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Abstract— Cable driven parallel robots (CDPRs) are often
challenging to model and to dynamically control due to the
inherent flexibility and elasticity of the cables. The additional
inclusion of online geometric reconfigurability to a CDPR
results in a complex underdetermined system with highly
non-linear dynamics. The necessary (numerical) redundancy
resolution requires multiple layers of optimization rendering
its application computationally prohibitive for real-time con-
trol. Here, deep reinforcement learning approaches can offer
a model-free framework to overcome these challenges and
can provide a real-time capable dynamic control. This study
discusses three settings for a model-free DRL implementation in
dynamic trajectory tracking: (i) for a standard non-redundant
CDPR with a fixed workspace; (ii) in an end-to-end setting
with redundancy resolution on a reconfigurable CDPR; and
(iii) in a decoupled approach resolving kinematic and actuation
redundancies individually.

I. INTRODUCTION

Cable driven parallel manipulators are parallel robots that
employ cables in-lieu of rigid links. The actuation for such
a mechanism is provided through cable winching motors
that supply tension in the cables to keep the structure rigid.
Such robots are lightweight, able to carry large loads in
comparison to the required actuation work, can achieve high
velocities and can be constructed to navigate over large
workspaces.

However, cable driven actuation is accompanied with a
set of unique challenges such as unmodeled cable sag/cable
dynamics, increased effects of environmental factors (such
as vibrations, air resistance), and changing material prop-
erties due to tension or wear. In typical CDPRs, several
performance indices such as manipulability, stiffness, and
accuracy are greatly affected by the pose of the end-effector
in the workspace [1] or the geometric configuration of the
structure which consequently affects the quality of pose con-
trol. Nonetheless, CDPRs can be manually reconfigured to
accommodate different workspace reachability requirements
and performance qualities by changing geometric attachment
points. The value of this reconfigurability was first suggested
in a NIST project during the early 2000s [2]. Since then,
there have been a number of studies employing reconfigura-
bility to different extents with the goal of improving specific
workspace qualities [3], [4], [6].
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While a number of prior works focus on determining a
set of discrete cable attachment configurations (relating to
different orientation and quality requirements through opti-
mal design analysis), there is value in exploring an online,
real-time reconfiguration controller that can optimize differ-
ent performance indices at every point in the workspace.
However, said controllers are challenging to design, as the
redundancy resolution involves computationally expensive
non-convex optimizations, and as the resulting dynamics are
highly nonlinear.

In this work, we introduce a deep reinforcement learning
framework for real-time dynamic control a reconfigurable
CDPR (rCDPR) that: (i) can perform optimal trajectory
tracking control for a highly redundant dynamic system; (ii)
demonstrates the improved overall wrench quality as well
as manipulability performance of an rCDPR through the
addition of moving cable anchor points; and (iii) improves
the computation time to perform this dynamic control (as
opposed to classical controllers that require computationally
intensive frameworks for online redundancy resolution).

II. RELATED WORK

Limited literature exists that employs kinematic redun-
dancy resolution for parallel robots in an online framework.
This is due to the fact that redundancy resolution necessitates
the solution of several hierarchical optimization problems
at every time step. There is often a need for both local
and global optimization schemes, and the computational load
increases significantly when there are additional redundan-
cies (such as kinematic redundancies) in the system [5].
In most studies that consider geometric reconfigurability,
design constraints are included in the model development
to partially or completely eliminate the need for compu-
tationally expensive redundancy resolution. For instance,
the online reconfiguration planning described by Nyugen et
al. [7] utilizes optimization for reconfiguration planning, but
bounds the problem by increasing or decreasing the desired
workspace along a single dimension. Here, the authors are
able to easily define the bounds of the configuration space,
thus reducing the nonlinear constraints in the cost function.
In other deployments, such as [8], the entire solution space
is computed offline and deployed in an open loop for the
actual experiment.

Most existing studies limit redundancy planning and con-
trol to static and kinematic simplifications of redundant
CDPR (rCDPR) models, as task space control and kinematic
redundancy resolution schemes are less challenging in this
context. Our previous work follows the same principles by



employing a feedforward kinematic controller on a highly
dynamic rCDPR model [9]. Dynamic control can already
be ambitious in a traditional CDPR model due to the
nonlinearity of the system model and cable stiffness [10].
The addition of kinematically redundant joints and asso-
ciated actuator dynamics intensifies this challenge through
additional nonlinearities. For most studies, redundancies are
generally resolved using kinematic models compromising
dynamic control. Xiong et al. [11] address this challenge by
training a network to store a map of the required optimization
and by deploying this map in the controller. However, the
authors reduce the non-linearity of their cost/reward func-
tion by restricting the limits of the movable anchors and
workspace boundaries of the end-effector such that they do
not overlap. The quality of the wrench feasibility can vary
widely depending on the given pose and anchor position,
and the maximization of this quality can be locally non-
convex. Limiting the anchor and end-effector workspace like
this ensures that the anchors are always far away from each
other and the end-effector. While this ensures that the non-
linear constraints of ensuring wrench feasibility are never
violated, it also never explores the theoretical ability of an
rCDPR to ensure optimal performance even at the edges of
the entire available workspace.

Deep reinforcement learning (DRL) is an attractive so-
lution for complex dynamic control problems as it can be
model-free and comprehensive while significantly reducing
computation time in deployment. DRL has been successfully
applied applications in which control response time is criti-
cal [12]. There have been a few successful attempts to incor-
porate DRL control in CDPRs. Ma et al. [13] successfully
apply a Deep Deterministic Policy Gradient (DDPG) frame-
work for tension control on a CDPR by training the network
to minimize the distance to a series of randomly generated
points. Sancak et al. [14] employ a similar DDPG approach
on a planar CDPR while also training for dynamic tracking
on randomly generated sine waves. Lu et al. [15] employ
a Soft Actor-Critic (SAC) framework to optimize control
signals from an inefficient dynamic controller. Additional
studies have incorporated reinforcement learning in CDPRs
within other contexts, such as identification of parameter
biases [16], or vibration suppression [17].

So far, there have been no efforts in expanding the
capabilities of DRL to include the control of reconfigurable
CDPRs. The additional degrees of freedom for self-motion in
combination with the existing static redundancy (in tension
determination and wrench feasibility) create a challenging
research problem for the application of DRL based control.
The ideal redundancy resolution dynamic controller must
be able to: (i) complete the trajectory while maintaining
wrench feasibility at every point; (ii) maintain the best
possible performance index throughout the trajectory; and
(iii) account for the system dynamics while maintaining
acceptable tracking. In this study, we first develop DRL
based trajectory tracking control for a planar CDPR to estab-
lish a baseline implementation before expanding to include
kinematic redundancies. We apply careful reward shaping
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arising from system knowledge to arrive at a feasible and
satisfying policy. Finally, we demonstrate improved results
through the decoupling of the two sets of redundancies and
through training them sequentially.

III. CDPR ENVIRONMENT

This section discusses the dynamics of the planar kine-
matically redundant CDPR that forms the simulation envi-
ronment for DRL training. The rCDPR is driven by 4 cables
whose winches are housed on platforms moved by linear
actuators. For the full kinematic model, we refer to our
previous work [18]. When the system is stiff and sufficiently
tensioned, each cable link forms a prismatic joint between
the end-effector. In Fig. 1, {F'}; and {Ss}; form the end-
effector and base attachment frames of this prismatic cable
joint. The joint length is then given by [, ;. The tension in
the cables is represented by 7;. The mobile bases, represented
by {S2}; are actuated by linear actuators along the z-axis of
the base frames {S;};. The longitudinal positions of these
attachment points with respect to the base frame are given
by l ERE

Let q = [T ls] be the joint inputs to the plant and
realized inputs be q, = |7 l;} The joint sliders are
velocity limited to v;,q,; and v,,;, through a clamping
function i.e.,

llk _ l;k:—l + Als

Al = max(min(l§+l — l/sk, VmazAta), VminAtq) (1)

where k is the time index of the dynamic simulation, and
Aty is the timestep of the dynamic system. The full dynamic
model of the system can then be derived via a Lagrangian
approach as

M%, + D%, = P(x.,1,) T )
where x, = [z,y, ¢] is the end-effector pose, and P(x., l;) is
the pulling map or wrench Jacobian. The mass and damping
matrices are M and D respectively. This formulation ignores
the effects of gravity (as the system is planar). Finally, the
output states of the system are perturbed with zero-mean
Gaussian measurement noise.



IV. METRICS FOR REDUNDANCY RESOLUTION

This section introduces the necessary constraints required
for developing the reward function for incorporating redun-
dancy resolution in the RL framework. These are based
on established approaches to cost function design used in
optimization.

A. Optimal tensions

The tensions in a CDPR must always be positive. The
optimal tensions in the tension space are generally selected
by either maximizing the stiffness or minimizing the overall
tensions in the system. In this study, we choose to incorporate
tension minimization in the reward.

T
r= (Tmin - T) (Tmin - T) (3)
where T,,,;,, is the minimum allowable tension in the cables.

B. Optimal slider positions

The cost function for selecting the optimal slider posi-
tions is based on maximizing both the manipulability and
the wrench quality of the rCDPR. The best measure for
determining the wrench quality in a reconfigurable CDPR
is by exploring the Available Wrench Set and maximizing
its volume. Determining this value can be computationally
expensive. For a CDPR with a one dimensional null space
(as in our example), however, a reasonable marker of wrench
quality can be determined by calculating the ratio of the
smallest and largest tension required to maintain a pose, i.e.

z =null(P)

{ minEl if 2 > 0or 2 < 0 Vi

k= min(|z|) “)
~ max(l2]) else

If k is less than 0, then the system is not wrench feasible.
Maintaining a positive value of x is therefore essential to
ensure wrench feasibility. However, good wrench feasibility
is not enough, as the system must also be manipulable. In
3 dimensions, the manipulability for translational and rota-
tional motion is considered independently, and this holds true
for 2 dimensions as well. Therefore, we only consider the
eigenvalues of the twist Jacobian, PT (x,, 1), corresponding
to x and y, 0 € (04,0,). The measure of manipulability is
then given by,

A=Tmin g<a<i 5)
Umaz

and the manipulability in ¢ is simply given by o4. The cable
robot can be highly manipulable and still have poor wrench
feasibility. If the wrench feasibility is negative, the sign of
manipulability is also required to be negative. Since we do
not wish to actively control the yaw of the robot, we drop
the manipulability in ¢ from consideration.

Maintaining a balance of manipulability and sensitivity
ensures that the system moves away from singular configura-
tions without explicitly defining singularity free workspaces
to constrain the robot within.
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Fig. 2. Overview of reinforcement learning training with a TD3 agent

V. REINFORCEMENT LEARNING

The goal of DRL control is to select the the optimal control
policy that can maximize a cost function. The trained net-
work can be deployed in real-time in lieu of computationally
intensive optimization routines applied on cost functions that
may not always have an analytical solution.The first step
in solving any problem with DRL lies in formulation of
the task as a Markov decision process (MDP) [19] with
M = (s,a,p,r,7) being a tuple of the transition probability
p, the reward r, states s, actions a, and discount factor ~.
Given a state s; € s and action a; € a at time f, the
probability of transitioning to the next state s, and receiving
a reward r; is given by p. Thus, for a control problem, p
arises from a combination of the dynamics of the system
and the reward function defined for training. The goal of
the reinforcement learning algorithm, i.e. the agent A, is
to learn a control policy 7(s) through repeated interactions
with the environment while maximizing a cumulative reward
over a training episode. The success of a DRL control
scheme emerges from the meticulous selection of the hyper-
parameters for the training agent structuring of the control
environment and crafting of the reward function. Formulation
of the rCDPR control task as a learning problem is discussed
in the following section.

A. Problem Formulation

The reference trajectories are structured as Bezier curves
through a set of random points selected at the start of every
episode during training. A twin delayed deep deterministic
policy gradient (TD3) agent [20], an off-policy algorithm ad-
vantageous for handling continuous state and action spaces,
has been used for training. The agent comprises a total of
six neural networks of which one, known as the target actor,
is deployed as the control policy pi(s) once the training
completes.
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Fig. 3.

The actions vector a; forms the input to the simulation
environment is given by,

a =, 7|

(6)
The following states are measured from the simulation and
form the state vector s;,

. ’ ’
St = |X. X € €ex K A T ls}

(7

where ex and &, are the end-effector position and velocity
error, x and A\ denote the wrench quality and manipulability
index, and 7 and 1, are the realized tensions and slider
positions, respectively.

The reward function r; = f(s;) is calculated from the
desired control goal (minimize ex and eyx) subject to the
constraints discussed in section IV. The episode terminates
when the trajectory is completed. The training loop has been
illustrated in Fig. 3. The hyperparameters for the different
agents are given in Table V-A.

B. Reward shaping

Reward shaping plays a critical role in both the realized
speed and quality of learning. The policy behaviour can be
tailored by careful crafting of the reward function. Obtained

TABLE I
HYPERPARAMETERS FOR TRAINING

Hyperparameters ‘ Ar ‘ Al ‘ AL ‘ 1A~
Training Episodes 500 5000 500 1000
Critic Learning Rate le-3 le-3 le-3 le-3
Actor Learning Rate le-3 le-3 le-5 le-5
Experience Buffer 10000 100000 50000 50000
Batch Size 512 2048 1024 2048

®)

rCDPR

©

(a) Tensions only policy for a traditional CDPR (b) End-to-End training for the rCDPR (c) Decoupled policy training for the rtCDPR

rewards could be designed as sparse (a fixed value of reward
achieved for a certain kind of state transition) or continuous
(the reward value is a function of state values). Continuous
rewards have demonstrated greater success for cases in which
knowledge crucial plant dynamics can be encoded in the
reward function.

For the rCDPR system there are two primary objectives,
trajectory tracking and redundancy resolution. These can be
expanded into the following sub-tasks, i.e.

« Position tracking
Velocity tracking
« Tension minimization
o Wrench quality maximization
« Manipulability maximization

The challenge of manipulating an underdetermined system
must be translated into the crafting of the reward function for
rCDPR such that the expected behavior can be realized by
the learning agent. The final reward function for end-to-end
learning then yields

r= —wi|lex|l2 — wallex||2 — ws||Tmin — 7|13

—w4(l — k) —ws(1 —N) (8)

The first two terms of the reward function emphasize the
trajectory tracking performance. The last three terms of
the reward function are derived from the constraints in
Section IV to optimize the performance indices of the
system. Careful selection of the weights, w; will shape the
effectiveness of the training.

VI. EXPERIMENTS

A. Tensions Only Training, A,

This section forms the implementation baseline for our
experiments. In this model, the cable tensions are the only
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Fig. 4. Tensions only results

control variable (action), and the sliders are fixed at I5; = 0
(for all 7). The reward function used arises as

’I“=—leexHQ—w2||e)’<”2_w3||7min_7||§ €))

Here, the third constraint in the reward function minimizes
the cable tensions which provides the necessary convexity
for selecting the optimal homogeneous solutions. Similar
approaches have been discussed in [13], [14] and are
therefore not detailed here.

Figure 4 illustrates the operation of this trained agent.
The feasible workspace of the system is easily defined, and
within this workspace the robot is always manipulable. The
wrench quality index is highly dependent on the robot pose
so the dynamic fluctuations caused by the perturbations in
the actions are reflected in the wrench quality.

It shall be noted that the agent does not control or improve
these performance indices as they are solely dependant on
the geometry of the structure and are therefore not included
in the reward function in Eq. (9). Both values are expected
to peak at the center of the workspace and abate towards the
edges of the workspace.

B. End-to-end Training, Ay, +

For end-to-end learning, all eight actions (lg,7) were
learnt to track a given trajectory and to maximize the
performance indices as given by the reward function in
Eq. (8). The state vector used in conjunction with the reward
function for training is given in Eq. (7). Figure 5 shows
that the performance results of the end-to-end approach as
implemented were of mixed nature. On the one hand, the
implementation did not only demonstrate general feasibility
of the learned actions in an end-to-end approach for coupled
control with redundancy resolution, but also pose quality
exhitibed some overall improvement. On the other hand, the
end-effector was subject to oscillations along the trajectory
due to large perturbations evident in the tensions. An attempt
to reduce these perturbations through training negatively
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Fig. 5. End to end trajectory tracking

affected tracking quality. The challenges in learning were
narrowed down to the size of observation and action spaces
and the complexity of balancing multiple constraints in
the reward function. Multi-parameter reward functions are
difficult to visualize and thus impede the analyis of the
combined impact of each parameter on the total reward value.
The two input vectors are also unidirectionally coupled, as a
change in 15 also affects the selection of the appropriate cable
tensions 7. The effect of the necessary clamping function for
the slider positions also introduces a non-linearity which is
difficult for the TD3 agent to train for. However, the training
results were positively improved by selecting optimal values
for the initial slider positions at the start of a training episode
(through initial-point numerical optimization).

To reduce the dimensionality of the redundant solution
space, the learning task for the two sets of inputs was
decoupled in another approach as detailed in the following
sections.

C. Decoupled Training, *Ay,, 1A,

In this approach, the learning objective was decoupled
by training two different agents successively. Here, the first
agent %4, controls the slider positions and is trained to learn
optimal positions as a function of desired end effector poses.
The second agent YA, takes care of the cable tensions that
a learned while the policy of the first agent generates slider
positions.

1) Training for pose quality: The slider policy %m_(s;)
is learned by incorporating an aspect of imitation learning
in the reward function which is in practice similar to the
setting of behavior priors for faster training. The priors 1} are
determined from numerical optimization of the slider cost
function dwfs (s) for a given desired end-effector position.
Now, the reward function minimizes the error between action
priors I and the realized actions IIS, ie.

r=—w|[lF = L|[2 —wa(1—r) —ws(1—2X) (10)
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Since 1% is computed for the desired trajectory points and
supplies discrete discontinuous values at every time step (it
does not account for the slider dynamics), the addition of
the performance indices to the reward helps optimizing the
slider policy for complete trajectories.

2) Training for trajectory tracking: The agent ? A, learns
a control policy %7, (s;), for cable tensions using the reward
function

(1)

During this training, the slider positions are computed inde-
pendently. The optimal slider positions can be realized either
from optimization %} (s) or from the trained policy “m, (s;)
in section VI-C.1:

a) Slider positions from optimization, d771*s (s): Here,
the tension policy utilizing the optimal slider position 1%
was expected to train well, as these slider positions are
well behaved and are uniquely reproducible for any given
end-effector position in the workspace. This expectation is
confirmed in Fig. 6, the tracking is consistent, and the
realized slider positions are smooth. However, the wrench
quality is not quite optimal since the realized slider velocities
are clamped as detailed above in Section III.

b) Slider positions from slider policy ®m(s¢): When
the trained slider policy is used instead, the overall perfor-
mance indices are still expected to result in improvement,
as the policy incorporates knowledge of the slider dynamics.
However, the policy exhibited more complexity in training
and shows reduced tracking performance when compared to
the previous approach (as seen in Fig. 7). Yet, the wrench
quality demonstrates improvement for the same trajectory
while manipulability is slightly decreased, but remains on a
high level.

Figure 8 illustrates the four difference policies used for
inference for hundred random trajectories. The decoupled
training strategy trained on the optimization function (73 =
Ao, o ﬂ'i';) shows the best overall performance.

r=—wi|lex|ls —wallex|lz — ws||Tmin — 7'II3
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VII. CONCLUSION

In this work, we analyze different reinforcement learning
based approaches to implement end-to-end dynamic control
on a reconfigurable/redundant cable driven parallel robot
(rCDPR). The results provide an insight into challenges en-
countered during the training of the off-policy Twin Delayed
DDPG (TD3) DRL agent when learning a multi-constraint
reward function. Furthermore, the results demonstrate gen-
eral feasibility while improving performance in comparison
with the baseline implementation without redundancy reso-
lution. By decoupling the training of the large and partially
coupled input space, the learning process is simplified, and
the agents are successfully trained. This is confirmed when
comparing the end-to-end and decoupled learning agents
directly. Here, the end-to-end agent tries to aggressively
jump between multiple local minima to maintain overall
optimality of the entire learning episode. The decoupled
agents learn by maximizing reduced objectives (trajectory
tracking as well as tension minimization and improving pose
quality through slider optimization, respectively). Therefore,
the previously evident aggressive actions in the cables as
well as the resulting fluctuations in the pose quality metrics
are reduced. While the overall performance is not yet fully
optimal, the decoupled agent shows great promise, and we
expect that the trajectory tracking can be improved further
with careful reward shaping in future work.
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