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Abstract
Weconstruct families of locally recoverable codeswith availability t ≥ 2 using fiber products
of curves, determine the exact minimum distance of many families, and prove a general
theorem for minimum distance of such codes. The paper concludes with an exploration of
parameters of codes from these families and the fiber product constructionmore generally.We
show that fiber product codes can achieve arbitrarily large rate and arbitrarily small relative
defect, and compare to known bounds and important constructions from the literature.
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1 Introduction

A code C is broadly said to be locally recoverable if an erased symbol in any position i in a
codeword of C can be recovered by consulting a small number of symbols in other (fixed)
positions, called a recovery set for position i . Locally recoverable codes have been widely
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studied in recent years for their potential applications in reliable and efficient cloud storage.
For a survey on this topic, see [1].

A natural next property to look for in locally recoverable codes is the ability to recover
more than one erasure. There are two main approaches to this question. First, one could ask
that the single recovery set for each position allow for recovery of additional erasures within
the set, introducing the parameter ρ to recover ρ − 1 erasures. Alternatively, one could ask
that each position has multiple (usually disjoint) recovery sets, introducing the parameter t to
represent the number of recovery sets that each position has. Of course, these two approaches
can also be blended, producingmultiple recovery sets that each can recovermultiple erasures.
While this work focuses on the second approach for simplicity, the main construction can be
adapted to blend with the first approach. We note that while codes with very large availability
(on the order of the length of the code) are interesting and have important applications to
cryptography and private information retrieval, we focus here on codes with availability
sub-linear in the length of the code.

The Tamo-Barg method [10, 11] of constructing locally recoverable codes is based on
building a particular linear space of functionsV on an evaluation set B. The set B is partitioned
into extended recovery sets based on algebraic or geometric relationships between the points
in B, and functions in V are chosen so that they restrict to polynomials of a single variable
of bounded degree on each extended recovery set. If the value of the function at any point
in an extended recovery set is erased, it can be recovered through single variable polynomial
interpolation using the values of the function on the other points in the set. There is a large body
of work building on this approach. In [2], the authors construct locally recoverable codes with
availability t = 2 based on fiber products of curves and propose a group-theoretic perspective
on the construction. In [5], the authors generalize the fiber product construction to t ≥ 2 and
refine the parameters of the resulting codes. The group-theoretic method of constructing
locally recoverable codes with many recovery sets has also been studied, notably in [3]. The
general approach of creating locally recoverable codes from rational maps is pursued in [7]
and extended to algebraic curves defined by equations with separated variables in [8], but the
general fiber product construction still requires more exploration.

This work is an extension of [5], with a goal of understanding the range of possibilities
and limitations of this construction. For completeness, we include the relevant definitions
and construction from [5]. In Sect. 2, we include some expository discussion on ways to
think of the fiber product of curves and special cases of the construction. We then introduce
the three families of codes which are the main examples of this paper. These three families
are all centered on the well-studied Hermitian curve Hq . The first main example family,
introduced in Example 3.1 comes from the Hermitian curve, introduced as an example of a
locally recoverable code with two recovery sets in [2]. The second, Example 3.2 is a novel
code based on the fiber product of two Hermitian curves, and is designed to illustrate the
flexibility of this method–one can select curves with appropriate maps and understand the
fiber product, and therefore the parameters of the code, using geometry and the construction
of [5]. The final example, Example 3.3, is a code from a fiber product of Artin-Schreier
curves introduced by van der Geer and van der Vlugt. This example was introduced in [5]
and is included as an example where t can be as large as desired. When the construction is
defined over p2h , for p a prime and h a natural number, and we choose t = h factor curves,
the fiber product is again the Hermitian curve Hpt .

Determining the exactminimumdistance of a linear code is, in general, a difficult problem.
In particular, few results on exact minimum distance for LRC(t)s are known. In Sect. 4, we
calculate the exact minimum distance for the first family and for a large range of examples in
the third family in Theorems 7 and 9 by applying number theory and geometry. Incidentally,
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we also compute the exact minimum distance of a non-fiber product code introduced in [2]
in Theorem 8. This is followed by Theorem 10 on minimum distance for codes defined using
a fiber product. We apply Theorem 10 to particular examples in the second and third family
in Examples 4.2 and 4.1.

Finally, in Sect. 5, we explore the parameter space and compare to some relevant bounds
and constructions from the literature.We show in Corollary 13 that fiber product codes are not
able to surpass the rate of the product code construction from [10], though some constructions
are extremely close.

2 Preliminaries

2.1 Locally recoverable codes and availability

Let n, k be natural numbers, with k ≤ n. A linear code C of length n and dimension k over
the field Fq is a k-dimensional linear subspace of (Fq)

n . The minimum distance of C is the
minimum number, d ≤ n, of coordinates in which two distinct elements of C (referred to
as codewords) must differ. The weight of a codeword is the number of non-zero coordinates
it has; for the codeword c, we denote this value by wt(c). As a vector space, the minimum
distance of C is equal to the minimum weight of the non-zero codewords. It is common to
refer to such codes as [n, k, d]-codes.

For an [n, k, d]-code, the rate of the code is R = k
n . The relative minimum distance is

given by d
n . When a Singleton-type upper bound b on minimum distance is known, we define

the defect of the code to be b − d and the relative defect of the code to be b−d
n .

We say C is a locally recoverable code (LRC) with locality r if for all i ∈ {1, . . . , n}
there exists a set of indices Ai ⊆ {1, . . . , n} \ {i} and a function φi : (Fq)

r → Fq such
that #Ai = r and for all codewords c = (c1, . . . , cn) ∈ C we have ci = φi (c|Ai ). The
set Ai is called the recovery set for the i-th position. It may be desirable to have multiple
disjoint recovery sets for each position to protect against multiple erasures or allow for
simultaneous queries of heavily-accessed information. A locally recoverable code C has
availability t with locality (r1, . . . , rt ) if for each i ∈ {1, . . . , n} there exist sets of indices
Ai,1, . . . , Ai,t ⊆ {1, . . . , n}\{i} such that

1. Ai, j ∩ Ai,h = ∅ for j 	= h
2. #Ai, j = r j
3. For each j ∈ {1, . . . , t} there exists a functionφi, j : Fr jq → Fq such that for all codewords

c = (c1, . . . , cn) ∈ C we have ci = φi, j (c|Ai, j ).

We refer to an LRC with availability t as an LRC(t). The localities of an LRC(t) form a
vector (r1, r2, . . . , rt ). When ri = r j = r for all i, j ∈ {1, 2, . . . , t}, we say that the code
has uniform locality r .

2.2 Evaluation codes on curves

Let X be an algebraic variety defined over a finite field Fq . Let B be a subset of X (Fq) of
cardinality n ∈ N, with points arbitrarily ordered as B = {P1, P2, . . . , Pn}. Let V be a linear
subspace of the function field Fq(X ) such that no function in V has poles at any point in B.
For any f ∈ V , define the evaluation map

evB : V → F
n
q , f 
→ ( f (P1), f (P2), . . . , f (Pn)).
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Then we define the evaluation code C(V , B) as

C(V , B) : = {evB( f ) : f ∈ V }.
Reed-Solomon codes are evaluation codeswhere V is the space of polynomials of bounded

degree and B are the values in a finite field, viewed as affine points on a projective line.
Evaluation codes on the Hermitian curve have also been very well-studied. For any prime
power q , the Hermitian curveHq is defined over any extension of Fq by the affine equation

xq + x = yq+1.

The curve Hq has genus 1
2q(q − 1) and has q3 + 1 points over Fq2 including a single point

at infinity.

2.3 Fiber products of curves

Let Y1, Y2, and Y be projective curves over Fq , with maps hi : Yi → Y that are separable,
rational Fq -morphisms for i = 1, 2. The fiber product Y1×Y Y2 is a curve that is (abstractly)
defined using the corresponding fiber product of schemes. More concretely, the Fq -rational
points of the fiber product Y1 ×Y Y2 are given by

(Y1 ×Y Y2)(Fq) = {(P1, P2) ∈ Y1(Fq) × Y2(Fq) : h1(P1) = h2(P2)}. (1)

The fiber product construction can be iterated and is seen to be (up to isomorphism)
associative and commutative. Thus for any t ∈ N, we may without confusion construct
the t-fold fiber product of curves as follows. Let Y,Y1, . . . ,Yt be projective curves over
Fq with separable Fq -rational maps h j : Y j → Y . The Fq -points of the fiber product
X = Y1 ×Y · · · ×Y Yt of Y1, . . . ,Yt over Y are then given by

X (Fq) = {(P1, . . . , Pt ) : Pi ∈ Yi (Fq) and hi (Pi ) = h j (Pj ) for all i, j ∈ {1, . . . , t}}.
This construction induces t natural projection maps

gi : X → Yi

from the fiber product onto each factor curve. Let

Ỹi = Y1 ×Y · · · ×Y Yi−1 ×Y Yi+1 ×Y · · · ×Y Yt

be the fiber product of all curvesY j exceptYi . Then we see thatX is isomorphic toYi ×Y Ỹi ,
and we identify Ỹi with the isomorphic factor in the original fiber product construction of
X . This gives complementary projection maps

g̃i : X → Ỹi and h̃i : Ỹi → Y.

We also define the map g : X → Y by g = hi ◦ gi for any i .

Remark 1 Simply speaking, the map g̃i “forgets” the information coming from the curve Yi

while retaining the data of the fiber product that come from the other curves.

The function field Fq(X ) is isomorphic to the compositum of the function fields Fq(Yi ),
where the function field Fq(Y) is embedded into each Fq(Yi ) as induced by the map hi .
For ease of exposition, we identify each function field with its image inside Fq(X ), so
Fq(Y) ⊆ Fq(Yi ) ⊆ Fq(X ) for each i . Further, we assume that Fq is the full field of constants
within each of these fields, and that the extensions Fq(Yi )/Fq(Y) are linearly disjoint.
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Remark 2 Linear disjointness is important in this context because for finite degree extensions
it is equivalent to

dg =
t∏

i=1

dhi (2)

Sufficient conditions for linear disjointness are that either the degrees dhi are pair-wise
relatively prime, or the extensions Fq(Yi )/Fq(Y) are Galois and Fq(Y) = Fq(Yi ) ∩ Fq(Y j )

for all i, j . Linear disjointness also implies dg j = (
∏t

i=1 dhi )/dh j . These degree relationships
simplify the determination of the parameters in the code construction.

Remark 3 It is not in general easy to see whether a fiber product of varieties is irreducible.
In some cases, we can apply the fact that if X → Y is a finite morphism of curves, with Y
irreducible and some smooth point of Y fully ramifies in the covering X → Y , then X is
also irreducible. This is the case with the point at infinity in each of our running Examples
3.1, 3.2, and 3.3. However, we note that it is not necessary for the construction in Sect. 2.4
that the fiber product be irreducible.

Considering smoothness, anFq -rational (orFq -rational) point (P1, P2) of the fiber product
in (1) is singular if and only if h1 is ramified at P1 and h2 is ramified at P2. There are
singular points in many fiber products, but we consider the normalization of the product
when determining the genus of a singular fiber product. Also, we again note that it is not
necessary for the construction in Sect. 2.4 that the fiber product be smooth.

2.4 Locally recoverable code with availability t construction from fiber product of
curves

The following general construction comes from [5], though for completeness we include it
simplified notation here.

Let y0 ∈ Fq(X ) so that Fq(Y) = Fq(y0). For each i , 1 ≤ i ≤ t , we choose yi ∈ Fq(X )

so that Fq(Yi ) = Fq(Y)(yi ), where yi is the root of an irreducible separable polynomial
bi (X) ∈ Fq(Y)[X ]. Let dyi be the degree of the function yi : X → P

1
yi .

We now have that

Fq(X ) = Fq(y0)(y1) · · · (yt ) = Fq(y0, y1, y2, . . . , yt ).

The degree of g̃i must be equal to the degree of hi , denoted dhi .
Now, choose S ⊂ Y(Fq) such that

• |g−1(P)∩X (Fq)| = dg for all P ∈ S (i.e. all places in S split completely in the extension
Fq(X )/Fq(Y)) and

• for each i , 1 ≤ i ≤ t , the function yi has no poles at any point above S in the extension
Fq(X )/Fq(Y).

Choose an effective divisor D of degree l on Y(Fq) with S ∩ supp(D) = ∅, so functions
in the Riemann-Roch space L(D) have no poles in S. Let { f1, f2, . . . , fm} be a basis of the
Riemann-Roch space L(D). We require that l < |S| so that for all f ∈ L(D), there exists
some P ∈ S with f (P) 	= 0. Let V be the Fq -vector space with basis

{ f j ye11 · · · yt et : 1 ≤ j ≤ m, 0 ≤ ei ≤ dhi − 2 for all i}. (3)

Then set
B = g−1(S) ⊂ X (Fq), (4)
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where an arbitrary ordering of elements is fixed on B. Note that n = |B| = dg|S|.
The code C(V , B) is locally recoverable with availability t . Recall that we have fixed an

ordering of the points in B for the evaluation map evB . For any i, j ∈ N with 1 ≤ i ≤ n and
1 ≤ j ≤ t , set

Bi, j = g̃−1
j (g̃ j (Pi )) \ {Pi }.

Let

Ai, j = {a : Pa ∈ Bi, j }.
Consider a codeword evB( f ) for some function f ∈ V . Given an erasure in position i of the
codeword (associated with point Pi ), each Ai, j acts as a recovery set, because on the set Bi, j
the function f is constant except in y j , so on Bi, j it acts as f̃ (y j ), a polynomial of degree
less than or equal to dh j − 2. The evaluation of f on the dh j − 1 points of Bi, j therefore give

rise to dh j − 1 distinct pairs
(
y j (Pi ), f̃

(
y j (Pi )

))
. Since any polynomial of this degree is

determined by its values on dh j − 1 points, these pairs are sufficient to determine the value

of f̃ (Pi ) = f (Pi ).
This construction gives rise to the following theorem.

Theorem 1 Given a fiber product X of curves defined over Fq as described in Sect. 2.3, with
V a vector space of functions on X with basis as in (3) and B a subset of X (Fq) as in (4),
the code C(V , B) is a locally recoverable code with availability t and

• length n = |B|,
• dimension m(dh1 − 1)(dh2 − 1) · · · (dht − 1),
• minimum distance d ≥ n − ldg − ∑t

i=1

(
dhi − 2

)
dyi , and

• locality (dh1 − 1, dh2 − 1, . . . , dht − 1).

Onemay easily calculate the rate R of the constructed code. In the case that the extensions
are linearly disjoint, we have an especially simple form.

Corollary 2 If the extensions Fq(Yi )/Fq(Y) are linearly disjoint, then the rate of C(V , B) is

R = m

|S|
t∏

i=1

dhi − 1

dhi
. (5)

This is a simple application of the definition of rate, the fact that |B| = dg |S|, and the
fact that when the extensions are linearly disjoint, we have dg = ∏t

i=1 dhi .

3 Simplified framework and featured constructions

To gain some intuition, let us consider the simplest version of this fiber product construction:
say Y = P

1
y0 with ∞Y the unique point at infinity on this curve,

and hi : Yi → Y given by projection onto y0. In this case, the fiber product X = Y1 ×Y
· · ·×Y Yt can be embedded into Pt+1, with affine coordinates (y0, y1, . . . , yt ). Note that this
fiber product, X , is isomorphic to the intersection of t hypersurfaces in (t + 1)-dimensional
space. Further, if we take D = l∞Y to be the divisor defining theRiemann-Roch spaceL(D),
then this fiber product construction results in a punctured subcode of the Reed-Muller code,
with functions simply polynomials in Fq [y0, y1, . . . , yt ] and evaluation points a subset of
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points on the intersection of the t-hypersurfaces created by considering the defining equations
for the t curves Yi in P

t+1. Explicitly, the functions leading to codewords are

V = Span{y j
0 y

e1
1 ye22 · · · yett : 0 ≤ j ≤ l, 0 ≤ ei ≤ dhi − 2}.

General fiber product codes should be viewed as generalizations of these simple codes.
Let P = (α, β1, . . . , βt ) be an evaluation point of such a simple fiber product code,

where α, β1, . . . , βt ∈ Fq . The i-th recovery set for P is the set of all evaluation points
Q = (α, β1, . . . , βi−1, γ, βi+1, . . . , βt ), where γ ∈ Fq . That is, the i-th recovery set is
simply the set of all evaluation points which share all coordinate values but that of yi with
P .

We now introduce three important examples of fiber product codes within this simplified
framework.

Example 3.1 LRC(2)s on the Hermitian Curve Viewed as a Fiber Product As a first
concrete example, we consider the Hermitian curve Hq as a fiber product and intersection.
Let Y = P

1, Y1 : u = yq+1, and Y2 : u = xq + x , and let hi : Yi → P
1 be projection onto u

for i = 1, 2. Note that these maps have coprime degree, and thus the corresponding function
field extensions are linearly disjoint. Then the fiber product X = Y1 ×Y Y2 is isomorphic to
the curve Hq : xq + x = yq+1. Indeed, the affine points of X (Fq) are given by

{((y, u), (x, u)) : x, y, u ∈ Fq , y
q+1 = u = xq + x} ⊆ P

2 × P
2.

Hence this is isomorphic by the natural map to the intersection of the two hypersurfaces in
P
3 with affine equations u = xq + x and u = yq+1, and also to the curve Hq defined in

P
2 by affine equation yq+1 = xq + x . The utility of the fiber product viewpoint on this

curve is to highlight two natural maps which give rise to recovery sets. Codes using the
fiber product construction of Hq are developed in [2], where a lower bound is given on the
minimum distance. Let CHq be the LRC(2) presented in Proposition 5.1 of [2]. For this
code, we take the curve Hq with evaluation set BHq = {P ∈ Hq(Fq2) : y(P) 	= 0}. We
can check that |BHq | = q3 − q . Then we let VHq be the space of functions with basis
{xe1 ye2 : 0 ≤ e1 ≤ q − 2, 0 ≤ e2 ≤ q − 1}. The code CHq = C(VHq , BHq ) is an LRC(2)
where the two recovery sets for the position corresponding to a point P ∈ BHq are given by
the positions corresponding to points Q ∈ BHq , Q 	= P sharing the same x-coordinate P
and those sharing the same y-coordinate value as P , respectively. These recovery sets are of
size q − 1 and q , respectively.

In [2], the authors prove the following.

Theorem 3 [2] The code CHq has length n = (q2 − 1)q, dimension k = (q − 1)q, and
minimum distance

d ≥ (q + 1)(q2 − 3q + 3) = q3 − 2q2 + 3.

Applying the viewpoint of [5], we are able to tighten this bound.

Proposition 4 The code CHq has minimum distance d satisfying

d ≥ q3 − 2q2 + q + 2.

Proof First, we note that we may consider the Hermitian curve given as a fiber product as
described above. Then BHq is the set of all points of X = Hq(Fq2) lying above points of
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Y = P
1
u that split completely in the extension Fq2(X )/Fq2(Y). We obtain VHq by letting D

be the zero divisor, so l = 0. Applying Theorem 1, we find that the minimum distance d of
CHq is in fact bounded by

d ≥ q3 − 2q2 + q + 2.

��
In Theorem 7, we calculate exactly the minimum distance for this code.

Example 3.2 LRC(2)s on the Fiber Product of two Hermitian Curves One can take the
fiber product of any two curves with appropriate maps to the same base curve. As a simple
example, we take a fiber product of two Hermitian curves. For q a prime power, consider the
Hermitian curves

Hq,1 : yq0 + y0 = yq+1
1 , and Hq,2 : yq2 + y2 = yq+1

0 .

From each of these there is a projection to P1 via the y0 coordinate. Again, these maps have
coprime degree, and thus the corresponding function field extensions are linearly disjoint.
Using these projections, we construct the fiber product Xq = Hq,1 ×P1y0

Hq,2. Intuitively,

the affine part of this fiber product corresponds to the set of pairs of points P = (Q1, Q2)

on the Hermitian curve yq+1
1 = yq2 + y2 satisfying y2(Q1) = y1(Q2). Explicitly, affine

points in the fiber product are of the form ((α, β1), (α, β2)), where αq + α = β
q+1
1 and

αq+1 = β
q
2 + β2, where α, β1, β2 are elements of Fq2 . To simplify notation, we identify the

point ((α, β1), (α, β2)) with the tuple (α, β1, β2). There is a single point at infinity for each
Hermitian curve, each mapping to the point at infinity on P

1
y0 , so there is a single point at

infinity for Xq , which is totally ramified with ramification index q(q + 1) in the extension
Xq/P

1
y0 . Counting tuples and the point at infinity, we find

#Xq(Fq2) = q4 + 1.

Also, defining � = {α ∈ Fq2 : αq + α = 0}, we see that there are q2 − q points of
Xq(Fq2) with y0-coordinate α /∈ � that are split completely in the extension Xq/P

1
y0 (so

have ramification index equal to 1), and another q points with y0-coordinate α ∈ � that
ramify, but not completely; they have ramification index q + 1.

Since all ramification is tame in the extension Xq/Hq,2, and g(Hq,2) = q(q − 1)/2, we
can compute the arithmetic genus of the fiber product using the Riemann-Hurwitz formula
to get g(Xq) = q3 − q.

Following the construction from [5], we now present a code with two recovery sets by
the evaluation of the splitting points on Xq(Fq2). Let B the set of q4 − q2 points of Xq(Fq2)

that are above the q2 − q affine points of P1
y0 with y0-coordinate α ∈ Fq2 \ � that split

completely:

B = {(α, β1, β2) : α ∈ Fq2 \ �, β
q+1
1 = αq + α and αq+1 = β

q
2 + β2}.

Fix an ordering on the elements of B. For i with 1 ≤ i ≤ |B|, let Pi = (α, β1, β2) ∈ B.
Then we have Bi,1 = {(α, y1, β2) ∈ B \ {Pi }} and Bi,2 = {(α, β1, y2) ∈ B \ {Pi }} as the two
recovery sets for the position corresponding to Pi . We have |Bi,1| = q and |Bi,2| = q − 1.

We define

V = Span{y j
0 ye11 ye22 : 0 ≤ j ≤ l, 0 ≤ e1 ≤ q − 1, 0 ≤ e2 ≤ q − 2},

with l ≤ q4−2q3+3q+1
q(q+1) .
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Theorem 5 The code CXq ,l = C(V , B), with B, l and V defined as above, is a locally
recoverable [n, k, d]-code over Fq2 with availability 2 and locality (q − 1, q) where

n = q2(q2 − 1),

k = (l + 1)(q − 1)q, and

d ≥ n − lq(q + 1) − (q − 1)q2 − (q − 2)(q + 1)2.

In Corollary 11, we calculate the minimum distance for this code.

Remark 4 Herewe give a concrete example of the preceding construction ofCX3,3. Let q = 3
and F9 = F3(a), where a2 + 2a + 2 = 0, be the finite field with 9 elements. Let us consider
the situation of Example 3.2, in which we have the fiber product of two Hermitian curves
over F9:

Y1 : y30 + y0 = y41 , and Y2 : y32 + y2 = y40 ,

along with the fiber product X3 = Y1 ×P1y0
Y2. In this case,

� = {α ∈ F9 : α3 + α = 0} = {0, a + 1, 2a + 2}, and we have 6 points on P1
y0 with first

coordinate outside � that split completely in X3. The maximum l that can be chosen to get
a non-trivial bound for d is l = 3. Using this l in Theorem 5, we get a LRC(2) of length 72,
dimension k = 24 and minimum distance d ≥ 2 over F9 (an upper bound for the minimum
distance is 35, see Sect. 5).

Example 3.3 Artin–Schreier Fiber Product and LRC(t) In [5] the authors use a fiber prod-
uct curve construction from van der Geer and van der Vlugt [13] to create codes with
availability t for arbitrary t . Since we continue this example, we review the construction
here.

The simplest of the van der Geer and van der Vlugt constructions is given in [13, Section
3, Method I]. Let p be prime, h a natural number, and q = ph .

Let {a1, a2, . . . , ah} generate ker(TrFq2 /Fq ) over Fp . Then the curves

Yi : y pi − yi = ai y
q+1
0

each have genus 1
2 (p−1)q and have pq2+1 points overFq2 , with one point,∞Yi , at infinity.

Let t be an integer with 1 ≤ t ≤ h and let Y = P
1
y0 . Then consider the natural map

hi : Yi → Y given by projection onto the y0 coordinate, where ∞Y represents the point at
infinity on the projective line P1

y0 and ∞Yi 
→ ∞Y . These are all degree-p Artin–Schreier
covers of Y , fully ramified above ∞Y . These covers are all Galois, and the intersection of
the corresponding function fields is Fq(y0), thus these function field extensions are linearly
disjoint.

Define X = Aq,t to be the fiber product of these curves Yi over Y; i.e.,

Aq,t = Y1 ×Y Y2 ×Y · · · ×Y Yt .

The corresponding maps gi : Aq,t → Yi are degree pt−1, ramified only above ∞Yi . Let
∞Aq,t be the single point above ∞Y on Aq,t .

As shown in [13, Theorem 3.1], the curve Aq,t has genus 1
2 (p

t − 1)q and |Aq,t (Fq2)| =
ptq2 + 1, making Aq,t maximal over Fq2 .
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Note that the curveAq,t is naturally a subvariety of (P2)t . It embeds in Pt+1, however, by
the map ν : Aq,t → P

t+1 defined on affine points of Aq,t via

ν((y0, y1), (y0, y2), . . . , (y0, yt )) = (y0, y1, y2, . . . , yt ).

From here, we identify Aq,t with its image in Pt+1. The affine points of Aq,t are given by

B = {(y0, y1, y2, . . . , yt ) ∈ (Fq2)
t+1 : y pi − yi = ai y

q+1
0 for all 1 ≤ i ≤ t}. (6)

For 1 ≤ i ≤ t , the functions gi : Aq,t → Yi are given by

gi (y0, y1, y2, . . . , yt ) = (y0, yi )

and the functions g̃i : Aq,t → Ỹi are given by

g̃i (y0, y1, y2, . . . , yt ) = (y0, y1, y2, . . . , yi−1, yi+1, . . . , yt ).

For each i , the map g̃i has degree p. For 1 ≤ i ≤ t , the function yi has degree dyi = q + 1,
since for each α, β ∈ Fq2 with β 	= 0 and α p + α = aiβq+1, there are q + 1 points
Q j = (ζ kβ, α) ∈ Yi (Fq2), where ζ q+1 = 1 and 1 ≤ k ≤ q + 1.

Remark 5 As observed in [5], when t = h, we have that Aq,t ∼= Hq .

Applying the construction from [5], we can construct codes defined over Fq2 with many
recovery sets. Let Pi = (α, β1, β2, . . . , βt ) ∈ B. Then Bi, j , the j-th recovery set for
the position corresponding to Pi , is the set of positions corresponding to the points in
{(α, y1, y2, . . . , yt ) ∈ B : yk = βk ∀ k 	= j}. We then have |Bi, j | = p. On points
corresponding to the positions in Bi, j , any function in V varies as a polynomial in y j of
degree at most (p− 2) and can therefore be interpolated by knowing its values on any p− 1
points.

Given h, t as above, choose l ≤
(
q2 − t(p−2)(q+1)pt−1+1

pt

)
to ensure the evaluation map

is injective. Note that the evaluation map may be injective for larger values of l but that the
given lower bound ensures that d ≥ 1 in the Theorem below. Let D = l∞Y . Then L(D) is
the set of polynomials in y0 of degree at most l, a vector space of dimension m = l + 1.

Theorem 6 [5] GivenX = Aq,t the fiber product of the specified Artin–Schreier curves, with
B and l as above, let D = l∞Y , and V as defined in Theorem1.WedefineCAq,t ,l = C(V , B).
Then CAq,t ,l is a locally recoverable [n, k, d]-code over Fq2 with availability t and locality
(p − 1, p − 1, . . . , p − 1) where

n = ptq2,

k = (l + 1)(p − 1)t , and

d ≥ n − lpt − t(p − 2)(q + 1)pt−1.

In Theorem 9, we compute the exact minimum distance of the code here for many values
of l.

4 Computingminimum distances

The minimum distance problem asks, for a general linear code C and natural number w, if
the minimum distance of C is at most w. Vardy proved that this problem is NP-complete
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[14]. Finding the exact minimum distance of a code (or even bounding it non-trivially), is a
hard problem in coding theory. However, sometimes the geometric and algebraic structure of
evaluation codes can provide valuable tools that allow us to determine the minimum distance
exactly. For example, the minimum distance of the Reed-Solomon codes can be bounded by
the Fundamental Theorem of Algebra, and determined exactly by constructing a polynomial
of maximal degree with no repeated roots. More generally, a standard and very valuable
technique for determining the minimum distance of an evaluation code C(V , B) is to first
bound the minimum distance below using a geometric argument, then find an element in
the space of functions V that vanishes at the maximum number of points, all of which are
contained in the evaluation set B. Using the bounds from [5] and this technique, it is possible
to find the exact minimum distance of some interesting codes from [2] and [5].

As a warm-up, we find the exact minimum distance of two LRCs on the Hermitian curve
described in [2]. The first arises from a simpler rational map construction. Let C be the code
with locality q − 1 described in Proposition 4.1 of [2], i.e., the evaluation code C(V , B)

where Hq is the Hermitian curve defined by yq + y = xq+1, B is the set of q3 affine points
in Hq(Fq2), and V is the vector space of functions generated by {xi y j : 0 ≤ i ≤ l, 0 ≤ j ≤
q −2} for some fixed l ∈ N. Note that the recovery set for the position corresponding P ∈ B
is the set of positions corresponding to the q − 1 points

{Q ∈ B : x(Q) = x(P), Q 	= P}.
Theorem 7 When l ≤ q2 − q − 2, the code C has minimum distance

d = n − lq − (q − 2)(q + 1).

Proof In [2], the authors prove that n− lq− (q−2)(q+1) is a lower bound on the minimum
distance of C . Suppose l ≤ q2 − q − 2. Considering the extension of fields Fq2 to Fq , let
ϕ1 be the field trace map given by ϕ1(x) = xq + x and let ϕ2 be the norm map given by
ϕ2(x) = xq+1. Since ϕ1 is the trace map, which is degree q onto Fq , we can write

ϕ−1
1 (1) = {γ1, . . . , γq}.

Since ϕ2 is the norm map and so is degree q + 1 onto F
×
q , we can write

Fq2\({0} ∪ ϕ−1
2 (1)) = {β1, . . . , βq2−q−2}.

Define f ∈ V by

f (x, y) =
l∏

j=1

(x − β j )

q−2∏

i=1

(y − γi ).

We see that f has at most lq + (q − 2)(q + 1) zeros. To show that f has exactly that
many zeros, we must show that no evaluation point of C is sent to zero by more than one
factor of f . Suppose f (β j , γi ) = 0. Then γ

q
i + γi = 1, but by design β

q+1
j 	= 1, hence

(β j , γi ) /∈ Hq(Fq2). Thus no evaluation point can be sent to zero by multiple factors, so f
has exactly lq + (q − 2)(q + 1) zeros and evB( f ) has weight n − lq − (q − 2)(q + 1), and
the minimum distance is as given. ��

Recall thatCHq is the LRC(2) onHq defined in [2].We now determine the exact minimum
distance of the code.

Theorem 8 The code CHq has minimum distance d = q3 − 2q2 + q + 2.
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Proof Now let α1, α2 ∈ Fq\{0} such that α1 	= α2. Then let E = {a ∈ Fq2 |aq+1 = α1} and
F = {a ∈ Fq2 |aq + a = α2}. Because these come from the trace and norm respectively, we
can write E = {β1, . . . , βq+1} and F = {γ1, . . . , γq}. Then let f ∈ VHq be defined

f =
q−1∏

i=1

(x − βi )

q−2∏

j=1

(y − γ j ).

The function f has exactly (q −1)(q)+ (q −2)(q +1) zeros by the same argument as in the
previous construction. Thus d ≤ q3 − q − (q − 1)(q)− (q − 2)(q + 1) = q3 − 2q2 + q + 2.

��
Next, we determine the exact minimum distance for many codes from the fiber product

of Artin–Schreier curves constructed in Theorem 6.

Theorem 9 Let p be a prime and q = ph a prime power. For a fixed l ∈ Z with 0 ≤ l ≤
q2 − tq − t − 1, let CAq,t ,l be the LRC(t) of Theorem 6, constructed using the fiber product
of t Artin–Schreier curves. Then CAq,t ,l has minimum distance

d = ptq2 − lpt − t(p − 2)(q + 1)pt−1.

Proof Recall that the curves that we use to produce the fiber product Aq,t are of the form

Yi : y pi − yi = ai y
q+1
0 ,

where 〈a1, a2, . . . , ah〉Fp = ker(TrFq2 /Fq ). From Theorem 6, we have a lower bound for

minimum distance, d ≥ ptq2 − lpt − t(p − 2)(q + 1)pt−1.
Let ϕ1 : Fq2 → Fq2 be defined by ϕ1(x) = x p − x and ϕ2 : Fq2 → Fq be defined by the

norm map ϕ2(x) = xq+1. Choose values

F0 = {β ∈ F
×
q2

: ϕ2(aiβ) 	= 1 ∀ 1 ≤ i ≤ t}

and Fi = ϕ−1
1 (a−q

i ). Since ϕ2 is the normmap, |ϕ−1
2 (1)| = q+1, so |F0| = q2−t(q+1)−1.

Thus we can write

F0 = {β1, . . . , βq2−tq−t−1}.
By choice of ai , we have TrFq2 /Fq (ai ) = 0, and since Fq2/Fq is a degree 2 extension,

TrFq2 /Fq (a
−1
i ) = 0 too. Then since we are working in characteristic p and the trace map can

be factored,

TrFq2 /Fp (a
−q
i ) = TrFq/Fp (TrFq2 /Fq (a

−q
i ))

= TrFq/Fp (TrFq2 /Fq (a
−1
i )q)

= 0.

By the additive version of Hilbert’s Theorem 90,
ϕ−1
1 (a−q

i ) is nonempty.

Notice that ϕ1 is separable of degree p, so |Fi | = |ϕ−1
1 (a−q

i )| must, in fact, equal p. We
then write

Fi = {γi,1, . . . , γi,p}.
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Define the map f : Aq,t → Fq2 ∈ V by

f (y0, y1, . . . , yt ) =
l∏

i=1

(y0 − βi )

t∏

j=1

p−2∏

k=1

(y j − γ j,k).

Recall that B, as in Eq. (6), is the evaluation set for polynomials in V and |B| = n = ptq2

is the length of CAq,t ,l . Certainly n − wt(evB( f )) is at most lpt + t(p − 2)(q + 1)(ph−1).
We wish to show that these values are equal by showing that f has exactly this many zeros
in B by showing that no points in B have yi component in Fi and y j component in Fj for all
i 	= j . Toward that end, suppose that (β, γ1, . . . , γt ) ∈ B such that f (β, γ1, . . . , γt ) = 0.

Assume that γi ∈ Fj for some i ∈ {1, . . . , t}. Then a−q
i = φ2(γi ) = γ

p
i − γi = aiβq+1,

so a−q−1
i = βq+1, by definition of X . This equation has at most q +1 solutions, all of which

are in the set {a−1
i ϕ−1

1 (1)}. Since none of these are in F0, we have that β /∈ F0.

Now suppose that for some j ∈ {1, . . . , t} we have γ j ∈ Fj . Then a−q
j = ϕ2(γ j ) =

γ
p
j + γ j = a jβ

q+1. Thus we have aq+1
i = aq+1

j . Recall that ai is in the kernel of the trace

map, so aqi + ai = 0 and so aq+1
i = −a2i . Similarly aq+1

j = −a2j . Substituting these values

gives us the equality a2i = a2j , so ai = a j or ai = −a j , but ai and a j are elements of a basis
for the kernel of TrFq2 /Fq over Fp , so i = j .

Thus f has exactly lpt + t(p − 2)(q + 1)(pt−1) zeros in B, so the code has the desired
minimum distance,

d = ptq2 − lpt − t(p − 2)(q + 1)
(
pt−1) .

��

4.1 A condition for exact minimum distance

More generally, we may summarize the situation in which this technique will give the exact
minimum distance of codes from the construction in Theorem 1.

Theorem 10 Let C(V , B) be a locally recoverable code constructed as in Sect. 2.4, where
V has basis given by (3), B is the evaluation set as in (4), and y j

0 ∈ L(D) for 0 ≤ j ≤ l. If
it is possible to find sets F0, F1, . . . , Ft ⊆ Fq such that

(1) Fi ⊆ yi (B) for all i = 0, . . . , t ,
(2) |F0| = l,
(3) |Fi | ≥ dhi − 2 for all i = 1, . . . , t ,
(4) for all i 	= j with 0 ≤ i, j ≤ t there is no P ∈ X (Fq) with yi -coordinate in Fi and

y j -coordinate in Fj , and
(5) for all i with 0 ≤ i ≤ t , the projection yi : X → P

1
yi is not ramified over any point

P ∈ P
1
yi with yi (P) ∈ Fi ,

then the code C(V , B) has minimum distance

d = n − ldy0 −
t∑

i=1

(dhi − 2)dyi , (7)

where n = |B| is the length of the code.
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Remark 6 If Y = P
1
y0 , hi : Yi → Y given by projection onto y0, and D = l∞Y , as is the

case in all examples in this paper, we have that y j
0 ∈ L(D) for 0 ≤ j ≤ l and y0 : X → Y

is an unramified map above S from the code construction.

Proof By Theorem 1, the right hand side of (7) is a lower bound on the minimum distance
of such a code.

Now, label the elements of sets F0, F1, . . . , Ft as

F0 = {β1, . . . , βl} and Fi = {γi,1, . . . , γi,|Fi |}.
Then we can define the polynomial in V ,

f =
l∏

j=1

(y0 − β j )

t∏

i=1

dhi −2∏

k=1

(yi − γi,k).

Since the points in B are fully split in the extension Fq(X )/Fq(Y) and assumption (5) we
have that |y−1

0 (β j )| = dy0 for all j and |y−1
i (γi,k)| = dyi for all i, k. By assumption (4), we

know that f must have exactly

ldy0 +
t∑

i=1

(dhi − 2)dyi

zeros, so the code has minimum distance

d = n −
(
ldy0 +

t∑

i=1

(dhi − 2)dyi

)
.

��

4.1.1 Examples of applying theorem 10

Here, we give two extremely concrete examples to illustrate the application of this general
condition.

Example 4.1 Let p = 3 and t = h = 2, so q = ph = 9 and we work over Fp2h = F81.
Let b be a non-trivial fifth root of unity for which Fp2h = Fp(b). Let a1 = b2 + b + 2 and
a2 = b3 + b+ 2 be generators of ker(TrFp2h /Fp2

) = {x ∈ Fp2h : a9 + a = 0}. Then we have
explicit curves

Y1 : y3i − yi = (b2 + b + 2)y3
2+1

0 and Y2 : y3i − yi = (b3 + b + 2)y3
2+1

0 .

Each of these curves has a projection onto P
1 via their y0-coordinate, which we will denote

h1 and h2. Consider their fiber product

A9,2 = Y1 ×P1 Y2,

which is a genus 36 curve. Each of the maps gi : X → Yi are degree 3 and ramified only
above the point at infinity. We can realize the 729 affine points of A9,2(Fp2h ) to be the set

P =
{
(y0, y1, y2) ∈ A

3
Fp2h

: y3i + yi = ai y
32+1
0 ∀ i

}
.
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In order to satisfy the hypothesis of Theorem 10, it will suffice to find sets F0, F1, and
F2 with |F1| = |F2| = 1 and |F0| = l, where D = l∞Y . We choose F1 = {b2 + b} and
F2 = {b3 + 2b2}, each of which will eliminate 10 possible y0 values from entry into F0, as
there are 10 points in P with y1-coordinate b2 + b and 10 with y2-coordinate b3 + 2b2. Thus
61 values remain as possible elements of F0 and hence wemay use any value 0 ≤ l ≤ 61−1,
to receive a code with the prescribed minimum distance, as in Theorem 10.

Example 4.2 If we try to apply Theorem 10 to get the exact minimum distance for the code
CX3,3 over F9 constructed in Remark 4 we see that the sets F0, F1 and F2 cannot be built, so a
minimumweight codeword cannot be constructed by thismethod and theminiumumdistance
cannot be determined by the theorem. Instead, let us consider the situation of Example 3.2
over the finite field F42 , i.e. the fiber product X4 = Y1 ×P1y0

Y2, where we define Y1 and Y2

to be copies of the Hermitian curve H4 with equations given by:

Y1 : y40 + y0 = y51 , and Y2 : y42 + y2 = y50 .

In this case, if a ∈ F16 is such that a4 + a = 1, then the finite ramified points in X4 have
first coordinate in � = {α ∈ F16 : α4 + α = 0} = {0, a2 + a, a2 + a + 1, 1}, and we have
12 points on P1

y0 with first coordinate outside � that split completely in X4.
The maximum l that can be chosen to get a non-trivial bound for d is l = 6. But we can not

build a set F0 with 6 elements satisfying the hypothesis of Theorem 5. So we will build one
using l = 4. Let B be the set of 240 evaluation points in X4(F16) such that y0(B) = F16 \ �

is the set of y0-coordinates. Defining F0 = {a3 + a + 1, a3 + a2 + 1, a3 + a2 + a, a3 + 1},
F1 = {a3, a3 + a2, a3 + a, a3 + a2 + a + 1, 1} and F2 = {a, a2, a + 1, a2 + 1}, we can
see that the hypothesis of Theorem 10 hold and therefore CX4,4, i.e. the evaluation code of
functions from

V = Span{yi0ye11 ye22 |0 ≤ i ≤ 4, 0 ≤ e1 ≤ 3, 0 ≤ e2 ≤ 2},
evaluated at points in B, is an [240, 60, 62]-locally recoverable codewith availability 2. Every
coordinate in a codeword can be recovered using two possible sets: one with 3 elements and
another with 4 elements, giving a locality of (3, 4).

The situation of the previous example can be generalized to compute the exact minimum
distance for the code CXq ,l as follows.

Corollary 11 Let q > 3 and μ ∈ F
×
q such that μ 	= αq+1 for all α ∈ Fq2 such that

αq+1 = αq + α. For 0 ≤ l ≤ q, the code CXq ,l of Theorem 5 over Fq2 has minimum
distance

d = n − lq(q + 1) − (q − 1)q2 − (q − 2)(q + 1)2.

Proof Let

F0 ⊆ {x ∈ Fq2 : xq+1 = xq + x} \ {0},
F1 = {x ∈ Fq2 : xq+1 = μ}

and

F2 = {x ∈ Fq2 : xq + x = μ}.
By construction, |F0| = l with 0 ≤ l ≤ q , |F1| = q + 1 and |F2| = q . Also, if P =
(α, β, γ ) ∈ B then αq +α 	= 0, βq+1 = αq +α and γ q + γ = αq+1. Therefore Fi ⊆ yi (B)
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for i = 0, 1, 2. Moreover, if P ∈ X (Fq) has yi -coordinate in Fi then its y j -coordinate is not
in Fj for j 	= i . In fact, if α ∈ F0, then αq + α = αq+1, so β ∈ F1 yields to a contradiction
since in this case μ = βq+1 = αq + α = αq+1, and the same happens if γ ∈ F2. A similar
argument shows that the other two cases can not occur either. Therefore, Theorem 10 holds.

��
Remark 7 Notice that for many examples, we can choose μ = 1. Actually this is the case,
for example, for q = 4, 7, 13, 16, 19, 25. For q = 5, 9, 17 we can use μ = 2 and for q = 11,
μ = 5 satisfies the required hypothesis.

4.2 A combinatorial condition for exact minimum distance

We apply a very simple counting argument to show that the conditions of Theorem 10 hold
when the evaluation set is large enough in relation to the map degrees and the base curve of
the fiber product is Y = P

1
y0 . Let S = S0 be the set of points on Y lying below the points of

B, and let Si be the set of points of Yi lying below the points of B for each i , 1 ≤ i ≤ t . As
a non-infinite point of the projective line, each point of S0 corresponds to a value α in Fq .

Theorem 12 Let C(V , B) be a code constructed from a fiber product as in Theorem 1, where
Y = P

1
y0 , and let η0 = 1 and ηi = deg(hi ) for 1 ≤ i ≤ t . Let ψ0 = l and ψi = deg(yi )

for 1 ≤ i ≤ t , where here we consider the function yi : Yi → P
1
yi . Then the conditions of

Theorem 10 above hold whenever

|Si | ≥
∑

i 	= j

(ηi − 2)ψiη jψ j

for all 1 ≤ i ≤ t and

|S0| ≥
t∑

j=0

η jψ j .

Proof For each i , ≤ i ≤ t , let Ti ⊆ Fq be the set of values of the yi -coordinates of points in
Si . Note that |S0| = |T0|, and that |Si | = ηi |S0| = ηi |T0|.

We will proceed by removing points from Si and values from Ti as we build the sets Fi .
We will be successful in constructing the function in the proof of Theorem 10 if we construct
all the sets Fi without exhausting the sets S j and Tj for any j .

First, let F0 be any set of l elements of T0. Remove these elements from T0. For each i ,
1 ≤ i ≤ t , each of these y0-values will be present in at most ηi points in Si , which will cover
a total of at most lηi values of yi . Remove these values from Ti for each i . These values of
yi will each appear in at most deg(yi ) = ψi points of Si . Remove these points from Si . This
accounts for at most lηiψi = η0ψ0ηiψi points in Si for each i , 1 ≤ i ≤ t .

Beginning with i = 1, let F1 consist of any η1 − 2 values of y1 which appear as y1
coordinates in S1. These values of y1 will appear in at most (η1 − 2)ψ1 points in S1, which
will lie above at most (η1 − 2)ψ1 points in S0. Remove these points from S0, and these
y0-values from T0. Note that by design, these values will not have been previously removed
from T0. For each of these values of y0, there are at most η j points in S j with these y0-
values, meaning at most η j values of y j across these points. Remove these points from S j

and these values of y j from Tj for all j , 1 ≤ j ≤ t , j 	= i . There are a total of η jψ j points
with these values of y j in S j . By assumption, the sets S j were all large enough that this
must be possible. Repeat for all i , 2 ≤ i ≤ t , building sets F2, . . . , Ft . This is possible as
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long as no set T0, S0, Ti or Si is empty at any point in the process. By definition, the set Ti
must be non-empty as long as Si is non-empty. At each stage, we remove (ηi − 2)ψiη jψ j

points from each Si for i ≥ 1 and (η j − 2)ψ j points from S0. Since |S0| ≥ ∑t
j=0 η jψ j and

|Si | ≥ ∑
i 	= j (ηi − 2)ψiη jψ j , we always have enough points to do this. Thus all sets Fi can

be constructed this way. ��
Example 4.3 We know from Theorem 9 the exact minimum distance of CAq,t ,l for many
values of l. However, we apply Theorem to find the exactminimumdistance of codes obtained
from the curves of Example 3.3 over an extended base field. In particular, consider points on
the base curve, factor curves, and fiber product defined over Fq6 = Fp6h , where for simplicity
we take h = t to also be the number of factor curvesYai . Since the curveAq,t is maximal over
Fq2 , it is also maximal over Fq6 (upon consideration of the L-function of the curve). Thus
we can compute thatAq,t has p6h + p5h − p4h + 1 points over Fp6h . Since each curve Yai is
covered by the maximal curveAq,t , Yai is also maximal and thus has p6h + p4h+1 − p4h +1
points over Fp6h . Note that each Fp6h -point corresponds to a place of degree 1 in the function
field Fp6h (Yai ).

First we consider the lower Artin–Schreier extensionsFp6h (Yai )/Fp6h (y0), corresponding
to the maps hi from the curves Yai to projective line by projection onto the y0-coordinate.
These Artin–Schreier extensions of the projective line are described completely in [9, 3.7.8
and 6.4.1]. The extensions are Galois of degree p. Each degree-one place in Fp6h (Yai ) lies
above a fully ramified or fully split place inFp6h (y0). The only ramified place in this extension
is the unique place at infinity. Thus the p6h + p4h+1 − p4h affine rational points of Yai over
Fp6h arise from p6h−1 + p4h − p4h−1 places in Fp6h (y0) splitting completely.

Recall that the function field of the fiber product of curves is the compositum of the
function fields of the curves. Extending [9, Proposition 3.9.6], we see that if a place ofFp6h (x)
splits completely in each extension Fp6h (Yai )/Fp6h (y0), then this place splits completely in
the compositum extension Fp6h (Aq,t )/Fp6h (y0). Since all non-infinite degree-one places of
Fp6h (Aq,t )must lie above non-infinite degree-one places ofFp6h (Yi ),we have that all the non-
infinite degree-one places of Fp6h (Aq,t ) lie above places of Fp6h (y0) which split completely
in the degree ph extensionFp6h (Aq,t )/Fp6h (y0). Since there are p

6h+ p5h− p4h non-infinite
degree-one places of Fp6h (Aq,t ), these lie above p5h + p4h − p3h non-infinite degree-one
places of Fp6h (y0) which split fully in all extensions.

Applying the construction from Sect. 2.4, we may take the evaluation set B to be the set of
all affine points ofAq,t (Fp6h ) and the divisor D = l∞Y for any l with l ≤ p5h+ p4h− p3h−1
for guaranteed positive minimum distance. By Theorem 1, we get a locally recoverable code
with uniform locality p−1, availability h, length n = p6h + p5h − p4h , dimension l(p−1)h ,
and minimum distance d ≥ n − lph − h(p − 1)p2h−2(ph + 1).

Let S0 be the points of Y corresponding to these fully split places below B. Let Si be the
points on Yai lying above S0 for each i . We then have that |Si | = p|S0| = p5h+1 + p4h+1 −
p3h+1.

To apply Theorem 12, we note that η0 = 1, ψ0 = l, ηi = p and ψi = ph + 1. Then
∑

i 	= j

(ηi − 2)ψiη jψ j ≤ (t − 1)(p2h+2 + 2ph+2 + p2) + l(ph+1 + p)

for all 1 ≤ i ≤ t and

t∑

j=0

η jψ j = (t − 1)(ph+1 + p) + l.
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Note that there is a large range of values of l for which the conditions of Theorem 12 hold,
and thus for which the bound on minimum distance given in Theorem 1 is the true minimum
distance.

5 Parameter ranges and comparison to bounds

We find the following bounds on the parameters of LRC(t)s in the literature.

• For all codes, the Singleton bound:

d ≤ n − k + 1.

• Tamo and Barg proven rate bound [10] (2014), for codes with uniform locality r :

d ≤ n −
t∑

i=0

⌊
k − 1

r i

⌋
, R ≤ 1

∏t
j=1

(
1 + 1

jr

) . (8)

• Bhadane and Thangaraj [4] (2017), for codes with locality (r1, r2, . . . , rt ), where ri ≤ r j
for i < j :

d ≤ n − k + 1 −
t∑

i=1

⌊
k − 1

∏i
j=1 r j

⌋
. (9)

The proven rate bound in (8) is known to be tight for t = 1 but no constructions have
realized this bound for t ≥ 2. Two constructions for general r and t should bementioned here.
First, in [10], Tamo and Barg consider a binary code which is the product of t single-parity-
check codes with r message symbols each. This gives an LRC(t) with locality r for each
recovery set for arbitrary r and t . This product code construction gives an [(r + 1)t , r t , 2t ]-
code with rate R =

(
r

r+1

)t
. At the time, the authors stated that they believed this to be the

largest rate attainable for a code with t disjoint recovery sets, each with locality r . This is
very close to the bound rate from (8) when t = 2 but diverges from the bound for larger t .
Second, in [15], Wang et al. devise a parity check matrix construction giving rise to LRC(t)s

with rate R = r
r+t for arbitrary r and t . These

[(r+t
t

)
,
(r+t

t

) − (r+t−1
t−1

)
, t + 1

]
-codes have

better rate than product codes but even smaller minimum distance. The authors state that they
believe their construction yields optimal rate for t ≤ r . Our literature search has not found
any locally recoverable codes with t ≥ 2 surpassing this rate. In what follows, we compare
the rates and minimum distance of our most general example to these benchmarks. In some
cases we also compute the relative defect.

Remark 8 In [3],Bartoli,Montanucci, andQuoosprove that codeswith locality (r1, r2, . . . , rt )
satisfy

d ≤ n − k −
⌈

(k − 1)t + 1

1 + ∑t
i=1 ri

⌉
+ 2. (10)

In all situations of this paper where this bound applies, we find that the bound in [4] is lower,
so we compare to (9) in what follows.

Remark 9 Many interesting but more complicated bounds have been proven for minimum
distance, many incorporating field size. See [12], for example, and the survey [1] for a more
comprehensive list of proven bounds. The asymptotic comparison of the minimum distance

123



Minimum distance of LRC(t)s from fiber products… 2095

of the fiber product codes in this paper to the bounds in (8) and (9) is complicated by the fact
that the parameter of locality is dependent on the field size in all examples. Further study of
whether fiber-product based codes can approach field size-dependent bounds is warranted.
Further, some interesting constructions have been proven rate-optimal in specific cases, or
to surpass the rate of the Wang et al. construction in [15] for certain r and t (for example [6]
and binary simplex codes).

This section attempts to shed some light on how different choices in code construction
affect the parameters of the resulting codes, what parameters are attainable, and how these
parameters compare to bounds and constructions in the literature.

5.1 General heuristics

First, we consider the general code C = C(V , B) with parameters described in Theorem 1.
Recall that l is the degree of a divisor D on Y(Fq), and m is the dimension of the Riemann-
Roch space L(D). For a fixed evaluation set B, it is clear that the dimension of C increases
(and the minimum distance of C decreases) as l increases up to its maximal value. The
Riemann-Roch Theorem states that for a curve Y of genus γ , we have m ≥ l − γ + 1. The
relationship of m and l depends on D when l < 2γ − 1, but when l ≥ 2γ − 1, we know
that m = l − γ + 1. Thus if all other parameters are fixed, the value of m and therefore
the dimension of C will potentially be larger when γ is smaller. In our examples, we take
Y = P

1, so γ = 0 and m = l + 1. Of course, l and therefore m are bounded by the number
of points in S, and increasing the genus of Y can allow a larger number of points in S by the
Hasse-Weil bound. Since n = |B| = dg |S|, we may attain longer codes if S is larger. If all
other parameters are fixed, this will decrease the rate but increase minimum distance.

Considering rate, we observe the following,

Corollary 13 In the setting of Theorem 1, if

• the extensions Fq(Yi )/Fq(Y) are linearly disjoint, and
• dhi = dh j = r + 1 for all i, j ,

then the rate R satisfies

R ≤
(

r

r + 1

)t

.

Proof If γ is the genus of the curve Y , then the Riemann-Roch theorem implies that

l + 1 ≥ m ≥ l − γ + 1.

Since the construction demands l < |S| so that the evaluation map is injective, m ≤ |S|. ��
Therefore we see that when the fiber product construction is applied to yield codes with
uniform locality r , it is not possible to create codes with rate surpassing that of the product
code construction for the same availability and locality. The fiber product code construction
is flexible, however, to allow for codes with larger minimum distance and to create varying
locality across the recovery sets.

In choosing curves Yi and maps hi : Yi → Y for the fiber product, we know that the
locality of C will be determined by dhi . All other things being equal, we should prefer
small locality. However, as we see in the formulas for parameters and the bounds above, this
comes at a cost in rate and minimum distance. Thus small locality must be balanced against
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efficiency and effectiveness in the code. If the code is only to be used for local recovery,
with global error correction never applied, large minimum distance is not useful, so we may
wish to maximize rate given certain locality and availability conditions. However, in some
situations it may be that relatively large minimum distance is desirable to recover from a
catastrophic event by global error correction or erasure repair. Thus larger minimum distance
may sometimes be desirable; in this case, larger relative minimum distance can be obtained
by reducing the parameter l to the minimum value of 0.

5.2 LRC(2)s CHq onHq

We return to the codes defined over Fq2 of Example 3.1 and Theorem 7. All parameters of
these codes are dependent on the choice of q . We determined the parameters of CHq for
q = ph when q ∈ {2, 3, 5, 7} and h ∈ {1, 2, 3, 4}. We compare to bounds on the minimum
distance from (9) as well as the relative defect from this bound. This data is displayed in
Table 1.

We can also compute a formula for the defect and relative defect of CHq . Recall that CHq

is a [q3 − q2, q2 − 2, q3 − 2q2 + q + 2]-code with availability 2 and locality (q − 1, q).
Taking the bound (9), we find that d ≤ b, where

b = q3 − q − q2 + q + 1 −
⌊
q2 − q − 1

q − 1

⌋
−

⌊
q2 − q − 1

q2 − q

⌋
= q3 − q2 − q + 2.

Thus we can compute the defect to be q2 − 2q with a relative defect of q2−2q
q3−q

, which
approaches 0 as q increases. Thus these codes on the Hermitian curve have asymptotically
good minimum distance.

5.3 LRC(2) CXq,l onXq = Hq ×P1 Hq

For the codesCXq ,l definedoverFq2 of Example 4.2 andTheorem5,we see that all parameters
of these codes are also dependent on the choice of q . In Table 2 we compare the parameters
for Cl over Fq2 for different values of q .

For l = 0, the dimension of these codes is k = q2 − q and the minimun distance
d = q4 − 2q3 + 3q + 2. Taking the bound from (9), we find that d ≤ q4 − 2q2 + 2, and the

relative defect is 2(q2−q−1)
q3−q2

, which also approaches 0 as q increases.

5.4 Parameters for LRC(t) CAq,t,l on fiber product of Artin–Schreier curves

Here, we explore the parameter space of codes CAq,t ,l on the product of t Artin–Schreier
curveswith points overFq2 and l themaximumdegree in y0 of functions leading to codewords.
This family of codes is chosen for exploration because it can attain arbitrarily large availability
t (if extension degree of field of definition over prime field is allowed to increase) and arbitrary
large locality (r = p− 1 for any prime p). This example family is not as general with regard
to locality and availability as the product code and Wang et al. constructions, which allow
for any r and t without increasing field size, but it is more general than many other concrete
geometric constructions. This example is not claimed to be optimal for the fiber product
construction, only sufficiently adaptable to study parameters.
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Table 2 Sample parameters for
Cl , an LRC(2) over Fq2 with
locality (r1, r2) = (q − 1, q)

q n l k d bound from (9) bound−d
n

4 240 0 12 142 226 0.35

1 24 122 209 0.3625

2 36 102 192 0.375

3 48 82 175 0.3875

4 60 62 158 0.4

5 600 0 20 392 577 0.3083

3 80 302 499 0.3283

5 120 242 447 0.3416

7 2352 0 42 1738 2305 0.2410

3 168 1570 2155 0.2487

7 336 1346 1955 0.2589

11 14520 0 110 12014 14401 0.1643

5 660 11354 13791 0.1678

11 1320 10562 13059 0.1719

13 28392 0 156 24208 28225 0.1414

13 2184 21842 26015 0.1469

Table 3 Sample parameters for
CAq,t ,l , an LRC(2) over F81
with length n = 729 and locality
r1 = r2 = 2

l k rate d bound on d (8)

0 4 0.006 669 725

60 244 0.334 129 305

74 300 0.412 3* 207

The rate is bounded by R ≤ 0.533. The listed distance when l = 74
(marked with *) is a lower bound from Theorem 6 for the true minimum
distance

5.4.1 Smallest concrete examples with t = 2

The smallest non-trivial example in this case is a code of length 729 over the field F81. When
p is prime and q = ph , the smallest p allowing to non-constant functions in each yi with
1 ≤ i ≤ t is p = 3. Since t ≤ h, the smallest h which allows multiple recovery sets is h = 2.
Thus we may choose l with 0 ≤ l ≤ 74 to be sure of positive minimum distance. Theorem
9 gives the exact minimum distance for 0 ≤ l ≤ 60. In Table 3, we give the parameters for
the cases l = 0, l = 60, and l = 74 and compare to the minimum distance bound in [10].

Larger codes can be created by increasing p, h, and/or t . Letting p = 5 and h = t = 2
we obtain codes over F625 with length 15625. Here we may choose l with 0 ≤ l ≤ 593
to be sure of positive minimum distance. Theorem 9 gives the exact minimum distance for
0 ≤ l ≤ 572. In Table 4, we give the parameters for the cases l = 0, l = 572, and l = 593
and compare to the bounds in (8).

5.4.2 Maximizing rate for t ≥ 2

As mentioned above, it may be of greatest interest to maximize the rate of LRC(t)s for a
given availability and locality. For p = 3, 5, 7, we construct codes with t = 2, 3, 4 over field
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Table 4 Sample parameters for
CAq,t ,l , an LRC(2) over F625
with length n = 15625 and
locality r1 = r2 = 4. The rate is
bounded by R ≤ 0.711.

l k rate d bound on d (8)

0 16 0.001 14845 15607

572 9168 0.587 545 3595

593 9504 0.608 20* 3154

The listed distance when l = 593 (marked with *) is a lower bound from
Theorem 6 for the true minimum distance

Fq2 where q = pt , the minimum field extension allowing t recovery sets in this method.
To obtain codes of large rate, we choose the maximum l so that the minimum distance is
guaranteed to be positive. The parameters of the codes arising from these choices are given
in Table 5. In each case, we give a range where the minimum distance d must lie based on
the lower bound from Theorem 6 and an upper bound from Theorem 9.

5.4.3 Maximizing minimum distance for t ≥ 2

If instead it is of interest tomaximize theminimumdistance of LRC(t)s for a given availability
and locality, this can be done by choosing l = 0. For p = 3, 5, 7, we construct codes with
t = 2, 3, 4 over field Fq2 where q = pt , the minimum field extension allowing t recovery
sets in this method. The parameters of the codes arising from these choices are given in Table
6. In each case, we know the exact minimum distance d from Theorem 9, which we compare
to the bound on minimum distance from (8) and compute the relative defect.

5.4.4 Rate for increasing t and fixed locality

Let p (and thus locality r = p−1) be fixed and set t = h to maximize the number of recovery
sets for each field size. For each t , let l take on the maximum value guaranteeing positive
minimum distance in Theorem 6. In Fig. 1 we graph the rates of codes CAq,t ,l over Fq2t for
t ∈ {2, 3, . . . 10}, increasing field size as well as number of recovery sets. We also graph the
proven and conjectured rate bounds for codes with this availability and locality from [10].
The lengths of the codes are quite large, so we omit the accompanying tables. We find that
the rate of the constructed codes is close to the product code rate for all t , growing extremely
close as t increases. When we examine the minimum distance of these codes, we find that,
in all cases except (p, t) = (3, 2), the minimum distance of the constructed code is larger
than that of the corresponding product code and the Wang et al. construction. However, this
minimum distance comes at a cost of greater length and working over a larger field.

Onemight wonder what happenswhen field size q2 and locality r are fixed, but the number
t of factor curves (and recovery sets) is increased. In Fig. 2, we graph the rate of the code
CAp10,t ,l

over Fp20 , where l is maximized for guaranteed positive minimum distance, as well
as the proven rate bound from (8) and the rates of the Tamo-Barg product construction and
Wang et al. construction, for t ∈ {2, 3, . . . 10}. The lengths of the codes are quite large, so we
omit the accompanying tables. We find that the rate of the fiber product codes is extremely
close to the product code construction bound, matching up to at least 4 decimal places in
each case. The lower bound on minimum distances of these codes are also larger than that of
the product code andWang et al. construction when (p, t) is not (3, 2). This larger minimum
distance comes at a cost of much greater length, however; the relative minimum distance of
the fiber product codes is less than either of the other constructions.
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Table 6 Sample parameters for CAq,t ,l , an LRC(t) over Fq2 , where q = pt . Locality r = p − 1 is the same
for each recovery set. We have chosen l = 0 here to maximize minimum distance

p t r n k d bound on d (8) bound−d
n

3 2 2 729 4 669 725 0.0768

3 3 2 19683 8 18927 19672 0.0378

3 4 2 531441 16 522585 531415 0.0166

5 2 4 15625 16 14845 15607 0.0488

5 3 4 1953125 64 1924775 1953044 0.0145

5 4 4 244140625 256 243201625 244140289 0.0038

7 2 6 117649 36 114149 117609 0.0294

7 3 6 40353607 216 40100767 40353352 0.0063

7 4 6 13841287201 1296 13824809481 13841285651 0.0012

Fig. 1 Rate of codes CApt ,t ,l
, for p = 3, p = 5, p = 7, and p = 11, where l is maximized for guaranteed

positive minimum distance, defined over Fp2t with t recovery sets for 2 ≤ t ≤ 10}. Also plotted are the bound
on rate (8), and rates of product code and Wang et al. constructions (both defined over F2)
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Fig. 2 Rate of codes CAp10,t ,l
, for p = 3, p = 5, p = 7, and p = 11, where l is maximized for guaranteed

positive minimum distance, defined over Fp20 with t recovery sets for 2 ≤ t ≤ 10}. Also plotted are the
bound on rate (8), and rates of product code and Wang et al. constructions (both defined over F2). Code rate
is visually indistinguishable from the rate of corresponding product code

5.4.5 Rate for fixed t as locality increases

Finally, we consider the parameters of the codes CApt ,t ,l for various fixed values of t as the
prime p increases and l is chosen to maximize rate while guaranteeing positive minimum
distance. Notice that the field size in each case is Fp2t so this increases with p and t . In Fig.
3, we see that for each fixed t , increasing p = r + 1 yields codes with rate nearly identical
to that of the product code, and approaching that of the Wang et al. construction.

5.4.6 Comparison with product code rate as locality increases

We now consider the actual formula for the rate ofC = CApt ,t ,l when l is chosen for maximal
rate with positive minimum distance. Recall that the length and dimension of C are given by

k = q2 −
⌊
t(pt−1)(p − 2)(pt + 1) + 1

pt

⌋
(p − 1)t ,

n = ptq2.
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Fig. 3 Rate of codesCApt ,t ,l
, for p ∈ {3, 5, 7, 9, 11, 13, 17, 23}, where l ismaximized for guaranteed positive

minimum distance, defined over Fp2t , with t recovery sets for 0 ≤ t ≤ 4. Each recovery set has locality p−1.
Also plotted are the bound on rate (8), and rates of product code and Wang et al. constructions (both defined
over F2). Code rate is visually indistinguishable from the rate of corresponding product code when t = 4 and
t = 5

With some simplification, this gives a rate at least

R ≥ 1

p3t

(
p2t (p − 1)t − t(p − 2)(pt + 1)(p − 1)t

p
−

(
p − 1

p

)t

+ (p − 1)t
)

.

As p increases, we see that

R ≥
(
p − 1

p

)t

− O
(
1

p

)
.

Thus at p increases, the rate of C approaches 1. Further, the rate of C is asymptotically the
same as the rate of the corresponding product code (here, r = p − 1, so the product code

with matching locality and availability would have rate (p−1)t

pt ). Asymptotically, the Wang
et al. construction grows at the same rate as well. Again, the product code and Wang et al.
constructions both have the advantage of smaller field size.
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