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ABSTRACT: We have found that face-to-face 7-stacked aromatic rings show the propensity
to activate one another toward electrophilic aromatic substitution through direct influence of
the probe aromatic ring by the adjacent stacked ring, rather than through the formation of
relay or “sandwich complexes.” This activation remains in force even when one of the rings is
deactivated through nitration. The resulting dinitrated products are shown to crystallize in an
extended parallel offset stacked form, in stark contrast to the substrate.

he 7-stacking of aromatic rings has proven to be a durable

field of interest because of its undeniable importance to
chemistry and biology." Generally speaking, edge-to-face and
parallel offset are the most common motifs; face-to-face is
rather more rare because of electron repulsion between the 7-
electron clouds.”” The question of how z-stacking affects
chemical reactivity has been relatively less explored, although
some 1nterest1ng examples have been reported in the
literature.”> From our point of view, a signal reaction that
could be so influenced is electrophilic aromatic nitration
(Figure 1),° which could occur directly or be templated by
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Figure 1. Paradigms of “stacked” electrophilic aromatic substitution
(EAS) and change in HOMO energy with stacking distance.

both rings. We recently found that a Lewis base positioned
over an aromatic ring can activate the ring toward electrophilic
substitution in a type of “relay effect”'” and we considered
whether the same may be operating here.

As the aromatic rings approach one another face-to-face,
HOMO energy increases, which theoretically makes the array
more reactive to an electrophile. The literature reveals some
indication that face-to-face stacked aromatic rings can
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influence each other in select EAS reactions.” For example,
the molecule ]anusene7 (Scheme 1) was shown to undergo

Scheme 1. Silver(I) Coordination in a Stacked Aromatic
Ag’

i
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preferential nitration at the stacked ring, although very precise
structural assignments were Jacking at the time of publication.
More recently, an intriguing computational study appeared
that showed the ability of ]anusene to stabilize Ag" ions
through sandwich complexes.”” Cram et al. established that
EAS in Lewis-base-substituted paracyclophanes often occurred
with a preference for the cross-ring pseudogem isomer.® Other
researchers interpreted this result as arising from a Lewis base
deprotonation of a Wheland-type intermediate.’

We have had a long-standing interest in through space
activation of electrophilic aromatic substitution'® and sought
an unequivocal test of the fundamental question of how
stacked EAS activation would occur. In this note, we confirm
the hypothesis in a polyaromatic model probe that was chosen
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for its ease of synthesis and its tendency toward clean, fairly
unequivocal reactions. It possesses a face-to-face stacked
system that is ungirded by strained bridges (to the extent
that if destabilization occurred, it would be due to electron
repulsion of the 7-clouds) and possesses internal control
aromatic rings whose steric hindrance is approximately the
same (if not less). Known tetraaromatic anhydride 1 (Scheme
2) proved to be an ideal candidate, as the probe and control
rings contain identical substitution patterns.”
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Geometrically, 1 shows a pair of face-to-face stacked
aromatic rings that possess a slight splay. The substituted
carbons on the stacked rings are each 3.04 A away from their
corresponding partners on the opposite side and presumably
contribute most to the hypothesized ground-state destabiliza-
tion of the system. The para—meta positions on the tops of the
rings are 3.97 A apart. In any case, the distances are short
enough to influence reactivity. The contrast between this
enforced face-to-face structure and the dominant motif (edge-
to-face) occurring in the bulk crystal data of the Cambridge
Structural Database (CSD) (Figure S4) should be noted. In
the event, 1 underwent rapid and exclusive nitration in 85%
yield (1 equiv of NH,NOj, trifluoroacetic anhydride, CH,Cl,,
12 h) on one of the axial rings, which is consistent with stacked
activation (Scheme 2). The assignment was confirmed by an
X-ray crystal structure of isolated product 2; this partially
disordered structure showed no evidently interesting extended
packing.

Two control experiments established the activated nature of
I’s axial rings. First, diarene 3, bereft of a stacked motif yet
electronically identical to 1 in every other way, underwent
nonselective nitration. Second, a mixture of 1 and 3 was
subjected to 0.75 equiv of nitrating agent; only 2 was observed
as a product, thereby demonstrating intermolecular activation
(consistent with a rate difference in nitration of >200).
Resubmission of mononitrated 2 to the same reaction
conditions (1 equiv, 12 h) led to additional nitration
exclusively on the adjacent stacked ring in 72% yield (Scheme
3). Both dinitrated molecules Sa and Sb, formed in equal
quantities, are symmetrical, as confirmed by their 'H NMR
splitting patterns and their X-ray crystal structures.

Product Sa provides a particularly illuminating contrast to 1
in the solid state (Figure 2). For example, the stacked aromatic
rings position themselves more closely (d; shrinks 0.8 A, and
the somewhat inflexible d, shrinks less at 0.08 A). This result
contrasts and complements the theoretical studies of Wheeler
et al. on the origins of substituent effects in z-stacked
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Scheme 3. Nitration of 2
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Figure 2. X-ray crystal structure of Sa (50% probability ellipsoids)
and the C—C distances d; and d,.

aromatics,'" wherein it is shown that key interactions originate
primarily from the substituents themselves, not the delocalized
rings.

Reduced electron density on the stacked rings would also
contribute to a closer interaction, as reflected in AIM
calculations,'” wherein bond critical points (BCPs) between
stacked rings increase in magnitude for the nitrated products.
For instance, a weak BCP in 1 between substituted carbons on
adjacent rings (0.0094 au) is replaced by a significant BCP
between nitro-substituted carbons in 5a (0.0383 au, Figure 2).

We also noted a significant difference in the way these
mono- and dinitrated tetraaromatic molecules crystallize. Both
dinitrated molecules show networks of parallel offset 7-stacked
aromatic rings that extend throughout the crystal lattice
(Figure 3). In each case, the two nitrated axial rings form a 7-

Figure 3. Packing diagram of Sa showing extended stacking form
(top, 50% thermal ellipsoids).

stacked network, whereas no such network is observed in the
crystal structure of the mononitrated analogue 2 or non-
nitrated starting material 1. Both reduced splaying of the
rings, and the effect of the nitro groups appeared to be
determinative in dictating packing. As a point of contrast,
related molecules such as nitro- and dinitro[2,2]-
paracyclophane'” pack in an edge-to-face style.
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In terms of DFT calculations,'* the potential energy surface
for initial mononitration strongly indicates an outside approach
of nitronium ion to 1 (M06-2X/6-311G(d), DCM, Figure 4).

2posin. 20
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1+NO*
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T2k =
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Figure 4. Precomplexation (2-pc-in) and transition states (2-ts-in
and 2-ts-out) for nitration in z-stacked tetraaromatic moiety 2
optimized at Integral Equation Formalism Polarizable Continuum
Model (solvent = DCM) M062X/6-311G(d).

However, an inside approach possesses some interesting
features. For example, we found a symmetrical precomplex
(2-pc-in) wherein both aromatic rings are sandwiching the
nitronium ion (Figure 4a). This precomplex evolves to the
corresponding Wheland intermediate (o-complex) through
transition structure 2-ts-in, which is located a scant ~0.68
kcal/mol above the precomplex 2-pc-in in terms of free energy.
In contrast, the outside approach of NO," results in a
transition structure (2-ts-out) that is predicted to be ~9.2
kcal/mol lower in free energy than 2-ts-in. The TS for nitration
of the control ring is significantly higher in free energy, vis-a-vis
2-ts-in, as expected.

To probe the remote effect of the adjacent arene ring upon
nitration, truncated ethylene model systems 6 and 7 were
investigated. They both reveal slightly higher activation
barriers, presumably because of a lack of 7—7 through-space
activation. Further, a 4.8 kcal/mol ground-state destabilization
energy was found from the homodesmotic relationship in
Figure Sa, which is indicative of repulsive electrostatic effects.
Subsequently, to probe this aspect, we applied a model system
comprising two 7-stacked benzene rings without an anhydride
platform and energy decomposition analysis (EDA). From this
truncated model, an optimal “slipped” s-stacking distance of
3.8 A was found for nitration wherein stabilizing cation—7x
interactions aided by 7—z-stacking were present (Figure Sb).
Further, this analysis revealed unfavorable Pauli repulsion as
the main contributor to the interaction energy (AE,,) below
3.0 A, whereas with increasing distance between the ring
systems, favorable electrostatic and orbital interactions were
the major contributors to AE;, (Figure Sc). Notably, this
optimized distance of 3.8 A is comparable with the crystal
structure of 1 with a 7—7n-stacked distance of 3.9 A.

Next, we probed how substitution on the adjacent ring
engaging in z-stacking and not undergoing nitration would
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Figure 5. (a) Homodesmotic calculation. (b) Noncovalent
interactions and electrostatic potential of aryl—aryl—nitronium
interactions. (c) EDA analysis of “slipped” aryl—aryl z-stacked
interactions. (d) AG? of nitration vs o-induction Hammett analysis
for substituents: NH,, OH, CHj;, H, Br, Cl, F, CN, and NO,.

impact the activation barriers. This resulted in linear free
energy relationship (LFER), derived from the plot of the
activation barrier (AGi) vs Hammett inductive sigma constant
(07) for a series of nitration transition states, correlated with
stabilizing cation-7 interaction in the presence of electron-
donating groups and destabilization by electron-withdrawing
groups (R* = 0.91, Figure 5d).

In extrapolating from these findings, we conjectured that
bromination would also be a viable mode of reactivity for the
tetraaromatic system. We found, for example, that 1 undergoes
preferential bromination on the top rings, which results in an
inseparable mixture of ortho- and meta-brominated products

(Figure 6).

100% conversion
inseparable mixture

Figure 6. Monobromination of 1.

The case of stacked aromatic rings in EAS would seem to
involve the adjacent aromatic moiety as a through-space
stabilizer as opposed to a coordinator, as precomplexation in
this case would involve a very tight squeeze in between stacked
aromatic rings, which is in stark contrast to what we found for
through-space activation of lone-pair-containing functional
groups.'” ¢ The results confirm that a source of z-electron
density, including aromatic rings, can activate adjacent rings
when properly positioned. Most remarkably, even an —NO,-
substituted deactivated aromatic ring can provide the necessary
7-density to activate a proximate probe ring. Further studies on
other through-space-promoted EAS reactions by stacked
aromatic rings are underway and will be reported in due
course.
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