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ABSTRACT: Transition metal dichalcogenide heterostructures provide a versatile platform to explore electronic and excitonic
phases. As the excitation density exceeds the critical Mott density, interlayer excitons are ionized into an electron—hole plasma
phase. The transport of the highly non-equilibrium plasma is relevant for high-power optoelectronic devices but has not been
carefully investigated previously. Here, we employ spatially resolved pump—probe microscopy to investigate the spatial-temporal
dynamics of interlayer excitons and hot-plasma phase in a MoSe,/WSe, twisted bilayer. At the excitation density of ~10'* cm™, well
exceeding the Mott density, we find a surprisingly rapid initial expansion of hot plasma to a few microns away from the excitation
source within ~0.2 ps. Microscopic theory reveals that this rapid expansion is mainly driven by Fermi pressure and Coulomb

repulsion, while the hot carrier effect has only a minor effect in the plasma phase.
KEYWORDS: MoSe, WSe,, transition metal dichalcogenides, van der Waals heterostructure, exciton

n a typeIl transition metal dichalcogenide (TMD) high excitation density beyond the Mott transition. Interest-

heterostructure, a rapid charge transfer following optical ingly, new many-body ground states in TMDs, such as
excitation leads to the formation of interlayer excitons (IXs)." superconductivity, are observed at high carrier density of 10'*
IXs can be long-lived with their lifetimes controllable by the cm™?, only achieved using ionic liquid gating previously.'" '
twist angle, making them ideal to realize quasi-equilibrium Here, we perform spatially resolved resonant pump—probe
phases.2 Indeed, a rich variety of excitonic phases (e.g., exciton microscopy measurements on a near hexagonal-stacked (H-
insulators’ and condensates'””) have been proposed and stacked) MoSe,/WSe, twisted bilayer (TBL) and investigate

the transport of excitons and hot plasma as a function of
excitation density. At low excitation density, no obvious time
evolution of the spatial distribution was observed over ~1 ns
time scale, indicating that interlayer excitons are trapped by the
moiré potential, consistent with previous e)q)e:L'im<ents.9’16 At

realized in TMD heterobilayers. Depending on the exciton
density, several distinct phases of localized excitons, mobile
exciton gases, and ionized hot plasma have been observed in
heterostructures.”'* At low excitation density, IXs can be
localized by moiré potential in heterostructures with a small
twist angle and relatively large supercells (~10 nm)."> As the

supercell sizes reduces or exciton density increases, IXs may Received: February 20, 2023
become a mobile exciton gas.'® At even higher densities, the Revised:  May 1, 2023
dissociation of excitons occurs at the Mott transition, where Published: May 8, 2023

the Mott density is estimated to be between 10'* and 10"

cm ™2 by fyoeaz ~ 0.02 with an exciton Bohr radius a, of 1—2

nm."” Few optical experiments have been performed at very
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excitation densities well exceeding the Mott transition, we
observe a remarkably fast initial expansion of hot plasma that
extends several microns away from the pump laser spot within
~0.2 ps. The rapid hot plasma expansion is modeled by a
microscopic theory that takes into account both electron—
electron repulsion and Fermi pressure driven expansion. Fermi
pressure originates from the significantly higher free energy of
a quantum gas than a classical gas at the onset of degeneracy.
At a sufficiently high density, Pauli’s exclusion principle needs
to be explicitly taken into account when describing density-
dependent carrier diffusion. This carrier density can only be
reached in TMD heterostructures, not in monolayers (MLs).
Thus, our paper reveals unique advantages of TMD
heterostructures in high power optoelectronics.

We briefly describe the sample preparation and character-
istics. As illustrated in Figure la, the MoSe,/WSe, TBL is

(a) hBN (b)
MoSez > X X X X X X A
WSe: “ X X K
hBN
~ 4 20 em? T X T T— T T 7
5 1.0 | - 92+10° X
o |z 2em 2 WSe;, ML w
T 0.8 - gi4xt0? N
%‘ - 59x10:§ / \ A
2 06| =2 ] | MoSe, ML | \Xio 1
£ o4 X, [ \
c 04| f 3
O / Pum Probe
& 02} (c) ~f\ \! h 1
f \ MoSe,/WSe,
0.0 T T T T
1.3 1.4 156 1.6 1.7
Energy (eV)
S\ T T ’S 32 T T
1.41F — 1 Q@
) (d) o*° °% £ 58 (e)
L 140F " i1 .5F ]
c /e - . @
S 139} Mott i gt ¢—]
@ = )
S 1.38f o 3 20k ,/// .
X~ X1 g X1
P 1.37F . “®-Ep i i o—* ° 0Ty,
o 1013 1014 § 1013 1014
Ny (cm?) n,, (cm?)

Figure 1. Identifying the Mott transition in a near-H stacked MoSe,/
WSe, bilayer. (a) Layered structure and (b) moiré pattern of the
hBN-encapsulated MoSe,/WSe, TBL with a near H-stacked
configuration. The black diamond represents one supercell. (c) PL
spectra taken at 78 K from ML and TBL regions. Excitation density-
dependent PL spectra of the two prominent IX peaks (IX; and IX,)
are further analyzed in (d) peak position and (e) linewidth (full width
at half-maximum, FWHM). Vertical gray shaded area indicates the
excitation density at the Mott transition ny.

encapsulated by hexagonal boron nitride (hBN) layers using a
dry transfer technique (more details in Supporting Information
(ST)).** The stacking style and twist angle were determined by
second harmonic generation (SHG) to be near H-stacked with
a twist angle of 6 = 58.9 & 0.3° (more details in SI). At this
twist angle, the calculated size of the moiré supercell is ~17 nm
(Figure 1b), Iarger than the expected Bohr radius (~1—2 nm)
of the excitons.'’

We first perform power-dependent photoluminescence (PL)
experiments (Figure lc) to identify the relevant excitonic
resonances and the Mott transition. All measurements are
performed at low temperature, T = 78 K, unless stated
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otherwise. PL spectra taken from the WSe, and MoSe, ML
regions of the sample are dominated by neutral and charged A-
excitons, which we label as Xjy and Xjy,. For spectra taken
within the TBL region, the intralayer excitons are energetically
similar to the A-excitons from the corresponding MLs. Two
prominent IX resonances are observed in the PL (Figure 1c)
and we attribute them to the singlet (IX,) and triplet (IX;) IX
states, consistent with other spectroscopic studies of near H-
stacked MoSe,/WSe, TBLs.”’ > The excitation density-
dependent PL measurements are taken by tuning the laser to
the A-exciton resonance of ML MoSe,. We fit multiple
Gaussian functions to extract the central energy and FWHM of
the two IXs as shown in Figure 1d-e. A sudden change in both
the resonant energy and FWHM of the IX resonances is
observed at a density ~7 X 10'> cm ™2 While repulsive dipolar
interactions, bandgap renormalization, and decreased exciton
binding energy can all lead to spectral shifts in exciton resonant
energy, this sudden jump in energy and spectral broadening
has been considered as a signature of screening from the
dissociated excitons.'****” We designate this excitation density
as the onset of the Mott transition in the rest of this paper.
Previous studies have identified the excitation density of ~10"
cm ™2 as the onset of the Mott transition,”* ™" which is within
the range of uncertainty due to exciton Bohr radius, exciton
creation under nonresonant excitation, the onset of resonance
shift, and linewidth broadening in Figure 1d,e. Next, we apply a
spatially resolved pump probe microscopy technique to map
the transport of carriers and/or excitons. The experimental
setup is described in detail in the SI. The pump/probe
technique used here is also referred to as differential reflectance
and detects a third-order nonlinear signal. Briefly, co-circularly
polarized pulses are used as pump and probe beam for the
measurements. A spatial resolution of ~200 nm and a temporal
resolution of ~0.2 ps are achieved. The pump energy was
tuned to 1.62 eV, resonant with A-exciton in MoSe, ML, while
the probe energy was centered near 1.70 eV, resonant with the
A-excitons in WSe, ML (Figure 1c). Because the oscillator
strength associated with IXs are small due to their spatially
indirect nature, IX resonances are not directly observable in
resonant pump probe spectra.

Although the probe wavelength is tuned to be resonant with
the intralayer exciton, the probe absorption and detected
nonlinear signal are additionally sensitive to excess holes in the
WSe, layer and IXs that form following pump excitation and
subsequent charge transfer. This expanded probe sensitivity
results from a phase space filling effect as illustrated in Figure
2a. The hypothesis that free carriers or IXs dominate the
nonlinear signal at long delay times is supported by the
measured long-lived nonlinear signal (details in SI) and the
known large oscillation strength of intralayer excitons, which
leads to a short radiative lifetime (<1 ps) and an even shorter
total population relaxation time.”*” Thus, the long-lived
nonlinear signal observed in our experiments can only be
explained by the long-lived excitations of free holes and IXs.”*

The transport of ionized holes or IXs is imaged by scanning
the probe beam while keeping the pump beam fixed (Figure
2b). The images taken at three excitation densities, 3 X 10,3
X 102, and 4 X 10" cm™>—above and below the Mott
density—are presented in Figure 2c—e, respectively. The
excitation densities quoted here are calculated by the average
excitation powers used (details in SI). The diffusion images at
different excitation densities are strikingly different. At the
highest density shown in Figure 2c, the carrier distribution
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Figure 2. Spatial imaging of hot plasma transport and IX localization
in the MoSe,/WSe, TBL at T = 78 K. (a) Band diagram of the TBL
and pump/probe pulses tuned to the MoSe, and WSe, intralayer A
excitons, respectively. (b) Illustration of spatially resolved imaging of
carrier or IX transport, where the probe beam is spatially scanned with
respect to a fixed pump beam. Normalized transient differential
reflection images at several delay times (Tdelay = <1, 100, and S00 ps)
for (c) high (n,, = 3 x 10" ecm™), (d) intermediate (n,, = 3 X 10"
cm™2), and (e) low (n,, = 4 X 10" cm™2) excitation densities. White
dashed lines indicate the boundary of the TBL region. Scale bar, 2
um. (f) Hlustration of the excitonic phase transition as a function of
excitation density. At low density below 1.y, IXs are localized by the
moiré potential. Above the Mott density 1y, the electron—hole
plasma expands rapidly.

expands almost instantaneously following the pump pulse. The
spatial distribution appears elongated because the finite size of

the TBL region restricts transport along one direction. No time
evolution was observed within the images taken at delays of <1,
100, and 500 ps, besides a gradual signal decay due to carrier
relaxation processes. In the low excitation-density images
shown in Figure 2e, the nonlinear signal distribution remains
localized within the excitation spot. Similarly, no temporal
evolution of IX transport is observed with the population
relaxation. We attribute this lack of temporal evolution to
localization of IXs by the moiré potential consistent with
earlier studies.”'>'®**™*" At the intermediate excitation
density in Figure 2d, one can observe exciton diffusion mostly
driven by dipolar repulsive interactions between interlayer
excitons. In contrast, the extended spatial distribution of
carriers at high excitation density (n > ny,) results from a
rapid expansion of hot plasma that occurs beyond the limited
temporal resolution of our experiment,'>'”*” as illustrated in
Figure 2f.

In Figure 3a, we directly compare line profiles of the spatial
pump probe images. These line cuts are taken along a vertical
direction (indicated by black arrow in Figure 2e) and fitted
with a Gaussian function, n(x, 7) « exp(—x>/207), where 62
corresponds to the variance. The spatial profile at low density
is very close to the convoluted pump probe beam profile, and it
remains so even for long delay times. This observation suggests
that IXs diffusion at low density is impeded by the moire
potential, consistent with other studies.”'*'® By comparison,
we can observe a stark difference between the high and low
excitation density distributions near zero delay (6% of 5.56 +
0.43 ym® vs 1.03 + 0.03 um?), supporting the conclusion that
the plasma expands rapidly within ~0.2 ps. To rule out
possible artifacts due to nonlinear saturation effect, we
examined the pump power-dependent nonlinear signal and
its spatial profile at a fixed delay (details in SI). While Auger
processes can lead to a fast relaxation dynamics and influence
the spatial profile of the nonlinear signal,"" it does not lead to
observable changes in our case as shown via simulations
included in SI

Three line profiles at different delays at the highest
excitation density show the same spatial extension with a
decay in amplitude due to population relaxation (Figure 3b).
Similar analyses at different excitation densities are performed
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Figure 3. Detailed analysis of exciton and carrier transport at 78 K. (a) Comparison of line cuts of the nonlinear signal at short time delay of 74, <
1 ps for high (red), intermediate (light blue), and low (dark blue) excitation densities. Gray shaded Gaussian is the convoluted pump—probe profile
in the low density measurement. (b) Delay-dependent spatial profiles of the nonlinear signal at high excitation density. (c) Excitation density

dependent variance (o Ips ~ 61)- Vertical shaded stripe indicates the transition between bound IXs and ionized hot plasma beyond iy
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displayed in Figure 3c. A gradual increase of expansion as
excitation density increases is observed because of increased
repulsive interactions between IXs. In the highest excitation
density, the abrupt jump in o> results from the rapid hot
plasma expansion driven by Fermi pressure, which will be
explained in the following section. To ensure using two laser
systems did not introduce ambiguity in drawing the main
conclusion, We have carefully measured and deconvoluted
pump and probe beam sizes in both systems and ruled out the
difference between laser system as a possible cause for
observing the strikingly rapid hot plasma expansion (details
in SI).

To microscopically model the spatiotemporal dynamics of
charge carriers, we introduce the Wigner function
P (1) = Zq eiq'r<az'k_%qajyk+;q>,42_44 which is a quasi-prob-
ability function for carriers (electrons and holes denoted by A =
e, h) with the momentum k at the position r. Here, the
operator a$y) annihilates (creates) a charge carrier with the
momentum k. We consider a system of interacting charge
carriers and phonons, where the carrier—carrier interaction is
treated in a mean-field approximation. The equation of motion
for the Wigner function in this system reads"

p.gk(r) t) = _ij'vrpgk(r) t)

1 .
+ GAEVJP(I‘, t).vkpjk(r) t) + Pk (1‘, t)

SC

(1)
where 6; = +1 (—1) denotes the holes (electrons). The first
term describes the free propagation of carriers with the velocity
Vi = %VkEAk = f’n—k At sufficiently large densities, the Fermi

level will rise above the band edge, and states with high kinetic
energy will be occupied (Figure 4a). The higher velocity vy, in
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Figure 4. (a) Schematic illustration of the impact of Fermi pressure
on carrier propagation. (b) Influence of hot plasma (blue), Fermi
pressure (yellow), and Coulomb repulsion (red) on carrier diffusion
for an initial excitation density of n = 10 cm™.

these states will result in an overall faster propagation. This
effect is a direct consequence of Pauli’s exclusion principle and
is analogous to the phenomenon of Fermi pressure in neutron
stars. "™

The second term describes the acceleration of charge
carriers due to their direct Coulomb interaction with other
carriers. This effect is taken into account by the spatial gradient
of the electrostatic potential ®(r, t) = [d’r'V(r — 1) (my(r',t)
— n.(r',t)). Here, V(r) is the Coulomb potential and n,(r, t) =

4402

A" You(xt) is the local carrier density with A being a
normalization area of the crystal. In order to obtain an upper
bound for the effect of Coulomb repulsion, we neglect the
attraction between electrons and holes residing in different
layers and only consider the repulsive interaction between
particles of the same species. Many-particle screening may
significantly reduce the Coulomb interaction at the high
excitation density. We use the long wavelength static limit of
the Lindhard formula® to account for this screening effect.
Furthermore, V(r) decays on a much shorter length-scale than
n,(r,t), and therefore, the electrostatic potential can be

®(r, t) =

2
eiot)nh(r, t)) where

expressed
p 2¢ek(r,

as

eoz ony(r,t)
2¢ ou
chemical potential. Exchange and correlation effects are not
explicitly included in this formalism.

Finally, the last term in eq 1 describes local carrier—phonon
scattering within the second-order Born-Markov approxima-
tion®” and reads

;0./“((1', t)lsc = Zk/ Fk/kp,“(,(rr t)(l - pik(rr t))

- Fkk/p,u((rJ t)(1 - plk,(r, t)

k(r, t) = is the screening wavenumber and y is the

()

Here, the Fermionic nature of electrons and holes manifests as
Pauli blocking through the terms 1 — py(r, t). The matrix
elements I'yy ensure energy and momentum conservation of
the scattering process k — k'’ and contain the electron—
phonon coupling strength, obtained in a deformation potential
approximation with ab initio parameters from the previous
study.”'

The simulated carrier diffusion as a function of delay is
summarized in Figure 4b. We assume at the initial time t = 0
that pu(r, t = 0) is well described by a Fermi—Dirac
distribution at each position r and that n,(r, t = 0) follows a
Gaussian profile. In addition to the effects described above, the
carrier population is significantly heated under strong optical
excitation. We model this effect by considering an initial
thermal distribution with an effective temperature of up to
1000 K. While a hot plasma distribution should propagate
faster than a colder one, we find that this effect is small at very
high carrier densities in comparison to the impact of Fermi
pressure and Coulomb repulsion, as shown in Figure 4b. The
Fermi pressure effect (i.e, Pauli blocking) and Coulomb
repulsion between carriers both contribute significantly to the
rapid diffusion at high excitation density. When the charge
density is increased, Pauli’s exclusion principle forces electrons
to occupy states with high momentum since low energy states
are already full. The larger particle group velocities v,
consequently lead to a significantly faster propagation of
electrons. Moreover, electron—phonon scattering channels are
considerably quenched when the radius of the Fermi sphere kg
is increased, which additionally boosts the diffusivity.

The microscopic calculations identify Fermi pressure and
Coulomb repulsion as the primary drivers of rapid carrier
expansion at high excitation density. While falling short of full
quantitative agreement, within only 8 ps the calculated change
in variance reaches the experimental value at 7 < 1 ps (6> — o2
~ 2 um” for n = 10'* cm™?). Because the effective mass theory
only applies to electrons in close vicinity to K valleys in our
case, it may break down at the high instantaneous electron
densities that immediately follow pump excitation. Unfortu-
nately, a simulation of the spatiotemporal dynamics including
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electrons across the whole Brillouin zone is not feasible. Other
possible contributions might play a role at very high densities,
e.g. screening of electron—phonon interactions or buildup of
strong correlations that could explain the quantitative
deviations from the experiment. Nevertheless, our microscopic
calculations capture the main qualitative many-particle
mechanisms behind the observed rapid carrier propagation at
very high carrier densities.

In summary, we found that the exciton localization and hot
plasma transport are highly tunable by the density in a MoSe,/
WSe, bilayer. This is a critical issue both for fundamental
quantum science such as Mott physics and for optoelectronic
applications in van der Waals heterostructures. Building on
other recent high impact articles'”””°>*® wusing photo-
luminescence technique, our experiments use state-of-the-art
pump/probe microscopy and provide higher spatial and
temporal resolution (0.2 ps vs 10 ps or longer). Surprisingly,
a hot plasma transport occurs over several microns in ~0.2 ps.
This rapid expansion is driven by Fermi pressure in addition to
Coulomb repulsion at a density far exceeding the Mott
transition. Hot plasma expansion is a topic of broad interests,
relevant for distinct fields such as astrophysics and laser driven
particle acceleration in addition to high-power optoelectronics.
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