

Dr. Harsh V. Patel, PhD, E.I.T

Dr. Renzun Zhao, Ph.D., P.E. & Dr. Hyo-shin Park, Ph.D., P.E.

Department of Computational Data Science and Engineering

Department of Civil, Architectural, and Environmental Engineering

NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE UNIVERSITY

Machine Learning: Purpose and Application

Machine Learning

Recent application of machine learning for PFAS

Application	Model/Algorithm	Source		
Predicting PFAS removal efficiency	XGBoost Model	Karbassiyazdi et al., 2022		
Predicting contamination risk for GenX	Bayesian Network model	Roostaei et al., 2021		
Source allocation for PFAS in environment	Extra Tree, Support Vector Machine, Neural Networks, and K-Neighbors	Kibbey et al., 2020		
Mapping PFAS structure-function	t- Distributed Stochastic Neighbor Embedding (t-SNE) algorithm and PCA	(Su & Rajan, 2021)		
Classification of PFAS bioactivity	multitask neural network (MNN)) and Graph Convolution Network models	(Cheng & Ng, 2019)		
Predicting PFAS defluorination	Random Forest, Least Absolute Shrinkage and Selection Operator (LASSO) Regression, Feed- forward Neural Network (FNN), and t- distributed Stochastic Neighbor Embedding (tSNE) algorithms	(Raza et al., 2019)		
ncat.edu Application of Machine Learning in Landfill Leachate Remediation and Resource Recovery / 2				

Machine Learning: Importance of Machine learning

Importance of Machine Learning

Experimentally Determined $Log K_d$

- Cost: chemical, instrumental, analytical, human
- Time: days to months
- Low reproducibility

Computationally Determined $Log K_d$

- Cost: programming, human
- Time: minutes
- High reproducibility

ncat.edu

3

3

Machine Learning: objective in this study

Machine Learning

Objective of this study

"To **develop and use** ML models for estimating/predicting PFAS distribution in solid-liquid phase during adsorption"

ncat.edu

Application of Machine Learning in Landfill Leachate Remediation and Resource Recovery / 4

Л

Adsorption Isotherm: Distribution Coefficient

Adsorption Isotherm

Distribution Coefficient

• the amount of sorbate adsorbed onto solid surface per unit amount in the aqueous phase at equilibrium

$$\log K = \log \frac{Q}{C} = f(properties \ of \ sorbate, properties \ of \ sorbent, properties \ of \ solution \)$$

$$Log \ K_d = f(Log \ C_e, E, S, A, B, V, S_{area})$$

 K_d is the distribution coefficient, Q_e is the equilibrium concentration on solid phase C_e is the equilibrium concentration in aqueous phase E, S, A, B, V are the Abraham's Solvation Parameters

ncat.edu

Application of Machine Learning in Landfill Leachate Remediation and Resource Recovery / 5

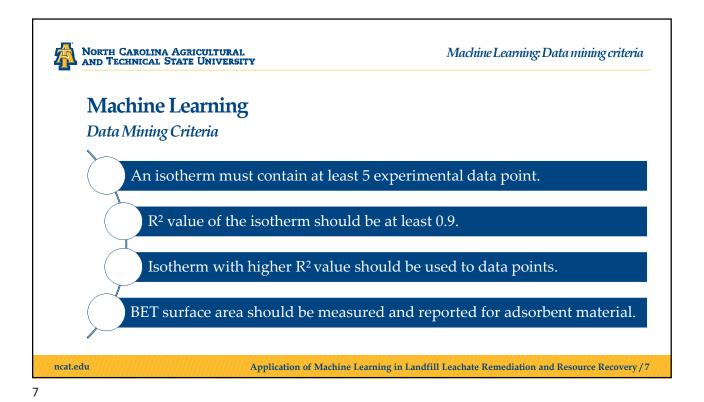
5

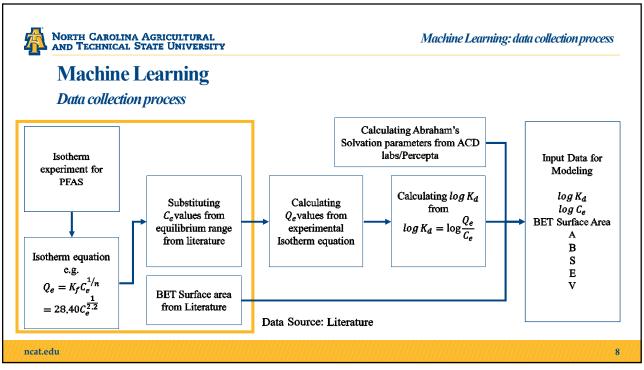
Machine Learning: Methodology

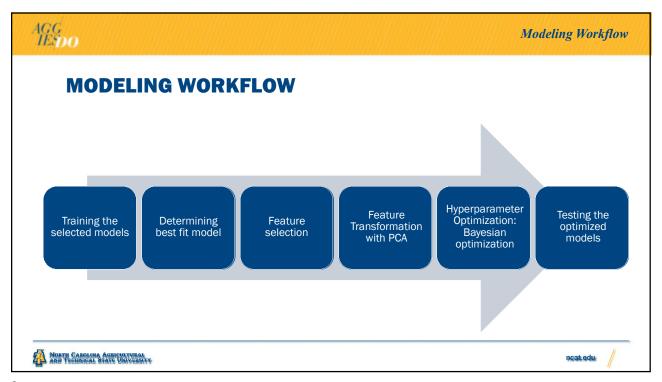
Machine Learning

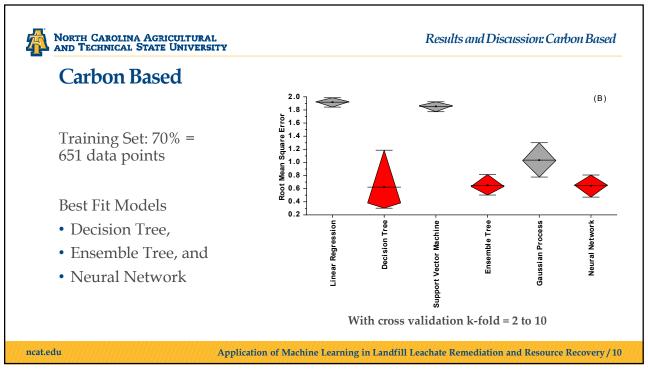
Methodology

ML algorithms

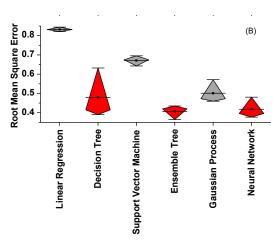

- Linear Regression model
- Decision Tree model
- Ensemble Tree model
- Support Vector Machine model
- Gaussian Process Regression model
- Artificial Neural Networks model


Model Variables


- Modeled Parameter: log K_d Distribution Coefficient
- Descriptors:
- 1. log C_e equilibrium concentration
- 2. BET Surface area
- 3. Abraham solvation parameter: A, S, B, E, V.


ncat.edu

Application of Machine Learning in Landfill Leachate Remediation and Resource Recovery / 6


Results and Discussion: Mineral Based

Mineral Based

Training Set: 70% = 284 data points

Best Fit Models

- · Decision Tree,
- Ensemble Tree, and
- Neural Network

With cross validation k-fold = 2 to 10

ncat.edu

Application of Machine Learning in Landfill Leachate Remediation and Resource Recovery / 11

11

Results and Discussion: Feature Selection

Feature Selection

- Descriptors ranked based on f-test value
- Retrained models based on the f-test ranking

	F-test		
Descriptor	Carbon-based	Mineral-based	Rank
BET Surface Area	32.4523	164.5863	1
Log Ce	12.7671	84.4753	2
E	9.9886	50.5753	3
V	7.6174	44.5753	4
S	6.7755	42.9872	5
В	6.7755	21.2236	6
A	0.5268	12.0387	7

ncat.edu

//12

Results and Discussion: Feature Transformation with PCA

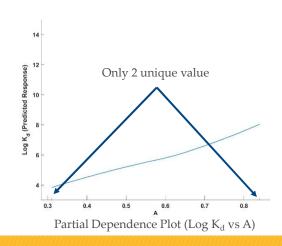
Feature Transformation with PCA

- Determining Principal components.
- Based on 95% explained variance.
- 100% variance explained by only descriptors
- Machine eliminates the rest

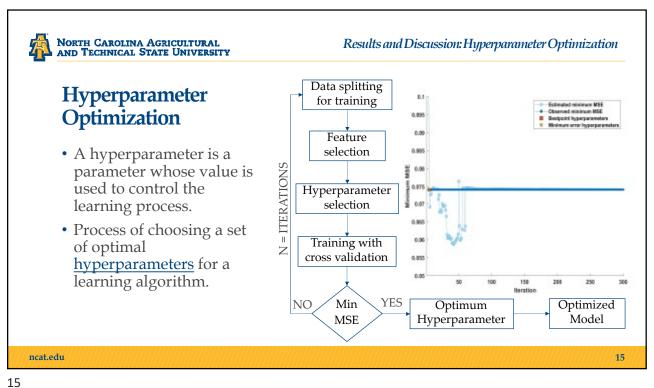
Descriptor	Explained Variance		
	Carbon-based	Mineral-based	
BET Surface Area	85.16%	79.05%	
Log C _e	14.84%	20.95%	
E	0%	0%	
V	0%	0%	
S	0%	0%	
В	0%	0%	
A	0%	0%	

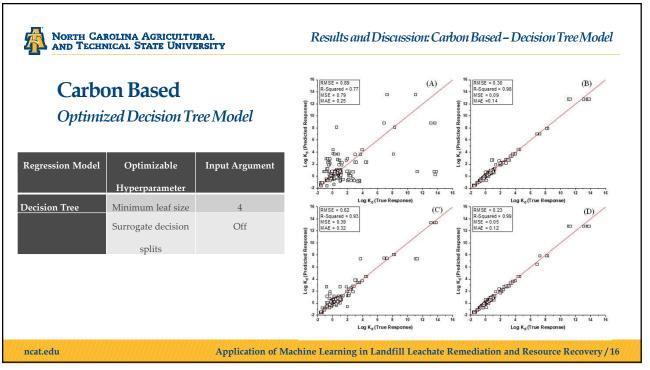
ncat.edu

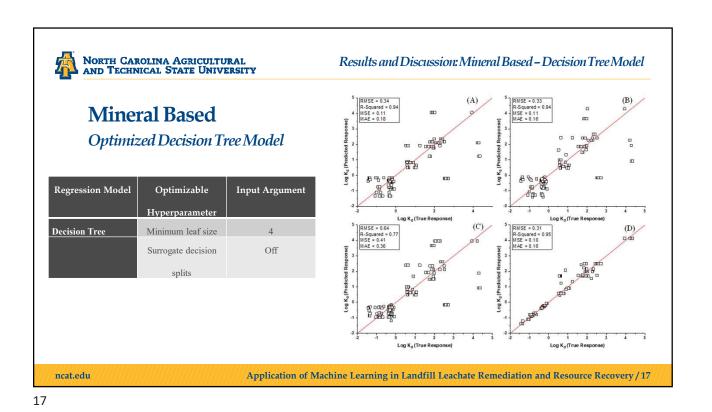
12

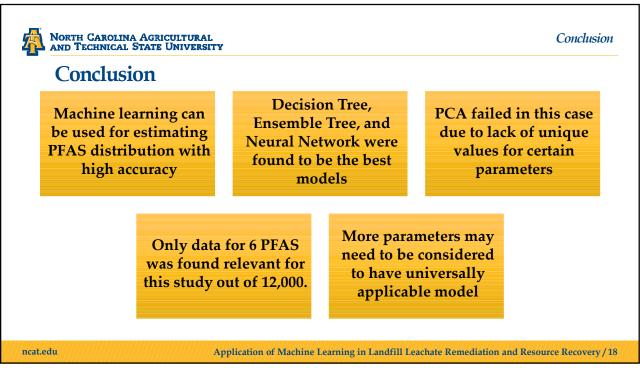

13

Results and Discussion: Disadvantage of PCA in this case


Disadvantage of PCA in this case


- Machine does not recognize 'A' as a PCA due to low variance from only 2 unique value
- Hence, the retrains the model with only 2 PCs
- i.e., $Log K_d = f(BET surface area, log C_e)$
- However, PDP shows a relation between Log K_d and A
- Hence, PCA is disadvantageous in this case.




ncat.edu

14

THANK YOU QUESTIONS??

