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ABSTRACT: In this note, we present a series of rigid molecules that show close enforced
interactions between Ar−F moieties and −CH2X groups in a “tetrel bond” configuration similar to
a nascent SN2 attack. We explore the spectroscopic, crystallographic, and chemical reactivity
consequences of these unusual interactions, including significant through-space spin−spin
couplings, short C−F···CH2X distances, and differential SN1 and SN2 reaction pathways. We
also reveal experimental evidence of carbon-based tetrel bonds influencing chemical reactivity in
solution. Finally, density functional theory (DFT) calculations are employed throughout this study
to confirm and illuminate our experimental data.

M odern studies on the nature of C−F bonds in medicinal
chemistry have revealed a wealth of different roles they

can play aside from their traditional role as torpid entities that
deactivate molecules toward reactivity and degradation.1 As
such, we are intrigued by the view of fluorine in a C−F bond as
an interrupted or “frozen” nucleophile unlikely to engage in
covalent bond formation, which stands in contrast to other
heteroatoms containing lone pairs of electrons, such as −SH,
−OH, or −NH2 (Figure 1). This “snapshot in place” could

provide valuable insights into fluorine’s role in macromolecular
stabilization without presenting a danger of unwanted
reactivity.2 In this note, we present a study of a series of
molecules showing close interactions between Ar−F moieties
and −CH2X groups in a configuration similar to a nascent SN2

3

attack in an ion−molecule complex.4 We also explore the
spectroscopic and chemical reactivity consequences of these
interesting C−F σ*-arrangements.
This so-called “σ-hole” interaction was recently proposed by

Arurun et al.5 and eventually characterized as a “tetrel bond”
after it was discovered that Si, Ge, and Sn exhibit similar

behavior.6 While there is significant computational support for
tetrel bonding in organic species, the weak and transient nature
of tetrel bonds have limited experimental evidence to either
crystallographic surveys7 or higher-order members of group 14
in the periodic table.8,9 Our present experimental study also
complements the computational report by Grabowski and co-
workers that predicted that tetrel bonding interactions often
precede SN2 reactions between more traditional Lewis bases
and group 14 atoms.10

We chose a 4,5-disubstituted phenanthrene core11 as an
optimal scaffold to illustrate the problem (Figure 1).12 A
disubstituted “bay” region forces the protonucleophile and the
electrophile to be within striking distance of one another. The
synthesis began with a Wittig reaction of 3,5-xylylmethyl-
triphenylphosphonium bromide13 and 3,5-difluorobenzalde-
hyde (Li metal and MeOH). Mallory cyclization (I2 at 254
nm)14 affords the basic core and control (1-H) that could then
be functionalized further. Radical dibromination of 1-H affords
1-Br (66% yield), and treatment with TBAF/t-BuOH15

elaborates 1-Br to 1-F. Silver-promoted sequential hydrol-
ysis/oxidation of 1-Br, followed by catalytic hydrogenation,
gives 1-OH, which upon dichlorination (SOCl2 and CH2Cl2)
yields 1-Cl. Thus, a homologous series (H, F, Cl, and Br) was
made available for comparison (Figure 2).
To begin, NMR studies of the probe molecules (1-F, 1-Cl,

and 1-Br) revealed some interesting trends (Figure 3). A
prominent 19F−

13C through-space coupling of 41.5 Hz in 1-F
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Figure 1. Frozen C−F···C�X interactions.
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(400 MHz, CDCl3) indicates a strong interaction between Ar−
F and −CH2X.

16 Of course, analogous through-space couplings
are well-known, although our example presents an uncom-
monly large magnitude.17

This coupling decreases somewhat in 1-Cl (33.4 Hz) and 1-
Br (31.2 Hz). These values align well with the density
functional theory (DFT) calculated trends “M06” (M06-2X/6-
311++G**).18 If the assumption is that spin information is
primarily transferred through an n → σ* interaction, the
empirical and computational ordering makes sense, as the best
energy match exists between the low-lying σ*(C−F) and a
lone pair on Ar−F.19 This prediction is mirrored in the
isodesmic relations shown in Figure 4, where the interaction
contributes to the stabilization of the system by −3.6 kcal/mol
for Br, −1.9 kcal for Cl, and −1.1 kcal for H (M06).20 NBO
analysis further supports this prediction, as the σ*(C−F) of the
probe −CH2F group of 1-F predicts 41% higher occupancy
than σ*(C−F) of the control group. In contrast, the probe
positions of 1-Cl and 1-Br show 28% and 25% decreases in
occupancy, respectively, with respect to control groups,
whereas 1-H reveals no difference. Additionally, the measured
19F−

13C coupling of 41.5 Hz is strikingly close to a calculated
though-space coupling of 39.5−53.1 Hz at a distance of 2.5−
2.6 Å in an HF···CH4 system featuring orbital overlap with a
carbon-centered σ*-orbital.21

The corresponding through-space JHF couplings between
Ar−F and −CH2X (F, Cl, Br) are 7.0, 6.1, and 5.3 Hz, which
are also mirrored by the calculation. Curiously, the coupling
(J) between Ar-F and −CH2F is predicted to be only about 1
Hz. In rotamer 1-F′, on the other hand, the coupling is
projected to soar to 21 Hz as a result of the spatial proximity
between the aryl and benzylic fluorine atoms (Figure 5). In the
event, we observe no coupling between these two atoms within
spectrometric resolution, consistent with the predominance of
rotamer 1-F in solution.

Electrostatic potential surface maps illuminate other features
and trends (M06, calcd. using the Spartan Program). As
expected, the aryl fluorine atoms are not as highly charged as
the benzylic fluorines (Figure 6a and b). On the other hand, a
contour slice (Figure 6c) shows that the electron density from
the aryl fluorine lone pairs points directly at the benzylic
σ*(C−F). As shown in Figure 6d, a bond critical point (BCP)

Figure 2. Synthesis of candidates 1-H, 1-Br, 1-OH, 1-F, and 1-Cl.

Figure 3. 19F−
13C through-space coupling for halogenated com-

pounds.

Figure 4. Isodesmic estimations of stabilization energies.

Figure 5. Rotameric forms of 1-F.

Figure 6. (a) Electrostatic potential map of 1-F (M06), where orange
is negative and blue is positive. (b) Transparent variant of panel a. (c)
Electron density slice bisecting the C−F···C-F interaction. (d) AIM
bond-critical point between C and F.
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with an electron density of 0.018 e Å−3 between the two C−F
groups confirms a weak interaction.
The crystal structures shown in Figure 7 provide a wealth of

information about the interaction of the aryl C−F bond with

various electrophilic carbon centers. The control 1-H,
containing a simple methyl group, provides the baseline in
which the stabilizing n → σ* and dipolar (C−F···H−C)
interactions are expected to be small.7,22 On the other hand, 1-
F reveals a different scenario; aligned as if it were poised to
receive an SN2 attack,

10,23 the electrophilic fluorine-substituted
carbon atom yields a much more substantial interaction (from
2.6513(18) to 2.561(2) Å). Interestingly, this distance is close
to that observed theoretically for the backside ion molecule
complex of F− and CH3F in the gas phase (M06, calcd. 2.53
Å). In difluoride−dichloride 1-Cl, the C−F···C−Cl distance is
elongated (2.578(3) Å). The difluoride−dibromide 1-Br
similarly demonstrates the trend, as the C−F···C-Br distance
increases slightly to 2.570(6) Å. In terms of bond angles, they
are all splayed, as would be expected for a developing SN2
array.24 For example, in 1-F, the F−C−F bond angle is 164°.
Molecules 1-H through 1-Br are chiral; in contrast, the
diastereotopic protons of the halomethyl group in 1-F through
1-Br present as one discrete resonance on the NMR time scale
at all accessible temperatures. This observation is consistent
with a low barrier to enantiomerization in molecules 1-H
through 1-Br. For example, the calculated barrier to
enantiomerization in 1-F (M06) is only 5.9 kcal/mol.
Although the Ar−F···C−X interaction is static in regard to

SN2 reactivity, the situation could be different in the case of
SN1 conditions. Figure 8 shows two examples of differential
reaction chemistry. Under SN2 conditions (TBAF and MeCN),
1-Br displays preferential reactivity at the distal bromomethyl
group (extrapolated to 0% conversion). In contrast, under SN1
conditions (LiOAc and AcOH at 100 °C) the preferential
reaction occurs at the probe bromomethyl group, implying
participation by the C−F bond. A DFT calculation of the
intermediate carbocation (M06, “1-cation”) reveals a benzyl
cation slightly stabilized by lone pair density from fluorine (C−

F distance calcd. 2.6 Å), (Figure 9).25 Strain relief26 and the
anchimeric assistance from fluorine27 could play a role in the
rate acceleration; the two factors could be intricately linked.
Finally, we used a minimalist model system (a linear CH3F−

CH3F array constrained to a F···C distance of 2.48 Å) to
examine molecular orbital interactions (M06) without
interference from other parts of the molecule. The four-

centered orbital shown in Figure 10 shows the key interaction
involving lone pairs on F and C−F single bonds.

In the near future, we intend to expand the concept of
“frozen” nucleophilicity to complementary systems.
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