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Abstract

We construct families of locally recoverable codes with availability # > 2 using fiber products
of curves, determine the exact minimum distance of many families, and prove a general
theorem for minimum distance of such codes. The paper concludes with an exploration of
parameters of codes from these families and the fiber product construction more generally. We
show that fiber product codes can achieve arbitrarily large rate and arbitrarily small relative
defect, and compare to known bounds and important constructions from the literature.
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1 Introduction

A code C is broadly said to be locally recoverable if an erased symbol in any position i in a
codeword of C can be recovered by consulting a small number of symbols in other (fixed)
positions, called a recovery set for position i. Locally recoverable codes have been widely
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studied in recent years for their potential applications in reliable and efficient cloud storage.
For a survey on this topic, see [1].

A natural next property to look for in locally recoverable codes is the ability to recover
more than one erasure. There are two main approaches to this question. First, one could ask
that the single recovery set for each position allow for recovery of additional erasures within
the set, introducing the parameter p to recover p — 1 erasures. Alternatively, one could ask
that each position has multiple (usually disjoint) recovery sets, introducing the parameter ¢ to
represent the number of recovery sets that each position has. Of course, these two approaches
can also be blended, producing multiple recovery sets that each can recover multiple erasures.
While this work focuses on the second approach for simplicity, the main construction can be
adapted to blend with the first approach. We note that while codes with very large availability
(on the order of the length of the code) are interesting and have important applications to
cryptography and private information retrieval, we focus here on codes with availability
sub-linear in the length of the code.

The Tamo-Barg method [10, 11] of constructing locally recoverable codes is based on
building a particular linear space of functions V on an evaluation set B. The set B is partitioned
into extended recovery sets based on algebraic or geometric relationships between the points
in B, and functions in V are chosen so that they restrict to polynomials of a single variable
of bounded degree on each extended recovery set. If the value of the function at any point
in an extended recovery set is erased, it can be recovered through single variable polynomial
interpolation using the values of the function on the other points in the set. There is a large body
of work building on this approach. In [2], the authors construct locally recoverable codes with
availability ¢+ = 2 based on fiber products of curves and propose a group-theoretic perspective
on the construction. In [5], the authors generalize the fiber product construction to # > 2 and
refine the parameters of the resulting codes. The group-theoretic method of constructing
locally recoverable codes with many recovery sets has also been studied, notably in [3]. The
general approach of creating locally recoverable codes from rational maps is pursued in [7]
and extended to algebraic curves defined by equations with separated variables in [8], but the
general fiber product construction still requires more exploration.

This work is an extension of [5], with a goal of understanding the range of possibilities
and limitations of this construction. For completeness, we include the relevant definitions
and construction from [5]. In Sect. 2, we include some expository discussion on ways to
think of the fiber product of curves and special cases of the construction. We then introduce
the three families of codes which are the main examples of this paper. These three families
are all centered on the well-studied Hermitian curve H,. The first main example family,
introduced in Example 3.1 comes from the Hermitian curve, introduced as an example of a
locally recoverable code with two recovery sets in [2]. The second, Example 3.2 is a novel
code based on the fiber product of two Hermitian curves, and is designed to illustrate the
flexibility of this method—one can select curves with appropriate maps and understand the
fiber product, and therefore the parameters of the code, using geometry and the construction
of [5]. The final example, Example 3.3, is a code from a fiber product of Artin-Schreier
curves introduced by van der Geer and van der Vlugt. This example was introduced in [5]
and is included as an example where ¢ can be as large as desired. When the construction is
defined over pzh, for p a prime and / a natural number, and we choose ¢ = h factor curves,
the fiber product is again the Hermitian curve H .

Determining the exact minimum distance of a linear code is, in general, a difficult problem.
In particular, few results on exact minimum distance for L RC (¢)s are known. In Sect. 4, we
calculate the exact minimum distance for the first family and for a large range of examples in
the third family in Theorems 7 and 9 by applying number theory and geometry. Incidentally,
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we also compute the exact minimum distance of a non-fiber product code introduced in [2]
in Theorem 8. This is followed by Theorem 10 on minimum distance for codes defined using
a fiber product. We apply Theorem 10 to particular examples in the second and third family
in Examples 4.2 and 4.1.

Finally, in Sect. 5, we explore the parameter space and compare to some relevant bounds
and constructions from the literature. We show in Corollary 13 that fiber product codes are not
able to surpass the rate of the product code construction from [10], though some constructions
are extremely close.

2 Preliminaries

2.1 Locally recoverable codes and availability

Let n, k be natural numbers, with k < n. A linear code C of length n and dimension k over
the field IF,; is a k-dimensional linear subspace of (F;)". The minimum distance of C is the
minimum number, d < n, of coordinates in which two distinct elements of C (referred to
as codewords) must differ. The weight of a codeword is the number of non-zero coordinates
it has; for the codeword ¢, we denote this value by wt(c). As a vector space, the minimum
distance of C is equal to the minimum weight of the non-zero codewords. It is common to
refer to such codes as [n, k, d]-codes.

For an [n, k, d]-code, the rate of the code is R = % The relative minimum distance is
given by % When a Singleton-type upper bound b on minimum distance is known, we define
the defect of the code to be b — d and the relative defect of the code to be b;—d.

We say C is a locally recoverable code (LRC) with locality r if for alli € {1,...,n}
there exists a set of indices A; € {1,...,n} \ {i} and a function ¢;: (F;)" — [, such
that #4; = r and for all codewords ¢ = (c1,...,¢c,) € C we have ¢; = ¢;(c|s;). The
set A; is called the recovery set for the i-th position. It may be desirable to have multiple
disjoint recovery sets for each position to protect against multiple erasures or allow for
simultaneous queries of heavily-accessed information. A locally recoverable code C has

availability t with locality (ry, ..., r;) if foreachi € {1, ..., n} there exist sets of indices
A1, ..., Aiy € A{1,...,n}\{i} such that
1. Aiyj NAp=0forj#h
2. #Aiyj =7Tj
3. Foreach j € {1, ..., t}thereexistsafunctiong; ;: ]F;j — IF, such that for all codewords
c=(ci,...,cn) € Cwehavec; = ¢; j(cla;;)-
We refer to an LRC with availability ¢ as an LRC(z). The localities of an LRC(¢) form a
vector (r1,72,...,r;). Whenr; =r; =rforalli,j € {1,2,...,t}, we say that the code

has uniform locality r.

2.2 Evaluation codes on curves

Let X be an algebraic variety defined over a finite field F,. Let B be a subset of X'(IF,) of
cardinality n € N, with points arbitrarily ordered as B = {P1, P», ..., P,}. Let V be a linear
subspace of the function field IF; (X') such that no function in V has poles at any point in B.
For any f € V, define the evaluation map

evp: V> TFL [ (f(P). f(Py)..... f(P).
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Then we define the evaluation code C(V, B) as
C(V,B): ={evp(f): feV}.

Reed-Solomon codes are evaluation codes where V is the space of polynomials of bounded
degree and B are the values in a finite field, viewed as affine points on a projective line.
Evaluation codes on the Hermitian curve have also been very well-studied. For any prime
power ¢, the Hermitian curve H, is defined over any extension of I, by the affine equation

x? 4 x = yitl,

The curve H, has genus %q(q — 1) and has ¢ + 1 points over F,2 including a single point
at infinity.

2.3 Fiber products of curves

Let Y1, ), and Y be projective curves over Fy, with maps h;: J; — ) that are separable,
rational IF,-morphisms for i = 1, 2. The fiber product )} xy ) is a curve that is (abstractly)
defined using the corresponding fiber product of schemes. More concretely, the I, -rational
points of the fiber product YV, xy )» are given by

V1 xy M)(Fg) ={(P1, P) € Vi(Fg) x Wa(Fy) : hi(P1) = ha(P2)}. ey

The fiber product construction can be iterated and is seen to be (up to isomorphism)
associative and commutative. Thus for any r € N, we may without confusion construct
the ¢-fold fiber product of curves as follows. Let Y, Vi, ..., ); be projective curves over
F, with separable F,-rational maps &; : V; — Y. The F,-points of the fiber product
X =Y xy- - xyY ofY,..., ) over Y are then given by

XE) ={(P1,...,P): P € Vi(Fy) and h;(P;) = hj(P;j) foralli, j e {l,...,t}}.
This construction induces ¢ natural projection maps
git X =
from the fiber product onto each factor curve. Let
Vi=V1 Xy Xy Vit Xy Vig1 Xy - Xy Y,

be the fiber product of all curves )V; except );. Then we see that X’ is isomorphic to J; xy )7,-,
and we identify ; with the isomorphic factor in the original fiber product construction of
X. This gives complementary projection maps

gi: X — Y, and fz,-:j),- — ).
We also define the map g: X — Y by g = h; o g; for any i.

Remark 1 Simply speaking, the map g; “forgets” the information coming from the curve )
while retaining the data of the fiber product that come from the other curves.

The function field I, (X) is isomorphic to the compositum of the function fields F,; ();),
where the function field F,()) is embedded into each F,();) as induced by the map 4;.
For ease of exposition, we identify each function field with its image inside I, (X), so
F,(Y) € F, (i) € Fy(X) for eachi. Further, we assume that I, is the full field of constants
within each of these fields, and that the extensions F, ();)/F, () are linearly disjoint.
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Remark 2 Linear disjointness is important in this context because for finite degree extensions
it is equivalent to

t
dy = [ ]d, )
i=1

Sufficient conditions for linear disjointness are that either the degrees dj,, are pair-wise
relatively prime, or the extensions F, ();)/IF,())) are Galois and F (Y) = F, () NF, (V)
foralli, j.Linear disjointness also implies dg;, = (]_[lt-:1 dp;)/dp; . These degree relationships
simplify the determination of the parameters in the code construction.

Remark 3 1t is not in general easy to see whether a fiber product of varieties is irreducible.
In some cases, we can apply the fact that if ¥ — ) is a finite morphism of curves, with )/
irreducible and some smooth point of ) fully ramifies in the covering X — )/, then X’ is
also irreducible. This is the case with the point at infinity in each of our running Examples
3.1, 3.2, and 3.3. However, we note that it is not necessary for the construction in Sect. 2.4
that the fiber product be irreducible.

Considering smoothness, an I -rational (or E—rational) point (P, P») of the fiber product
in (1) is singular if and only if /; is ramified at P; and h; is ramified at P,. There are
singular points in many fiber products, but we consider the normalization of the product
when determining the genus of a singular fiber product. Also, we again note that it is not
necessary for the construction in Sect. 2.4 that the fiber product be smooth.

2.4 Locally recoverable code with availability t construction from fiber product of
curves

The following general construction comes from [5], though for completeness we include it
simplified notation here.

Let yo € Fy (&) so that F; () = F;(yo). Foreach i, 1 <i <t, we choose y; € Fy(&X)
so that F, () = F,())(yi), where y; is the root of an irreducible separable polynomial
bi(X) € F;(Q)[X]. Let dy, be the degree of the function y; : X' — P,lv,--

We now have that

Fy(X) =F;(vo) (1) - - () = Fg (Yo, Y1, Y25 -5 ¥1).

The degree of g; must be equal to the degree of /;, denoted dj, .
Now, choose § C Y(IF) such that

o g7 (P)NX (Fy)| = dg forall P € § (i.e. all places in S split completely in the extension
Fy(X)/Fq())) and
e foreachi, 1 <i < ¢, the function y; has no poles at any point above S in the extension

Fy (X)/Fq(Y).

Choose an effective divisor D of degree [ on Y(IF,;) with S N supp(D) = #, so functions
in the Riemann-Roch space £(D) have no poles in S. Let { f1, f2, ..., fi} be a basis of the
Riemann-Roch space £(D). We require that / < |§]| so that for all f € L£(D), there exists
some P € S with f(P) # 0. Let V be the F-vector space with basis

(v -y 1< j<m,0<e <dy —2foralli}. 3)
Then set
B =g (8 C X(F,, €))
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where an arbitrary ordering of elements is fixed on B. Note that n = |B| = dg|S|.

The code C(V, B) is locally recoverable with availability . Recall that we have fixed an
ordering of the points in B for the evaluation map evp. Forany i, j € Nwith 1 <i < n and
1<j<t,set

Bij =& (gj(P)\ {P).
Let
Ai.j = {a: P, e Bi,j}.

Consider a codeword evp ( f) for some function f € V. Given an erasure in position i of the
codeword (associated with point P;), each A; ; acts as a recovery set, because on the set B; ;
the function f is constant except in y;, so on B; ; it acts as f (¥j), a polynomial of degree
less than or equal to dj,; — 2. The evaluation of f on the dj,; — 1 points of B; ; therefore give
rise to dj,; — 1 distinct pairs (yj(P,-), f (yj(Pi))). Since any polynomial of this degree is
determined by its values on dj,; — 1 points, these pairs are sufficient to determine the value

of f(P) = f(P).

This construction gives rise to the following theorem.

Theorem 1 Given a fiber product X of curves defined over ¥ as described in Sect. 2.3, with
V a vector space of functions on X with basis as in (3) and B a subset of X (IFy) as in (4),
the code C(V, B) is a locally recoverable code with availability t and

e lengthn = |B],

o dimension m(dp, — 1)(dp, — 1) -+ (dp, — 1),

e minimum distance d > n —ldg — > "'_, (dn; —2)dy,, and
o locality (dp, — 1, dp, — 1, ..., dp, — 1).

One may easily calculate the rate R of the constructed code. In the case that the extensions
are linearly disjoint, we have an especially simple form.

Corollary 2 If the extensions Fy(Y;) /4 (V) are linearly disjoint, then the rate of C(V, B) is

m dh.—l
R=— . . 5
ISIH dp, ©)

i

i=1

This is a simple application of the definition of rate, the fact that |B| = d, |S|, and the
fact that when the extensions are linearly disjoint, we have d, = ]_H:l dp; .

3 Simplified framework and featured constructions

To gain some intuition, let us consider the simplest version of this fiber product construction:
say Y = IP’;O with ooy the unique point at infinity on this curve,

and h; : YV; — Y given by projection onto yg. In this case, the fiber product X = Y| xy
.-+ Xy Y can be embedded into P+ with affine coordinates (yo, ¥1, - - - » ¥+). Note that this
fiber product, X, is isomorphic to the intersection of ¢ hypersurfaces in (¢ 4+ 1)-dimensional
space. Further, if we take D = [ocoy to be the divisor defining the Riemann-Roch space £(D),
then this fiber product construction results in a punctured subcode of the Reed-Muller code,
with functions simply polynomials in F,[yo, y1, ..., y] and evaluation points a subset of
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points on the intersection of the 7-hypersurfaces created by considering the defining equations
for the ¢ curves ); in P'*!. Explicitly, the functions leading to codewords are

V = Span{y]y"' y2 -y 10 < j <1,0 < e <dj —2).
General fiber product codes should be viewed as generalizations of these simple codes.

Let P = (o, B1, ..., B:) be an evaluation point of such a simple fiber product code,
where «, B1, ..., B, € F,. The i-th recovery set for P is the set of all evaluation points
0 = (a,B1,....Bi-1, ¥, Bi+1,-.., Bt), where y € F,. That is, the i-th recovery set is
simply the set of all evaluation points which share all coordinate values but that of y; with
P.

We now introduce three important examples of fiber product codes within this simplified
framework.

Example 3.1 LRC(2)s on the Hermitian Curve Viewed as a Fiber Product As a first
concrete example, we consider the Hermitian curve H,; as a fiber product and intersection.
Lety = P!, Viiu= yq"'], and ),: u =x9 +x,andleth;: ), — P! be projection onto u
fori = 1, 2. Note that these maps have coprime degree, and thus the corresponding function
field extensions are linearly disjoint. Then the fiber product X = )1 xy )% is isomorphic to
the curve Hy: x9 +x = y?*!, Indeed, the affine points of X (Fy) are given by

(O, w), (x,u) :x, y,u € Fy, yITh = u = x7 4 x} € P? x P2

Hence this is isomorphic by the natural map to the intersection of the two hypersurfaces in
P? with affine equations ¥ = x4 + x and u = y?t!, and also to the curve H, defined in
P2 by affine equation y?+! = x4 + x. The utility of the fiber product viewpoint on this
curve is to highlight two natural maps which give rise to recovery sets. Codes using the
fiber product construction of H, are developed in [2], where a lower bound is given on the
minimum distance. Let Cy ” be the LRC(2) presented in Proposition 5.1 of [2]. For this
code, we take the curve H, with evaluation set By, = {P € Hy (qu): y(P) # 0}. We
can check that |By, | = q3 — g. Then we let V3, be the space of functions with basis
{x1y2:0<e; <qg—2,0<ey <q — 1}. The code CHq = C(VHq, BHq) is an LRC(2)
where the two recovery sets for the position corresponding to a point P € By, are given by
the positions corresponding to points Q € By, Q # P sharing the same x-coordinate P
and those sharing the same y-coordinate value as P, respectively. These recovery sets are of
size ¢ — 1 and ¢, respectively.

In [2], the authors prove the following.

Theorem 3 [2] The code Cy,, has length n = (q* — g, dimension k = (q — 1)q, and
minimum distance

d=(q+1)(q*—3q+3)=q"—2¢* +3.
Applying the viewpoint of [5], we are able to tighten this bound.
Proposition 4 The code Cyy, has minimum distance d satisfying
d>q>—2¢>+q+2.

Proof First, we note that we may consider the Hermitian curve given as a fiber product as
described above. Then By, is the set of all points of X = H,(F,2) lying above points of
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Y = P} that split completely in the extension F2(X)/F,2(Y). We obtain V3, by letting D
be the zero divisor, so [ = 0. Applying Theorem 1, we find that the minimum distance d of
C#, is in fact bounded by

d>q>—2¢> +q+2.

In Theorem 7, we calculate exactly the minimum distance for this code.

Example 3.2 LRC(2)s on the Fiber Product of two Hermitian Curves One can take the
fiber product of any two curves with appropriate maps to the same base curve. As a simple
example, we take a fiber product of two Hermitian curves. For ¢ a prime power, consider the
Hermitian curves

Heatvg+yo=y{"" and Hoo: v +3=y""

From each of these there is a projection to P! via the yg coordinate. Again, these maps have
coprime degree, and thus the corresponding function field extensions are linearly disjoint.
Using these projections, we construct the fiber product X; = H, Xpl Hg,2. Intuitively,
the affine part of this fiber product corresponds to the set of pairs of points P = (01, 02)
on the Hermitian curve y'{“ = yj + y» satisfying y2(Q1) = y1(Q2). Explicitly, affine
points in the fiber product are of the form ((«, 81), («, B2)), where «? + o = ﬂf“ and
ait! = ,83 + B2, where «, B1, B> are elements of F 72 To simplify notation, we identify the
point ((«, B1), (o, B2)) with the tuple («, B1, B2). There is a single point at infinity for each
Hermitian curve, each mapping to the point at infinity on P! ,» S0 there is a single point at
infinity for &, which is totally ramified with ramification index ¢(g + 1) in the extension
Xy /IP’;O. Counting tuples and the point at infinity, we find

#X,(F2) =q* + 1.

Also, defining @ = {o € F2 : a7 + o = 0}, we see that there are g* — g points of
Xy (F,2) with yo-coordinate « ¢ €2 that are split completely in the extension Aj /IE”_IV(J (so
have ramification index equal to 1), and another ¢ points with yg-coordinate o € <2 that
ramify, but not completely; they have ramification index g + 1.

Since all ramification is tame in the extension Xy /H 2, and g(Hy2) = q(g — 1)/2, we
can compute the arithmetic genus of the fiber product using the Riemann-Hurwitz formula
to get g(X,) = ¢° —gq.

Following the construction from [5], we now present a code with two recovery sets by
the evaluation of the splitting points on X, (F,2). Let B the set of g* — ¢? points of Xy (Fy2)
that are above the ¢ — ¢ affine points of ]P’;0 with yo-coordinate o € F 2 \ €2 that split
completely:

B={(api.p):acFp\Q " =al +aanda?™! = g + fo}.

Fix an ordering on the elements of B. Fori with 1 <i < |B|, let P; = («, 1, f2) € B.

Then we have B; | = {(«, y1, f2) € B\ {P;}} and B; » = {(«, B1., y2) € B\ {P;}} as the two

recovery sets for the position corresponding to P;. We have |B; 1| = ¢ and |B; 2| =g — 1.
We define

V:Span{yéyf'y?:O§j§l,0§el§q—1,0562§q—2},

4 3

. —2¢°+3¢+1
< 4°=29°+3q
with [ < 7@ +D
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Theorem 5 The code Cx,1 = C(V,B), with B, [ and V defined as above, is a locally
recoverable [n, k, d]-code over F > with availability 2 and locality (q — 1, q) where

n=q*q*>—1),
k={+1)(g — l)gq, and
d>n—1lglg+1)— (g —1)qg> = (g —2)(g+ 1.

In Corollary 11, we calculate the minimum distance for this code.

Remark 4 Here we give a concrete example of the preceding construction of Cx, 3. Letg = 3
and Fg = F3(a), where a® + 2a + 2 = 0, be the finite field with 9 elements. Let us consider
the situation of Example 3.2, in which we have the fiber product of two Hermitian curves
over Fg:

Viiya4+yo=yl, and W34y =g,

along with the fiber product A3 = ) Xpl, V». In this case,

Q={aeFy:a’+a=0}={0,a+1,2a+2}, and we have 6 points on IP’{,O with first
coordinate outside €2 that split completely in A3. The maximum / that can be chosen to get
a non-trivial bound for d is [ = 3. Using this / in Theorem 5, we get a LRC(2) of length 72,
dimension k = 24 and minimum distance d > 2 over Fg (an upper bound for the minimum
distance is 35, see Sect. 5).

Example 3.3 Artin-Schreier Fiber Product and LRC(¢) In [5] the authors use a fiber prod-
uct curve construction from van der Geer and van der Vlugt [13] to create codes with
availability ¢ for arbitrary 7. Since we continue this example, we review the construction
here.

The simplest of the van der Geer and van der VIugt constructions is given in [13, Section
3, Method I]. Let p be prime, A a natural number, and g = p”.

Let {ay, az, ..., ap} generate ker(Trqu /F,) over F,,. Then the curves

1
Yoyl = vi=aiy{"

each have genus %( p—1)g and have pg*+ 1 points over F 2, with one point, 00y, at infinity.

Let 7 be an integer with 1 < ¢t < h and let Y = IP’;O. Then consider the natural map
h;:Y; — Y given by projection onto the yo coordinate, where ooy represents the point at
infinity on the projective line ]P’;O and 00y, > 00y . These are all degree-p Artin—Schreier
covers of Y, fully ramified above coy,. These covers are all Galois, and the intersection of
the corresponding function fields is IF, (yp), thus these function field extensions are linearly
disjoint.

Define X = A, , to be the fiber product of these curves ); over ) i.e.,

Agi =V1 Xy o Xy - Xy V.

The corresponding maps g;: A, — Y are degree p’ -1
004, , be the single point above coy on Ay /.

, ramified only above ocoy),. Let

As shown in [13, Theorem 3.1], the curve A, ; has genus %(p‘ — 1)g and IAq,,(Iqu)I =
p'g? + 1, making Aqg,+ maximal over F .
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Note that the curve A, ; is naturally a subvariety of (P?)". It embeds in P' !, however, by
the map v: A, , — P'! defined on affine points of A, , via

v((o, ¥1)» (b0, ¥2), -+ s (0, Y1) = (Y0, Y15 Y25+ -5 V1)-

From here, we identify A, , with its image in P'*1. The affine points of Ay,+ are given by

B ={(yo.y1.y2.....y0) € )" 1yl —yi = aiyi forall1 <i <t} (6)
For 1 <i <1, the functions g; : A, ; — ) are given by

& (Y0, Y1, Y2, -, Y1) = (Yo, ¥i)

and the functions g; : A, ; — Y, are given by

(Y0, Y1, Y2 - Y1) = (Y0, Y1, Y20 oo oy Yie ks Yid1s -5 Y1)-

For each i, the map g; has degree p. For 1 < i < t, the function y; has degree dy, = ¢q + 1,
since for each o, B € Fo with f # O and @” + o = a; 7!, there are ¢ + 1 points

Qj = (*B.a) € Vi(F2), where £97 = Tand 1 <k < g+ 1.
Remark 5 As observed in [5], when ¢t = h, we have that A, ; = H,,.

Applying the construction from [5], we can construct codes defined over F > with many
recovery sets. Let P, = (o, B1,82,...,B8)) € B. Then B; ;, the j-th recovery set for
the position corresponding to P;, is the set of positions corresponding to the points in
{(e,y1,¥2,...,%) € B : y = B Vk # j}. We then have |B; j| = p. On points
corresponding to the positions in B; j, any function in V varies as a polynomial in y; of
degree at most (p — 2) and can therefore be interpolated by knowing its values on any p — 1
points.
1(p=2)(g+Dp' " +1

Pt
is injective. Note that the evaluation map may be injective for larger values of / but that the

given lower bound ensures that d > 1 in the Theorem below. Let D = [ooy. Then £(D) is
the set of polynomials in yy of degree at most /, a vector space of dimensionm =1+ 1.

Given h, t as above, choose [ < <q2 — ) to ensure the evaluation map

Theorem 6 [5] Given X = Ay ; the fiber product of the specified Artin-Schreier curves, with
Bandl asabove, let D = looy, and V as defined in Theorem 1. We define CAWJ =C(V, B).
Then C 4,1 is a locally recoverable [n, k, d]-code over Iqu with availability t and locality
(p—=1,p—1,...,p—1) where

n :ptqz7
k=U+D(p— 1)’, and
d=n—1Ip'—t(p—2)g+1Dp~".

In Theorem 9, we compute the exact minimum distance of the code here for many values
of [.

4 Computing minimum distances

The minimum distance problem asks, for a general linear code C and natural number w, if
the minimum distance of C is at most w. Vardy proved that this problem is NP-complete
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[14]. Finding the exact minimum distance of a code (or even bounding it non-trivially), is a
hard problem in coding theory. However, sometimes the geometric and algebraic structure of
evaluation codes can provide valuable tools that allow us to determine the minimum distance
exactly. For example, the minimum distance of the Reed-Solomon codes can be bounded by
the Fundamental Theorem of Algebra, and determined exactly by constructing a polynomial
of maximal degree with no repeated roots. More generally, a standard and very valuable
technique for determining the minimum distance of an evaluation code C(V, B) is to first
bound the minimum distance below using a geometric argument, then find an element in
the space of functions V that vanishes at the maximum number of points, all of which are
contained in the evaluation set B. Using the bounds from [5] and this technique, it is possible
to find the exact minimum distance of some interesting codes from [2] and [5].

As a warm-up, we find the exact minimum distance of two LRCs on the Hermitian curve
described in [2]. The first arises from a simpler rational map construction. Let C be the code
with locality ¢ — 1 described in Proposition 4.1 of [2], i.e., the evaluation code C(V, B)
where H, is the Hermitian curve defined by y? +y = x9t1) B is the set of ¢> affine points
in H, (qu), and V is the vector space of functions generated by {xiyj 0<i<l,0<j<
g — 2} for some fixed / € N. Note that the recovery set for the position corresponding P € B
is the set of positions corresponding to the ¢ — 1 points

{QeB:x(Q)=x(P),Q # P}
Theorem7 When | < g% — q — 2, the code C has minimum distance
d=n—lqg—(q—2)(qg+1).

Proof In [2], the authors prove that n —Ig — (¢ —2)(g + 1) is a lower bound on the minimum
distance of C. Suppose [ < g> — g — 2. Considering the extension of fields F,2 to Fg, let
@1 be the field trace map given by ¢1(x) = x9 + x and let ¢ be the norm map given by
v(x) = x4t Since @1 is the trace map, which is degree ¢ onto I, we can write

or (D) = {1 vg).

Since ¢, is the norm map and so is degree ¢ + 1 onto F*, we can write

F\({0} Uy (1) = (B, - By o).
Define f € V by

1 q—2
fen=Tle-p]]o—w-
j=1 i=1

We see that f has at most Ig + (¢ — 2)(¢g + 1) zeros. To show that f has exactly that
many zeros, we must show that no evaluation point of C is sent to zero by more than one
factor of f. Suppose f(B;,y;) = 0. Then yl.q + y; = 1, but by design ﬂ;Hl # 1, hence
(Bj.vi) ¢ Hq(F,2). Thus no evaluation point can be sent to zero by multiple factors, so f
has exactly lg + (¢ — 2)(g + 1) zeros and evp (f) has weightn —lg — (g —2)(¢g + 1), and
the minimum distance is as given. O

Recall that C . is the LRC(2) on H,; defined in [2]. We now determine the exact minimum
distance of the code.

Theorem 8 The code Cyy, has minimum distance d = ¢ =2¢*+q+2
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Proof Now letay, oy € F,\{0} such that o # . Thenlet E = {a € F2|a™ = o} and
F={ac qu la? 4+ a = a;}. Because these come from the trace and norm respectively, we
can write £ = {1, ..., Bg+1} and F = {y1, ..., ¥,}. Then let f € V3, be defined

qg—1 q—2
f=Jle=1o-r.
i=1 j=1

The function f has exactly (¢ — 1)(g¢) + (g —2)(g + 1) zeros by the same argument as in the
previous construction. Thus d < P —qg—@G—D@)—(g—2(q+1) =qg>—2¢%+q+2.
O

Next, we determine the exact minimum distance for many codes from the fiber product
of Artin—Schreier curves constructed in Theorem 6.

Theorem 9 Let p be a prime and g = p" a prime power. For a fixed | € Z with 0 < [ <
g>—tg—1t—1, let Ca, .1 be the LRC(t) of Theorem 6, constructed using the fiber product
of t Artin=Schreier curves. Then C 4, 1 has minimum distance

d=p'q>—Ip' —t(p—2)(g+1p'".
Proof Recall that the curves that we use to produce the fiber product A, ; are of the form

1
Vit yl —yi=ayit,
where (aj,an, ..., ah)FP = ker(Tr]qu /IFq)- From Theorem 6, we have a lower bound for

minimum distance, d > p'q? —Ip' —t(p —2)(g + Dp'~L.
Let ¢ : ]Fq2 — IFqg be defined by ¢ (x) = x” — x and ¢>: IFqg — [F, be defined by the
norm map ¢a(x) = x971. Choose values

FOZ{ﬂEF;ziwz(aiﬂ)aél‘v’lsigt}

and F; = (pfl(ai_q). Since ¢, is the norm map, Iwgl(l)l =g+1,50|Fy| = ¢*—t(g+1)—1.
Thus we can write

Fo={B1,.-, Bpr—sg—i—1}
By choice of a;, we have Tr]qu /R, (a;) = 0, and since Iqu /T, is a degree 2 extension,

Tr]Fq2 /F, (a; 1Y = 0 too. Then since we are working in characteristic p and the trace map can
be factored,

Trg , /F, (@; 1) = Trg, /¥, (Trr /7, (@; 7))
= TI‘]Fq/]Fp (Tr]qu /F, (ai—l)‘I)
=0.

By the additive version of Hilbert’s Theorem 90,

<p1_1 (a; ?) is nonempty.

Notice that ¢ is separable of degree p, so |F;| = |<pfl(a;q)| must, in fact, equal p. We
then write

Fi={i1,....vip)
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Define the map f: Ay — F2 € V by

t p—2

FGO Y1 1) —]_[(yo—ﬂ,)]_[ [T0; —vio-

j=1k=1

Recall that B, as in Eq. (6), is the evaluation set for polynomialsin V and |B| = n = p’¢>
is the length of Cag - Certainly n — wt(evg(f)) is at most Ip’ +t(p — 2)(q + D(p"h.
We wish to show that these values are equal by showing that f has exactly this many zeros
in B by showing that no points in B have y; component in F; and y; component in F; for all
i # j. Toward that end, suppose that (8, y1, ..., ¥:) € B suchthat f(B,y1,...,y) =0.

Assume that y; € F; forsomei € {1, ..., t}. Then al._q = (yy) = yl.p —y = aq; pIH,
soa, - B97!, by definition of X'. This equation has at most ¢ + 1 solutions, all of which
are in the set {ai_1 gal_l (1)}. Since none of these are in Fp, we have that 8 ¢ Fy.

Now suppose that for some j € {1,...,¢} we have y; € F;. Then aj_q = @y =

g+l _ q“ . Recall that g; is in the kernel of the trace

+1

7 +vj = a;jp?*". Thus we have a;

Ak —a Slmllarly aq

map, SO a +a; = 0and so g; —a . Substituting these values
gives us the equality ai = ajz, soa; =ajora; = —aj, buta; and aj are elements of a basis
for the kernel of Tr]pt72 JF, over Fp,s0i=j.

Thus f has exactly Ip’ +t(p — 2)(g + 1)(p'~") zeros in B, so the code has the desired

minimum distance,

d=p'¢*—Ip'—t(p—2@+D(p'").

4.1 A condition for exact minimum distance

More generally, we may summarize the situation in which this technique will give the exact
minimum distance of codes from the construction in Theorem 1.

Theorem 10 Let C(V, B) be a locally recoverable code constmgmd as in Sect. 2.4, where
V has basis given by (3), B is the evaluation set as in (4), and yé e L(D)for0 < j <LIf
it is possible to find sets Fy, Fy, ..., F; €, such that

() F; Cyi(B)foralli =0,...,t,

() [Fol =1,

3) |Fil =dp, —2foralli=1,...,1t, o

(4) foralli # jwithQ <1i,j <t thereisno P € X(F,) with y;-coordinate in F; and
yj-coordinate in Fj, and

(5) for all i with 0 < i < t, the projection y;: X — ]P’;,t, is not ramified over any point
P € P}, with y;(P) € Fj,

then the code C(V, B) has minimum distance

t

d=n—1ldy,— Y (dy —2dy,, 7)

i=1

where n = |B| is the length of the code.
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Remark6 1If Y = IP’)O,

case in all examples in this paper, we have that yé e L(D)forO<j<landyy: X — Y
is an unramified map above S from the code construction.

h; : Vi — Y given by projection onto yp, and D = [ooy), as is the

Proof By Theorem 1, the right hand side of (7) is a lower bound on the minimum distance
of such a code.
Now, label the elements of sets Fy, Fi, ..., F; as

={B1,....Btand F; ={yi1, ..., v R}
Then we can define the polynomial in V,

¢ dy—2

f= l_[(yo—ﬂ])l_[ [T o —vwn-

i=1 k=1

Since the points in B are fully split in the extension F, (X)/F,()) and assumption (5) we
have that |y61(,3j)| = d,, for all j and |y;1(y,',k)| =d,, for all i, k. By assumption (4), we
know that f must have exactly

t
ldy, + Y (dy; — 2d,,
i=1
zeros, so the code has minimum distance

t
d=n— (zczyo + ) (dn, - 2)dy,.> .

i=1

4.1.1 Examples of applying theorem 10

Here, we give two extremely concrete examples to illustrate the application of this general
condition.

Example4.1 Let p =3 andt = h = 2,50 q = p" = 9 and we work over F o = Fsi.
Let b be a non-trivial fifth root of unity for which F P = F,(b). Leta; = b+ b +2and
ar=b>+b+2be generators of ker(quppz,1 /sz) ={xelF,um: a® +a = 0}. Then we have
explicit curves

Vity —yi= G +b+2y3 ! and My —yi= 0P+ b+ 2yt

Each of these curves has a projection onto P! via their yp-coordinate, which we will denote
h1 and h,. Consider their fiber product

Ag o = V1 Xp1 o,

which is a genus 36 curve. Each of the maps g;: X — ) are degree 3 and ramified only
above the point at infinity. We can realize the 729 affine points of Ag »(F ;1) to be the set

2 .
P={0o v e 4, 3i 4y =aiy Y Vi)
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In order to satisfy the hypothesis of Theorem 10, it will suffice to find sets Fp, F, and
F> with |Fi| = |F2| = 1 and |Fy| = [, where D = looy. We choose F| = {b* + b} and
F> = {b3 4 2b?}, each of which will eliminate 10 possible yo values from entry into Fo, as
there are 10 points in P with y;-coordinate > + b and 10 with y,-coordinate b* 4- 2b>. Thus
61 values remain as possible elements of Fjy and hence we may use any value 0 </ < 61 —1,
to receive a code with the prescribed minimum distance, as in Theorem 10.

Example 4.2 1f we try to apply Theorem 10 to get the exact minimum distance for the code
Cx;, 3 over IFg constructed in Remark 4 we see that the sets Fo, F1 and F> cannot be built, so a
minimum weight codeword cannot be constructed by this method and the miniumum distance
cannot be determined by the theorem. Instead, let us consider the situation of Example 3.2
over the finite field F, i.e. the fiber product X3 = Y1 x Bl )», where we define ); and )»

to be copies of the Hermitian curve H4 with equations given by:
YVityg+y0=y, and Vp:y3+y2 =y

In this case, if a € Fjg is such that a* + a = 1, then the finite ramified points in X4 have
first coordinate in Q = {o € Fi : a* + o =0} = {0, a®> + a,a®> + a + 1, 1}, and we have
12 points on IP’;,O with first coordinate outside €2 that split completely in Xj.

The maximum / that can be chosen to get a non-trivial bound for d is | = 6. But we can not
build a set Fp with 6 elements satisfying the hypothesis of Theorem 5. So we will build one
using [ = 4. Let B be the set of 240 evaluation points in X4 (F¢) such that yo(B) = Fi6\
is the set of yg-coordinates. Defining Fp = ({@P+a+1l,a®+a*>+1,a°+a*+a,d® +1},
F = {a3,a3 +a*,dd+a,a®+a®+a+1, 1} and F, = {a,az,a—i— 1,a> + 1}, we can
see that the hypothesis of Theorem 10 hold and therefore Cx, 4, i.e. the evaluation code of

functions from
ep..ey

V = Span{y}y{' 5?10 <i <4,0 <e; <3,0 < ey <2},

evaluated at points in B, is an [240, 60, 62]-locally recoverable code with availability 2. Every
coordinate in a codeword can be recovered using two possible sets: one with 3 elements and
another with 4 elements, giving a locality of (3, 4).

The situation of the previous example can be generalized to compute the exact minimum
distance for the code Cy;,; as follows.

Corollary 11 Let ¢ > 3 and n € IFqX such that p # o9t for all o € qu such that

adtl = of + . For 0 < [ < g, the code Cx,.1 of Theorem 5 over qu has minimum
distance

d=n—-lgg+1)—(q—1q"— (¢ =g+

Proof Let

FoC{xelFp x0T = x4 4 x)\ {0},

Fi={xeFp:x =y}
and

F={xeFp:x?+x=pu}

By construction, |Fp| = [ with0 <[ < g, |Fi| = ¢ + 1 and |F>| = q. Also, if P =
(o, B,y) € Bthena? +a # 0, 41! = o? + @ and y? +y = ?*!. Therefore F; C y;(B)
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fori =0, 1, 2. Moreover, if P € X (E) has y;-coordinate in F; then its y;-coordinate is not
in Fj for j #i.Infact,ifa € Fy, thena? +a = a?t! 5o B € F} yields to a contradiction
since in this case u = 97! = a9 + a = a4, and the same happens if y € F>. A similar
argument shows that the other two cases can not occur either. Therefore, Theorem 10 holds.

O

Remark 7 Notice that for many examples, we can choose ;= 1. Actually this is the case,
for example, forq = 4,7, 13,16, 19,25.Forq = 5,9, 17wecanuse u = 2and forqg = 11,
=5 satisfies the required hypothesis.

4.2 A combinatorial condition for exact minimum distance

We apply a very simple counting argument to show that the conditions of Theorem 10 hold
when the evaluation set is large enough in relation to the map degrees and the base curve of
the fiber productis Y = ]P’;O. Let S = So be the set of points on ) lying below the points of
B, and let S; be the set of points of ); lying below the points of B foreachi, 1 <i <t. As
a non-infinite point of the projective line, each point of Sy corresponds to a value « in IF,.

Theorem 12 Let C(V, B) be a code constructed from a fiber product as in Theorem 1, where
Y= ]P’;O, and let no = 1 and n; = deg(h;) for 1 < i < t. Let Yo = | and ; = deg(y;)
for 1 <i <t, where here we consider the function y; : V; — ]P’;l_. Then the conditions of

Theorem 10 above hold whenever

1Si1 = Y (i = 2¥inj v
i#]

foralll <i <tand

t
[Sol = Zﬂjl/f/v

j=0

Proof Foreachi, <i <t,letT; C IF, be the set of values of the y;-coordinates of points in
Si. Note that [So| = |Tol, and that |S;| = n;|So| = ni|To|.

We will proceed by removing points from S; and values from 7; as we build the sets F;.
We will be successful in constructing the function in the proof of Theorem 10 if we construct
all the sets F; without exhausting the sets S; and T for any j.

First, let Fj be any set of [ elements of Tp. Remove these elements from 7p. For each i,
1 <i <1, each of these yp-values will be present in at most n; points in S;, which will cover
a total of at most [n; values of y;. Remove these values from 7; for each i. These values of
y; will each appear in at most deg(y;) = ; points of S;. Remove these points from S;. This
accounts for at most In;y; = novon; ¥; points in S; foreachi, 1 <i <1t.

Beginning with i = 1, let Fy consist of any n; — 2 values of y; which appear as y;
coordinates in S7. These values of y; will appear in at most (n; — 2)¥; points in S1, which
will lie above at most (1 — 2)v; points in Sp. Remove these points from Sy, and these
yo-values from 7p. Note that by design, these values will not have been previously removed
from Ty. For each of these values of yo, there are at most n; points in S; with these yo-
values, meaning at most 7; values of y; across these points. Remove these points from S;
and these values of y; from 7} forall j, 1 < j <t, j # i. There are a total of n;v; points
with these values of y; in S;. By assumption, the sets S; were all large enough that this
must be possible. Repeat for all i, 2 < i < ¢, building sets F», ..., F;. This is possible as
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long as no set Ty, So, 7; or S; is empty at any point in the process. By definition, the set 7;
must be non-empty as long as S; is non-empty. At each stage, we remove (n; — 2)¥;n; V¥
points from each §; fori > 1 and (n; — 2)v; points from Sy. Since |So| > th=0 n;j¥; and
|Si| > Zi#j (mi —2)¥in;j¥j, we always have enough points to do this. Thus all sets F; can
be constructed this way. O

Example 4.3 We know from Theorem 9 the exact minimum distance of C4,,; for many
values of /. However, we apply Theorem to find the exact minimum distance of codes obtained
from the curves of Example 3.3 over an extended base field. In particular, consider points on
the base curve, factor curves, and fiber product defined over Fqs =F pohs where for simplicity
we take i = ¢ to also be the number of factor curves ), . Since the curve A, ; is maximal over
Iﬁ‘qz, it is also maximal over F' 4 (upon consideration of the L-function of the curve). Thus
we can compute that A ; has po 4 poh — pth 4] points over F 61 Since each curve Y, is

covered by the maximal curve A, ;, ), is also maximal and thus has pot 4 pHhtl _ pth |
points over IF 61 Note that each IF ¢ -point corresponds to a place of degree 1 in the function
field Fpéh Va;)-

First we consider the lower Artin—Schreier extensions [ pon (Va; )/ F pon (0), corresponding
to the maps A; from the curves ), to projective line by projection onto the yo-coordinate.
These Artin—Schreier extensions of the projective line are described completely in [9, 3.7.8
and 6.4.1]. The extensions are Galois of degree p. Each degree-one place in [F poh (Va;) lies
above a fully ramified or fully split place in IF ;61 (yo). The only ramified place in this extension

is the unique place at infinity. Thus the p®* + p**+1 — p* affine rational points of Va; over
F o1 arise from p®~1 + p¥ — p# =1 places in F 61 (o) splitting completely.

Recall that the function field of the fiber product of curves is the compositum of the
function fields of the curves. Extending [9, Proposition 3.9.6], we see that if a place of IF e (x)
splits completely in each extension F o Va;)/ F ot (¥0), then this place splits completely in
the compositum extension [F o (Ag.0)/F o (y0)- Since all non-infinite degree-one places of
IF 61 (Aq,) mustlie above non-infinite degree-one places of IF 6 (J; ), we have thatall the non-
infinite degree-one places of IF 61 (Ayg ) lie above places of I 61 (yo) which split completely

in the degree p" extension F poi (Aq,0) /T pen (y0). Since there are %+ p>" — p* non-infinite

degree-one places of I o1 (Ag ), these lie above ph 4 pth — p3h

places of IF por (¥o) which split fully in all extensions.

Applying the construction from Sect. 2.4, we may take the evaluation set B to be the set of
all affine points of Ay + (F 1) and the divisor D = [ooy forany / with/ < plhp¥h—p3h—1
for guaranteed positive minimum distance. By Theorem 1, we get a locally recoverable code
with uniform locality p — 1, availability £, length n = p® + p> — p*" dimension {(p — 1)",
and minimum distance d > n — Ip" — h(p — 1) p*~2(p" + 1).

Let Sp be the points of ) corresponding to these fully split places below B. Let S; be the

points on Y, lying above So for each i. We then have that |S;| = p|So| = p '+ 4 p¥+! —
3h+1
)4 .

non-infinite degree-one

To apply Theorem 12, we note that ng = 1, Yo =1, n; = p and ¢; = p" + 1. Then

> i =2y < (6 = D+ 2p" 2 4 p?) 1" + p)
i#]
foralll <i <tand
t
> == D" 4 p) 1

J=0
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Note that there is a large range of values of [ for which the conditions of Theorem 12 hold,
and thus for which the bound on minimum distance given in Theorem 1 is the true minimum
distance.

5 Parameter ranges and comparison to bounds

We find the following bounds on the parameters of LRC(#)s in the literature.
e For all codes, the Singleton bound:
d<n—k+1.
e Tamo and Barg proven rate bound [10] (2014), for codes with uniform locality r:

dsn—i:v7lJ Rg;——i——f. ®)
" [T)=1 (1 + ]Lr)

i=0
o Bhadane and Thangaraj [4] (2017), for codes with locality (r1, 72, ..., r¢), where r; <r;
fori < j:
L ok=1
d§n—k+1—§:{.J. )
i=1 H1j=l Tj

The proven rate bound in (8) is known to be tight for # = 1 but no constructions have
realized this bound for ¢ > 2. Two constructions for general » and ¢ should be mentioned here.
First, in [10], Tamo and Barg consider a binary code which is the product of ¢ single-parity-
check codes with r message symbols each. This gives an LRC(¢) with locality r for each
recovery set for arbitrary r and ¢. This product code construction gives an [(r + 1), r!, 2]-

t
code with rate R = (ﬁ) . At the time, the authors stated that they believed this to be the
largest rate attainable for a code with ¢ disjoint recovery sets, each with locality r. This is
very close to the bound rate from (8) when ¢+ = 2 but diverges from the bound for larger 7.

Second, in [15], Wang et al. devise a parity check matrix construction giving rise to LRC(#)s

. . T\ (rtt i1
with rate R = ;= for arbitrary r and 7. These [(’t ) (T = (7). + l]-codes have

better rate than product codes but even smaller minimum distance. The authors state that they
believe their construction yields optimal rate for ¢+ < r. Our literature search has not found
any locally recoverable codes with ¢ > 2 surpassing this rate. In what follows, we compare
the rates and minimum distance of our most general example to these benchmarks. In some
cases we also compute the relative defect.

Remark 8 1n [3], Bartoli, Montanucci, and Quoos prove that codes with locality (r1, r2, ..., 1)
satisfy
k—Dr+1
d<n—k-— L——§i— +2. (10)
L+ 7

In all situations of this paper where this bound applies, we find that the bound in [4] is lower,
so we compare to (9) in what follows.

Remark 9 Many interesting but more complicated bounds have been proven for minimum
distance, many incorporating field size. See [12], for example, and the survey [1] for a more
comprehensive list of proven bounds. The asymptotic comparison of the minimum distance
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of the fiber product codes in this paper to the bounds in (8) and (9) is complicated by the fact
that the parameter of locality is dependent on the field size in all examples. Further study of
whether fiber-product based codes can approach field size-dependent bounds is warranted.
Further, some interesting constructions have been proven rate-optimal in specific cases, or
to surpass the rate of the Wang et al. construction in [15] for certain r and ¢ (for example [6]
and binary simplex codes).

This section attempts to shed some light on how different choices in code construction
affect the parameters of the resulting codes, what parameters are attainable, and how these
parameters compare to bounds and constructions in the literature.

5.1 General heuristics

First, we consider the general code C = C(V, B) with parameters described in Theorem 1.
Recall that [ is the degree of a divisor D on Y(IF,), and m is the dimension of the Riemann-
Roch space £(D). For a fixed evaluation set B, it is clear that the dimension of C increases
(and the minimum distance of C decreases) as [ increases up to its maximal value. The
Riemann-Roch Theorem states that for a curve ) of genus y, we have m > [ — y 4 1. The
relationship of m and [ depends on D when/ < 2y — 1, but when/ > 2y — 1, we know
that m = [ — y + 1. Thus if all other parameters are fixed, the value of m and therefore
the dimension of C will potentially be larger when y is smaller. In our examples, we take
Yy =Pl s0 y =0and m =1 + 1. Of course, / and therefore m are bounded by the number
of points in S, and increasing the genus of ) can allow a larger number of points in S by the
Hasse-Weil bound. Since n = |B| = d, |S|, we may attain longer codes if S is larger. If all
other parameters are fixed, this will decrease the rate but increase minimum distance.
Considering rate, we observe the following,

Corollary 13 In the setting of Theorem 1, if

o the extensions ¥, (Y;)/F, (V) are linearly disjoint, and
o dpy, = dhj =r+1foralli, j,

then the rate R satisfies

r t
R < .
*(71)

Proof 1If y is the genus of the curve ), then the Riemann-Roch theorem implies that
I+1>m>1—y+1.
Since the construction demands / < |S] so that the evaluation map is injective, m < |S]. O

Therefore we see that when the fiber product construction is applied to yield codes with
uniform locality r, it is not possible to create codes with rate surpassing that of the product
code construction for the same availability and locality. The fiber product code construction
is flexible, however, to allow for codes with larger minimum distance and to create varying
locality across the recovery sets.

In choosing curves ); and maps h; : ); — Y for the fiber product, we know that the
locality of C will be determined by dj,,. All other things being equal, we should prefer
small locality. However, as we see in the formulas for parameters and the bounds above, this
comes at a cost in rate and minimum distance. Thus small locality must be balanced against
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efficiency and effectiveness in the code. If the code is only to be used for local recovery,
with global error correction never applied, large minimum distance is not useful, so we may
wish to maximize rate given certain locality and availability conditions. However, in some
situations it may be that relatively large minimum distance is desirable to recover from a
catastrophic event by global error correction or erasure repair. Thus larger minimum distance
may sometimes be desirable; in this case, larger relative minimum distance can be obtained
by reducing the parameter / to the minimum value of 0.

5.2 LRC(2)s C’}.Lq onHg

We return to the codes defined over F 2 of Example 3.1 and Theorem 7. All parameters of

these codes are dependent on the choice of g. We determined the parameters of Cyy, for
q = ph when g € {2,3,5,7}and h € {1, 2, 3, 4}. We compare to bounds on the minimum
distance from (9) as well as the relative defect from this bound. This data is displayed in
Table 1.

We can also compute a formula for the defect and relative defect of Cy, . Recall that Cyy,
isa g’ — g% g% —2,¢° — 2¢% + g + 2]-code with availability 2 and locality (g — 1, ).
Taking the bound (9), we find that d < b, where

qz—q—IJ_qu—q—l

_ 3 2
qg—1 9> —q J_q —e -tk

b=q3—q—q2+q+1—L

2
Thus we can compute the defect to be g> — 2¢g with a relative defect of £ ;2‘1, which

approaches 0 as g increases. Thus these codes on the Hermitian curve have asymptotically
good minimum distance.

5.3 LRC(Z) qu,l on Xq = Hq XIPﬂ Hq

Forthe codes Cx, ; defined over IF 2 of Example 4.2 and Theorem 5, we see that all parameters
of these codes are also dependent on the choice of ¢. In Table 2 we compare the parameters
for C; over F > for different values of .

For | = 0, the dimension of these codes is k = ¢2 — ¢ and the minimun distance
d=q*-2¢°>+3q + 2. Taking the bound from (9), we find that d < g* — 2¢* + 2, and the
M

relative defect is , which also approaches 0 as g increases.

5.4 Parameters for LRC(t) C A, ON fiber product of Artin-Schreier curves

Here, we explore the parameter space of codes C 4,,; on the product of ¢ Artin—Schreier
curves with points over > and / the maximum degree in yo of functions leading to codewords.
This family of codes is chosen for exploration because it can attain arbitrarily large availability
t (if extension degree of field of definition over prime field is allowed to increase) and arbitrary
large locality (r = p — 1 for any prime p). This example family is not as general with regard
to locality and availability as the product code and Wang et al. constructions, which allow
for any r and ¢ without increasing field size, but it is more general than many other concrete
geometric constructions. This example is not claimed to be optimal for the fiber product
construction, only sufficiently adaptable to study parameters.

@ Springer



2097

Minimum distance of LRC(t)s from fiber products...

#0000 1000TSSESET T0009L6T8ET 00%T9LS 008+8TIHSET (10%T 00%7) 108¥9LS
6200°0 LT9SE€T0Y ¥S98110% 90€LIT Y9TESEOY (€¥€ “Tre) 6¥9LTT
9610°0 102811 868CI1 4954 009LT1 (61 “8) 10%C
w010 68¢ ¥ST w 9¢¢ (L9 6
91000 LLEGYLEYT T0009€€HC 00006€ 00007 1++¢C (529 ‘¥29) $T906¢€
6L00°0 LLELEGT 700261 00SST 000£S61 (sz1 ‘vz ST9s1
69€0°0 LL6¥T [l 4! 009 00961 (ST*40) S79
0S21°0 L6 8 0T 0TI (S*p) ST
02100 108+CS 0181S 0819 09€1€S (18°08) 1959
€7€0°0 62681 $ST81 0L 95961 (LT 90) 6CL
SL80°0 %9 8LS [ 0cL (6°8) I8
0S21°0 LI 14! 9 ¥ (€0 6
6%50°0 978¢ 709¢ (0144 0801 91 °61) 96T
75600 T 76€ 9 ¥0S (8°L) 9
€eer0 14 8¢ 4! 09 (9] 91
00 ¥ 14 4 9 TD ¥
P=pimoq (6) p uo punoq 1oddn p b u (Ta L) b

paIsI| os[e

AIe () WOIJ JO9JOP 2ANEB[AI pue d0Ue)SIp wnwrurw 9[qissod wnwixew Ay, ‘b = < pue | — b = L1 saneoo Pim % A 190 ()DYT ue hwxb 10 s1oyowered ojdwes | sjqel

pringer

Qs



2098 M. Chara et al.

Table 2 Sample parameters for

Cp.an LRC(2) over F,» with n Ik d bound from (9) U=t
locality (r1,72) = (¢ — 1, ) 4 240 0 12 142 226 0.35
1 24 122 209 0.3625
2 36 102 192 0.375
3 48 82 175 0.3875
4 60 62 158 0.4
5 600 0 20 392 577 0.3083
3 80 302 499 0.3283
5 120 242 447 0.3416
7 2352 0 42 1738 2305 0.2410
3 168 1570 2155 0.2487
7 33 1346 1955 0.2589
11 14520 0 110 12014 14401 0.1643
5 660 11354 13791 0.1678
11 1320 10562 13059 0.1719
1328392 0 156 24208 28225 0.1414
13 2184 21842 26015 0.1469
Tabl mpl rameters for
Cizqu, i‘; L%zl()za) aov:r‘e]Fz ! or k rate d bound on d (8)
with length n = 729 and locality ¢ 4 0.006 669 725
n=ry=2 60 244 0.334 129 305
74 300 0.412 3% 207

The rate is bounded by R < 0.533. The listed distance when [ = 74
(marked with *) is a lower bound from Theorem 6 for the true minimum
distance

5.4.1 Smallest concrete examples with t = 2

The smallest non-trivial example in this case is a code of length 729 over the field Fg;. When
p is prime and ¢ = p", the smallest p allowing to non-constant functions in each y; with
1 <i <tisp =3.Sincet < h, the smallest 2 which allows multiple recovery sets is 1 = 2.
Thus we may choose [ with 0 </ < 74 to be sure of positive minimum distance. Theorem
9 gives the exact minimum distance for 0 </ < 60. In Table 3, we give the parameters for
the cases I = 0,/ = 60, and / = 74 and compare to the minimum distance bound in [10].

Larger codes can be created by increasing p, h, and/or z. Letting p = Sand h =1t = 2
we obtain codes over Fgps with length 15625. Here we may choose / with 0 < [ < 593
to be sure of positive minimum distance. Theorem 9 gives the exact minimum distance for
0 <1 < 572. In Table 4, we give the parameters for the cases [ = 0,/ = 572, and [ = 593
and compare to the bounds in (8).

5.4.2 Maximizing rate fort > 2

As mentioned above, it may be of greatest interest to maximize the rate of LRC(#)s for a
given availability and locality. For p = 3, 5, 7, we construct codes with t = 2, 3, 4 over field
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Table4 Sample parameters for
CAq,t,ls an LRC(2) over Feps l k rate d bound on d (8)
with length n = 15625 and 0 16 0.001 14845 15607
locality r| = rp = 4. The rate is
bounded by R < 0.711. 572 9168 0.587 545 3595
593 9504 0.608 20%* 3154

The listed distance when ! = 593 (marked with *) is a lower bound from
Theorem 6 for the true minimum distance

IE‘qz where ¢ = p', the minimum field extension allowing ¢ recovery sets in this method.
To obtain codes of large rate, we choose the maximum / so that the minimum distance is
guaranteed to be positive. The parameters of the codes arising from these choices are given
in Table 5. In each case, we give a range where the minimum distance d must lie based on
the lower bound from Theorem 6 and an upper bound from Theorem 9.

5.4.3 Maximizing minimum distance for t > 2

Ifinstead it is of interest to maximize the minimum distance of LRC(#)s for a given availability
and locality, this can be done by choosing / = 0. For p = 3,5, 7, we construct codes with
t =2,3,4 over field F > where g = p', the minimum field extension allowing ¢ recovery
sets in this method. The parameters of the codes arising from these choices are given in Table
6. In each case, we know the exact minimum distance d from Theorem 9, which we compare
to the bound on minimum distance from (8) and compute the relative defect.

5.4.4 Rate for increasing t and fixed locality

Let p (and thus locality r = p — 1) be fixed and set# = A to maximize the number of recovery
sets for each field size. For each 7, let [ take on the maximum value guaranteeing positive
minimum distance in Theorem 6. In Fig. 1 we graph the rates of codes C 4, ;1 over F 2 for
t € {2,3,...10}, increasing field size as well as number of recovery sets. We also graph the
proven and conjectured rate bounds for codes with this availability and locality from [10].
The lengths of the codes are quite large, so we omit the accompanying tables. We find that
the rate of the constructed codes is close to the product code rate for all 7, growing extremely
close as ¢ increases. When we examine the minimum distance of these codes, we find that,
in all cases except (p, t) = (3, 2), the minimum distance of the constructed code is larger
than that of the corresponding product code and the Wang et al. construction. However, this
minimum distance comes at a cost of greater length and working over a larger field.

One might wonder what happens when field size g2 and locality r are fixed, but the number
t of factor curves (and recovery sets) is increased. In Fig. 2, we graph the rate of the code
C A10,.1 OVer F 20, where [ is maximized for guaranteed positive minimum distance, as well
as the proven rate bound from (8) and the rates of the Tamo-Barg product construction and
Wang et al. construction, for ¢ € {2, 3, ... 10}. The lengths of the codes are quite large, so we
omit the accompanying tables. We find that the rate of the fiber product codes is extremely
close to the product code construction bound, matching up to at least 4 decimal places in
each case. The lower bound on minimum distances of these codes are also larger than that of
the product code and Wang et al. construction when (p, t) is not (3, 2). This larger minimum
distance comes at a cost of much greater length, however; the relative minimum distance of
the fiber product codes is less than either of the other constructions.
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Table 6 Sample parameters for C.Aq .1 an LRC(7) over ]qu, where ¢ = p’. Locality r = p — 1 is the same
for each recovery set. We have chosen / = 0 here to maximize minimum distance

p t r n k d bound on d (8) bound—d
3 2 2 729 4 669 725 0.0768
3 3 2 19683 8 18927 19672 0.0378
3 4 2 531441 16 522585 531415 0.0166
5 2 4 15625 16 14845 15607 0.0488
5 3 4 1953125 64 1924775 1953044 0.0145
5 4 4 244140625 256 243201625 244140289 0.0038
7 2 6 117649 36 114149 117609 0.0294
7 3 6 40353607 216 40100767 40353352 0.0063
7 4 6 13841287201 1296 13824809481 13841285651 0.0012
Rate comparison with bound when p =3 Rate comparison with bound when p =5
—o— rate 0.7 4 —o— rate
0.5 —e— rate bound —o— rate bound
—o— (r/(r+1)) \\\ —o— (r/(r+1))
o —— (r+t) 0.6 - 7 —— /(r+t)
05 T
0.3
0.4 4
0.2
0.3
0.1 0.2
0.0 0.1
2 3 4 5 6 71 8 9 10 2 3 4 5 6 7 8 9 10
t=h t=h
Rate comparison with bound when p =7 Rate comparison with bound when p = 11
0.8
0.7 4 0.8 \\\\
0.6 0.7
0.5
0.6
0.4
—o— rate 051 - rate
0.3 —®— rate bound —e— rate bound
—o— (rf(r+1)) —o— (rfr+1))
02l * D 041 —o— fir+1)
2 3 4 5 & 71 8 8 10 2 3 4 5 & 71 8 8 10
t=h t=h

Fig. 1 Rate of codes CAP1 e forp=3,p=25,p=7and p = 11, where [ is maximized for guaranteed
positive minimum distance,, defined over IF P2 with ¢ recovery sets for 2 < ¢ < 10}. Also plotted are the bound
on rate (8), and rates of product code and Wang et al. constructions (both defined over ;)
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Rate comparison with bound when p =3 Rate comparison with bound when p=5
—o— rate 07 —o— rate
0.5 —e— rate bound —e— rate bound
—o— (r/(r+1)) ~e—__ —o— (r/ir+1))
—— r/(r+t) 06 T —o— r/r+t)
0.4
0.5 ——
0.3
0.4
0.2
0.3
0.1 0.2
0.0 0.1
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
t (h=10 fixed) t (h=10 fixed)
Rate comparison with bound when p=7 Rate comparison with bound when p =11
081 b ‘\\\
0.7 os
0.6 0.7
0.5 4
0.6
0.4
—— rate 051 —o— rate
0.34{ —®— rate bound —e— rate bound
—o— (rr+ 1)) —o— (rfr+1))
e () 047 —o— fir+t)
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
t (h=10 fixed) t(h=10 fixed)

Fig.2 Rate of codes C 4 10,0 forp=3,p=5,p=7,and p = 11, where [ is maximized for guaranteed
'Y,

positive minimum distance, defined over [F 20 with 7 recovery sets for 2 < ¢t < 10}. Also plotted are the

bound on rate (8), and rates of product code and Wang et al. constructions (both defined over F;). Code rate
is visually indistinguishable from the rate of corresponding product code

5.4.5 Rate for fixed t as locality increases

Finally, we consider the parameters of the codes C Ayl for various fixed values of ¢ as the
prime p increases and / is chosen to maximize rate while guaranteeing positive minimum
distance. Notice that the field size in each case is F o so this increases with p and 7. In Fig.
3, we see that for each fixed ¢, increasing p = r + 1 yields codes with rate nearly identical
to that of the product code, and approaching that of the Wang et al. construction.

5.4.6 Comparison with product code rate as locality increases

We now consider the actual formula for the rate of C = C A, When! is chosen for maximal
rate with positive minimum distance. Recall that the length and dimension of C are given by

r—1 _ '
k=q2_r(” )(p 23(17 +1)+1J(p_1)t’
p

n=pq-.
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Rate comparison with bound and constructions when t =2 Rate comparison with bound and constructions when t =3
— e
—o— rate = 09|~ mte P
0.9 4 —e— rate bound ~o— rate bound ) —
—o— (rfr+1)) —o— (r/(r+1))
- r(r+t) 081 —o— nir+t)
0.8
0.7
0.7
0.6
0.6 05
0.5 0.4
0.3
0.4
3 5 7 1 13 17 19 23 3 5 7 11 13 17 19 23
P P
Rate comparison with bound and constructions when t =4 Rate comparison with bound and constructions when t=5
—o— rate — 0.9 {1 —@— rate —
0.9 _o— rate _e—
—e— rate bound — —o— rate bound —
e P
0.8{ —& (Hr+ 1)) 7 0.81 —e— (rfir+1))
—o— r/(r+t) —o— r/(r+t)
0.7
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
3 5 7 1 13 17 19 23 3 5 7 1 13 17 19 23
P P

Fig.3 Rate of codes CApt e forp € {3,5,7,9, 11, 13, 17, 23}, where [ is maximized for guaranteed positive
minimum distance, deﬁned over P o, with 7 recovery sets for 0 < ¢t < 4. Each recovery set has locality p — 1.

Also plotted are the bound on rate (8), and rates of product code and Wang et al. constructions (both defined
over [F). Code rate is visually indistinguishable from the rate of corresponding product code when ¢ = 4 and
t=>5

With some simplification, this gives a rate at least

_ 12 _ t _ t
Rz%(ﬁ’(p—l)’—t(p 2)(p:1)<p D _(ppl) +(p_1)t>_

(12 -o(2)

Thus at p increases, the rate of C approaches 1. Further, the rate of C is asymptotically the
same as the rate of the corresponding product code (here, r = p — 1, so the product code
with matching locality and availability would have rate (p 7,l)t ). Asymptotically, the Wang
et al. construction grows at the same rate as well. Again, tﬁe product code and Wang et al.
constructions both have the advantage of smaller field size.

As p increases, we see that
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