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ABSTRACT: In this note, we explore a unique reactivity pattern
that involves a rare radical-based C—C bond scission of epoxides
followed by demethylenation. The reaction is accomplished by
Selecfluor and its radical dication working in tandem; a mechanism
supported by experiment and DFT calculations is proposed that
involves the generation and identification of a key reactive
intermediate. The reaction seems to be fairly general for 1,1-disubstituted epoxides.

O ver the past decades, there has hardly been a functional
group more central to the modern practice of synthetic
organic chemistry than the epoxy group. Both its formation
and ring opening have led to pioneering discoveries and highly
useful synthetic methods alike. In terms of ring opening,'
most documented cases involve scission of the C—O bond
(Figure 1), as the attacking reagent is generally nucleophilic in
character.® Instances of nucleophilic C—C” scission are rare,
and limited to epoxides containing electron-withdrawing
groups.” It occurred to us that ring opening by certain free
radicals may produce a different outcome,” as C—O bond
scission becomes somewhat less energetically favorable. On the
other hand, typical alkyl free radicals show little propensity to
react with epoxides through attack at carbon, although oxygen
coordination by metalloradicals followed by C—O bond
cleavage is well-known.® In this note, we document how the
situation can be transformed by amine radical cations,” which
we envisaged to react with epoxides through a three-center,
three-electron transition state'” involving C—C bond cleavage.
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Figure 1. Epoxide ring opening modes.
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Figure 2. Reaction conditions for epoxide demethylenation.

In this case, the character and polarity of the reaction are quite
different from normal cleavage reactions—the attacking agent
is both a radical and electrophilic.

In an initial screening, we found that treatment of epoxide
1la with 2 equiv Selectfluor (SF) and 10 mol % benzil under
blue light irradiation produces ketone 1b in 80% yield after 2 h
(Figure 2). As we have shown in prior work, the Selectfluor-
derived radical dication (SRD) is generated by the reaction of
triplet state benzil with Selectfluor; no reaction happens in the
dark or in the absence of benzil."' A number of other epoxides
were screened in the reaction (Figure 3); success is attainable
with 1,1-disubstituted substrates exclusively.

A proposed mechanism is shown in Figure 4. We imagine an
amine radical dication initiated attack on the least hindered
terminus,'>"® with the unpaired spin accumulating on the
disubstituted end, delocalized by hyperconjugation. Once the
intermediate radical forms, its fluorination by SF is presumed
from precedent to be extremely fast.'* The resultant
fluoroacetal is extremely labile and hydrolyzes very rapidly to
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Figure 3. Starting epoxides la—S5a and products 1b—5b.
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Figure 4. Proposed mechanism of epoxide demethylation (left); '°F
NMR of putative intermediate 3 (right).
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Figure S. Transition state geometries (TSa (favored) vs TSb) and
relative energies (kcal/mol) for attack of SRD on 1,1-dimethyloxirane
(1f) computed at the (SMD = MeCN) @wB97XD/6-31+G(d,p) level
of theory.
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Figure 6. Transition state geometries (TSc (favored) vs TSd) and
relative energies (kcal/mol) for attack of trifluoromethyl radical on
1,1-dimethyloxirane (1f) computed at the (SMD MeCN)
®B97XD/6-31+G(d,p) level of theory.

the hemiacetal, which then fragments to the product ketone,
formaldehyde, and amine. In the '"F NMR spectra of the
reaction of 4a (minimization of water maintained throughout)
a quartet resonance at —86.6 ppm (vs CF;COOH) was
identified, which we assign to the putative intermediate 3."

The calculated chemical shift of this species (R1 Me, R, =
Ph, at B3LYP/6-311++G** as —83.5 ppm)'® corresponds
closely to the observed value. Moreover, the peak disappears
rapidly in the presence of water to generate the ketone
product.

To gain further insight into this reactivity, we performed
density functional theory calculations [SMD = MeCN'’
®wB97XD/6-31+G(d,p)] using the Gaussian 16 software
package.'® To this end, we explored the ring opening of a
model epoxide, 1,1-dimethyloxirane (1f), with two different
radicals, viz., open-shell dicationic radical SRD and the
electrophilic trifluoromethyl radical as a point of comparison."’
The computed reaction of SRD with epoxide 1f revealed that
C—C bond scission is preferred through transition state TSa
(bond breaking and bond making distances of 1.62 and 2.21
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A) with a Gibbs free energy activation barrier (AG*) of 16.3
kcal/mol (Figure 5). Overall, this addition mode was exergonic
(AG® = —15.1 kcal/mol relative to reagents) and resulted in
the formation of ring-opened intermediate Int. a. A view of the
SOMO of transition state TSa is also informative as it clearly
shows orbital interactions between SRD and 1,1-dimethylox-
irane that parallel the spin density (Figure 4). Of additional
importance were favorable hydrogen bond C—H:--O contacts
measuring 2.47 and 2.68 A with natural bond order (NBO)
charges (O = —0.531 ¢, H = 0.296 ¢, H = 0.305 e) indicative of
columbic character. By contrast, backside epoxide ring opening
through TSb (bond breaking and bond making distances of
1.65 and 2.01 A) is noncompetitive (AG* = 24.4 kcal/mol)
owing in part to repulsive C—H---H steric contacts (distances =
2.26 and 2.36 A), the lack of stabilizing H-bonding
interactions, and partial oxy-radical character.

In contrast, C—O bond cleavage of 1f is preferred in the case
of electrophilic trifluoromethyl radical attack, which occurs
through reoriented backside addition (see structure TSc, AG*
= 21.6 kcal/mol) resulting in the exergonic (AG® = —29.0
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kcal/mol) formation of ring-opened intermediate Int. c. The
salient bond breaking and bond making distances of TSc
measure 1.63 and 2.08 A (Figure 6). Conversely, front-side
addition through TSd (bond breaking and bond making
distances of 1.63 and 2.01 A) was disfavored, with a larger
calculated activation barrier (AG* = 27.0 kcal/mol). Hindering
attack by this addition mode were a pair of repulsive epoxide
oxygen and approaching trifluoromethyl radical-based fluorine
contacts with equivalent distances of 2.91 A.

Most notably, the computational results are congruent with
our proposed mechanism, and highlight the fundamentally
different electronic character of amine radical cations versus
neutral free radicals. Further work in this area will concentrate
on the development of new synthetic methods derived from
C—C epoxide ring openings.
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