse straight line intersections between any given pair of
waypoints.

The shortest distance from the current position of the robot
end-effector origin, shown in Figure 7 by frame {O}, intersects
with the line segment at the point pn and forms a normal vector e
whosemagnitude forms the cross-track error. If the projection of the
robot frame origin {O} lies outside of the line segment, the shortest
distance is simply the distance to the closest end-point. Therefore,
the cross-track error vector is determined by first projecting the
robot origin on the line segment p through a dot product and
capping the magnitude of the projection ‖p‖ ∈ [0, lW ,i] where lW ,i
is the length of the current line segment. If oW is the vector between
frame {O} andWi, then the cross-track error vector is always given
by e = oW + ‖p‖p̂.The reference velocity is a constant and is given by
vref . Thus the reference velocity vector which lies along the current
line segment is vre f = vre f p̂. The desired direction of the velocity
vector is given by vd = e+ vref . The final desired velocity vector has
its velocity always capped at vref and is therefore given by v = vre f v̂d.

As the cross-track error approaches zero, the desired velocity
vector and the reference velocity vector aremore closely aligned.The
joint states required to achieve this velocity are computed through
redundancy resolution-based inverse kinematics. When the end-
effector reaches within a certain threshold of the next waypoint, the
waypoint mapWs updates by dropping the first value from the list.
This strategy allows the robot to always move towards the second
waypoint in Ws, while the first waypoint serves as a marker for the
connecting line segment to be tracked. If the robot snaps or moves
off track, it stillmoves towards the secondwaypoint ensuring that the
trajectory we want to track is traversed approximately from where
it deviates. The choice of arc length chosen above determines the
maximum size of the missed line segment.

5.2 Inverse kinematics and redundancy
resolution

For a given end-effector pose, there are infinitely many solutions
in the joint space of kinematically redundant CDPR. Considering
that this system has two kinds of redundancies, actuation and
kinematic redundancy, the solutions for determining the optimal
joint states can be quite complex. In this study, a feedforward
kinematic controller was applied and as a result, the redundancy
resolution schemes and joint determination use kinematic models.

5.2.1 Infeasibility avoidance
Singularity avoidance is an important part of the kinematic

redundancy resolution control that determines the joint states.
With CDPRs, it is additionally of importance to avoid infeasibilities
in the wrench space. i.e., the configurations of the robot should
always maintain positive cable tensions. Recent approaches use
maximization of the volume of the wrench polytope Bosscher et al.
(2006) (or the Available Wrench Set, AWS) as the cost function
for ensuring this feasibility Rasheed (2019); Xiong et al. (2022).
The available wrench polytope is a description of the wrench
or manipulability ellipse that, unlike Yoshikawa’s measure of
manipulability Yoshikawa (1985), provides a more accurate and
scaled representation of the true wrench space. This is especially
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FIGURE 9
LQR stabilization and input mixing.

TABLE 1 Dynamic Model Parameters.

Parameters Notation Value Units

End-effector dimensions b× h 0.16× 0.08 m×m

Base Span lb 0.56 m

Mass m 0.5 kg

Cable Stiffness Proportionality Constant k0 5 N

Surface friction coefficient μ 0.1 -

Gravitational constant g 9.81 m/s2

Minimum Cable Tension τi 0.5 N

Time period for cable failure Δtf 0.1 s

Process noise covariance Q [[[

[

10−10I3×3 03×3

03×3 10−3I3×3

]]]

]

{m, rad, s}

Measurement noise covariance R 10−5I3×3 {m, rad}

useful for CDPRs, where negative joint forces cannot be realized.
However, the calculation of the AWS is computationally expensive
and can still result in solutions that settle within local minima. For
this reason, we choose to look at the traditional manipulability and
wrench feasibility indices together by selecting the pareto-optimal
solution maximizing both.

Yoshikawa’s measure of manipulability quantifies the twist
and wrench capabilities of the end-effector. In 3 dimensions, the
manipulability for translational and rotational motion is considered
independently, and this holds true for 2 dimensions as well. Since we
do not wish to control the yaw motion of the end-effector, we only
consider the eigenvalues σ ∈ {σx,σy} of the twist Jacobian Jw

T(xe, ls)
corresponding to x and y. The measure of manipulability is then
given by

λ =
σmin

σmax
, 0 ≤ λ ≤ 1 (17)

For an n-DOF CDPR withm cables, the wrench quality index κ
indicates the quality of wrench feasibility of the system. For a fully
constrained cable robot it is simply the ratio of the smallest and

largest tensions required to maintain a pose Pott and Bruckmann
(2013). For a redundantly constrained CDPR, it is the largest value
that this ratio can take. In simple terms, the more evenly distributed
the tensions in the CDPR are to maintain the pose, the better its
wrench quality index will be. This index is calculated as follows.

• Let Jw be the wrench Jacobian for an n−DOF CDPR with the
dimensions n×m where the number of cables,m ≥ n+ 2. Most
poses in this workspace can be achieved with only n+ 1 cables,
so many feasible solutions of tensions may involve setting
tensions inm− n− 1 cables to zero and lead to a wrench quality
index of zero. However, a better tension set can be determined
for the same pose.

• Assume a matrixJi whose columns are a subset of the columns
of Jw such thatJi is Jw with a set ofm− n− 1 columns dropped.
Thus for m columns in Jw there will be mCn+1 combinations of
Ji.

• Let ni = null(Ji). If every element in ni has the same sign,
then this vector contains the minimum set of cables that
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FIGURE 10
Trajectory tracking and recovery after cable failure (A) No failures yet
(B) After 1 cable fails (C) After 2 cables fail.

must be tensioned in order to maintain a pose (the tension
in the remaining cables is zero). Expand the vector ni such
that zeros are inserted into the vector for every dropped
column. For example, if n = 2 and m = 4, and J1 is a reduced
matrix of Jw with the first column dropped. Then n1 =
[0 n1,1 n1,2 n1,3]T

• Assemble all such vectors ni whose elements contain the same
sign and eliminate the negative signs ni = −ni iff ni,j < 0∀ j.

• Sum all the assembled ni that meet these criteria into a single
vector z of the dimensionsm× 1.

• Drop all the elements in z that are zero. If the number of
remaining elements are less than n+ 1 then the wrench quality
index, κ = 0. If κ is 0, then the system is not wrench feasible.

• If the number of elements is greater than or equal to n+ 1, then

κ =
min (|z|)
max (|z|)

(18)

For a fully constrained CDPR, the null space of the wrench Jacobian
in one dimensional, so Eq. 18 is directly applied on the null vector
(if the elements all contain the same sign. Otherwise κ = 0).

Cable failure can cause a sudden change in the instantaneous
static workspace of the robot.The following waypoint on the desired
trajectory can often lie outside of this new workspace. The sliders
form the kinematically redundant joints that drive the robot away
from singularities where necessary, but sometimes if the desired
velocities at the end-effector are large enough or at an unusual angle,
the sliders may be unable to move fast enough to compensate and
the controller inadvertently pushes the robot into a singularity. To
prevent this, we constrain the magnitude of the maximum allowable
velocity with dependency on κ,

v = vmax √κ v̂ (19)

where v̂ is the unit velocity direction vector. This is only utilized
when the robot kinematics have placed the robot away from the
trajectory, such as during the initialization. In normal operation for
trajectory tracking the tracking velocities are slow enough that this
is not a major concern.

5.2.2 Redundancy resolution
This redundancy resolution scheme is applied on kinematic

equations to determine an optimal position level joint solution,
q* = [l*s l*c]. These inputs may not be dynamically feasible, nor is
the feedback being actively measured, so they are instead locally
thresholded to a velocity-limited value q0 = [ls,0 lc,0]. The optimal
joint slider positions l*s are determined from an objective function
that seeks to maximize the manipulability and wrench quality at the
end-effector. This aids in avoiding singularities as the sliders travel.
The joint sliders are velocity-limited through a velocity thresholding
function (Eq. 20). For the ith model (subscript i is dropped),

l*s =max
ls
(κ,λ)

lk+1s,0 = l
k
s,0 +Δls,0

Δls,0 =min(max(l*s − l
k
s,0,vs,maxΔt) ,vs,minΔt)

(20)

where κ and λ are the wrench quality index and manipulability
measure respectively.The slider velocity is given by vs. Feasible slider
positions are required to calculate optimal cable winch positions
for a given time-step. Ideally, slider positions and cable winching
should be controlled in alternate timesteps in order to utilize
slider measurements to calculate the desired cable winch position.
However, by thresholding the slider velocities to |vs,min| = |vs,max|
such that the control actions ls,0 lie within the linear region
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FIGURE 11
The weights denote the dominance of the corresponding cable failure case.

FIGURE 12
Estimation error over time.

FIGURE 13
Desired and actual velocities at the end-effector.

of the slider dynamics allows us to approximate control actions
for sliders and cable winches within the same time-step. Any
inaccuracies can be subsumed within model disturbances. The LQR

feedback controller allows for enough leeway to compensate for
these inaccuracies.

For the final motionmodel, the DOF at the end-effector reduces
to one and the manipulability ellipse reduces to a line, making
singularity avoidance a non-issue. Wrench feasibility in a single
dimension is also trivially maintained. For this case, the objective
function for the cables manipulates the end-effector along the
single axis in the body frame, while the slider position depends
on minimizing the error in a skewed axis (which is parallel to the
direction of slider motion in the robot frame). Even for CDPRs
with higher DOFs, ls can be made to depend on a multi-objective
function that simultaneouslymanipulates previously-uncontrollable
DOFs while maximizing workspace and pose quality.

Cable failure can sometimes lead to slack in the remaining
cables. While this property is not explicitly modeled in the system
kinematics, its destabilizing effect can clearly be identified if the
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FIGURE 14
Trajectory error over time.

FIGURE 15
Desired, true and measured slider positions over time.

true winch position lc is larger than the true cable length. This can
be prevented by setting a minimum pretension τmin and utilizing
the static redundancy to extract the desired tension in the cables.
Given the desired end-effector position and lk+1s,0 , we determine the
minimum positive tensions required to maintain this pose.

τ* =minττ
Tτ,∋ Jw (x

k+1
e , l

k+1
s,0 )τ = 0 (21)

The optimal winch positions, l*c, are then determined in a
straightforward fashion by considering the cable stiffness
model,

l*,k+1c =
Kql

k+1
p

(τ* +Kq)
(22)

where lp is the prismatic length or true (steady-state) length of
the cables, determined from inverse kinematics. The joint angle
velocities are not thresholded, so lc,0 = l

*
c.

5.3 Forward kinematics

Given the desired joint state q0,n of the nth working mode,
the desired steady state end-effector pose x0,n can be determined
through forward kinematics which is implemented by minimizing
the potential energy of the system.

x0,n = argminx0,nU =
1
2
(lp − lc0,n)

TKq (lp − lc0,n) (23)

s.t. lp − lc0,n > 0 (24)

where lp is true cable length calculated for each value of x0,n.
The cable tensions given by Kq(lp − lc0,n) must always be positive.
If this condition is not met, it indicates that the initial joint
state provided was not feasible which is generally a result of
one or more cables being slack. Fortunately, in the feedforward
control setting considered in this work, the desired winch position
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FIGURE 16
Slider positions (ls) over time.

FIGURE 17
Winch positions (lc) over time.

lc0,n employed in the calculation of the forward kinematics is
always less than the prismatic cable length lp. This calculation
is not influenced by the true input lc that is sent to the plant.
Thus, although cable slackness can exist in the plant model,
it is not encountered during the calculation of the forward
kinematics.

The task recovery algorithm has a parallel bank of trajectory
tracking controllers, each corresponding to a working mode. Each
working mode, n, runs an independent kinematic controller that
propagates the desired joint inputs in time such that it is the only
working mode. The controllers use simple kinematic models for the
different redundant CDPR motion models.
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FIGURE 18
True cable tensions (τ) over time.

The control loop accepts the current joint inputs, q to the
plant and determines the steady-state robot pose through forward
kinematics for the nth model (Figure 8). The way point tracking
algorithm accepts the current state estimate, x̂ to update the
waypoint and reference trajectory information if necessary.Through
the carrot following algorithm, the desired task space state is
determined and the redundancy resolution scheme is applied to
determine the desired joint state, q0,n. This is propagated through
forward kinematics again to determine the steady-state end-effector
pose, x0,n.

5.4 LQR stabilization

Although the full system is highly non-linear, local stabilization
(vibration dampening) is performed utilizing a Linear Quadratic
Regulator. The LQR assumes the system model in Eq. 5 and ignores
the actuator dynamics.This does not cause unwelcome destabilizing
effects as the update frequency of the LQR is low compared to the
dynamic joint controllers. The system model is linearized around
the desired steady-state operating point (x0,n,q0,n) that results from
a combination of forward and inverse kinematics in the feedforward
controller described in Section 5.2. The local system dynamics then
arise as

δxn,k+1= An δxn,k +Bn δqn,k

An =
∂ fn (x,q)

∂x
|
(x0,n,q0,n)
, Bn =

∂ fn (x,q)
∂q
|
(x0,n,q0,n)

(25)

where k is the time-step indexwithin the LQR feedback control loop.
Please note that the desired steady-state operation point (x0,n,q0,n)
is also time-varying, but at a much slower update rate than the

LQR loop. The slow update rate of the feedforward controller that
provides the desired steady-state operating point is useful here as
the redundancy resolution algorithm is the most computationally
expensive piece of the framework. Therefore, a zero-order hold
assumption without loss of generality is implied in Eq. 25. The
dynamic correction δqn,k for the kinematically optimal joint input
qn,k is now determined via a quadratic cost function, i.e.

δqn,k = argminqn

∞

∑
k=1

δxTn,kQδxn,k + δq
T
n,kRδqn,k (26)

subject to the dynamics in Eq. 25 and where Q and R are positive
semi-definite and positive definite weighting matrices, respectively.
The tuning of these terms depends on the desired overall impact of
the corresponding states on the cost function as well as limits on
the control effort. Here, the structure forQ andR has been chosen
as diagonal. Furthermore, the diagonal terms for the joint inputs
(R) are weighted equally. For Q, the entries corresponding to the
velocities in x and y outweigh the other values, as it is desired to
minimize velocity offsets dominantly.The resulting controller is then
given by

qn,k = q0,n −Knδx̂n,k = q0,n −Kn (x̂k − x0,n) (27)

where Kn is the LQR gain resulting for the nth model while the
estimated state x̂k from the IMM framework has been employed
as the feedback variable for the controller. When tuned well, the
LQR stabilization not only mitigates dynamic disturbances due
to the elasticity of the cables during normal operation, but also
dampens significant oscillations from cable breakage quickly. An
additional beneficial effect from the LQR inclusion is observed, as
even slackness after failure is more efficiently eliminated. Here, the
kinematic solution provides a new equilibrium point, and the LQR
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FIGURE 19
Maximizing workspace quality and manipulability.

FIGURE 20
Trajectory tracking and recovery without LQR for oscillation damping.

inherently rushes the system to arrive at this new stable kinematic
solution, thus significantly aiding in maintaining positive cable
tensions. For the over-constrained (4-cable) and fully constrained
(3-cable) rCDPR models, only θ0,n is subject to LQR stabilization as
this is enough to dampen perturbations in both x- and y-directions.
For the under-constrained (2-cable) model, the redundant joints l0,n
are also utilized to dampen disturbance components orthogonal to
the cable direction.

5.5 Input mixing

The bank of controllers independently determine the next
steady-state input for each failure mode.The bank of LQRs generate
optimal joint inputs that are mixed with the weighting matrix to
the plant model. The final mixed input gives precedence to the

dominant workingmode identified by the IMM. Due to this mixing,
the final mixed input from this stage will always be subject to some
perturbation. However, this perturbation is considered a reasonable
trade-off to accommodate a solution that is robust and reliable
during cable failure conditions.

The mixed joint input is applied to the dynamic model (plant)
and the measurements of the end-effector state inform the state
estimation and weight vector through the IMM. The complete
algorithmic framework is described in Figure 9.

6 Implementation and results

6.1 Simulation framework

The plant model described in Section 3 is perturbed with a
process andmeasurement noise tomimic unmodeled dynamics.The
cables are modeled as linear springs (where stiffness is a function of
free cable length) with no mass and no sag, while all other model
parameters are constants. Cable failure is modeled as a drop in cable
stiffness to zero over a finite time. If the stiffness is zero, the cable can
have no tension and thus has no impact on the platformdynamics. In
addition, if the dynamic input to the system causes a situation where
lc > lp, the tension in the dynamic equation is set to zero to mimic
cable sag. The plant dynamics and estimation run at a frequency of
1,000 Hz while the closed loop LQR feedback is run at 50 Hz. The
feedforward kinematic model, which is the most computationally-
intensive system, is run at 2 Hz.The entire framework is modeled in
MATLAB. The model parameters are given in Table 1.

6.2 Task recovery

Figure 10 demonstrates the application of the complete task
recovery algorithm. The red trajectory shows the true path of the
center of the end-effector while the green trajectory shows the
desired path. The blue dots are the predefined waypoints. The
failure of the first cable causes the end-effector to jump away
from its current path, but the algorithm immediately responds
by rearranging the remaining three winches and pulling the end-
effector back. This breakaway from the trajectory and subsequent
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FIGURE 21
Trajectory error for the case without LQR for oscillation damping.

FIGURE 22
Cable tension for the case without LQR for oscillation damping.

recovery with three cables is shown by the first kink in the red line
part way through the trajectory in Figure 10B. The failure of the
second cable and subsequent task recovery is seen further down the
trajectory in Figure 10C.

The IMM correctly identifies the failure, mixing and switching
the inputs as needed to automatically recover the trajectory tracking.

In Figure 11, the weights vector correctly assigns the largest
values to the current working mode. At the forty second mark,
we can see that the weight vector has correctly identified the
cable A failure, followed by the correct identification of the cable
C failure at the 10 s mark. The estimation error plots are in
Figure 12.
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FIGURE 23
Model identification is unaffected.

The robot is maintained at constant velocity throughout
its trajectory (Figure 13). The desired velocity during trajectory
tracking is 0.005 m/s or 5 mm/s which is a reasonable speed for
the dimensions of the workspace. During recovery, the end-effector
velocity is not a constraint, so the controller, mainly through the
efforts of the LQR, attempts to move the end-effector as fast as
dynamically feasible.

The trajectory error is minimized by the combined efforts
of feedforward controller and the LQR. The banded regions in
Figure 14 represent sections where the robot is in recovery mode,
attempting to minimize the trajectory error while compensating for
the changes in slider and winch position.

The robot does not enter singularities in the feedforward
controller.Figure 15 shows the plots of a single slider position (slider
C) for the secondmotionmodel. In the example trajectory shown in
Figure 10 this model is weighted highest between the 40 s and 80 s
timestamps.Thus themixed output from the LQR, l begins to weight
heavily in the favour of the control input l0,2 from model 2, while
the true slider position l′ begins to catch up. When cable C breaks at
the 80th second, this model begins to fall out of favor and the slider
position deviates from this value.

Figures 16, 17 depict the change in slider position and position
angle of winch respectively. The shaded regions represent the failed
state of the respective cable. The values of the slider and winch
positions in these regions are perturbed by the combined attempts
of the optimization to continue modulating this actuator and the
weighted input mixing but has no effect on the end-effector as
the corresponding cable is broken. This is seen clearly in the
plots observing the true tension in the cables in Figure 18. The
position values are not automatically settled to zero to account for
cases where the cable failure may have been misidentified by the
estimator.

A minimum value of pre-tension in the cables is maintained at
0.5 N as a good practice to eliminate the chances of encountering
cable slackness.This tension is seen to bemaintained throughout the
run with the minimum required tensions in the remaining cables to
propagate the end-effector along the trajectory. This demonstrates
that the tensionminimization scheme is working well. When a cable
snaps, there are brief moments of cable slackness while the tensions
re-distribute as the sliders reposition themselves and the winches

wind within their designed dynamics. These dynamics do not affect
the steady-state input from the feedforward controller and thus the
LQR bears the burden of recovery.

The redundancy resolution optimization for the slider positions
maximizes the manipulability and wrench quality. In Figure 19 we
see these properties hold high values in the first two-thirds of the
plot.These are the regionswhere the optimization-determined slider
positions are actively applied.This optimization is no longer relevant
for the two cable cases, where the slider position instead functions
to replace the lost degree of freedom.

6.3 Comparison study

For completeness, this section compares the results of the
previous section with a feedforward controller applied directly on
the system without the LQR. The update rate of the feedforward
controller is 50 Hz and all other parameters are kept the same. The
trajectory results are presented in Figure 20.

The trajectory error plot in Figure 21 indicates that the
oscillations do eventually dampen and the kinematic controller is
generally successful after this due to the slow velocities at the end-
effector.

The cable breakage causes the end-effector to swing causing
periodic slackness in the cable tensions (Figure 22).

The estimation depends solely on the end-effector
measurements, so it is unaffected by the controller dynamics as
seen in Figure 23.

7 Discussions

In this work we create an end-to-end control and estimation
framework to simultaneously accomplish cable failure diagnosis and
detection and cable failure tolerant control through the utilization
of an interactive multi-model adaptive estimation algorithm and a
bank of controllers to provide the mixed inputs. This framework
is applied on a planar reconfigurable cable driven parallel robot
(rCDPR); a CDPR with the ability to geometrically reconfigure
its cable winch attachment points through the utilization of linear
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sliders. We are able to create a system that is (i) automatic: it does
not require the faulty actuators to register a fault during the event of
a cable failure; (ii) robust; although it requires only measurement
data from the end-effector to estimate the correct failure state,
this data can be quite noisy and the models utilized in the filters
do not need to be perfect (iii) reliable; when the correct failure
state is weighed higher, the corresponding inputs associated with
this state have a higher impact on the inputs to the system which
improves the overall estimate. However, if an incorrect state is
weighed high, the corresponding inputs will create dynamics that do
not match the expected system profile which allows the correct state
to eventually be identified. In addition, the inclusion of the waypoint
following algorithm ensures that the robot always reconnects with
the trajectory at the approximate location where it deviated. The
utilization of a feedforward controller over a dynamic feedback
control helps improve the overall stability of the system. In addition,
since the feedforward framework does not require the current state
of the system, it can also be designed to be an offline controller that
can help improve computation times and realize a real-time control
system.The LQR feedback controller ensures not only that the robot
dynamics due to elasticity during normal operation are minimized
but also attempts to reconfigure the system as quickly as possible
when a failure mode is estimated. Although the input mixing at this
stage can cause some perturbation at the end-effector, this effect
is considered a reasonable trade-off for the overall advantages of
dynamic stabilization that the controller offers.
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